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15. Manipulating Data Structures with Procedures

15.1. Introduction
Almost all Maple commands are really procedures written in the Maple programming language. 
Most of the symbolic algebra commands (like factor, combine, simplify) are procedures 
that manipulate data structures in order to perform the symbolic manipulations. In this worksheet we 
look at examples of  how a procedure can manipulate a data structure to accomplish a symbolic 
calculation. This will give us an idea of how Maple does its job.
> 

15.2. Differentiating a monomial

The derivative with respect to x of the monomial c xn  is  c n x( ) − n 1  So, for example, the derivative 

of  3 x5  is 15 x4.  Here is a procedure that implements this rule.
> diff_term := proc( term )
>   

op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-
1)

> end;

Before explaining how the procedure works, let us try it out.
> diff_term( 3*x^5 );
> diff_term( 2*t^3 );
> diff_term( a*x^n );
> diff_term( x^3 );  # We will fix this bug later.

The procedure diff_term has a single formal parameter, term, which the procedure assumes is a 
data structure representing one term of a polynomial (i.e., a monomial). The procedure does its work 
by breaking up the data structure named by term  into its basic parts and then reconstructing those 
parts into the derivative of term. For example, if term has the value 3*x^5, then the pieces of 
term are 3, x, and 5, and here is how those pieces are built up into the derivative 3*5*x^4.
> term := 3*x^5;
> op(1,term), op(2,op(2,term)), op(1,op(2,term)), 

op(2,op(2,term))-1;
> op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-

1);
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Here is a way to watch how the procedure diff_term works. Let us redefine the procedure using 
right-quotes to delay the evaluation of certain results.
> diff_term := proc( term )
>   ' op(1,term)*'op'(2,op(2,term)) * 
>      'op'(1,op(2,term))^('op'(2,op(2,term))-1) '
> end;

Notice that we delayed the evaluation of the entire command in the body of the procedure and we 
further delayed the evaluation of three of the op commands. Let us apply this modified version of 
diff_term to a monomial and watch the steps taken in the evaluation of the derivative.
> diff_term( 3*x^5 );
> %;
> %;
> 

Now let us look at the bug that showed up earlier. Something went wrong when the input was x^3. 
Let us see what.
> term := x^3;
> op(1,term); op(2,op(2,term)); op(1,op(2,term)); 

op(2,op(2,term))-1;

Now we see what went wrong. There is no op(2,op(2,term)) when term is x^3 (why?). We 
need a special case to handle monomials without a leading coefficient. Here is another version of 
diff_term.
> diff_term := proc( term )
>   if type( term, `^` ) then
>     op(2,term)*op(1,term)^(op(2,term)-1)
>   else
>     

op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-
1)

>   fi
> end; 

Notice how we have used a conditional statement to break up our calculation into different cases. 
The boolean part of the conditional statement uses the type command. This command is used to 
ask if a particular data structure is of a particular data type, and the result is either true or false. 
If term is of type `^`, then we are assuming that term is of the form x^n (i.e., the monomial has 
no coefficient), otherwise we are assuming that term is of the form c*x^n.

Let us see if this works.
> diff_term( x^3 );  # Yea!
> diff_term( x^1 );  # Opps.

We were assuming that the variable x has an exponent other than 1, but it need not. If the exponent 
is 1 then Maple (automatically) simplifies the expression to not have an exponent. We also get an 
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error with the following input.
> diff_term( 3*x^1 ); 

So we need another special case. Let us try again.
> diff_term := proc( term )
>   if type( term, {name,numeric}&*name ) then
>     op(1,term)
>   else
>     if type( term, `^` ) then
>       op(2,term)*op(1,term)^(op(2,term)-1)
>     else
>       

op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-
1)

>     fi
>   fi
> end;

This version handles three special cases. The first case is new and the last two are the same cases as 
in the previous version. Notice that the first type command has a special data type in it, something 
called a structured data type. The structured data type {name,numeric}&*name matches any 
data structure which is of the form "a name or number times a name", e.g., either c*x or 3*x. In 
both cases the derivative is the "constant" in front of the "variable". Let us try out this new version.
> diff_term( x^3 );
> diff_term( 3*x );
> diff_term( -x );
> diff_term( x );  # Opps again.

Another special case that we have to worry about. One more time.
> diff_term := proc( term )
>   if type( term, name ) then
>     1
>   else
>     if type( term, {name,numeric}&*name ) then
>       op(1,term)
>     else
>       if type( term, `^` ) then
>         op(2,term)*op(1,term)^(op(2,term)-1)
>       else
>         op(1,term)*op(2,op(2,term))
>               * op(1,op(2,term))^(op(2,op(2,term))-1)
>       fi
>     fi
>   fi
> end;

Give this version a try.
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> diff_term( x^3 );
> diff_term( 3*x );
> diff_term( a*x );
> diff_term( x );
> diff_term( 10 );  # Oh no.

If we stop and think about it, this is our last special case. We are trying to differentiate terms of the 
form a*x^n, and this term can be in any of the following special forms, each of which is really a 
different kind of data structure with a different (structured) data type.
> 

             form                data type
               a                   numeric  or  name
               x                   name                   
             a*x                {numeric  or  name}*name
             x^n                `^`
           a*x^n            {numeric or name}*name^{numeric  or  name}
> 

So we really need a special case for each of the five forms that the input term can take.
> diff_term := proc( term )
>   if type( term, numeric ) then
>     0
>   else
>     if type( term, name ) then
>       1
>     else
>       if type( term, {name,numeric}&*name ) then
>         op(1,term)
>       else
>         if type( term, `^` ) then
>           op(2,term)*op(1,term)^(op(2,term)-1)
>         else
>           op(1,term)*op(2,op(2,term)) 
>                 * op(1,op(2,term))^(op(2,op(2,term))-1)
>         fi
>       fi
>     fi
>   fi
> end;

Let us try this out.
> diff_term( a*x^n );
> diff_term( x^3 );
> diff_term( 3*x );
> diff_term( a*x );
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> diff_term( x );
> diff_term( 1 );
> diff_term( a );  # What should we get here?

Let us not worry about the last one for now. Instead, let us look at a slightly cleaner way to write 
diff_term.  Nested if-then-else-fi statements are so common that there is a nice shorthand for 
them. This shorthand makes nested if-then-else-fi statements easier to read, it gets rid of many levels 
of indentation, and it gets rid of all the trailing fi's. Here is diff_term rewritten using this 
shorthand,  the if-then-elif-then-else-fi construction.
> 
> diff_term := proc( term )
>   if type( term, numeric ) then
>     0
>   elif type( term, name ) then
>     1
>   elif type( term, {name,numeric}&*name ) then
>     op(1,term)
>   elif type( term, `^` ) then
>     op(2,term)*op(1,term)^(op(2,term)-1)
>   else
>     

op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-
1)

>   fi
> end;

Notice how this version is much easier to read.  Let us try this version to make sure that it still 
works.
> diff_term( a*x^n );
> diff_term( x^3 );
> diff_term( 3*x );
> diff_term( a*x );
> diff_term( x );
> diff_term( 1 );
> 

Exercise: Use the delayed evaluation trick in the body of the most recent version of diff_term to 
watch how the procedure evaluates the derivatives of various monomials.
> 

Exercise: Write a procedure int_term that finds an antiderivative of a monomial. If you model 
your procedure on diff_term, then your int_term should also work with "monomials" with 
negative coefficients. Make your version of int_term compute the correct antiderivative for the 
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special case of 
1

x
.

> 

Now that we have a procedure that differentiates monomials, it would be nice if we could use it to 
define a procedure that differentiates polynomials, which are just sums of monomials. In the next 
section, we show how to define such a procedure. The main tool that we need is a special data 
structure manipulating command called map.
> 

> 

15.3. Differentiating a polynomial; the map command
What about differentiating a polynomial, which is a sum of monomials (i.e. terms). The derivative 
with respect to x of a sum of  terms is the sum of the derivatives of each term. So, for example, the 

derivative of   + 3 x2 5 x3 is  + 6 x 15 x2.  How can we use our diff_term procedure to accomplish 
this? To find out how, we need to first look at a new Maple command.

Maple provides a procedure called map which applies a given  procedure to all of the pieces of a 
given data structure and returns the result in the same kind of data structure as the input. For 
example the next command will apply the sqrt function to each number in the given list and return 
the results in a list.
> map( sqrt, [9, 16, 25, 36, 49, 64, 81] );

Here is an interesting trick. If we delay the evaluation of the sqrt function, then we can see the 
intermediate step in the calculation of the map command.
> map( ''sqrt'', [9, 16, 25, 36, 49, 64, 80] );

Here we see that the map command produced a list of the sqrt function applied to every number 
from the original list.

The next command applies the squaring function to a set of numbers and returns the results in a set 
(why are there only four numbers in the result?). Notice how the squaring function that we use here 
is an anonymous function.
> map( x->x^2, {-3, -2, -1, 0, 1, 2, 3} );

The next command applies the delayed evaluation trick to see the intermediate result.
> map( ''x->x^2'', {-3, -2, -1, 0, 1, 2, 3} );

Here we see that map has produced a set containing the squaring function applied to each of the 
seven elements of the original set.

The next command produces a list of values of ( )sin x  for x from 0 to 2 π in steps of π/6. The 
command does this by applying the sin function to every number in the list produced by the seq 
command.
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> map( sin, [seq( (i*Pi)/6, i=0..12)] );

The next example returns the sum of the coefficients of the polynomial (why?).
> map( coeffs, x^4 + 2*x^3 + 3*x^2 + 4*x + 5 );

Here is what the intermediate step from this last calculation looks like.
> map( ''coeffs'', x^4 + 2*x^3 + 3*x^2 + 4*x + 5 );

The next example uses diff_term (from the last section) and returns the derivative of the 
polynomial.
> map( diff_term, x^4 + 2*x^3 + 3*x^2 + 4*x + 5 );

Here is the intermediate step.
> map( ''diff_term'', x^4 + 2*x^3 + 3*x^2 + 4*x + 5 );

The map command is an example of a powerful Maple command for manipulating data structures. It 
has a lot of uses in Maple. 

Exercise: It is important to remember that the first operand of the map command should be a 
function or a procedure. For example, what if we redo the above squaring example, but we represent 
the squaring function with an expression instead of with a Maple function? Explain the result of the 
next command.
> map( x^2, {-3, -2, -1, 0, 1, 2, 3} );

This example shows that it is not always possible to interchange "mathematical functions as 
expressions" with "mathematical functions as Maple functions". There are times when we must 
work with Maple functions.
> 

Let us define a new procedure diff_poly that uses map and diff_term (from the last section) 
to differentiate a polynomial (i.e. a sum of terms). We use map to apply diff_term to each term 
of an input polynomial and get a result that is also a polynomial.
> diff_poly := proc( poly )
>    map( diff_term, poly )
>  end;

Let us try it out.
> diff_poly( x^4+2*x^3+3*x^2+4*x+5 );
> diff_poly( 10+x-5*x^2+x^4 );
> diff_poly( 5*x^5-4*x^4+3*x^3-2*x^2-2*x^(-2) );
> diff_poly( a*x^n );  # Opps
> diff_poly( 3*x^n );  # Opps again

Now something is broken. The last two results are not right even though we had those working in 
the last section. Let us analyze a call to diff_poly with the actual parameter a*x^n. The map 
command in the body of diff_poly will apply the procedure diff_term to each piece of the 
data structure a*x^n.
> map( diff_term, a*x^n );
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But a*x^n is a data structure of type `*` with operands a and x^n so diff_poly will return the 
product of diff_term(a) (which is 1) and diff_term(x^n) (which is n*x^(n-1)) to get 
the final result n*x^(n-1). Here is the delayed evaluation trick so that we can see what map is 
doing.
> map( ''diff_term'', a*x^n );
> %;

This is not what we want.
> 

Exercise: Analyze the call to diff_poly with the actual parameter 3*x^n to see exactly what 
happened in that case.
> 

So the problem is that diff_poly assumes (unwisely) that its input is a sum of terms. We need a 
conditional statement inside diff_poly to check the data type of the input. If the input is a `+` 
data structure then it is a sum of terms, otherwise we will assume it is a single term.
> diff_poly := proc( poly )
>   if type(poly, `+`) then
>     map( diff_term, poly )
>   else
>     diff_term( poly )
>   fi
> end;

Let us try this new and improved version.
> diff_poly( a*x^n );
> diff_poly( 3*x^n );
> diff_poly( 3+2*x+a*x );
> diff_poly( 10+x-5*x^2+x^4 );
> diff_poly( 5*x^5-4*x^4+3*x^3-2*x^2-2*x^(-2) );

Notice that the last example was not even a polynomial (why?), but it worked. Let us try our 
differentiation procedure on a randomly chosen polynomial in x.
> randpoly( x );
> diff_poly( % );

So far so good. However, the next three examples all give erroneous answers.
> diff_poly( x^3 + z^2 );      # This result doesn't really make 

sense.
> diff_poly( x*y^2 + y*x^2 );  # Neither does this one.
> diff_poly( cos(x) );         # And this doesn't work.

Our diff_poly procedure was not designed to handle these kinds of inputs, e.g., polynomials in 
several variables or arbitrary functions. But our procedure should not return erroneous results or 
cryptic error messages for inputs it was not designed for. It would be better if our procedure had 
Maple do some "type checking" of the procedure's input so that Maple could inform users of the 
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proper kind of input. We want to make sure that the procedure's input is a polynomial in one 
variable. Here is a version of diff_poly that only accepts univariate polynomials. The word 
polynom means a polynomial data type to Maple and polynom(name) means a polynomial of a 
single variable.
> diff_poly := proc( poly::polynom(name) )
>   if type(poly, `+`) then
>     map( diff_term, poly )
>   else
>     diff_term( poly )
>   fi
> end;

Let us see if this helps.
> diff_poly( cos(x) );
> diff_poly( x^2+y^2 );

It seems to help, but now something else is wrong.
> a*x^n;
> diff_poly( % );  # now this is broken.

Our strategy for designing the diff_term and diff_poly procedures is not really very good. 
That is why we are having trouble getting some things just right. But the examples in this section 
have given you an idea of how a procedure can manipulate a data structure that represents a 
polynomial to build up a new data structure that represents the polynomial's derivative. We have 
seen that we can use type checking to test the kind of inputs our procedure accepts but we have also 
seen how subtle and difficult it can be to really get things right when we want to do a symbolic 
mathematical manipulation.
> 

Exercise: Use the map command and your int_term procedure from the last section to write a 
procedure int_poly that finds an antiderivative of a polynomial.
> 

Let us see how Maple's own differentiation command works. If we are differentiating an expression, 
Maple requires that we specify the independent variable that we wish to differentiate with respect to. 
This requirement solves some of the problems we are having with diff_poly, and it is one of the 
main difference between our diff_poly and Maple's  diff. (The other main differences are that 
diff works on any expression, not just polynomials, and diff does not have any bugs in it.)
> diff( 3*x^2, x );
> diff( 3*t^2, t );
> diff( 3*t^2, x );
> diff( a*x^n, x );  # Does this give the right answer?
> diff( a, x );
> diff( a, a );
> diff( x^3 + z^2, x );
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> diff( exp(x)*cos(x), x );
> diff( f(x)*g(x), x );  # diff knows the product rule.
> diff( f(g(x)), x );    # And diff knows the chain rule.
> 

In a later section of this worksheet we will see how to modify our diff_poly procedure to make it 
act more like Maple's diff command. Before doing that, let us look at some examples of real 
Maple procedures that are written in the Maple  programming language.
> 

> 

15.4. Some real Maple procedures
The examples from the previous two sections demonstrate two main points. First, to show how some 
of Maple's data structure manipulating commands are used. Second, to show that by using data 
structure manipulating commands, we can write interesting commands that do mathematics 
symbolically. The basic ideas behind these examples is in fact the basis for how much of  Maple 
itself is written. In this section we show how most Maple commands are really procedures written in 
the Maple programming language and that many of these procedures do data structure manipulations 
like the ones that we did in the previous two sections.
> 

If most Maple commands are really procedures written in the Maple programming language, then we 
should be able to print out the definition of a command and see how it is written. So let us try to 
look at the definition of a real Maple command.
To do this we need to use a special command, Maple's interface command. Let us try to look at 
the definition of the factor command.
> print( factor );

That did not tell us much. The next command will help.
> interface( verboseproc=2 );

Now let us try printing the definition of factor again (the definition is pretty long).
> print( factor );

If you look carefully at the Maple code in the factor command, you will see that it is similar in 
structure to our diff_term procedure.  There are a lot of nested if-then-else-fi statements that 
check for specific data types.
> 

Here is the definition of the simplify command.
> print( simplify );

If you want to see a really long Maple program, look at the source code to plot (recall that key 
combination Ctrl-Z can be used to make the output go away after it has been displayed).
> print( plot );
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Looking at the source code of Maple commands can be intriguing. For example, what are those two 
very large integers doing in the source code for isprime?
> print( isprime );
> 

We cannot examine the source code  for every one of Maple's commands. Some commands are 
"built in" commands, which means that they are written in the C programming language instead of 
in Maple's own programming language. You cannot see the source code for these built in 
commands. Here are a few examples of built in commands.
> print( diff );
> print( expand );
> print( eval );

Maple knows when a procedure is built in because a built in procedure has the builtin option in 
the third operand of its procedure data structure.
> op( 3, eval(diff) );
> 

Exercise: The command nextprime has a very short Maple program.
> print( nextprime );

Explain in detail exactly how this program works. In particular, which lines of code are responsible 
for each of the following results?
> nextprime( -5 );
> nextprime( 19 );
> nextprime( hello );
> nextprime( 19/2 );
> 

Exercise: Both this and the next exercise use the definition of the ln procedure.
> print( ln );

Find the part of the code for ln that implements the rule  = ( )ln ba a ( )ln b . (Hint: There are actually 

two different places in the code that implement this rule, but for different data types of a and b.)
> 

Exercise: What do the third and fourth elif-parts do in the code for the ln function? What logarithm 
rules do they implement?
> 

Exercise: Examine the code for the function sqrt and find the part that is responsible for 
rationalizing the square root of fractions such as the following.
> sqrt(1/2), sqrt(1/3), sqrt(3/5);
> print( sqrt );
> 
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Exercise: This exercise is about the source code for the sin function.
> print( sin );

Find the part of the code for sin that is responsible for each of the following calculations.
> sin(-x);
> sin(arctan(y));
> sin(z+Pi/2);

Recall that the remember table for sin allows Maple to return the following symbolic results.
> sin(Pi/5);
> sin(2*Pi/5);

If we examine the remember table for sin, we see that there is no entry in it for 3*Pi/5 and yet 
Maple knows the following symbolic result.
> sin(3*Pi/5);
> op( 4, eval(sin) );

Use the source code for sin to explain exactly how Maple was able to calculate the symbolic result 
for sin(3*Pi/5).
> 

Exercise: This exercise uses the source code for ln again.
> print( ln );

Click on the source code for ln so that it is highlighted. Then use the Copy item in the Edit menu to 
put this code in the clipboard. Now use the Paste item from the Edit menu to paste the code for ln 
into the next prompt right after the  my_ln :=. Now edit the error message for ln(0) (you need 
to find this error message first). Change it to anything you want. Put a semi colon at the very end of 
the code. Then hit the enter key (with the cursor still in the new code for ln) to redefine the ln 
function and give the redefinition the name my_ln (the name ln is "protected", so it is difficult, but 
not impossible, to use that name). Then execute the my_ln(0) command at the second prompt 
below to see your new error message.
> my_ln := 
> my_ln(0);

Using this technique, any Maple command, except for the built in ones, can be modified to your 
heart's content. This allows people with specialized mathematical needs to modify Maple for their 
own purposes. It also allows users to fix bugs in Maple. Occasionally, in the Maple Users Group 
e-mail mailing list, people will post bug fixes for Maple that one can implement by modifying a 
command's code, just as you did here.
> 

How does Maple know which procedure definitions can be seen by default and which ones need 
verboseproc set to 2? Recall that a procedure data structure has an options operand, which is 
the third of seven operands in a procedure data structure. One of the possible options is called 
Copyright. If a procedure data structure has a Copyright option in its third operand, then 
we need verboseproc set to 2 in order to see the procedure's definition.
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> op( 3, eval(simplify) );

Since simplify has the Copyright option, we need verboseproc set to 2 to view its 
definition. All of the commands in the Maple library have the Copyright option. We do not 
however need verboseproc set to 2 to be able to see the procedure data structure for a 
procedure. Every procedure data structure can be examined using the op command (recall that a 
procedure's definition is not part of a procedure data structure).
> 

Exercise: Create a simple procedure and give it the Copyright option. Recall that options, like 
Copyright, remember, and trace, are declared right after the local and global variable 
declarations. Try to view the definition of your procedure with verboseproc set to 1 and 2.
> 

Finally, let us make sure that we set the interface back to its default setting.
> interface( verboseproc=1 );

> 

15.5. "Reversing" a polynomial

We know that a polynomial like  −  +  − 10 x3 3 x2 2 x 5 is represented in Maple by a data structure. 
Let us write a procedure that takes as its input a data structure representing a polynomial and 
manipulates the data structure so as to reverse the order of the coefficients in the polynomial, so 

 −  +  − 10 x3 3 x2 2 x 5 will become −  +  −  + 5 x3 2 x2 3 x 10. 

But before trying that, let us write a procedure that reverses the elements of a simpler data structure, 
a list.
> reverse_list := proc( my_list )
>   local i, N;
>   N := nops(my_list);
>   [ seq( op(N-i, my_list), i=0..N-1) ]
> end;

Let us try it out before we explain it.
> reverse_list( [1,2,3,4,5] );
> [ seq( 2^i, i=-4..4) ]; 
> reverse_list( % );
> empty_list := [];
> reverse_list( empty_list );

To explain reverse_list let us start with a simple list.
> simple_list := [a,b,c];

There are three elements in this list. Notice what the following commands do.
> op(3-0, simple_list); op(3-1, simple_list); op(3-2, 
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simple_list);

We can use the seq command to abbreviate this.
> seq( op(3-i, simple_list), i=0..2 );

Put square brackets around the last command so that the result is a list.
> [ seq( op(3-i, simple_list), i=0..2 ) ];

Finally, let us notice that 3 is the same as nops(simple_list) and 2 is the same as 
nops(simple_list)-1.
> N := nops(simple_list);
> [ seq( op(N-i, simple_list), i=0..N-1 ) ];

Now try a less simple simple_list.
> simple_list := 

[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z];
> N := nops(simple_list);
> [ seq( op(N-i, simple_list), i=0..N-1 ) ];

(Why is there a 17 in the reversed list? How can we get rid of it?)
> 

Here is a slightly different way to write the command that reverses a list. What has been changed 
and why?
> [ seq( op(-ii, simple_list), ii=1..N ) ];

Here is an even more brief way to write the command that reverses a list.
> [ seq( simple_list[-ii], ii=1..N ) ];

Here is still another way to write this.
> [ simple_list[-ii]$ii=1..N ];
> 

Now let us return to our original problem and use a similar idea with a polynomial. The main 
difference here is that the data structure is a bit more complicated.
> reverse_coef := proc( poly )
>   local i, j, N;
>   N := nops(poly);
>   [ seq( op(1, op(N-i+1, poly))*op(2, op(i, poly)), i=1..N ) ];
>   add( op(j, %),  j=1..N );
> end;

Let us test this on some polynomials.
> 101*x + 102*x^2 + 103*x^3 + 104*x^4 + 105*x^5;
> reverse_coef( % );
> 5*x^2 + 2*x + 9*x^3;
> reverse_coef( % );

We can simplify our procedure a bit. Instead of creating a sequence and then adding the terms of the 
sequence to form the final polynomial, we can use the add command to simultaneously create the 
sequence of terms and add them.
> reverse_coef := proc( poly )
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>   local i, N;
>   N := nops(poly);
>   add( op(1, op(N-i+1, poly))*op(2, op(i, poly)), i=1..N );
> end;

Let us test this again.
> 101*x + 102*x^2 + 103*x^3 + 104*x^4 + 105*x^5;
> reverse_coef( % );
> 5*x^2 + 2*x + 9*x^3;
> reverse_coef( % );

Let us try the procedure on a randomly chosen polynomial.
> randpoly( z );
> reverse_coef( % );

What went wrong? Here are the crucial lines from the body of the procedure with some delayed 
evaluation added so that we can observe how the terms are evaluated.
> poly := randpoly( z );
> N := nops(poly);
> add( 'op'(1, op(N-i+1, poly))*''op''(2, op(i, poly)), i=1..N ) 

;
> %;
> %;

If we look at each of the six op commands in the last output, we see that the very last term in the 
sum has an op command with an invalid index. So there was a problem with the constant term in 

the polynomial. We assumed that every term in the polynomial has the form c xn but a constant term 
does not have that form. In fact, here is another polynomial that will cause an error.
> 3*x^3+x^2-5*x;
> reverse_coef( % );

The polynomial had a term of the form x2 without an explicit coefficient. Let us see in detail how the 
procedure evaluated the polynomial.
> poly := 3*x^3+x^2-5*x;
> N := nops(poly);
> add( 'op'(1, op(N-i+1, poly))*''op''(2, op(i, poly)), i=1..N ) 

;
> %;
> %;

We see that the middle term x^2 was not handled properly at all. Neither the coefficient nor the 
variable part were extracted properly from this term. (Why did the final result have only two terms?)

In our procedure reverse_coef we need to be more careful about selecting the coefficient part 
and the variable part from each term of the polynomial. We need our procedure reverse_coef to 
have a form like the following, where we need to define new procedures coef_part and 
var_part.
> reverse_coef := proc( poly )
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>   local i, N;
>   N := nops(poly);
>   add( coef_part(op(N-i+1, poly))*var_part(op(i, poly)), i=1..N 

);
> end;

Here is what a call to reverse_coef looks like at this point.
> 3*x^3+x^2-5*x;
> reverse_coef( % );
> randpoly( x, degree=10, terms = 3 );
> reverse_coef( % );

Here is a definition for coef_part.
> coef_part := proc(term)
>   if type(term, constant) then term 
>   elif type(term, `^`) then
>     1
>   else
>     op(1, term) 
>   end
> end;

And here is a definition for var_part.
> var_part := proc(term)
>   if type(term, constant) then 1 
>   elif type(term, `^`) then
>     term
>   else
>     op(2, term) 
>   end
> end;

Try them out.
> 3*x^3+x^2-5*x;
> reverse_coef( % );
> 5*x^5+2*x^3+x^2-6*x;
> reverse_coef( % );
> 

Exercise: Each of coef_part and var_part contains a single if-then-elif-else-statement in its 
body. Explain in detail what kinds of monomial terms each of the three clauses deals with.
> 

We still have a problem with reverse_coef. Consider the next example.
> 3*z^3+2*z^2+z;
> reverse_coef( % );
> 
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Exercise: The error message in the last example identified the procedure var_part as the source 
of the problem. Here is a rewritten var_part. What was wrong with the previous version and why 
does this version fix the problem?
> var_part := proc(term)
>   if type(term, constant) then 1 
>   elif type(term, name) then term
>   elif type(term, `^`) then
>     term
>   else
>     op(2, term) 
>   end
> end;

But we still have a problem with reverse_coef. Consider the last example again.
> 3*z^3+2*z^2+z;
> reverse_coef( % );

There is still a problem with the procedure coef_part. Find the problem and fix it.
> 

There is one last issue to consider with our procedure reverse_coef. Consider the next example.
> x^2-2*x-3;
> reverse_coef( % );

The result from reverse_coef is correct, but it may not look like what we were expecting. In 
Maple, the way a polynomial gets displayed is session dependent and it can change from one session 
to another. In my version of Maple, the last result has the constant term at the beginning of the 
polynomial instead of at the end where we usually expect it to be. We do not have much control over 
how Maple decides to order the terms of a polynomial. We can use the sort command to order the 
terms in descending order of degrees.
> sort( % );

Usually, when we enter a polynomial, Maple will display the polynomial with the terms in the order 
that we entered them in.
> 4*x^3-7+5*x^8;

But now consider the next example
> 5*x^8+4*x^3-7;

In my session, Maple "remembered" the order of the terms of this polynomial from the last entry and 
displayed the polynomial as before. So Maple will sometimes change the order of the terms of a 
polynomial.

Now what should be the result of the next command? The actual result will depend on how Maple 
orders the terms of the input polynomial.
> reverse_coef( 5*x^8+4*x^3-7 );

The result from reverse_coef is correct (what did it do?). But this behavior of Maple's with 
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respect to ordering the terms of a polynomial can make it very difficult to predict the results of 
reverse_coef. One way to avoid this confusion would be for reverse_coef to sort its 
input polynomial and also sort its return polynomial just before returning it.
> 

Exercise: Add sort commands to the definition of reverse_coef as described in the last 
paragraph. Try out the new version of the procedure.
> 

Exercise: Maple has a command coeffs that can be used to return the coefficient of a monomial. 
We should be able to use this command to replace our procedure coef_part in the definition of 
reverse_coef. But the coeffs command needs to be told the variable with respect to which 
we want the coefficient.
> coeffs( 12*x*y, x );
> coeffs( 12*x*y, y );

Our procedure reverse_coef is designed to work with any polynomial in one variable, so we do 
not know ahead of time what variable is in the polynomial. However, the Maple command indets 
(for "indeterminates") will return the set of variables used in an expression. Rewrite 
reverse_coef to use indets and coeffs instead of coef_part.
> 

Exercise: Notice in the online documentation that the Maple command coeffs has a "call by 
name" parameter that can be used to return the part of a monomial that the coefficient is "in front 
of".
> coeffs( 12*x*y, x, 't' );
> t;
> coeffs( 12*x*y, y, 't' );
> t;

In the last exercise you used coeffs to eliminate the procedure coef_par from the definition of 
reverse_coef. Now use coeffs to also eliminate the procedure var_part.
> 

Exercise: Rewrite reverse_coef so that it works with multivariate polynomials. Define 
reverse_coef so that it expects a second parameter that specifies the variable with respect to 
which it reverses the coefficients. Consider whether you should use Maple's collect and sort 
commands.
> 

> 

15.6. Teaching Maple new tricks
One feature that makes Maple so powerful for doing symbolic mathematics is that many of Maple's 
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most important commands are "extensible". What this means is that we can extend the capabilities 
of these commands by writing special "interface" procedures. In this section we give examples of 
extending the capabilities of the expand and simplify commands.

Many well known mathematical functions have special algebraic properties that Maple is aware of 
and can make use of in its symbolic manipulations. Here are some examples that use the expand 
command.
> abs(x*y);
> expand( % );
> exp(x+y);
> expand( % );
> sin(a+b);
> expand( % );

Maple's knowledge of these properties is built into the expand procedure. If we want to teach 
expand a new identity for some function, it would be impractical to try to modify the code for 
expand (especially since expand is a built in command and so it is not written in Maple's own 
programming language). So we need a way to inform expand of an identity that is not already built 
into it. Let us look at an example of how we do this.
> 

Let us suppose there is a function h for which the following identity is true.

 = ( )h  + x y
( )h x

( )h y 2

Let us teach expand about this identity. Maple provides an "interface" to the expand procedure 
that allows us to extend its capabilities. The way that we use this interface to teach the expand 
procedure about our function h is we define a procedure called `expand/h`. When we call the 
expand procedure and it finds a function call of the form h(u) (for any expression u), the 
expand procedure looks to see if there is a definition for the procedure `expand/h` and if there 
is one, expand calls `expand/h`(u), which should return the appropriate expansion of h(u), 
and then expand replaces the expression h(u) with the result returned by `expand/h`.
> 

Before doing the more complicated example of h, let us start off with a simple example. Suppose we 
want to teach expand about a function g that has the (silly) property that ( )g x  expands to ( )g 2 x /2 

for any input x. Here is a definition for the procedure `expand/g` that implements this simple 
expansion.
> `expand/g` := proc( u )
>   'g'(2*u)/2;
> end;

So now whenever the expand procedure comes across a function call of the form g(u) (for any 
expression u), expand makes the procedure call `expand/g`(u), which returns the expression 
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g(2*u)/2, and then expand replaces the original expression g(u) with its expansion 
g(2*u)/2.
> expand( g(a) );
> expand( % );
> expand( exp(g(x^2)) );

So far so good. But the next two examples demonstrate a problem with our procedure 
`expand/g`.
> expand( g(exp(x+y)) );
> expand( g(g(y)) );

Notice that expand did not expand the exponential inside of g nor did it expand the g inside of g. 
Here is how we can fix this. We put an extra (recursive) call to expand inside of the return value of 
`expand/g`. This causes expand to keep on working on whatever is inside the expanded 
function call g(2*u)/2.
> `expand/g` := proc( u )
>   'g'(expand(2*u))/2;
> end;

Let us try this new version.
> expand( g(exp(x+y)) );
> expand( g(g(y)) );

Why did that not work? Let us try an experiment. Restart Maple.
> restart;

Define `expand/g` again.
> `expand/g` := proc( u )
>   'g'(2*expand(u))/2;
> end;

And now try it again.
> expand( g(exp(x+y)) );
> expand( g(g(y)) );
> expand( % );

The problem was that the procedure expand was "remembering" (using a remember table) the 
previous, erroneous, results about g. Look at the following remember table for expand. Notice how 
it contains the results from the last two calls to expand.
> op( 4, eval(expand) );

When we redefine `expand/g`, this does not cause the remember table for expand to be erased. 
Subsequent calls to expand can get their results directly from the remember table without ever 
calling the redefined `expand/g`.
> 

Here are two examples in which expand produces a result that we are probably not expecting.
> expand( exp(g(x)+z) );
> expand( sin(g(x)+z) );

Notice that in each of these examples the expansion of g occurs inside the expansion of some other 
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function. Notice also that it appears as if `expand/g` gets called twice in each example instead of 
just once as we might have expected. We can verify that `expand/g` is being called twice by 
tracing calls to this procedure.
> trace( `expand/g` );

Now let us re-execute one of the last two examples.
> expand( exp(g(x)+z) );

The trace did not work because expand got that result out of its remember table. We need to erase 
expand's remember table again.
> readlib(forget)( expand );

Now re-execute the example.
> expand( exp(g(x)+z) );

Now we see that `expand/g` really was called twice. If we also trace the expand and 
`expand/exp` procedures, then we can get a bit of an idea why `expand/g` was called twice. 
In order to do this trace, we first need to forget expand's remember table.
> readlib(forget)( expand );

Now set the procedures that we want to trace.
> trace( expand, `expand/exp`, `expand/g` );

Re-execute the example (and then untrace the procedures).
> expand( exp(g(x)+z) );
> untrace( expand, `expand/exp`, `expand/g` ):

By carefully reading the above trace, we see that the first call of `expand/exp`, with operand 
g(x)+2, calls expand on this operand, and this causes the first call of `expand/g`. Then 
`expand/exp` actually expands the exponential. Then after the exponential is expanded, 
`expand/exp` calls `expand/exp` on each term of the expanded exponential. This leads to a 
second call of `expand/g`. So `expand/g` is called twice because the `expand/exp` 
procedure expands all of its operands both before and after it expands the exponential. The reason 
that expand keeps trying to expand operands is that it is hard to know ahead of time in just what 
order the operands in an expression should be expanded. For example, in the following expression, 
the inner function needs to be expanded before the outer function can be expanded.
> sin(cos(x+y));
> expand( % ); 

But in the next example we cannot expand the inner functions, but after the outer function has been 
expanded, more expansion still needs to be done on the result.
> sin(2*arctan(x+y));
> expand( % );

Here is the same expression with a lot of delayed evaluation. This allows us to see the order that the 
expansion is done in. First, the sin is expanded.
> expand( sin(2*''arctan('x+y')'') );

Next is some automatic simplification.
> %;

Get rid of one level of delayed evaluation.
> %;
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Now another expansion is still needed.
> expand( % );

As we will see in the example below, when writing a procedure that interfaces with expand, it is 
important to make sure that every possible expansion gets done and this is usually accomplished 
with a number of recursive calls to expand.
> 

At this point we seem to need to restart Maple, otherwise the forget procedure does not work for 
expand. It seems that using trace on the expand procedure somehow gets Maple confused.
> restart;

Now let us turn to the function h and teach expand the identity  = ( )h  + x y
( )h x

( )h y 2
. Here is a first 

attempt at defining `expand/h`.
> `expand/h` := proc( u )
>   if type(u, `+`) then
>     'h'(op(1,u))/'h'(op(2,u))^2;
>   else
>     'h'(u)
>   fi
> end;

Let us try this out.
> h(x+y);
> expand( % );
> exp(h(x+y))+h(z)/h(z^2-3);
> expand( % );

So far so good. But the next few examples show that we need to do some work on `expand/h`.
> h(x+y+z);
> expand( % );
> h(exp(x+y)+h(a+b));
> expand( % );
> h(abs(x*y));
> expand( % );

Of the last three examples, the first showed that we need to be more careful of how we handle a sum 
in the definition of `expand/h`, and the last two examples show that expand is not being 
allowed to work on the operand of a function call h(u). The second problem is easy to fix. Here is 
a redefinition of `expand/h` that calls expand recursively.
> `expand/h` := proc( u )
>   if type(u, `+`) then
>     'h'(op(1,expand(u)))/'h'(op(2,expand(u)))^2
>   else
>     'h'(expand(u))
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>   fi
> end;

Let us clear the remember table for expand.
> readlib(forget)( expand );

Now let us retry some of the above examples.
> h(exp(x+y)+h(a+b));
> expand( % );
> h(abs(x*y));
> expand( % );

The first example now works fine because we put calls to expand in the then-part of the 
conditional statement inside the body of `expand/h`, and the second example now works 
correctly because of the call to expand in the else-part. But now consider the following two 
examples.
> h(sin(x+y));
> expand( % );
> h(cos(2*x)+1);
> expand( % );

Neither of these examples is correct. In the function call h(sin(x+y)), h has only one operand, 
so there is no need to apply the identity for h. But after expand applies a trig identity to the single 
operand, the operand for h becomes a sum, and then the identity for h should be applied. So in the 
case where the operand for h is not a sum, we need to check if the operand becomes a sum after 
expand is called to expand the operand. And in the function call h(cos(2*x)+1), the operand 
is a sum, so `expand/h` executes 
'h'(op(1,expand(u)))/'h'(op(2,expand(u)))^2 with u equal to cos(2*x)+1. But 
here is what expand(u) returns.
> expand( cos(2*x)+1 );

So here we have the case of an operand that is a sum, but it is no longer a sum after it is expanded by 
expand. These two examples show that what we really should be doing in `expand/h` is 
expanding the operand from the call h(u) before we do any analysis of its structure and have the 
conditional statement analyze the structure of the expanded operand.  Here is another version of 
`expand/h`.
> `expand/h` := proc( u )
>   local temp;
>   temp := expand( u );
>   if type(temp, `+`) then
>     'h'(op(1,temp))/'h'(op(2,temp))^2
>   else
>     'h'(temp)
>   fi
> end;

In this version of `expand/h`, the local variable temp holds the result of expanding the operand 
from the function call h(u). If temp is not a sum, then the else-part just returns h composed with 
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the results from expand. And if temp is a sum, then we apply the identity. Before we can try this 
out we need to clear expand's remember table again.
> readlib(forget)( expand );

Now retry the last two examples.
> h(sin(x+y));
> expand( % );
> h(cos(2*x)+1);
> expand( % );

If we really want to apply the identity for h to the sum cos(2*x)+1, without expanding this sum 
first, then we can use right-quotes to delay the evaluation of the cos(2*x) term.
> expand( h(''cos(2*x)''+1) );
> %;

Or, better yet, we can use a cos option to expand to prevent expand from expanding the cosine 
sub-expression.
> readlib(forget)( expand );
> expand( h(cos(2*x)+1), cos );
> 

Now let us turn to the problem of handling sums. The following result is obviously not correct.
> expand( h(a+b+c) );

Our definition of `expand/h` assumes that if the expanded operand from the function call h(u) 
is a sum, then it only has two terms, which need not be the case. We need a way to handle sums of 
three or more terms. We need to be able to replace this command,

'h'(op(1,temp))/'h'(op(2,temp))^2, 
with something like

'h'(op(1,temp))/'h'(second-through-last-terms-of-temp)^2.
Unfortunately, there is no obvious way to get the second through last items from a `+` data 
structure. With a list data structure we can use the following index notation.
> [a,b,c,d,e][2..-1];

But this notation does not work with `+` data structures.
> (a+b+c+d+e)[2..-1];

But here is a trick that will do what we want. The subsop command allows us to substitute for 
items in a data structure, much like subs, but subsop allows us to specify the index of the 
operand that we want to substitute for. Here are a few examples.
> subsop( 2=Pi, a+b+c+d+e );
> subsop( 5=Pi, a+b+c+d+e );
> subsop( 2=7, x+x^2+x^3 );

So here is the trick that we want. If we use subsop to substitute 0 for a term of a sum, then that 
term goes away because of automatic simplification.
> subsop( 1=0, a+b+c+d+e );
> subsop( 4=0, a+b+c+d+e );

So let us use this trick in `expand/h`.
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> `expand/h` := proc( u )
>   local temp;
>   temp := expand( u );
>   if type(temp, `+`) then
>     'h'(op(1,temp))/'h'(subsop(1=0,temp))^2
>   else
>     'h'(temp)
>   fi
> end;

Clear expand's remember table again.
> readlib(forget)( expand );

Try this version out.
> expand( h(a+b+c) );
> expand( % );
> expand( h(a+b+c+d) );
> expand( % );
> expand( % );

Here is another example.
> h(cos(x+y)+sin(x+y));
> expand( % );

Well, things are better now, but still not correct. The identity for h needs to be applied now to the 
term in the denominator. Here is how we do that. We call expand on the term in the denominator, 
which will just call `expand/h` again for us and apply the identity.
> `expand/h` := proc( u )
>   local temp;
>   temp := expand( u );
>   if type(temp, `+`) then
>     'h'(op(1,temp))/expand('h'(subsop(1=0,temp))^2)
>   else
>     'h'(temp)
>   fi
> end;

Clear expand's remember table again.
> readlib(forget)( expand );

Try this version out.
> expand( h(a+b+c) );
> expand( h(a+b+c+d) );
> h(cos(x+y)+sin(x+y));
> expand( % );
> 

Exercise: If you carefully study our version of `expand/h`, you will see that it is treating 
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addition as right associative, that is it treats a+b+c as a+(b+c). We did this to make the procedure 
easier to write. But addition is usually considered to be left associative. Here is a way to force left 
associative expansion of h(a+b+c). Notice that the final result is different from above.
> expand( h(''(a+b)''+c) );
> expand( % );

Modify the procedure `expand/h` so that addition is treated as left associative.
> 

Exercise: Teach expand the following expansion rule for the function k.

 = ( )k x y y ( )k x

Treat multiplication as left associative, so  = ( )k x y z y z ( )k x . Also, be sure you get the result 
 = ( )k x y y ( )k x .

> 

The simplify command also has an interface like the expand command. If we want to teach 
simplify a special simplification rule for a function f, then we need to define a procedure 
`simplify/f`. But there is a big difference between the interface to expand and the interface 
to simplify. Given a function call like f(u), expand will make the call `expand/f`(u), 
but simplify makes a call of the form `simplify/f`(expression) where expression is an 
expression containing the function call f(u). It is not hard to figure out why simplify needs to 
call `simplify/f` with expressions containing f. Many simplifications involve more than one 
occurrence of a function or even the occurrence of several different functions. For example, the 
following simplification requires two occurrences of the function exp.
> simplify( exp(x)*exp(y) );

The following simplification requires the presence of two different functions, sin and cos.
> simplify( cos(2*x)+sin(x)^2 );

So the simplify command needs to provide a `simplify/f` procedure with a lot of 
information about the context that f appears in. Here is a simple `simplify/f` procedure that 
we can experiment with. This procedure prints out the value of its input context, so that we can 
see how simplify called `simplify/f`, and then it returns context unmodified.
> `simplify/f` := proc( context )
>   print( `calling simplify/f with parameter` = context );
>   context
> end;

Now let us use this procedure to watch some examples of simplify calling `simplify/f'. In 
the first two examples, `simplify/f` is called twice, each time with a different expression 
containing f. (Notice that we put colons at the ends of these examples to suppress the final output 
from simplify).
> simplify( x+f(y*f(x)) ):
> simplify( exp(f(y)^2) ):

In the next example, `simplify/f` is called twice, and one of the calls occurs after simplify 
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does some simplification.
> simplify( exp(x)*exp(f(z)) ):

In each of the next two examples, `simplify/f` is called three times.
> exp(a)*exp(f(u))+exp(b+f(u));
> simplify( % ):
> tan(exp(f(w)));
> simplify( % ):

If you should go back and re-execute the above examples, all of them will produce no output the 
second time they are executed. This is because simplify will use its remember table the second 
time it is called with the same input. This is also why we kept changing the variables in each 
example, to keep simplify from using its remember table. If you want to experiment with some 
of the above examples, you will probably want to clear simplify's remember table just before 
each execution of simplify.
> readlib(forget)( simplify );

The above examples should convince you that working with the interface to simplify will be 
quite different from working with the interface to expand.
> 

Let us try doing a simple example of a `simplify/f` procedure. Let us teach simplify that f 

is a linear function, that is, let us teach simplify to implement the identity  =  + ( )f x ( )f y ( )f  + x y . 
Here is a first attempt at `simplify/f`.
> `simplify/f` := proc( context )
>   local cntxt, new_operand, simplified, i;
>   cntxt := context;
>   new_operand := 0;
>   simplified := false;
>   if type( cntxt, `+` ) then
>     cntxt := convert( cntxt, list ); # it's easier to work with 

a list
>     for i from 1 to nops(cntxt) do   # look for calls to f
>       if type(cntxt[i],function) and evalb(op(0,cntxt[i])='f') 

then
>         new_operand := new_operand + op(1,cntxt[i]);
>         cntxt[i] := 0; # remove the term from the sum
>         simplified := true
>       fi
>     od;
>     cntxt := convert( cntxt, `+` );  # convert back to a sum
>     if simplified then cntxt := 'f'(new_operand) + cntxt fi
>   fi;
>   cntxt  # this is always the return value
> end;
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This procedure works by first checking if the context that f is in is a sum. If the context is not a 
sum, then the procedure does nothing. If the context is a sum, then the procedure checks each term 
of the sum to see if it is a function call to f (but first the sum is converted into a list, since it is a bit 
easier to manipulate lists, e.g., we can use index notation with lists but not with sums). If a term of 
the context is a call to f, then the operand of that call is added to a local variable, new_operand, 
that holds a running total of the operands to all the calls to f in the context. After the operand of the 
call is added to the running total, the call to f is removed from the sum (by making the term 0) and a 
flag is set. After all of the terms in the context have been checked, the context (minus any calls to f) 
is converted back into a sum and then the new call to f (if there is one), with the new operand, is 
added on.
> 

Let us try this procedure out.
> f(x)+f(y)+f(z);
> simplify( % );
> f(x) + sin(x) + f(3) + exp(x);
> simplify( % );

In the next example, notice that simplify simplifies the operand of the first call to f before it 
calls `simplify/f`.
> simplify( f(exp(x)*exp(y)) + f(z) );

In the next example, simplify needs to do a (symbolic) simplification before `simplify/f` 
can do its simplification.
> arctan(tan(f(x)))+f(y);
> simplify( %, symbolic );

But here is an example where `simplify/f` does not do all of the simplifications that it could 
do.
> f(f(x))+f(y)+f(f(z));
> simplify( % );

There is still more simplification that can be done, as the next command shows.
> simplify( % );

We can solve this problem by recursively calling simplify on the new operand for the simplified 
call to f.
> 
> `simplify/f` := proc( context )
>   local cntxt, new_operand, simplified, i;
>   cntxt := context;
>   new_operand := 0;
>   simplified := false;
>   if type( cntxt, `+` ) then
>     cntxt := convert( cntxt, list ); # it's easier to work with 

a list
>     for i from 1 to nops(cntxt) do   # look for calls to f
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>       if type(cntxt[i],function) and evalb(op(0,cntxt[i])='f') 
then

>         new_operand := new_operand + op(1,cntxt[i]);
>         cntxt[i] := 0; # remove the term from the sum
>         simplified := true
>       fi
>     od;
>     cntxt := convert( cntxt, `+` );  # convert back to a sum
>     if simplified then
>       # first check if the new operand can be simplified
>       new_operand := simplify( new_operand ); 
>       cntxt := 'f'(new_operand) + cntxt
>     fi;
>   fi;
>   cntxt  # this is always the return value
> end:

We need to forget simplify's remember table.
> readlib(forget)( simplify );

Now try our last example again.
> f(f(x))+f(y)+f(f(z));
> simplify( % );
> 

Let us see if we can add the other part of the definition of linearity to the procedure 
`simplify/f`. We want to teach simplify to implement the identity  = a ( )f x ( )f a x  when a is 

a constant, e.g.,  = 3 ( )f x ( )f 3 x . We need to ask ourselves though, just what is a constant in Maple? 
It turns out that Maple has two data types that represent constant values, constant and 
complexcons. An object is of type complexcons if it can be evaluated to a complex floating 
point number by evalf. So every number, i.e., integer, fraction, or float, has type 
complexcons. But some other, more symbolic expressions, are also of type complexcons.
> type( Pi, complexcons );
> type( sin(1), complexcons );

But an arbitrary unevaluated function call with a constant parameter need not have type 
complexcons.
> type( h(1), complexcons );

The type constant is a bit more general than complexcons. Any object of type 
complexcons is also of type constant. In addition, arbitrary unevaluated function calls with 
constant parameters do have type constant.
> type( h(1), constant );

The type constant also includes some symbolic constants that are not very numeric.
> type( false, constant );

The generality of the type constant can make things tricky for us, so we will take the type 

Page 29



complexcons as our definition of a constant. After we implement the identity with constants of 
type complexcons, we will look at some of the difficulties that constants of type constant can 
cause.
> 

Before trying to rewrite `simplify/f`, let us experiment again and see what kind of contexts 
`simplify/f' might be called with. Here is the version of `simplify/f` that reports the 
context for us.
> `simplify/f` := proc( context )
>   print( `calling simplify/f with parameter` = context );
>   context
> end;

Here is a typical expression that we would like to be able to simplify.
> simplify( 3*f(x)+f(y) ):

Notice that the context is the whole sum. The simplify command does not help us out by, say, 
making 3*f(x) a context by itself. Here are two more expressions that we would like to be able to 
simplify.
> simplify( 3*x*f(x) ):
> simplify( 3*sin(1)*f(x) ):

In these examples the context is a product, and notice that in the second example there are two 
constants in the product that need to be simplified. So our version of `simplify/f` will need to 
look for both product and sum contexts, and in the case of a sum context, `simplify/f` will 
need to look for pertinent product sub-contexts. And in a product context, our procedure will need to 
look for an arbitrary number of constants that need to be moved into the function call.

Since a product context can arise in two different ways, as either the whole context or as a 
sub-context of a sum context, it is useful to define a helper procedure, `simplify/f/scalar`, 
that handles only product contexts, and then have `simplify/f` call this helper procedure from 
two places, from where it tests for a product context and from where it test for a product 
sub-context. Here is the new definition for `simplify/f` that uses the helper procedure.
> 
> `simplify/f` := proc( context )
>   local cntxt, new_operand, simplified, i;
>   cntxt := context;
>   new_operand := 0;
>   simplified := false;
>   if type( cntxt, `*` ) then cntxt := `simplify/f/scalar`( 

cntxt );
>   elif type( cntxt, `+` ) then
>     cntxt := convert( cntxt, list ); # it's easier to work with 

a list
>     for i from 1 to nops(cntxt) do   # look for calls to f

Page 30



>       if type(cntxt[i], `*`) then  # found a product 
sub-context

>         cntxt[i] := `simplify/f/scalar`( cntxt[i] );
>       fi;
>       if type(cntxt[i],function) and evalb(op(0,cntxt[i])='f') 

then
>         new_operand := new_operand + op(1,cntxt[i]);
>         cntxt[i] := 0; # remove the term from the sum
>         simplified := true
>       fi
>     od;
>     cntxt := convert( cntxt, `+` );  # convert back to a sum
>     if simplified then
>       # first check if the new operand can be simplified
>       new_operand := simplify( new_operand ); 
>       cntxt := 'f'(new_operand) + cntxt
>     fi;
>   fi;
>   cntxt  # this is always the return value
> end;

And here is the definition of the helper procedure. This procedure assumes that it is called with a 
product context. After converting the context into a list, the operands of the context are searched to 
see if one of them is a function call to f. If a function call is found, a search is made for constants in 
the operands of the context. Whenever a constant is found, the constant is multiplied with the local 
variable cnstnt (so cnstnt is a running multiple of all the found constants), and then the 
constant is removed from the context (by setting its operand equal to 1). After all of the constants 
have been found, the new constant, cnstnt, is put inside of the function call. Notice that once a 
call to f is found, the outer for-loop terminates because cnstnt will have a non-zero value. 
Finally, the context is converted back to a product.
> 
> `simplify/f/scalar` := proc( context )
>   local cntxt, cnstnt, i, j;
>   cnstnt := 0;
>   cntxt := convert( context, list );
>   # look for a call to f in the operands of the context
>   for i from 1 to nops(cntxt) while evalb( cnstnt=0 ) do
>     if type(cntxt[i], function) and evalb(op(0,cntxt[i])='f') 

then
>       # look for constants in the operands of the context
>       cnstnt := 1; # this will stop the outer loop
>       for j from 1 to nops(cntxt) do
>         if type( cntxt[j], complexcons ) then
>           cnstnt := cnstnt*cntxt[j];
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>           cntxt[j] := 1  # remove the constant from the product
>         fi
>       od;
>       # put the new constant inside the function call
>       cntxt[i] := 'f'( cnstnt*op(1,cntxt[i]) );
>     fi
>   od;
>   convert( cntxt, `*` ); # this is always the return value
> end;

Let us try this combination of procedures. First, forget simplify's remember table.
> readlib(forget)( simplify );

Here are some examples that test these procedures.
> simplify( 3*f(x)+f(y) );
> simplify( 3*x*f(x) );
> simplify( 3*sin(1)*f(x)*f(y) );
> simplify( f(2)*3 );
> simplify( h(1)*f(x) );
> simplify( f(2)*3*f(x) );
> simplify( -3*f(2)+f(7) );
> simplify( 5*(f(2*x)+f(y)) );
> simplify( 3*x*f(x)+f(y)+2*f(z) );
> 

Exercise: Change the type complexcons to constant in the procedure 
`simplify/f/scalar` and then execute the following simplify commands. Try to explain 
what is going on.
> readlib(forget)( simplify );
> simplify( h(1)*f(x) );
> simplify( f(2)*3 );
> simplify( f(2)*f(x) );
> simplify( f(2)*3*f(x) );
> simplify( -3*f(2)+f(7) );
> 

Exercise: Notice that the following expression is not simplified completely. Modify 
`simplify/f/scalar` and/or `simplify/f` to fix this.
> simplify( 3*f(f(x)+f(y)) );

The expression 3 ( )f  + ( )f x ( )f y  can be simplified to ( )f ( )f  + 3 x 3 y  in different ways. For example, 
the steps might be ( )f  + 3 ( )f x 3 ( )f y  then ( )f  + ( )f 3 x ( )f 3 y  then ( )f ( )f  + 3 x 3 y . Or the steps might 
be 3 ( )f ( )f  + x y  then ( )f 3 ( )f  + x y  then ( )f ( )f  + 3 x 3 y . Which order does the combination of 
simplify, `simplify/f` and `simplify/f/scalar` use?
> 
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Exercise: Suppose we assume that a is a constant.
> assume( a, complexcons );

It would be nice if the identity  = a ( )f x ( )f a x  worked with this assumption, but so far it does not.
> simplify( a*f(x) );
> simplify( 3*a*f(x) );

Modify the procedure `simplify/f/scalar` so that it works with Maple's assume facility. 
Also try experimenting with the property constant, as in
> assume( a, constant );
> a := 'a':
> 

Exercise: Notice that an expression like 3 ( )f x n, with n a positive integer, can be transformed to 

( )f 3 x ( )f x ( ) − n 1  using the linearity of f. It is not even clear that this transformation really is a 
"simplification", and our current version of `simplify/f/scalar` does not do this 
transformation.
> simplify( 3*f(x)^2 );

Go ahead and implement this transformation in `simplify/f/scalar`.
> 

Exercise: Suppose that the three functions f, g, and h, satisfy the following identity 
 =  + ( )f x ( )g y ( )h  + x y . Write a procedure `simplify/g` that will allow simplify to 

implement this identity. Try testing `simplify/g` both with and without defining the 
`simplify/f` procedure that makes f linear. Notice that with `simplify/f` defined, 

 +  + ( )f x ( )g y ( )f z  can simplify to any of ( )h  +  + x z y  or  + ( )h  + x y ( )f z  or  + ( )f x ( )h  + y z . How do 
we know which result these procedures will produce? What about an expression like 

 +  +  +  + ( )f x ( )g y ( )g 3 ( )f z ( )f y ?
> 

Exercise: Complete the definition of f as a linear function by writing a procedure (or procedures) 
that interface to the expand command and let expand implement the identities 

 = ( )f  + x y  + ( )f x ( )f y  and  = ( )f a x a ( )f x , where a is a constant.
> 

Exercise: Write a procedure MakeLinear that takes one parameter, a name, and makes that name 
act like a name for a linear function. MakeLinear should work by constructing appropriate 
procedures that interface with the procedures simplify and expand. So for example if we make 
the call MakeLinear(k), then MakeLinear will define procedures `simplify/k`, 
`simplify/k/scalar`, and `expand/k`, so that simplify and expand can implement 

the identities  = ( )k  + x y  + ( )k x ( )k y  and  = ( )k a x a ( )k x  where a is a constant. Notice that the name 
k should remain unassigned after MakeLinear(k) returns. The procedure MakeLinear should 
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return NULL. Write another procedure, UnMakeLinear, that also takes one parameter, a name, 
and unassigns the names of the three appropriate interface procedures. This procedure should also 
return NULL. (Hint: You will need to look up and use the Maple procedure parse with the 
statement option.)
> 

> 

15.7. Differentiating functions
Let us go back to our (primitive) differentiation command and see if we can extend it some. Let us 
try to teach our command to differentiate the trig functions sine and cosine. We will write a new 
differentiation command and call it my_diff. We would like it to do everything that diff_poly 
does plus we should be able to call it this way  my_diff(sin(x)) or this way  
my_diff(cos(x)) and get the correct derivative. 
> 

First of all, here is our version of diff_term (note the colon at the end of the definition).
> diff_term := proc( term )
>   if type(term, numeric) then
>     0
>   elif type(term, name) then
>     1
>   elif type(term, {name,numeric}&*name) then
>     op(1, term)
>   elif type(term, `^`) then
>     op(2, term)*op(1,term)^(op(2,term)-1)
>   else
>     

op(1,term)*op(2,op(2,term))*op(1,op(2,term))^(op(2,op(2,term))-
1)

>   fi
> end:

And here is our version of diff_poly.
> diff_poly := proc( poly )
>   if type(poly, `+`) then
>     map( diff_term, poly )
>   else
>     diff_term( poly )
>   fi
> end:

The procedure my_diff will have to be able to tell when its input is of the form sin(x) or 
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cos(x). Maple considers sin(x) and cos(x) to be data structures of data type function. 
> whattype( sin(x) );
> type( cos(z), function );

If cos(x) is a data structure, what are the pieces of data in the data structure?
> op( cos(x) );
> op( sin(y) );

In Maple, anything of the form name( expression sequence ) is considered a function data 
structure and the expression sequence of actual parameters to the function are the data in the data 
structure.
> whattype( f(x,y,z) );
> op( f(x,y,z) );
> type( colors(green, red, orange), function);
> op( colors(green, red, orange) );
> whattype( plot(sin, -1..1, color=black) );
> op( 'plot(sin, -1..1, color=black)' );

So our procedure my_diff can test the data type of its input to see if it is a function data 
structure. But if it does find a function data structure, how will it tell if the function is sin or 
cos? It turns out that a function data structure is a bit different from other data structures. A 
function data structure has a 0'th operand and the 0'th operand of a function data structure is 
the name of the function.
> op( f(x,y) );
> op( 0, f(x,y) );
> op( sin(w) );
> op( 0, sin(w) );

For most other data structures, the 0'th operand is the data type of the data structure.
> op( 1/3 ); op( 0, 1/3 );
> op( [a,b,c] ); op( 0, [a,b,c] );
> op( 1..5 ); op( 0, 1..5 );
> op( g(a,b,c) ); op( 0, g(a,b,c) );
> 

So the procedure my_diff can use the op command to find out what function it is trying to 
differentiate. Here is a first attempt at the procedure my_diff.
> my_diff := proc( f )
>   if type(f, function) then
>     if op(0, f) = 'cos' then -sin( op(f) )
>     elif op(0, f) = 'sin' then cos( op(f) )
>     else 'D'*f
>     fi
>   else
>     diff_poly( f )
>   fi
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> end;

Try this out.
> my_diff( cos(x) );
> my_diff( sin(y) );
> my_diff( ln(x) );
> my_diff( g(x) );
> my_diff( 3*x^5 );
> my_diff( sin(x^2) );

Well we have not taught our command the chain rule yet so we should not have expected anything 
else. But how hard would it be to get the chain rule to work? All we need to do is multiply the 
current result with the derivative of what is inside the function. Here is an attempt at this.
> my_diff := proc( f )
>   if type(f, function) then
>     if op(0, f) = 'cos' then -sin( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'sin' then cos( op(f) ) * my_diff( op(f) )
>     else 'D'*f * my_diff( op(f) )
>     fi
>   else
>     diff_poly( f )
>   fi
> end;

Let us try this version.
> my_diff( sin(x^2) );
> my_diff( cos(3*x^6+5*x-2) );
> my_diff( cos(sin(x^2-5*x)) );
> my_diff( cos(h(x)) );
> my_diff( g(h(x)) );

It seems to work fairly well (but the last one is a bit messed up because of an automatic 
simplification). Notice how we have made use of recursion. The procedure my_diff does the 
chain rule by calling itself. A procedure that calls itself is said to be recursive.
> 

Let us teach my_diff a bunch of new derivative rules.
> my_diff := proc( f )
>   if type(f, function) then
>     if   op(0, f) = 'cos' then
>       -sin( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'sin' then
>       cos( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'tan' then
>       sec( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'sec' then
>       sec( op(f) )*tan( op(f) ) * my_diff( op(f) )
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>     elif op(0, f) = 'cot' then
>       -csc( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'csc' then
>       -csc( op(f) )*cot( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'ln' then
>       (1/op(f)) * my_diff( op(f) )
>     elif op(0, f) = 'exp' then
>       f * my_diff( op(f) )
>     else 'D'*f * my_diff( op(f) )
>     fi
>   else
>     diff_poly( f )
>   fi
> end;

Here are several of examples of its use.
> my_diff( ln(x^2-2) );
> my_diff( csc(exp(5*x-x^(-2))) );
> my_diff( x^2+cos(x^2) );

We should be able to differentiate functions like this last one. But fixing this problem, given the way 
that we have my_diff, diff_poly, and diff_term organized, would be too difficult. So let us 
step back a little and reorganize what we have written so far. We want my_diff to be able to do 
the sum rule for differentiation (i.e., the derivative of a sum is the sum of derivatives). Right now, 
we have that rule done in diff_poly for sums of monomials (implemented using the map 
command and diff_term). Let us pull the test for the `+` data type out of diff_poly and put 
it in my_diff. Then my_diff can handle sums of functions and monomials, and we will no 
longer even need diff_poly (we just need to change the call to diff_poly at the end of 
my_diff into a call to diff_term). And we do not need to make any change in diff_term. 
Here is the new version of my_diff.
> 
> my_diff := proc( f )
>   if type(f, `+`) then  # do the sum rule
>     map( my_diff, f )
>   elif type(f, function) then
>     if   op(0, f) = 'cos' then
>       -sin( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'sin' then
>       cos( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'tan' then
>       sec( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'sec' then
>       sec( op(f) )*tan( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'cot' then
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>       -csc( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'csc' then
>       -csc( op(f) )*cot( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'ln' then
>       (1/op(f)) * my_diff( op(f) )
>     elif op(0, f) = 'exp' then
>       f * my_diff( op(f) )
>     else 'D'*f * my_diff( op(f) )
>     fi
>   else
>     diff_term( f )
>   fi
> end;

Let us see how well this works.
> my_diff( x^2 + cos(x^2) );
> my_diff( tan(x) + x^2 + 3/x );
> my_diff( ln(x^2+exp(x)) );
> my_diff( cos( x+exp(x^2+sin(x))) );

Very nice. 
> 

Exercise: Explain in detail how my_diff manages to compute the derivative of 
ln(x^2+exp(x)) which has the sum rule inside of the chain rule.
> 

Now how about the product rule? Can we do that also? The product rule should probably go in 
my_diff where the sum rule is also taken care of.
> 
> my_diff := proc( f )
>   local rest;            # needed for the product rule
>   if type(f, `+`) then   # do the sum rule
>     map( my_diff, f )
>   elif type(f, `*`) then # do the product rule
>     # remove the first operand from the product; put the rest 

in rest
>     rest := subsop( 1=1, f );
>     my_diff( op(1, f) )*rest + op(1, f)*my_diff( rest )
>   elif type(f, function) then
>     if   op(0, f) = 'cos' then
>       -sin( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'sin' then
>       cos( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'tan' then

Page 38



>       sec( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'sec' then
>       sec( op(f) )*tan( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'cot' then
>       -csc( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'csc' then
>       -csc( op(f) )*cot( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'ln' then
>       (1/op(f)) * my_diff( op(f) )
>     elif op(0, f) = 'exp' then
>       f * my_diff( op(f) )
>     else 'D'*f * my_diff( op(f) )
>     fi
>   else
>     diff_term( f )
>   fi
> end;

Will it work?
> my_diff( x^2*tan(x) );
> my_diff( f(x)*sin(x) );
> my_diff( x^2*exp(3*x)*cos(x) );
> expand( % );
> my_diff( f(x)*g(x) );

Not quite right (can you see what happened?). We need a slight change in the definition of 
my_diff in the case for unknown functions.
> 
> my_diff := proc( f )
>   local rest;            # needed for the product rule
>   if type(f, `+`) then   # do the sum rule
>     map( my_diff, f )
>   elif type(f, `*`) then # do the product rule
>     # remove the first operand from the product; put the rest 

in rest
>     rest := subsop( 1=1, f );
>     my_diff( op(1, f) )*rest + op(1, f)*my_diff( rest )
>   elif type(f, function) then
>     if   op(0, f) = 'cos' then
>       -sin( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'sin' then
>       cos( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'tan' then
>       sec( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'sec' then
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>       sec( op(f) )*tan( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'cot' then
>       -csc( op(f) )^2 * my_diff( op(f) )
>     elif op(0, f) = 'csc' then
>       -csc( op(f) )*cot( op(f) ) * my_diff( op(f) )
>     elif op(0, f) = 'ln' then
>       (1/op(f)) * my_diff( op(f) )
>     elif op(0, f) = 'exp' then
>       f * my_diff( op(f) )
>     else 'D'(f) * my_diff( op(f) ) # slight change here
>     fi
>   else
>     diff_term( f )
>   fi
> end;

Now check this version.
> my_diff( f(x)*g(x) );
> my_diff( f(x)*g(x)*h(x) );
> expand( % );

Much better. Let us try some more examples. 

Exercise: For each of the following examples, explain the order of the recursive calls to my_diff 
that do the calculation. For each recursive call, give the parameter for the call and the part of the 
procedure that handles the call. In each example, exactly how many times are my_diff and 
diff_term called?
Here is a sum rule inside of a product rule.
> my_diff( (x^2+2*x)*ln(x) );

Here is a product rule inside of a sum rule.
> my_diff( x+x*exp(x)+sin(x) );

Here is a product rule inside of a chain rule.
> my_diff( tan(sin(x)*cos(x)) );

Here is a chain rule inside of a product rule.
> my_diff( exp(sec(x))*ln(x) );
> 

But all is not well now. Here is a simple example (that used to work).
> my_diff( a*x );  # Opps!

It turns out that this mistake is related to an earlier bug that we ignored. Recall that our 
differentiation procedures do not compute the following derivative correctly either.
> my_diff( x^2+y^2 );

The last result does not make sense because we are not specifying the variable that we are 
differentiating with respect to. In the next section, we will present a more versatile differentiation 
procedure that will correct this problem.
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> 

Exercise: Explain exactly how my_diff arrives at the following, incorrect, result.
> my_diff( a*x );
> 

> 

15.8. Differentiating almost anything (optional)
Here is a differentiation procedure that can differentiate almost anything. In particular, it can do all 
the basic differentiation rules from freshman calculus. This differentiation procedure, like the one 
built into Maple, takes two parameters, the expression to be differentiated and the variable to 
differentiate with respect to.
> my_diff := proc(f, x)
>   local i, rest;
>   if not has( f, x ) then 0
>   elif f = x then 1
>   elif type( f, list ) then map( my_diff, f, x )
>   elif type( f, set  ) then map( my_diff, f, x )
>   elif type( f, `=`  ) then map( my_diff, f, x )
>   elif type( f, `+`  ) then map( my_diff, f, x )
>   elif type( f, `*`  ) then
>     rest := mul(op(i,f), i=2..nops(f));
>     my_diff(op(1,f), x)*rest + op(1,f)*my_diff(rest, x);
>   elif type( f, `^` ) then
>     if has(op(1,f), x) and not has(op(2,f), x) then
>       op(2,f)*op(1,f)^(op(2,f)-1)*my_diff(op(1,f), x)
>     elif not has(op(1,f), x) and has(op(2,f), x) then
>       f*ln(op(1,f))*my_diff(op(2,f), x)
>     else
>       f*my_diff( op(2,f)*ln(op(1,f)), x )
>     fi
>   elif type( f, function ) then
>     if op(0,f) = 'sin' then
>       cos(op(f))*my_diff(op(f), x)
>     elif op(0,f) = 'cos' then
>       -sin(op(f))*my_diff(op(f), x)
>     elif op(0,f) = 'tan' then
>       sec(op(f))^2*my_diff(op(f), x)
>     elif op(0,f) = 'sec' then
>       sec(op(f))*tan(op(f))*my_diff(op(f), x)
>     elif op(0,f) = 'csc' then
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>       -csc(op(f))*cot(op(f))*my_diff(op(f), x)
>     elif op(0,f) = 'cot' then
>       -csc(op(f))^2*my_diff(op(f), x)
>     elif op(0,f) = 'ln' then
>       (1/op(f))*my_diff(op(f), x)
>     elif op(0,f) = 'exp' then
>       f*my_diff(op(f), x)
>     else
>       if nops(f) = 1 then
>         'D'(op(0,f))(op(f))*my_diff(op(1,f), x)
>       else
>        add( 'D'[i](op(0,f))(op(f))*my_diff(op(i,f), x), 

i=1..nops(f) )
>       fi
>     fi
>   else
>     RETURN('procname(args)')
>   fi
> end:

The rest of this section consists of a series of exercises that ask you to analyze how this procedure 
works and examples comparing this differentiation procedure with Maple's built in diff command.
> 

Exercise: Find where this procedure distinguishes between the following differentiation rules
> my_diff( x^n, x );
> my_diff( x^n, n );
> my_diff( n^x, x );
> my_diff( x^x, x );
> 

Exercise: This differentiation procedure is structured differently from the one in the previous 
section. Explain why there is no longer a need for diff_term. In particular, explain how this 
procedure differentiates each of the (five) different kinds of monomials. Explain exactly how this 
procedure arrives at the correct result when differentiating a*x with respect to x.
> my_diff( a*x, x );
> 

Exercise: Explain exactly how this procedure computes the following result for a derivative that in 
freshman calculus would be calculated using the quotient rule.
> sin(x)/x^2;
> my_diff( %, x );

Compare this result with the result from Maple's diff procedure.
> 
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Exercise: Explain how this procedure arrives at the following results.
> my_diff( [t,t^2,t^3], t );
> my_diff( {x^2, x^2+c, ln(5*x), ln(x)}, x );

Compare these results with the results from Maple's diff procedure.
> 

Exercise: Explain why this procedure returns the following result.
> my_diff( vector(3, i->t^i), t );

Compare this result with the result from Maple's diff procedure.
> 

Exercise: Explain how this procedure computes the following results.
> my_diff( f(x), x );
> my_diff( f(x,x), x );
> my_diff( f(x^2,sin(x)), x );

Compare the last three results with the results from Maple's diff command.
> 

Exercise: Explain exactly how this procedure arrives at the correct derivative for the following 
expression.
> my_diff( x^2+y^2, x );
> 

Exercise: The notation 5(x) represents a call to the constant function with value 5. The derivative 
of this with respect to x should be zero.
> my_diff( 5(x), x );
> diff( 5(x) , x );

Is there anything in the code for my_diff that explicitly handles an expression like 5(x)? How do 
you think that the above results were arrived at by Maple?
> 

Exercise: Fix the my_diff procedure so that it returns an error message when its second operand 
is not a name. In other words, the following command should return an error message similar to the 
one returned by Maple's diff procedure.
> my_diff( 3*x^2, x^2 );
> diff( 3*x^2, x^2 );
> 

Here are a number of examples that demonstrate minor differences between the my_diff 
procedure and Maple's built in diff procedure. For each of these differences, try to determine 
where in the procedure my_diff the difference might come from.
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> f(g(x));
> my_diff( %, x );
> diff( %%, x );
> f(x)*g(x);
> my_diff( %, x );
> diff( %%, x );
> h(f(x),g(x));
> my_diff( %, x );
> diff( %%, x );
> f(x);
> 'my_diff( %, x )'; # unevaluated call to my_diff
> 'diff( %%, x )';   # unevaluated call to diff
> a*x*exp(x);
> my_diff( %, x );
> diff( %%, x );
> x^n;
> my_diff( %, x);
> diff( %%, x);
> tan( x );
> my_diff( %, x );
> diff( %%, x );
> cot( x );
> my_diff( %, x );
> diff( %%, x );
> exp(f(x));
> my_diff( %, x );
> diff( %%, x );
> vector(3, i->x^i);
> my_diff( %, x );
> diff( %%, x );
> 

One major difference between Maple's diff procedure and our procedure my_diff is that diff 
allows the computation of higher order derivatives. If a sequence of names follows the expression to 
be differentiated, then diff will successively differentiate the expression with respect to each name 
in the sequence. So, for example, the following command computes a second order (ordinary) 
derivative.
> diff( x^3, x,x );

And the next three commands compute mixed second order partial derivatives.
> diff( x^3*y^3, x,y );
> diff( h(u,v), u,v );
> diff( h(u,v), v,u );

Calling diff with a sequence of names after the expression amounts to calling diff recursively. 
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That is diff(f,x,x) is the same as diff(diff(f,x),x), and diff(f,x,y) is the same 
as diff(diff(f,x),y). Here is how we can implement this feature with our procedure 
my_diff. First, let us rename my_diff to `my_diff/first` to indicate that it only computes 
first order derivatives.
> `my_diff/first` := eval( my_diff ):

Now let us redefine my_diff as a "front end" to `my_diff/first` so that my_diff can do 
higher order derivatives.
> my_diff := proc(f, x)
>   if nargs > 2 then
>     my_diff( `my_diff/first`(f, x), args[3..-1] )
>   else
>     `my_diff/first`(f, x)
>   fi
> end;

Now we can try out this new version of my_diff. Compare these results with the above results 
from diff.
> my_diff( x^3, x,x );
> my_diff( x^3*y^3, x,y );
> my_diff( h(u,v), u,v );
> my_diff( h(u,v), v,u );

Notice that the last result is correct, but it is not as easy to read as the result from diff. On the 
other hand, notice that the next two results are exactly the same for both my_diff and diff.
> my_diff( h(u,u,v), u,v,u );
>    diff( h(u,u,v), u,v,u );
> 

Exercise: Having two procedures, my_diff and `my_diff/first`, is not really very optimal. 
We did it that way to make it easier to understand the change that was needed in order to implement 
higher order derivatives. Combine these two procedures back into a single procedure named 
my_diff that can calculate higher order derivatives.
> 

Another difference between my_diff and diff is that the diff command knows a lot more 
derivatives.
> diff( erf(x), x );
> diff( BesselJ(2,x), x );
> diff( FresnelS(x), x );
> diff( LambertW(x), x );
> diff( x!, x );
> 'diff'( Int(f(x^2),x), x );
> %;
> 
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Exercise: Add one of the above differentiation rules to the my_diff procedure.
> 

The last exercise shows that to add a new function to my_diff we need to edit and then reenter the 
complete definition of my_diff. On the other hand, the Maple procedure diff handles functions 
in a completely different way. For each function f that diff knows how to differentiate, there is a 
function `diff/f` that diff calls to actually do the differentiation. For example, here is the 
function that diff uses to compute derivatives involving the function tan.
> interface( verboseproc=2 );
> readlib(`diff/tan`):
> print( `diff/tan` );

Notice that we now know why diff computes the derivative of tan differently from my_diff.
> diff( tan(x), x );
> my_diff( tan(x), x );

One advantage of the way that diff handles functions is that we can modify the way diff does a 
differentiation by modifying one of diff's helper functions, as the next example demonstrates.

Suppose that we really do not like the way diff differentiates the tan function. Let us change this 
behavior by redefining the function `diff/tan`.
> `diff/tan` := proc(a,x) (sec(a)^2)*diff(a,x) end;
> diff( tan(x), x );

Our redefinition of `diff/tan` did not have any effect because diff has a remember table. So 
we need to clear this remember table.
> readlib(forget):
> forget( diff, reinitialize=false );
> diff( tan(x), x );

Notice the form of forget that we used. The help page for forget mentions two important facts. 
First, when we call forget(diff), Maple automatically calls forget for every function whose 
name begins with diff/. So, in particular, calling forget(diff) means that Maple also calls 
forget(`diff/tan`). Second, the help page mentions that calling forget(`diff/tan`) 
has the effect of not just resetting the remember table for `diff/tan` (which doesn't even have a 
remember table), it also reinitializes `diff/tan` back to its original definition. So the call 
forget(diff) wipes out our redefinition of `diff/tan`. The above way of calling forget 
prevents this wiping out of our redefinition of `diff/tan`. 
> forget( diff );
> diff( tan(x), x );
> 

Exercise: In this exercise you are to analyze the source code for the `diff/Int` procedure. 
> interface( verboseproc=2 );
> readlib(`diff/Int`):
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> print( `diff/Int` );

There are two kinds of integrals that we can differentiate, indefinite and definite integrals. 
Determine the exact part of the code from `diff/Int` that implements the following three 
deriviatives of indefinite integrals.
> 'diff'( Int(f(x), x), x );
> %;
> 'diff'( Int(f(t), t), x );
> %;
> 'diff'( Int(f(x), t), x );
> %;

Now notice that in the general form of the derivative of a definite integral, there are three terms in 
the derivative, one term from the integrand and one term from each of the limits of integration.
> Diff( Int(f(t,x), t=a(x)..b(x)), x )
>    = diff( Int(f(t,x), t=a(x)..b(x)), x );

Determine the exact steps that `diff/Int` goes through to compute each of the following 
derivatives. In particular, look for where each of the three terms are calculated (each of the three 
terms is always calculated, but a term may end up being zero).
> 'diff'( Int(f(t), t=a..b), x );
> %;
> 'diff'( Int(f(x), x=a..b), x );
> %;
> 'diff'( Int(f(t), t=a..x), x );
> %;
> 'diff'( Int(f(t), t=x..b), x );
> %;
> 'diff'( Int(f(t,x), t=a..b), x );
> %;
> 'diff'( Int(f(t), t=a(x)..b(x)), x );
> %;

Explain in detail the different steps that `diff/Int` uses in the calculation of each of the 
following derivatives.
> 'diff'( Int(f(t,x), t=a(x)..b(x)), x );
> %;
> 'diff'( Int(f(t,x), x=a(x)..b(x)), x );
> %;
> 

Exercise: Look at the source code for differentiating the absolute value function.
> interface( verboseproc=2 );
> readlib(`diff/abs`):
> print( `diff/abs` );

Now look at the following result.
> diff( abs(x^2), x );
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It is not clear from the source code for `diff/abs` where the x  in the output comes from. Do 
the same calculation but with some delayed evaluation thrown in.
> diff( 'abs'(x^2), x );

Do the calculation again with a different kind of delayed evaluation.
> diff( abs(''x^2''), x );
> %;

Use the help page on abs and the source code for `diff/abs` to explain exactly how Maple 
arrived at each of these results. In particular, explain exactly how the chain rule was applied. (Notice 
how this example shows that delayed evaluation is not always benign. It can sometimes change the 
form of a result.)
> 

One really big advantage of the way that diff handles functions is that it makes the diff 
procedure extensible. This means that we can use this interface to the diff command to teach 
diff new differentiation rules. For example, suppose we have defined a pair of functions fob and 
gob, and the derivative of fob is gob and the derivative of gob is fob squared. We can teach the 
diff command these new differentiation rules by defining two new procedures `diff/fob` and 
`diff/gob`. Here is the definition of `diff/fob`.
> `diff/fob` := proc(u, x)
>   gob(u) * diff(u, x)  # be sure to implement the chain rule
> end;

And here is the definition of `diff/gob`.
> `diff/gob` := proc(u, x)
>   fob(u)^2 * diff(u, x)
> end;

Here are some derivatives using fob and gob.
> diff( fob(x), x );
> diff( gob(x), x );
> diff( fob(x^2), x );
> diff( fob(x), x,x );
> diff( fob(x^2), x,x );
> 

In general, if we have a function f that we want to teach diff how to differentiate, we need to 
define a procedure called `diff/f`. If f is a function of one variable, then a call such as 
diff(f(u),x) causes the call `diff/f`(u,x). If f is a function of two variables, then a call 
such as diff(f(u,v),x) causes the call `diff/f`(u,v,x). If f is a function of three 
variables, then a call such as diff(f(u,v,w),x) causes the call `diff/f`(u,v,w,x). So 
`diff/f` is a procedure with one more parameter than f, and the last parameter for `diff/f` 
is the variable name that we are to differentiate with respect to. The `diff/f` procedure is 
responsible for doing all of the differentiation of the expression f(u), so in particular `diff/f` 
needs to make sure to implement the chain rule and compute diff(u,x).
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> 

Let us change the definition of `diff/fob` and drop the chain rule from the definition.
> `diff/fob` := proc(u, x)
>   gob(u)
> end;

Let us try out this (incorrect) version of `diff/fob`.
> diff( fob(x^2), x );

The chain rule is still there. The reason is because diff has a remember table, and diff is pulling 
that old result from its remember table. Let us clear diff's remember table and then try again.
> readlib(forget):
> forget( diff );
> diff( fob(x^2), x );

And now we see that if `diff/fob` does not implement the chain rule, then the chain rule does 
not get done.
> 

Exercise: A function hob has the property that its derivative is the negative of the square root of 
itself times the ln function. That is

 = 
∂

∂

x
( )hob x − ( )hob x ( )ln x .

Write a procedure `diff/hob` that implements this differentiation rule.
> 

Exercise: Suppose that we have three functions, fg of two variables, f of one variable, and g also 
of one variable, such that the partial derivatives of fg are given by the following formulas.

 = 
∂

∂

x
( )fg ,x y ( )f x ( )g y

 = 
∂

∂

y
( )fg ,x y ( )f y ( )g x

Write a procedure `diff/fg` that implements these differentiation rules. Find concrete examples 
of three functions fg, f, and g that have these properties.
> 

> 

15.9. Online help for Maple programming
There is not a lot of online information about Maple programming. Here are some help pages related 
to the above examples.

The following help page gives an example of an extension `diff/f` for diff.
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> ?diff

The following help page mentions how extensions `expand/f` for expand are called, but it 
does not give any examples.
> ?expand

The following help page mentions a direct way of calling an extension `simplify/f` for 
simplify, but it gives no information about the automatic calling of `simplify/f` that we 
have been making use of, and it does not give any examples.
> ?simplify

In the examples we gave above of extending Maple commands, we informed Maple about the 
properties of some functions. But in those examples the functions were unassigned names, so there 
was no sense of evaluating the functions. The following commands give some information on how 
to extend Maple's evaluators so that we can tell Maple how we want a certain function to be 
evaluated.
> ?eval
> ?evalf
> ?evalapply

It is possible to define new data types by extending Maple's type command. This is briefly 
mentioned in the following help page.
> ?type

The next example worksheet works out a fairly detailed example of a collection of procedures that 
extend Maple.
> ?examples,binarytree

We used the example of defining procedures that differentiate and integrate symbolically. The 
following two example worksheets describe a very different way to implement symbolic 
differentiation and integration.
> ?examples,define
> ?examples,patmatch

There is a lot more to Maple programming than just the use of the Maple language and Maple's data 
structures. Another key ingredient to understanding how Maple works is to know the algorithms that 
Maple uses. Here is a help page that lists several references for the algorithms that Maple uses for 
polynomial manipulations.
> ?polyrefs

And here are some references for integration algorithms.
> ?intrefs

> 
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