Maplefor Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

13. Proceduresin Maple

=113.1. Introduction

An ideathat we keep returning to is that there are two ways to represent mathematical functionsin
Maple, as either Maple expression or as Maple functions. As we showed in the last worksheet, the
underlying idea of Maple expressions is a data structure. In this worksheet we show that the
underlying idea of Maple functionsis a procedure. Recall that our initial definition of a data
structure was that it is a collection of data. Our initial definition of a procedureisthat itisa
collection of instructionsto Maple. But just as a data structure is more than just a collection of data,
aprocedure is more than just a collection of instructions. In this worksheet we see what we mean by
acollection of instructions, how we turn a collection of instructions into a procedure, and why a
procedure is more than just the collection of instructions. We show that Maple functions are a
special case of procedures, we compare mathematical functions to Maple procedures to see what
they have in common and how they differ, and we see how mathematical functions can be
represented by Maple procedures. We look at several examples of procedures, some that represent
mathematical functions and some that do not, and we see how procedures can manipulate data
structures.

L[>

'=113.2. From execution group to procedure

Earlier we said that a procedure is a collection of instructions. But thisis an over simplification. For
example, an execution group isacollection of instructions to Maple but, as we will see, an
execution group is not a procedure. Let uslook at a simple example.

Every positive integer can be decomposed into its prime factorization. Maple has a command to do
this.

[> ifactor(550550);

Let us find a sequence of Maple commands that will compute for us the largest prime in an integer's
prime factorization. The last command produced a (nested) data structure as its output. The largest
prime factor is contained in the last piece of that data structure. We can use the op command to get
that last piece.

[> op(nops(%, %);

And we can use another op command to get the largest prime from out of that piece.

[>op(1, %);

Page 1

Now let us put these commands together in an execution group that will always compute the largest
prime factor contained in a positive integer n. To understand how this execution group "works',
compare the comment to the right of each command with the command's output line below the
execution group.

> 550550; # Choose a positive integer.

> jifactor(%); # Factor it.

> op(nops(%, %); # Pick off the largest (i.e., last) factor.
>op(1, %); # Renove the exponent (if there is one).
>op(1, %); # Renove the parentheses.

Suppose that we only want to see the final result; we can replace the semicolons with colonsto
suppress all the outputs except for the final one.

| > 550550:

> ifactor(%):

> op(nops(%, %):

>op(1, %):

L>op(1, %);

If we go back and change the value of the positive integer, we can do the same calculation for a
different number. (Try this execution group with several different positive integers.) So we can say
that this execution group takes a positive integer n as an "input" and returns as an "output” the
largest prime number in the prime factorization of n.

[>

So now we have a collection of Maple commands that we have combined into an execution group
and the execution group performs a useful calculation for us. Since this calculation might be useful
to uslater on, we would like to be able to reuse the execution group. But this execution group is not
very convenient to reuse. To use it later on you either have to go back in the worksheet to where the
execution group is and use it or you have to cut and paste the execution group to some other place in
the worksheet and then use it. This problem of not being able to conveniently reuse a collection of
instructions is one motivation for the idea of a procedure.

What would make the execution group easier to use? First, it would be nice if the group of
commands that make up the execution group could be given a name so that we could refer to them
from anywhere in our worksheet, much like we can give an expression or afunction a name and
refer to it from anywhere in aworksheet. Second, it would be nice if we could tell the execution
group, at the same time that we refer to it by its new name, what integer it is we want it to work on.
Suppose we gave the execution group the name | ar gest _pr i ne. It would be nice if we could tell
the group of instructions to work on the integer 550550 by using something like

| argest _prinme(550550) (which should look to you alot like afunction call).

[>

Here is how we do exactly what we described in the last paragraph. We convert our execution group
into a procedure using the following procedur e definition.

Page 2

> largest _prinme := proc(n)

> ifactor(n); # Factor the input.

> op(nops(%, %); # Pick off the |last factor.
> op(1, %); # Renove any exponent.

> op(1, %); # Renove the parentheses.
> end;

Notice several things about the procedure definition. The procedure definition itself begins with the
word pr oc (which isan abbreviation of "pr ocedure") and ends with the word end. The
assignment operator in the first line assigns the procedure a name. We gave our procedure the name
| ar gest _pri ne. Theinput has moved to a different place from where it was in the execution
group. The input to the procedure (which we named n) appears inside the parentheses after the word
pr oc. The procedure definition then has four Maple commands in it, almost, but not exactly, the

same four commands that are in the execution group. (Find the one difference.)
[>

Now hereis one very big and very important difference between the procedure definition and the
execution group. When you put the cursor inside the procedure definition and hit the Enter key, you
do not execute the instructions in the procedure like you would execute the instructionsin an
execution group. Instead, you only inform Maple about the procedure and its name. The name we
choose becomes an assigned variable and the value of this variable is the definition of the procedure.
If you have not yet "executed" the above procedure definition, do so now. Then the following
command will remind us of the definition of our procedure.

[> eval (largest _prinme);

So how do we execute the instructions in the procedure? We use a procedur e call. For example, we
can call our new procedure with the input 550550.

[> largest _prinme(550550);

But now we can aso call our procedure many times with many different inputs. So we see that our
procedure is very convenient to use and reuse.

[> seq(largest_prine(i), i=550550..550560);

We just used our procedure ten times! The fact that we have named the instructionsin the procedure
makes the procedure alot more useful than the execution group. In fact, the procedure can now be

used anywhere in our worksheet.
[>

Exercise: In the execution group, we changed most the semi colons at the ends of the command
lines to colons so that we would only see the final result of the execution group. Notice that the
commands in the procedure body all have semi colons at the end of them and yet we do not see any
of the intermediate results from the procedure calls, only the final result. Go back to the procedure
definition and change all of the semicolons to colons and then re-execute the procedure definition.
What affect does this have?

[>

Page 3

>
=] 13.3. Some definitions

Let usanalyze our procedure| ar gest _pri nme from the last section in more detail. The Maple
command used to define a procedure is referred to asa procedur e definition. A procedure
definition begins with pr oc and ends with end. We can use the assignment operator give a name
to the procedure being defined. In our case we named the procedure | ar gest _pri nme. Any
variable names contained inside the parentheses after the pr oc are called for mal parameter s (they
are also called input parameters, or parameter variables). A procedure can have any number
(including zero) of formal parameters. In our procedurel| ar gest _pri ne, n istheonly formal
parameter. The sequence of Maple commands that goes between the list of formal parameters and
the end iscall the procedure body. The procedure | ar gest _pri nme hasfour commandsin its
procedure body.

[>

When we use the name of a procedure asaMaple command (asin| ar gest _pri ne(550550)),
we refer to this as calling the procedur e (or, a procedure call). The values that the formal
parameters receive from the procedure call are referred to as actual parameters. So

| argest _prine(550550) meansthat the formal parameter n in the body of the procedure
definition getsthe actual parameter 550550. The process of substituting actual parameters for
formal parametersin aprocedure call isreferred to as parameter passing.

[>

The commands in the procedure body are not executed by Maple until the procedure is called. When
you are first typing a procedure definition into Maple, it does not execute any of the commandsin
the procedure body (likei f act or). The execution of the commands in the procedure body waits
until the procedureis called, and then the commands are executed with the formal parameters taking
on the values of the actual parameters. The return value of the procedure call is the result of the last
command executed by Maple during the procedure call. In our examplel ar gest _pri ne, the last
command executed is always the fourth command, and so the result of this command is the result
that Maple "returns’ for the procedure call. The return value can be thought of as the "output" of the
procedure. Notice that all the commandsin our procedure body for | ar gest _prine endina
semicolon but Maple does not print out the results of any of the commands except the last command
(and the result of the last command is the return value). Thisis different than in our origina
execution group, where we had to put a colon at the end of each command for which we did not

want to see any output.
[>

Here is asimple example of a procedure definition. This procedure is named pl us, it hastwo
formal parameters, and it has three commands in its procedure body. Notice that the results of the
first two commands are not used in any way. When this procedure is called, Maple will execute all

Page 4

three commands, but the results of the first two commands are just "thrown away". (So thisis really
apretty silly example.)

> plus := proc(x,Yy)

> X-y;

> X *y;

> X +y; # This is the return val ue.
> end;

Hereisacall to pl us with actual parameters 3 and 4.
[> plus(3, 4);

[>

L[>

=113.4. Parameter, local, and global variables

In aprocedure there are three kinds of variables, parameter variables, local variables, and global
variables. Consider the following example, a dlight variation on the last example from the last

section.

[> plus := proc(x,Yy)

> | ocal a, b;

> gl obal c;

> a .= Xx -Yy;

> b :=x * vy;

> c:=x "Ny,

> X +vy;, # the return value
> end;

This procedure has two parameter variables (x and y), two local variables (a and b), and one global
variable (c). The parameter variables (i.e., formal parameters) are place holders for the actual
inputs passed to the procedure during a procedure call. The local variables can be thought of as
"scratch pad variables', or "temporary variables'. Local variables are used to hold temporary results
that might come up while we are trying to compute our main result in the procedure. As we will see,
the local variables only "live" inside the procedure call. They do not exist outside the procedure, and
they do not survive from one procedure call to the next (thisis why they get their name "loca"). The
global variableisjust that, it is global to the whole Maple worksheet. Aswe will see, global
variables inside procedure bodies are really the same as the variables we use in commands at our
worksheet prompts.

Let us see how all this works with the procedure pl us (make sure that you have executed the
definition of pl us). Hereisa procedure cal for pl us.

[> plus(2, 5);

Now what about the variables a, b, and c?

[> a; b; c;

Notice that a and b are still unassigned but ¢ has the value 2°=32. Thevariablesa and b in our

Page 5

worksheet are unassigned because the variables a and b inside the procedure pl us arelocal
variables. Thea and b inside pl us have no affect on the "global" a and b, the onesin our
worksheet. On the other hand, the "global" variable ¢ in our worksheet is the same variable asthe c
inside pl us sinceit is declared to be a global variable there. Notice that a global variable can be
used as a sneaky way for a procedure to "output” another result besides its official return value. Here
is another call to the procedure pl us.

[> plus(-2, 2);

Now look at the value of c.

[> ¢;

The value of ¢ changes with each call to pl us.

It isworth mentioning that parameter variables are akind of local variable since they have no affect
except during a procedure call. For example, notice that the variables x and y are still unassigned in
the worksheet.

> XY,

The parameter variables x and y that were given the values - 2 and 2 in the last procedure call were
local to the procedure call, so they have no affect on the global x andy in our worksheet.

We will see several usesfor local and global variables later in this worksheet and in the following
workshests.

[>

>
'=113.5. Another example

Here is another example of converting an execution group into a procedure. Suppose we have alarge
integer and we want to know what one of its digitsis. For example, suppose we want to know what
isthe 15th digit (from the right) of the integer 47!.

[> 47! ;

Y ou could just start counting from the last digit on the right, but that is tedious, error prone, and will
not work for finding the 257th digit in 200!.

[> 200!,

The length command can be used to find out just how many digits there are in an integer. The next
command shows that 200! has alot more than 257 digits.

(> length(%);

Let us find a sequence of Maple commands that will find the i'th digit (from the right) of an integer n
. Take for example n to be 98765 and i to be 3 (so the answer is 7).

[> n := 98765;

> 3;

The integer n hasits decimal point to the right of itsfirst digit. The following command moves the
decimal point to the left of thei'th digit of n.

[> eval f(10M(-i)*n);

Page 6

The next command returnsthe f r actional part of the last result (the part to the right of the decimal
point), leaving the digit we want just on the right of the decimal point.

(> frac(%);

The next command moves the decimal point over to the right one place, leaving the digit we want by
itself just to the | eft of the decimal point.

[> 10*%

Finally, the next command t r uncates off the fractional part of the last result leaving us with just
the digit we want.

[> trunc(%);

Now let us put these commands together in an execution group. (Notice that we really do not need
theeval f inthethird command.)

[> n := 98765:

i =3

107 (-i) *n:

frac(%):

10* %

| > trunc(%);

This execution group performs a useful calculation, but it is not easy enough to use and reuse. So
now let us put our commands into the body of a procedure. We will call the procedureget di gi t
and this procedure will take in two numbers as inputs.

\%

V V. V V

\%

> get _digit := proc(n,i)
> 107 (-i0)*n;

> frac(%);

> 10*%

> trunc(%);

> end;

Let ustry it out with a procedure call.

[> get _digit(98765, 3);

Now we can easily find the 257'th digit of 200!.

[> get _digit(200!, 257);

Of course, there is no easy way to verify thisresult. The best that you can do isto test this procedure

on alot of verifiable inputs until you have convinced yourself that the procedure is always correct.
[>

Exercise: Recall that in our original sequence of commandswe had an eval f function. Supppose
we put it back in the body of our procedure.

> get _digit2 := proc(n,i)
> eval f (10" (-i)*n);
> frac(%);
> 10*%
> trunc(%);

| > end;

Page 7

Show that the procedure is now incorrect. Explain what can go wrong.

[>

Here is an application of our new procedure that takes a positive integer n and returns an expression
sequence made up of the integer's digits.

[>n = 30!;

[> seq(get _digit(n, length(n)-i), i=0..length(n)-1);

The following command will tell you which of the digits 0 to 9 are used in the integer n. (Why does
thiswork?)

(> { %},

So the digit 7 did not appear in n.

The next two commands add up the digitsin the number n.

[> L :=seq(get _digit(n, length(n)-i), i=0..length(n)-1);

(> add(i, i =1L);

(Note: Theexpressioni =L intheadd command meansthat i successively takes on each of the
values in the expression sequence L.)

The command that returned an expression sequence of the digits from an integer n isitself a useful
command, but it istediousto keep typing it in. So let us turn this command into another procedure
that we will call di gi t s.

> digits := proc(n)

> | ocal i;

> seq(get _digit(n, length(n)-i), 1=0..length(n)-1);

> end;
Notice that what we have here is a procedure that we defined that uses another procedure that we
defined. Thisistypical of Maple programming. We build up interesting new procedures out of
simpler procedures that we previously defined.

Now for some fun. Here are afew surprising facts about numbers that we can verify with our new

procedure. Each of the numbers below is an example of what some people call Narcissistic Numbers
because each number is somehow related to its own digits in some unusua way.

Hereis an interesting fact about the integer 2.

[>n = 70;
[> L :=digits(2"n);
(> add(i, i =L); # Add up the digits of 27n.

So the digits of 2”° add up to 70. Try this for 2" for some other n.
The number 40,585 has the following amazing property.

[> n = 40585;

[> L :=digits(n);

Page 8

[>add(i!, i =L); # Add up the factorials of the digits of n.
So the number 40,585 is the sum of the factorials of its digits (again, try this for some other
integers). Such numbers have been called factorians. See the book Keys to Infinity, p.169-171, by
Clifford Pickover.

The number 3435 is the sum of each of its digit raised to its own power.
[> n = 3435;
[> L :=digits(n);
> add(i™i, i =L); # Add up the digits raised to their own
{ power .

[>

Exercise: The number 438579088 has the same property as 3435 if you let 0°be0 (which Maple
does not). Can you think of away to verify this property of 438579088 using the last two
commands? (Hint: Do not change the last two commands. Make a small change in 438579088.)
[>

The following number is called adigital invariant. It is the sum of each of its digitsraised to the
number-of-digits power.
[> n := 82693916578;
(> L :=digits(n);
> add(i”nops([L]), i =L); # The power is the nunber of
{ digits.
Hereis ahuge digital invariant.
[> n := 115132219018763992565095597973971522401;
[> L :=digits(n); # There are 39 digits.
[> add(i”nops([L]), I =1L);
[>

Consider the following example and try to figure out what narcissistic property this number has.
[>n = 2646798;

[> L :=digits(n);

[> add(L[i]7™i, i = 1..length(n));

[>

All of the examples of Narcissistic Numbers used here came from the Narcissistic Numbers web

page, http://www.geocities.com/~harveyh/Narciss.htm.
[>

L[>

13.6. Maple functions are procedures

Page 9

A function in Mapleisreally like a procedure. Below we define a procedure, a Maple function, and
an expression, each of them equivalent to the mathematical function f(x) =x* +2x- 1.

> f1 = x"2+2*x-1; # The mat hemati cal function as an
| expression,
[> f2 1= x->x"2+2*x-1; # as a Maple function,
> f3 := proc(x) # as a procedure.
> XN2+2*x- 1
| > end;
L et us see how Maple remembers the definitionsof f 1, f2,and f 3.
[>eval (f1); # f1 was defined as an expression.
[> eval (T2); # f2 was defined as a function.
[> eval (T3); # f3 was defined as a procedure.
Now we will check the datatypesof f 1,f 2, and f 3.
[> whattype(eval (f1)); # f1 was defined as an expression.
[> whattype(eval (f2)); # f2 was defined as a function.
[> whattype(eval (f3)); # f3 was defined as a procedure.
Notice that Maple considersboth f 2 and f 3 to be of type pr ocedur e, so Maple treats functions
as procedures.
[>
[>

=113.7. How a mathematical function islike a procedure

Here is a simple procedure that implements the mathematical function f(x, y) = x +y. The procedure
has two formal parameters and only one command in the body of the procedure. Whatever that
command computes is the return value of the procedure when the procedureis called.

> plus := proc(x,y)

> X+Yy;

> end;
Here are afew calls to this procedure.
[> plus(3, 4);
[> plus(-3, 4);
We can "compose" procedure calls just as we can compose functions. The following composition
will compute the sum of three numbers.
[> plus(5, plus(3,4)); # Add three nunbers.
The actual parametersin a procedure call may be unassigned variables.
[> plus(variablel, variable2);
In the next example, how are the variables x and y in the procedure call related to the formal
parameters x and y in the definition of the procedure?
[> plus(x+y, X-y);
The procedure call pl us(x+y, x-y) canbeabit confusing. Here, the formal parameter x (in the
procedure definition) gets the actual parameter x+y (from the procedure cal), and the formal

Page 10

parameter y getsthe actual parameter x- y. You should think of the formal parameters as " place
holders' for the actual parameters. And remember, the variables x and y in the procedure call are
global variables while the formal parameter x andy in the body of the procedure are local variables.
So the variables x and y in the procedure call are not the same x and y that are in the procedure
body.

[>

Thisisjust likein algebraand calculus. If f(x) =x° +2x - 1, thenwhat isf(x + h)?Itis
(x+h)?+2(x+h)- 1 Theequationf(x) =x* +2x- 1isa"procedure definition”, f isthe name
of the "procedure”, and the x in this equation is a"formal parameter”. Then f(x + h) isa"procedure
call", and x + hiisthe "actual parameter” for the "formal parameter” x.

Notice that mathematically, f(x) =x*+2x- 1, f(y)=y*+2y- 1,and f(z)=Z+2z- lareall
definitions of the same function f. Each one just uses a different formal parameter in the definition
of the function. Similarly, if we rename the formal parametersin the definition of pl us, that does
not change the procedure. It will still be the same procedure, because it will do exactly the same
thing. In other words, the following definition of pl us isnot really any different from the first
definition.

> plus := proc(u,vV)

> U+ v

> end;
Hereisaway to use Maple to confirm this claim.
[> eval b(proc(u,v) u+v end = proc(x,y) x+y end);
[>

Exercise: Make asmall change in the last command so that the two procedures are no longer the
same.

[>

One last note. To Maple, the three expressions x*2+2x- 1, y"2+2y-1, and z"2+2z- 1 are not
the same expression, since they contain different variable names (that is, the data structures contain
different data). But remember, Maple treats expressions and functions differently.

[>
L[>

= 13.8. Anonymous procedur es

When we define a procedure we almost always give it a name. But we do not have to. We can have
unnamed procedures just as we can have unnamed functions or expressions. Unnamed procedures
are called anonymous procedur es. Here is an anonymous procedure that takes a string and a
positive integer as input and returns the string truncated to the integer number of letters.

Page 11

[> proc(x::string, n::posint)
> | ocal i;
> seq(x[i], i1=1..n);
> cat(%);
> end;

Right now the procedure is anonymous. But we can still call this procedure.
[>9% "this is a long nane", 11);

We can give the procedure aname, so that it is no longer anonymous.

[> shorten := %%

Now we can call the procedure by its new name.

[> shorten("Aren't we having fun?", 15);

Here is an anonymous procedure that reverses the lettersin a string. The following command defines
the anonymous procedure and then callsit, all in a single command.

> x = (proc(x) local i; cat(seq(x[-i], i=1..length(x))) end)(
{ "try it out");
Notice that the assignment operator was acting on the result of the call to the anonymous procedure.
[> X
[>

The last few commands were meant to emphasi ze that defining and naming a procedure are two
distinct steps and procedures do not have to have names to be used. Anonymous procedures can be
used anywhere anonymous functions can be used. But anonymous functions are more common than

anonymous procedures.
[>

Exercise: Pick apart the two anonymous procedures from this section and make sure that you
understand how they work. Try converting them into execution groups, so that you can see the
results of each step in the procedure body.

[>

L[>

=113.9. Procedures and data structures

The next few examples are meant to show how knowledge of data structures can be useful for
writing procedures.

Here are afew simple procedure definitions. These three procedures compute the average of two,
three, and four input numbers respectively.

> avg2 = proc(x,Y)

> (x+y)/ 2; # Conpute the average of two nunbers.

> end;

Page 12

> avg3 := proc(Xx,VY, 2)
> (x+y+z)/3; # Conpute the average of three nunbers.
| > end;

[> avg4 : = proc(a,b,c,d)
> (atb+c+d)/4; # Conpute the average of four nunbers.
| > end;

Here are afew callsto our procedures.
> avg2(10, 3);
> evalf(%);

[> avg3(-1, 34, 12);

> avg4(50, 32, 100, 1);
| > evalf(%);

[> avg4(3, 3, 3, 3);

[>

What if we want to compute the average of 27 numbers? Do we have to write a procedure that has
27 formal parameters? The next procedure solves the problem of how we can average any number of
numbers without having to write an infinite number of procedures. This procedure has only one
input parameter, but that input is a data structure (in this case alist) that can hold any number of
numbers. Thisis an example of using a data structure to solve a programming problem.

[> avg : = proc(L)
> local i, N, S # Local vari abl es.
> N :=nops(L); # How many nunbers we are
aver agi ng.
> S :=add(L[i], i=1..N); # Add up the nunbers in the list.
> SI'N; # This is the return val ue.
| > end;

The procedure av g determines how many numbers arein thelist L and putsthe result in N (alocal
variable). It uses the add command to add up the numbersin the list and stores the sum in the local
variable S. Then it divides S by N to get the average. (Notice the use of commentsinside the
procedure to help explain what is being done.) This example uses three local variables. Notice how
the local variables are used to hold temporary results that come up while we are trying to compute
our main result. Remember that the local variables only "live" inside a procedure call. They do not

exist after the procedure has returned and they do not survive from one procedure call to the next.
[>

Here are some callsto avg.

[>avg([2,3,4,5,6,7]);

(> evalf(%);

(> L :=1[12, 32.3, Pi, 67, 100, exp(2), 5.5, 44, 66, 100] ;

Page 13

[>avg(L);

[> evalf(%);

Remember, the global variable L in this last procedure call is not the same variable as the parameter
variable L in the definition of avg.

[>

What do you think avg will do with the following input, alist of lists?
[>L:=1[112], [23], [3.4] 1;

[>avg(L);

Now try avg on alist of polynomials.

[> L = [1+x"2, 3+2*x"2+5*x"3, 4+2*x"2];
[>avg (L);

The last two commands worked but the next one does not. The next input causes trouble since the
elements of thelist are sets.

[>L:=1 {1,2}, {2,3}, {3,4} 1;

[>avg(L);

[>

Exercise: Why could our procedure average the numbers from alist of lists and return alist of
averages, but it could not average alist of setsto produce a set of averages? Hint: The key idea has
to so with addition. Does it make sense to add two lists of numbers together, asin

[1,2,3]+[4,5, 6] ?Doesit make sense to add together two sets of numbers, asin
{1,2,3}+{4,5,6}?

[>

When we wrote the procedure av g, we were thinking that the list L represented alist of numbers. It
turns out that the procedure works on lists of some other data types but it aso does not work with
lists of certain datatypes. Thereis a sophisticated way for usto force our procedure to work only in
the way that we originally thought of it, as an average of alist of numbers. We will use what is
called atypedeclaration in thelist of formal parametersfor avg to tell Maple exactly what kind of
data types the actual parameters are supposed to be. When the procedureis called, Maple will check
the data type of the actual parameters and see if they are of the correct type (thisisreferred to as
type checking). If the actual parameters are not of the data type declared for the formal parameters,
then Maple will return an appropriate error message.

Here wetell Maple that the formal parameter L represents a”list of numbers'.

[> avg := proc(L::list(nunmeric)) # Tell Maple exactly what L
represents.
> local i, N, S
> N :=nops(L);
> S :=add(L[i], i=1..N);
> S/'N

Page 14

| > end;

Now let us try this new definition of avg on the bad input.

(> L= {1,2}, {2,3}, {3,4} I;

(> avg(L);

The error message we got here is abit more informative than it was before. It tells us what kind of
input av g was expecting as opposed to the kind of input we passed to it.

[>

Now consider this next example.

[> avg(2,3,4,5,6,7); # Wiat's wong with this input?

Notice that only the number 2 was passed to the procedure av g (read the error message carefully).
All the other elements of the expression sequence in the function call were ignored since avg was
defined to take only oneinput. And since 2 is not alist, we got the error message. This last
command demonstrates two things. First of all, Maple has the unusual property of allowing
procedure calls with more parameters than the procedure was written to accept. We will see in the
next section why Maple chooses to behave this way. Compare this with mathematical functions; if
the function f is defined by f(x) =2 x - 1, then the "function call" f(p, 2) is considered an error. But
in Maple, the 2 would be ignored and only the p would be passed to the function (i.e., procedure).
Maple will complain however if a procedure is passed too few parameters as the following
procedure call demonstrates.

[> avg3(0,1); # avg3 expects 3 inputs

The other thing that we learn from the command

[> avg(2,3,4,5,6,7);

isthat our solution to the problem of averaging an arbitrary number of numbersis not really
optimal. The last command should have been written like this:

[>avg([2,3,4,5,6,7]);

But those brackets in the function call are awkward. Compare the following sequence of commands.
[> avg2(2, 3);

[> avg3(2, 3,4);

[> avg4(2, 3,4,5);

[>avg([2,3,4,5,6]);

Why should the last command have to be typed in differently from the previous three? Looking at it
from this point of view, the brackets solved one problem but they created another problem. How are
users of our procedure supposed to remember that the correct usage of avg isthe non intuitive
[>avg([2,3,4,5,6]);

instead of the more obvious, but incorrect,

[> avg(2,3,4,5,6);

In the next section we will see how Maple provides away to solve this dilemma caused by the way
wewrote avg.

[>

Exercise: Try to determine, before executing them, how Maple will interpret each of the following

Page 15

procedure calls. Do this exercise with both definitions of av g, the first definition without type
checking and the second definition with type checking. (Y ou will need to change al of the colonsto
semi colonsif you want to see the results.)

[> avg([2],3,4,5,6,7):

[> avg([2,3,4],5,6,7):

[> avg([2,3,4],[5,6,7]):

(> avg([[2,3,4],[5,6,7]]):

[> avg(2,[3,4,5,6,7]):

[>

L=
=113.10. Procedur e data structure

We have said that almost everything in Maple is a data structure. So it should not be a surprise that
procedures are themselves another kind of data structure and that they have the datatype
procedur e. Hereisasimple (and somewhat silly) example.
> f = proc(x::nuneric,y)

| ocal u, v;

gl obal w;

option trace;

description "a silly exanple";
> u: =x; V:=y;, W =U+V+5;
| > end;
L et us check the datatype of f .
[> whattype(f);
Oops, forgot about last name evaluation.
[> whattype(eval (f));
Since our procedure is a data structure, we should be able to use the op command to examine the
operands of this data structure, that is, use op to see what kind of datais stored inapr ocedur e
data structure.

V V.V V V

The op command, however, works very strangely with pr ocedur e data structures, so looking at
the datain aprocedure is a bit confusing. First, since Maple uses last name evaluation for
procedures, the following command gives us the data type of the name f , not the datatype of f 's
value, the procedure.

[>op(O, f);

The next command gives us the data type of the procedure which isthe value of f .

[> op(O, eval (f));

But in the next two commands, op switchesto full evaluation and shows us the definition of the
procedure named by f .

[>op(f);

[>op(1, f);

Page 16

But the definition of the procedure is not the data stored in the pr ocedur e data structure. To get at
the data stored in the pr ocedur e data structure, we use the following command.

[> op(eval (f));

There are actually seven operandsinapr ocedur e data structure, as the next command shows.

[> nops(eval (f));

The next sequence of commands shows what isin each of the seven operands. A couple of these
dataitems are currently empty in the data structure for f .

[> op(1, eval (f));

[> op(2, eval (f));
[> op(3, eval (f));
[> op(4, eval(f));
[> op(5, eval(f));
[> op(6, eval(f));

):

[> op(7, eval (f)
Notice that the first operand of apr ocedur e data structure is an expression sequence of formal
parameters. If aformal parameter has a type declaration, then the type declarationisheldina ™ : : °
data structure.

[>op(1, [op(1, eval(f))]);

[> whattype(op(1, [op(1l, eval(f))]));

Notice aso that the definition of the procedure is nowhere in the pr ocedur e data structure.

[>

To summarize, op(f) returnsthe definition of the procedure and op(eval (f)) returnsthe
contents of the pr ocedur e data structure.

[>op(f);

[> op(eval (f));

There are seven operandsinapr ocedur e data structure and we access them using op(i ,

eval (f)) withi from1to 7. Thefirst operand isthelist of formal parameter names. The second
operand isthelist of local variable names. The third operand is alist of options. The fourth operand
is called the remember table (we will discuss this operand in the next section). The fifth operand isa
descriptive string. The sixth operand isthe list of global variable names. And the seventh operand is
called the lexical table.

Exer cise: Explain what the following procedure does and how it doesit. In particular, explain the
reasons for the right-quotes.
[> pds : = proc(p::procedure)
> | ocal i;
> for i from1l to 7 do print('op' (i, '"eval'(p))=op(i, eval(p)))
od;
| > end;
[>
Modify the procedure pds so that it displays a more descriptive message on the left hand side of

Page 17

each equal sign.
[>

Of the seven operands in a procedure data structure, we already know what three of them represent.
They are the formal parameters, the local variables, and the global variables. Of the remaining four,
the remember table is the most important and we will discuss it in the next section. The descriptive
string seems pretty self explanatory. The lexical table lists what are called "lexically scoped
variables'. These are variables that can only occur when one procedure is defined inside the body of
another procedure. We will say more about thisin alater (optional) section. The options operand we
discuss next.

A procedure definition can contain an optional opt i on section. There are eight different properties
that can be declared inthe opt | on section, r emenber , bui [ti n,syst emoperat or,arrow
,trace, package and Copyri ght . Right now we want to describe just three of these, the
trace, operator andar r owoptions. Ther enenber option will be described in the next
section. Thebui | ti nand Copyri ght optionswill be discussed in the worksheet on Maple
programming. The other options we will not mention any further.

If aprocedure is defined with both the oper at or and ar r ow options, then the procedure acts
exactly asif it were defined using the arrow notation.

[> g := proc(x) option operator, arrow, x"2+2*x-1 end;
[>eval(g);

Notice that if we define afunction using the arrow notation

[> h = X -> x"2-2*x+1,;

and then examine the option operand of the function's pr ocedur e data structure

[> op(3, eval(h));

it will have both the oper at or and ar r owoptions. A procedure can have one of the oper at or
or ar r ow options without the other, but we will not go into what that means.

Exercise: Try defining a procedure with just the oper at or option or just the ar r ow option. Do
they act like functions defined using the arrow notation?

[>

Now we shall mention thet r ace option. Thisis an option that is used for debugging a procedure.
When we write procedures that are a bit complicated, it is very possible that we can make a mistake
in the definition of the procedure and the procedure does not do what we expect it to do. Finding
mistakes can be difficult, and the t r ace option is meant to help.

When a procedure hasthet r ace option, Maple will print out quite a bit of information about the
procedure whenever it is called. Here is an example with our silly function f , which hasthet r ace
option.

> f(1, 2);

Page 18

L et us define another procedure with thet r ace option that calls the proceduref .

> g .= proc(x,y) local u,v; option trace; u:=f(x,x); v:=f(y,y);
{ u+v; end;

Now let us call g to see what Maple produces for us.

[>9(2, 3);

What Mapleisdoing isgiving us a"trace", or ahistory, of everything that goes on inside of the
procedures g and f . Hopefully this information will be of use when we are trying to find out what
we did wrong in the definition of a procedure. Here is another example. The following procedure
takes as input a name and a positive integer and it truncates the name to the integer number of
letters.

> shorten : = proc(x::name, n::posint)
> | ocal i, vy;

> option trace;

> y := convert(x, string);

> y :=seq(y[i], 1=1..n);

> y:=cat(y);

> convert(y, nane);

> end;

Let us call this procedure.
[> shorten("a nane that is too long , 6);
Notice how we can see all of the steps that occur inside the procedure as they are executed.

[>

Exercise: The following procedure was meant to reverse the letters in a name, so
reverse_name(hel | o) wassupposed to output ol | eh. But there isabug in the procedure.
Give the procedure the trace opt i on and find the bug.
[> reverse_nane := proc(x::nane)
> | ocal i, v;
y := convert(x, string);
y :=seq(x[-i], i=1..length(y));
y :=cat(y);
convert(y, nane);
end;
reverse_nane(hell o);

V V.V V V V V

[

Exercise: Explain the relationship between apr ocedur e datastructureand f unct i on data
structure. The following two help pages might help a bit.

[> ?type, procedure

[> ?type, function

[>

Page 19

L[>
=113.11. Remember tables

In this section we look at an ingenious feature of Maple's design that has two important, and
seemingly unrelated, consequences for Maple. This feature, remember tables, improves the
computational efficiency of Maple and it also gives Maple some of its symbolic abilities.

A remember tableispart of apr ocedur e data structure. It is the fourth operand (out of seven) in
the data structure. But a procedure will only have aremember tableif the procedure is defined with
ther emenber option. Hereis an example. First define a simple procedure without ther enenber

option.
> f = proc(x)
> XN2-2*x+1
> end;

Now look at its procedure data structure.
[> op(eval (f));
There are no options and no remember table.
[> op(3, eval (f));
[> op(4, eval (f));
Now let usredefinef with ther enrenber option.
> f = proc(x)
> option renenber;
> XN2-2* x+1;
> end;
Now look at its procedure data structure.
[> op(eval (f));
Now there isone option but it seemsthat there is still no remember table.
[> op(3, eval(f));
[> op(4, eval (f));
Sother emenber option isin the data structure but there is no remember table yet. Let us evaluate
f at someinput.
[>f(2);
Now look at the procedure data structure.
[> op(eval (f));
There is the remember table.
[> op(4, eval (f));
When a procedure hasthe r enmenber option, every time the procedureis called, Maple records the
input of the procedure call and the resulting output as an ordered pair in an equation data structurein
the remember table. So the procedure call f (2) with theresult of 1 isrecorded in f 's remember
table as the equation 2=1. From now on, anytime we make the procedure call f (2) , Maple will get
the result for the procedure call from the remember table, instead of re-evaluating the procedure.

Page 20

Let us put some more valuesin f 's remember table.
(> f(3), f(1000), f(Pi), f(sin(Pi/4)), f(sin(Pi/7)), f(2z);
Let uslook in the remember table.
[> op(4, eval (f));
As we use the function, the remember table keeps growing. If we redefine the function, the
remember tableiswiped clean.

> f = proc(x)

> option renenber;

> x5 + 100;

> end;
Check the remember table again.
[> op(4, eval (f));
[>

Now we look at what makes remember tables so great, but we will also look at a problem that they
can cause.

First of all, remember tables help Maple work more efficiently. That is, they speed up calculations.
Hereisasimple example. Let us ask Maple to compute the 45,000th prime number.

[> ithprinme(45000);

That calculation should have taken afew seconds. Now ask Mapleto do it again.

[> ithprinme(45000);

The second time, the result is instantaneous because Maple pulled it out of the remember table for
thei t hpri me procedure. If you wish you can look at the remember tablefor i t hpr i me and find
45000=545747 init, but the remember table for i t hpr i ne is, by default, very large so you may
not want to bother displaying it.

[> op(4, eval (ithprine)):

If wer est art Maple, then all of the remember tables are restored to their original values. So after
arestart,caculatingi t hpri me(45000) will again take several seconds.

[> restart;

[> ithprinme(45000);

[>

Other examples of remember tables used to speed up calculations are the remember tables for
si npl i fy andexpand. By default, these commands have empty remember tables.

(> op(4, eval (sinplify));

[> op(4, eval (expand));

Let us do some algebra.

[> seq(factor(1-x"i), i=1..20);

Check the remember tablesfor si npl i f y and expand again.

[> op(4, eval (sinplify));

[> op(4, eval (expand));

Page 21

Notice how expand picked up alot of values. Reset the remember tables.

[> restart;

Now do some more algebra.

[> solve(1+x+x"2+x"3+x"4+x75=0, x);

And check the remember tablesfor si npl i f y and expand.

(> op(4, eval (sinplify));

[> op(4, eval (expand));

Notice how much stuff accumulated in the remember table for expand from just that one
calculation.

[>

If you are doing massive amounts of calculations with Maple, large numbers of intermediate results,
which will quite often be used again and again, build up in lots of remember tables. This can save
Maple from having to recal culate some intermediate result many times and can lead to alot of time
saving. But the price for this speed efficiency can be memory inefficiency. The remember tables can
start to occupy alot of the computer's memory. This can explain why some Maple calculations can
need hundreds of megabytes of computer memory to run well. The trade off between time and
memory efficiency is one of the most common themes running through computer science and
computational mathematics. More often than not, the way to speed up a calculation isto use more
memory. Maple's remember tables are actually nothing more than what computer scientists call a
cache and the idea of a cache is ubiquitousin the world of computers. The CPU in your computer
has a cache, the hard drive has a cache, your web browser has a cache, the servers your computer is
connected to have caches. A cacheis aplace for acomputer to store recently accessed data where it
is cheaper (i.e. faster) to get it from than where the data originally was stored. Datais cached
because of the belief that if you accessed the data recently, then you will probably accessit again
soon. In the case of Maple, the "original source" of the data is computing it, and then it is stored
"locally" in the remember table. If you take the example of your web browser, the original source of
the datais aweb page on the Internet. Once you access a web page, your browser stores a copy of it
on the computer's hard drive. If you go back to the web page, which is very likely, the browser will
retrieve the local copy cached on the (very fast) hard drive rather than retrieving the original over
the (much slower) Internet again. So your browser uses hard drive space to save you time. (But when
people have very full disk drives or small disk drives, the size of the web browser's cache can
become a problem).

[>

Now here isthe problem with remember tables, and thisis a problem with all caches. Stale data.
Sometimes the values in the remember tables (or in a cache) no longer represent the correct results
(or the original information). Here is an example. We will define two functions, one of which calls
the other, and we will give the calling function a remember table.

> h = proc(x)

> X+2

> end;
(>g::proc(x) # g calls h

Page 22

> h(x) +1
> end;
Now evaluate g at some point.
[>9(2);
Now change the definition of h.
> h := proc(x)
> x+100
> end;
Call g again with the same input.
[>9(2);
That is not the correct answer. But it isthe value that is cached in g's remember table.
[> op(4, eval(g));
So what do we do? We could r est art Maple, but that may ruin alot of other calculations that we
are working on and be very inconvenient. Thereis a special Maple command called, not
surprisingly, f or get that clears a procedure's remember table. But this procedureis not part of any
package and it is not loaded into Maple by default.
[> forget(g);
In this case, returning unevaluated is the way we know that f or get isnot defined to Maple yet. So
we need to load it before we can useit.
[> readlib(forget);
[> forget(g);
f or get doesnot return avalue, but it did clear g's remember table.
[> op(4, eval(9));
So now let usrecalculate g(2) .
[>9(2);
There are alot of waysthat old values in remember tables can cause Maple to return erroneous
results. If you are getting strange results from Maple and are suspicious that Maple is getting bad
results from remember tables, just user est ar t to clear al the remember tables. If you know
exactly which procedure has the corrupted remember table, then you can usef or get .
[>

{> option renmenber; # and g renenbers

Exercise: Why did we need two functions for our example of a problem with aremember table?
Why did we not just have one function g, evaluate it at a point, change g, and then evaluate it again

at the same point?
[>

Exercise: In the case of aweb browser, what could cause a piece of datain the cache to become
incorrect? An interesting feature of web browsersis that they have away to automatically detect
when cached information has gone stale. It would be nice if Maple also had a feature like that.

[>

Page 23

Now let us turn to the other great thing about remember tables. Remember tables provide Maple
with some of its symbolic abilities. Here is an example.

[> sin(Pi/5);

How did Maple know that? It pulled it out of the remember table for si n. Many Maple functions
come with predefined remember tables. Let uslook at si n's.

[> op(4, eval(sin));

Now notice something else. Thereisno entry in si n'sremember table for theinput 3* Pi / 5. But
Maple can still figureit out.

[> sin(3*Pi/5);

Thereisavauefor si n(2* Pi / 5) inthe remember table and the si n function knows how to
make use of thisvalueto computesi n(3* Pi / 2) . Wewill see how the si n function doesthisin
the worksheet on Maple programming.

Notice that Maple knows, from the remember table, what si n(Pi / 12) is.

[> sin(Pi/12);
J6- 42
4

that it does.Let usset si n(Pi / 12) tothissimplified value.

[>sin(Pi/12) := (sqrt(6)-sqrt(2))/4;

Check the remember table again.

[> op(4, eval(sin));

The ssimplified value is now in the remember table. Now r est art Maple.

[> restart;

Check si n'sremember table again.

[> op(4, eval(sin));

sin(Pi/12) isback towhat it was. Sor est art doesnot just clear remember tables, it also
restores default remember tables back to their default values.

This result can be simplified to . 1 do not know why Maple stores this result in the form

Here are some other remember tables containing symbolic results. Look them over carefully to get a
sense of the kind of symbolic results that Maple keeps track of. In particular, notice the number of
results involving infinity and also complex numbers.

[> op(4, eval(In));

[> op(4, eval (exp));

[> op(4, eval (arctan));

[>

Now let us teach Maple something that it does not know. If you look in agood trigonometry book,
you will find the identity

aep o «/12- 24/15 - 44/5+64/3 - «/20- 2415 +44/5- 104/3

Sng—__==
60 g 8

Mapl e does not know this.

[> sin(Pi/60);

Page 24

o let us teach Maple.

> sin(Pi/60) :=
> (sqrt(12-2*sqgrt(15)-4*sqrt(5)+6*sqrt(3))
> - sqrt(20-2*sqgrt(15)+4*sqrt(5)-10*sqrt(3)))/8;

Now Maple knows the identity.

[> sin(Pi/60);

And Mapleisafast learner. It now aso knows the following. (We will see how later.)
[> sin(59*Pi/60);

[> sin(61*Pi/60);

[>

Exercise: Maple automatically learned one other value when we taught it si n(Pi / 60) . What was
it?
[>

Exercise: Teach Maple the symbolic valuesfor cos(Pi / 60) andsi n(Pi / 30) . Hint: Usea

couple of trig identities.
[>

Exercise: Look in atrigonometry book and find out how to derive the symbolic value for
si n(Pi/60).Hint: You can derive the valuefor si n(Pi / 60) using valuesfrom si n's default

remember table.
[>

Exercise: Look in atrigonometry book and find out how to derive the symbolic value for
sin(Pi/5) thatisinsi n'sdefault remember table.
[>

L[>

13.12. Return values and side effects
=113.13. The args expression sequence (optional)

In a previous section we solved the problem of how to write a procedure that would compute the
average of any number of input numbers. We solved the problem using a data structure (alist). But
our solution was not all that appealing. Recall that our solution required that the procedure call have
bracketsin it so that the procedure would be passed only one argument, the list. The brackets made
the procedure awkward to use. In this section we will see how to remove the need for the brackets.

Here is the procedure av g as we defined previously (without the type checking).
> avg := proc(L)
> local i, N, S

Page 25

> N :=nops(L);

> S :=add(L[i], i=1..N);
> SI'N;

> end;

Here is an example of acall to this procedure.

[>avg([2,3,4,5,6,7,8]);
What we would like to be able to do isto call the avg procedure like this.

[> avg(2,3,4,5,6,7,8);
Notice that in the proper procedure call theinput isalist and in the improper procedure call the
input is an expression sequence. Both lists and expression sequences are data structures capable of
holding any number of numbers. Can we rewrite the definition of avg to have an expression
sequence as the formal parameter instead of alist? The answer is no. We cannot have aformal
parameter represent an expression sequence data structure like we had aformal parameter represent
alist data structure. The reason has to do with the way Maple passes parameters. Every procedure
call is of theform

procedur e_name(expression-sequence-of-actual-parameters)

and the pr oc command that defines the procedure is of the form

procedure_name : = proc(expression-sequence-of-formal-parameters) Maple-statements

end.

Maple will take the elements of the expression-sequence-of-actual-parameters in the procedure call
and match those elements up, one for one, with the elements of the
expressi on-sequence-of-formal-parameters in the procedure definition. There is no way to have
Maple take some of the elements from the expression sequence of actual parameters and pass them
into asingle formal parameter that represents an expression sequence.

[>

However, writing procedures that take an arbitrary number of parametersisacommon thingtodoin
Maple, so Maple provides a specia solution to the problem we are up against. Maple provides every
procedure with a special local variable called ar gs that holds the entire

expressi on-sequence-of-actual -parameter s from a procedure call, and Maple a so provides another
special local variable nar gs that holds the number of actual parametersinar gs (so nar gs isthe
sameasnops([args])).

Hereishow we canuse ar gs and nar gs to rewrite the procedure avg.

[> avg : = proc()

> | ocal i, S

> S := add(args[i], i=1l..nargs);

> S/ nar gs;

| > end;

Notice how strange this seems at first. The procedure avg is now defined to take no parameters! But
it does take parameters and it gets those parameters through the ar gs expression sequence. (Notice
how we are still using a data structure to solve the problem of how to pass an arbitrary number of

Page 26

numbers to our procedure. Instead of using alist data structure, now we are using an expression
sequence data structure. And instead of the data structure being help in aformal parameter, now it is
held in a specia local variable.)

Here are some procedure callsto our new version of avg.
[> avg(2,3,4);

[> avg(2,3,4,5,6,7);

[>

Exer cise: Notice what happens when we call avg with no parameters.
[> avg();
Modify the definition of avg so that it returns a better error message when it is called with no

arguments.
[>

The proceduresavg?2, avg3, and avg4 that we defined previously each represent a mathematical
function, i.e., area valued function of two, three, and four variables respectively (you can easily
write a mathematical formulafor each of these functions). The version of avg that we just defined
does not represent a simple mathematical function. There is no easy way to define adomain for avg
using common mathematical language and, similarly, there is no easy way to use mathematical
notation to write aformulafor avg. This example shows how the computer science notion of a
procedure can extend the mathematical notion of afunction.

Here are two more procedures that make simple use of the ar gs and nar gs variables. Thefirst
simply returns its actual parameter list and the second counts how many actual parametersit was
called with.

[> quote_them:
> args;

| > end;

[> count them:
> nar gs;

| > end;

Here are some examples of their use.

[> quote thenm(a, b, ¢, d, e, f, g, h

| > count _thenm(a, b, ¢, d, e, f, g, h

[> quote them(a, [b, c], {d, e}, f=g, h..
| > count _then(a, [b, c], {d, e}, f=g
Why was the last result 6?

[>

proc()

proc()

Exercise: A lot of Maple commands use the ar gs expression sequence so that the command can
accept an arbitrary, or at least avariable number, of parameters. Take for example the pl ot

Page 27

command. Convince yourself that various pl ot invocations can have a different number of
parametersin their procedure calls. Look at the following examples. How many parameters are in
each use of the pl ot command? (Hint: Count commas at the "top level" of the parameter
sequence.)
[> plot(x->x"2);
[> plot({x->sin(x), x->cos(x)});
[> plot(x*2, x=-10..10);
[> plot(x->x"2, axes=none);
[> plot([sin(x), cos(x), x=-2*Pi..2*Pi], style=point);
[> plot([cos(x), sin(x)], x=-2*Pi..2*Pi, color=[blue, black]);
[> plot(x->x"2, 0..5, 0..5, color=green);

> plot([In, x->x], 0..5, color=[blue,red],

> styl e=poi nt, adaptive=fal se, nunpoints=10);
Double check your answers by replacing each occurrence of the name pl ot with the name

count _t hemand see what the return values are.
[>

L[>
'=113.14. Recursive procedures (optional)

In this section we will ook at an idea that isimportant to both mathematics and computer science,
the idea of recursion. Recursion means defining something in terms of itself. We will see, for
example, that many common mathematical ideas can be given recursive definitions. But our main
interest will be in recursive procedures. A procedure isrecursive if the procedure calls itself
somewhere in its body, which would mean that the procedure is defined in terms of itself. Recursive
procedures are important in computer programming because they often provide very compact and
elegant solutions to a programming problem. But, unfortunately, the compactness and elegance of
recursive procedures comes at a steep price. Recursive procedures tend to be slow and they tend to
consume massive amounts of computer memory when they execute. We will see thiswith a couple
of our examples.

[>

Here is afamous example of recursion in mathematics. If nis a positive integer, the symbol n! (read
"n factoria") is defined to be the product of al the positive integers less than or equal to n. Using
mathematical notation we would write

n=n*(n-)*(n- 2)*..*3*2* 1.
So for example 3! = 3*2*1 = 6, and 5! = 5*4*3*2*1 = 120. There is another way to definen!, a
recursive way. The recursive definition is

nN=n(n- 1)L

Thisrecursive definition defines factorials in terms of factorials. The factorial symbol appears on
both side of the equal sign in the definition. Here is how we could try to compute 5! using this
definition.

Page 28

St =5*(4!) = 5*(4*(3!)) = 5*(4*(3*(2))) = 5* (4*(3*(2*(11)))) = 5* (4* (3" (2* (1*(01)))))
But how did we know when to stop using the formulan! =n(n- 1)!? We certainly do not want to
write 5% (4* (3* (2* (1* (0*(-11)))))) asthe next step in the calculation. Besides implying that this
calculation will go on for ever, it a'so seemsto imply that the result is zero. We need something to
bring the "recursion” to a halt. For the factorial function, that something isthe rule that 0'=1. With
that rule the calculation of 5! becomes

St =5*(4!) = 5¢(4%(3!)) = 5" (4*(3*(2!))) = 5* (4 (3*(2* (1)) =
5* (4* (3*(2* (1*(01)))))=5*4* 3*2* 1=120.
So the compl ete recursive definition of the factorial function has two parts
nN=n(n- 1) and 0O =1

Now we can take this recursive definition and implement it as a recursive procedure in Maple.

> recursive _factorial := proc(n)
> if n=0 then

> 1

> el se

> n*recursive_factorial (n-1)
> fi:

> end;

Notice how both parts of the recursive definition appear in the recursive procedure. The procedureis
recursive because in the 5'th line of the procedure it callsitself, and that is one part of the recursive
definition of n!. The other part of the recursive definition is the conditional statement that checksiif
theinput is zero (we will talk about the details of conditional statementsin the next worksheet).

L et us compute some factorials using this recursive procedure.

[> recursive_factorial (5);

[> recursive_factorial (85);

There isafactoria function built into Maple so we can check our results.
| > 85!;

[>

Unfortunately, recursion is not always the best way to implement a procedure. For example, the next
command does not work because recursion forces Maple to use so much of its computer memory
that Maple runs out of space to store results.

[> recursive_factorial (779);

But the built in Maple function for computing factorials has no trouble computing thisresult. It is
not a recursive procedure.

[> 779!,
[>length(%); # In case you are curious.
[>

Hereisatrick that will let helps usto visualize the workings of this recursive procedure. In the body
of the procedure, use right-quotes to delay the evaluation of the recursive procedure call.

Page 29

> recursive _factorial := proc(n)

> if n=0 then

> 1

> el se

> n*'recursive_factorial (n-1)'
> fi;

> end;

Now call the procedure and then keep evaluating the output until it is fully evaluated.
[> recursive_factorial (5);

[> %

> %

(> %

> %

(> %

[>

Here is another way in which we can kind of watch the recursion take place We put in our procedure
thelineopt i on trace. Thiscauses Mapleto "trace” all the steps that the procedure goes through
asit calculates. (Theopt i on trace lineshould go in aprocedure body after any local and global

variable declarations.)

> recursive _factorial := proc(n)
> option trace;

> if n=0 then

> 1

> el se

> n*recursive factorial (n-1)
> fi;

> end;

Now call the procedure and study the output.
[> recursive_factorial (5);

[>

Here is a non-mathematical, non-programming example of recursion, arecursive acronym. Let the
acronym CALC stand for Can Anyone Like CALC. If we continue to expand the acronym, it will
grow forever, since the acronym refers to itself. Thisinfinite regress has to be avoided in
mathematical or programming examples of recursion. In fact, we saw earlier an example in Maple of
recursion with an infinite regress when we did the following:

[>x :="'x"; # Unassign x.

> X :=x+1; # Gve x arecursive (i.e., self-referential)
{ definition.

> X; # Maple gives up after a certain nunber of

{ recursions.

[>x :="'x"; # Cet rid of the infinite recursion.

Page 30

[>

When we write recursive procedures, we always have to do something to avoid infinite recursion.
For example, if we take our mathematical definition of factorial n! =n (n- 1)! too literally, then we
end up with the following procedure.

> recursive _factorial := proc(n)
> n*recursive _factorial (n-1)
> end;

Let ustry thisversion out.

[> recursive_factorial (5);

It does not work. Why is the mathematical definition of factorial not infinitely recursive? Because
we a so have the rule that 0'=1, and that definition stops the recursion after a finite number of steps.
[>

Exercise: Lots of simple mathematical ideas can be given recursive definitions. For example, if ais

areal number and n is a positive integer, then a" and n a can be given the following recursive
definitions.
ad'=aa"
and
na=a+(n-1)a
What are the proper "terminating” conditions for these definitions?
[>

Here is another smple recursive procedure. This procedure adds up all the numbersin alist. Notice
how we avoid the problem of infinite recursion by using an if-then-else-fi statement to check for a
"terminating” condition.

> add _list := proc(x::list)

> if nops(x)=0 # This check prevents infinite regress;
> then # if there is nothing in the |ist,

> 0 # then we return O.

> el se

> x[1] + add list(x[2..-1]) # Here's the recursion.
> fi;

| > end;

Giveit atry.

(> add list([1,2,3,4,5]);
In the next worksheet we will see how to write a non recursive procedure for adding up alist of

numbers.
[>

Hereisadd | i st with delayed evaluation of the recursive procedure call.
[> add_list := proc(x::list)

Page 31

> if nops(x)=0 # This check prevents infinite regress;

> t hen # if there is nothing in the |ist,

> 0 # then we return O.

> el se

> rrrttx[1]t 4+ 'add_ list(x[2..-1])" # Here's the
recursion.

> fi;

> end;

Notice that we also added alot of delayed evaluation to the x| 1] termin front of the recursive call.
Thisis there to make the output from the following procedure call more illustrative of what is going
on.

[>add list([1,2,3,4,5]);

[> %

> %

[> %

[> %

[> %

(> % % % % %

Hereisadd | i st withoption trace.
> add list := proc(x::list)
> option trace;

> if nops(x)=0 # This check prevents infinite regress;
> then # if there is nothing in the |ist,

> 0 # then we return O.

> el se

> x[1] + add list(x[2..-1]) # Here's the recursion.
> fi;

> end;

Look carefully at the following output. Notice how it shows that the addition gets done from right to
left in the list, not from left to right.

(> add_list([1,2,3,4,5]);

[>

Exercise: The definition of add_| i st with delayed evaluation seems to imply that the addition is
done from left to right in the list. The definition of add | i st withopti on trace seemsto
imply that the addition is done from right to left in the list. Which is correct? Explain why one of

these procedures gives an incorrect impression.
[>

Exercise: Consider the following recursive version of add_| i st .
[> add_list := proc(x::list)

Page 32

> i f nops(x)=1
> t hen
> X[1]
> el se
> X[1] + add_list(x[2..-1]) # Here's the recursion.
> fi;
| > end;
Explain how it is different from the previous version. Which is better and why?
[>

Exercise: Write arecursive procedure call prod | i st that computes the product of alist of

numbers.
[>

In the next worksheet, in the section on conditional statements, we will write a procedure bi ggest
that finds the largest number in alist of numbers. Here we write arecursive version of this
procedure. First, we need a procedure that finds the larger of just two numbers.
> bigger := proc(a,b)
> if a>= b then a else b fi;
> end;
Now we can use bi gger towriteaversion of bi ggest that isrecursive. The procedure
bi ggest will takein only oneinput, alist (which can be arbitrarily long). The recursive idea
behind bi ggest iscontained in the following sentence:
Thebi ggest number inthelist [17, 3, 23, 45, 87, 67] can be defined asthe bi gger of
17 and the bi ggest number from thelist [3, 23, 45, 87, 67].
This definition of bi ggest was self-referential since bi ggest appeared in the definition of
bi ggest . But thefirst appearance of bi ggest was referring to alist with six numbersin it and
the second appearance of bi ggest wasreferring to alist with five numbersinit (thefirst list with
the first number deleted from it). The following procedure implements this recursive definition of

bi ggest.
> biggest := proc(x::list)
> i f nops(x)=1 then # This check prevents infinite recursion.
> X[1]
> else
> bi gger (x[1], biggest(x[2..-1]))
> fi;
> end;

Let ustest it on ashort list of numbers.
[> biggest([17, 3, 23, 45, 87, 67]);

Let ustest bi ggest onalist of randomly chosen integers. The following command creates the list
(change the colon to a semicolon to see the list). If the list is much longer, then we get a "too many

Page 33

levels of recursion” error from Maple when we call bi ggest . (At least | did on my computer. The
maximum size of the list depends on how much memory your computer has.) Thisis because
recursive procedures are very inefficient and they almost always run slower and use more memory
than non-recursive procedures. Y ou can check this by testing the non-recursive version of bi ggest
from the next worksheet. Test that version of bi ggest with any sizelist of randomly chosen

integers.

[> randomlist _of integers :=[seq(rand(), 1=1..520)]:
[> biggest(randomlist_of integers);

[>

Exercise: Use long lists of random numbers to find out how long alist of numbers the recursive
add_|i st canadd. After you have seen how to add alist of numbers non recursively in the next
worksheet, see how long alist of numbersthe non recursiveadd | i st can add.

[>

Let usdefinebi ggest with delayed evaluation of the recursive procedure call.
[> biggest := proc(x::list)

> i f nops(x)=1 then # This check prevents infinite recursion.
> X[1]

> else

> bi gger (x[1], 'biggest' (x[2..-1]))

> fi;

> end;

Let ustry thisversion.

[> biggest([17, 3, 23, 45, 87, 67]);

We can fix this problem by modifying the definition of bi gger . The following version of bi gger
will "return unevaluated" when it is called with non numeric operands. This technique is discussed
in the next worksheet.

[> bigger := proc(a,b)

> if type(a, nuneric) and type(b, nunmeric) then
> if a> Db then a else b fi;

> el se

> RETURN(' procnane(args)')

> fi;

> end;

Now we can call the version of bi ggest with delayed evaluation of the recursive procedure call.
[> biggest([17, 3, 23, 45, 87, 67]);

(> % % % % %

[>

Now let useopt i on trace towatch bi ggest and bi gger do their work.
> bi gger : = proc(a,Db)

Page 34

> option trace;
> if a>>= b then a else b fi;
| > end;
[> biggest := proc(x::list)
> option trace;
> i f nops(x)=1 then
> X[1]
> el se
> bi gger (x[1], biggest(x[2..-1]))
> fi:
| > end;
[> biggest([17, 3, 23, 45, 87, 67]);
[>

Hereis till another way to visualize what isgoing on asbi ggest executesrecursively. We will
keepopti on traceinbi ggest and removeit from bi gger , and we will prevent the
evaluation of bi gger inthebody of bi ggest .

[> bigger := proc(a,b)
> if a> b then a else b fi;
| > end;
[> biggest := proc(x::list)
> option trace;
> i f nops(x)=1 then
> X[1]
> el se
> "bigger' (x[1], biggest(x[2..-1]))
> fi;
> end;

Now call thisversion of bi ggest . If you carefully study and think about all of this output, it
should help you build up a sense of how recursive procedures really execute.

[> biggest([17, 3, 23, 45, 87, 67]);

Now we can execute al these callsto bi gger .

[> %

[>

Exercise: Write a self-contained version of bi ggest that does not need the procedure bi gger .
[>

Hereis an interesting application of recursion to periodic functions. We say that a function f from
thereal lineto theredl lineis periodic with period p if 0 < pand f(x + p) =f(x) for al rea numbers
X. Notice that thisis amost arecursive definition since it definesf in terms of itself. But this
definition is not recursive because it does not contain any kind of aterminating condition. Asit

Page 35

stands, this definition defines the notion of being periodic for any function, but it does not define any
specific periodic function. Here is how we adapt this definition to give arecursive definition of a
specific periodic function. Let g be afunction defined on the interval from ato b, where a < b and
b- a=p. Hereisarecursive definition of afunction f which is a periodic extension of g to the
whole real line.

a(x) aExand x<b
f(x- p) b £ x
f(x+p) x<a

f(x) =

e Yo B e o /

Notice that the definition of f isrecursive because f is defined in terms of f, and g plays the role of
the terminating condition in this recursive definition. Let us use a specific example to see how this
definitionworks. Leta=0, b =1, and p = 1. Let g be defined by

g(X)=4x- 4x+1 for O£ xand x < 1.
Define the periodic function f using the recursive definition above. Now consider how we evaluate
f(5.5). According to the definition of f we would do the following
f(5.5) =f(4.5) =f(3.5) =f(2.5) =f(1.5) =9g(.5) =0.
How would we evaluate f(-3.5)?

[>

L et us implement these definitions using Maple. First definea, b, p and g.
>a:=0; b:=1;
{> p:="'b'-"a;
[> g := X -> piecew se(a<=x and x<b, 4*x"2-4*x+1);
Hereiswhat g looks like as an expression.
[> 9(x);
Now definef .
> f = proc(x)
> i f a<=x and x<b then
g(x)
elif b<=x then
f(x-p)
elif x<a then

f(x+p)

V V. V V V

> fi

| > end;

We can evaluatef .

(> f(5.5), f(-3.5), f(127.8);

But because f is defined recursively, thereisalimit to how large of avalue we can plug into it.

[> f(1027.8);

Here are graphs of g and its periodic extension f .

[>plot(g, -2..2, scaling=constrained, discont=true, color=red);
[>plot(f, -2..2, scaling=constrained);

Page 36

[>

Let ustry using f with a couple of well known periodic functions.
>a:=0;, b:=2*Pi;
{> g := X -> piecew se(a<=x and x<b, 2*cos(x));
> plot(g, -4*Pi..4*Pi, scaling=constrained, discont=true,
{ color=red);
[>plot(f, -4*Pi..4*Pi, scaling=constrained);

>a:=0;, b:=2*Pi;
{> g := X -> piecew se(a<=x and x<b, 2*sin(x));
> plot(g, -4*Pi..4*Pi, scaling=constrained, discont=true,
{ color=red);
[> plot(f, -4*Pi..4*Pi, scaling=constrained);
Notice that we do not need to redefine f . We just need to redefine a, b, and g, and then f will
automatically be the periodic extension of g with period p=b- a.

[>

Exercise: With a, b, and g defined asin the last example, try to figure out what causes the
following error.

[> f(2);

Hint: The following should evaluatetot r ue.

(> evalb(2 < 4*Pi);

[>

Exer cise: Suppose we make a=0, b=p>0, and we define g on the interval from O to p. What
conditions on g would make f a continuous function? What conditions on g would makef an even

function? What conditions on g would make f an odd function?
[>

Exercise: The following definition for the periodic extension of g would seem reasonabl e enough
(everything that isinside the pi ecewi se function is exactly like the conditional statement inside
the body of f). But it does not work.
>f_wong := x ->
> piecewi se(a<=x and x<b, g(x), b<=x, f_wong(x-p), x<a,
f_wrong(x+p));
Let ustry it. Define afunction g to extend.
([>a :=0; b:=1;, p:="'b - "a;
[> g := X -> piecew se(a<=x and x<b, 4*x"2-4*x+1);
Now try to evaluate the extension.
[> f wong(1l/2);
The problemisthat pi ecewi se usesfull evaluation so it always tries to evaluate every expression

Page 37

inside its parentheses. Figure out why this causes the infinite recursion.

[>

However, here is something very strange. The pl ot command can graph f _wr ong, even using this
incorrect definition! How doesthe pl ot command manage to evaluatef wr ong when Maple
cannot evaluatef _wr ong at thetop level? | have no idea.

[> plot(f_wong, -2..2, scaling=constrained);

[>

Exer cise: Suppose we have a=0 and b=p>0 and we define g for x between O and p. Then the
periodic extension f may be an even function or an odd function or it may be neither even nor odd.
Thereisaway to definea2* p periodic extension of g that is always even, no matter what g is.
Consider the following recursive definition of f _even.
> f_even : = proc(x)
> if O<=x and x<p then

g(x)
elif -p<=x and x<0 then

9(-x)
elif p<=x then

f _even(x-2*p)
elif x<-p then

f _even(x+2*p)

V V.V VVVYV

> fi
| > end;
Let ustry it with aparticular p and g.
[> p:=3*Pi / 4;
| > g := x-> piecewi se(x>0 and x<p, 4*sin(x));
Here are graphs of g and it 2* p periodic even extension.
> plot(g, -4*Pi..4*Pi, scaling=constrained, discont=true,
| color=red);
[> plot(f_even, -4*Pi..4*Pi, scaling=constrained);
Here iswhat the graph of f , the p periodic extension of g, would look like for the same g.
> a:=0: b:=p:
> plot(f, -4*Pi..4*Pi, scaling=constrained, discont=true,
color=red);
Thefunctionf _even iscaled the "even periodic extension of g with period 2* p". Explain how
f even createsthe even, 2* p periodic version of g.
[>
Write arecursive proceduref _odd that definesa 2* p periodic extension of g that isodd for any g
defined on the interval from O to p.

[>

L[>

Page 38

13.15. Evaluation rules and procedures (optional)
13.16. Proceduresthat return procedures (optional)
=113.17. Working with execution groups and procedur es

In this section we go over some practical tips on how to work with execution groups and procedure
definitions. In particular, we will go over how to create and edit an execution group and how to
create and edit a procedure definition.

An execution group is a collection of consecutive Maple input lines that are grouped together so that
all of the Maple commands on the input lines are executed together when the cursor is placed
anywhere within the lines and the Enter key is hit. The easiest way to create an execution group isto
first use the key combination Ctrl-j to create however many input lines that are needed. Then place
the cursor on the first of the input lines and use the F4 key (or the "Edit -> Split or Join -> Join
Execution Groups' menu item) to combine the input lines into an execution group. Each time you
hit the F4 key, the prompt below the current execution group is merged into the current execution
group. Try thiswith the prompt at the end of this paragraph. Place the cursor at the prompt, type
Ctrl-j three or four times, and then combine the separate input lines into a single execution group.

(Y ou can place some Maple commands after the prompts either before or after you combine them
into an execution group.)

[>

After you create an execution group you will quite often need to edit it. If you just need to edit one
of the linesin an execution group, there is not much of a problem. The non obvious part is when you
want to enter a new line somewhere into the middle of an execution group. For example, suppose we
want to enter anew line after the second line in the following execution group.

> xN2-1;

> factor(%);

> expand(%) ;
There are several waysto do this. One way is to place the cursor at the beginning of the third line
(just before expand) and hit the F3 key (or use the "Edit -> Split or Join -> Split Execution Group"
menu item). Thiswill split off the third line from the two above it. Then either place the cursor in
the third line and type Ctrl-k, or place the cursor in the first or second line and type Ctrl-j. Either
way, you get anew input line between thef act or and expand commands (and remember, you
can aways use Ctrl-z to undo what you just did if you want to try doing something different). Then
move the cursor back to the first or second line and hit F4 twice to combine all of the linesinto a
single execution group.

The above steps for adding aline to an execution group are kind of tedious. Here is another way to
doit. In the execution group at the end of this paragraph, place the cursor just to the left of the third
prompt, between the prompt and the bracket that marks the execution group. Y ou can do this by

Page 39

either (carefully) clicking the mouse just to the left of the prompt, or by placing the cursor just to the
right of the prompt and then using the left arrow key to move the cursor to the left side of the prompt
(and one more strike of the left arrow key will move the cursor to the end of the second line). With
the cursor to the left of the prompt, hit the Enter key. A new line will appear in the execution group
just above the line where the cursor was (and if you hit Enter again, the commands in the execution
group will be executed).

> xMN2-1;
{> factor(%);

> expand(%) ;

Hereis till athird way to add aline to an execution group. In the execution group at the end of this
paragraph, place the cursor at the end of the second line. Then, while holding down the shift key, hit
the Enter key (so you are typing the Shift-Enter key combination). A new line will appear below the
second line. But notice that this line does not have its own prompt on its left hand edge. This new
lineisreally a continuation of the second line.

> xN2-1;
{> factor(%);

> expand(%) ;

Now you know how to combine lines into an execution group, split lines off of an execution group,
and create new lines within an execution group. So let us turn to procedure definitions.

If aprocedure definition is short, it can fit on asingle line, even if it may have afew commandsiniit.
[> test := proc(n::integer) 13*n; factor(n); end;

But even when a procedureis short, it is usually better to enter the procedure definition on several
lines to make the definition easier to read. So what we want to go over is how to create and then edit
amulti line procedure definition.

The following prompt has the beginning of a procedure definition after it. Place the cursor anywhere
in thisline and hit the Enter key. Notice that Maple gives you a new prompt, and also awarning
about a premature end of input. Just ignore the warning and type the first command from the above
procedure definition (the command 13* n;) after the new prompt. Then hit enter again. Maple gives
you another new prompt, and the warning is till there. Enter the second command from the above
procedure definition (the command f act or (n) ;) after the new prompt. Hit Enter once again and
you get another new prompt (along with the warning). Now enter the closing of the procedure
definition (the end;) after the prompt and hit Enter one more time. The last enter causes Maple to
digest the procedure definition.

[> test := proc(n::integer)

If you did not do it while you were entering the procedure definition, go back and give the two lines
in the body of the definition alittle bit of indentation after the prompts (two or three spacesis
enough). Proper indentation goes along way towards making procedure definitions more readable.

The above exercise shows how easy it is to enter a procedure definition. Editing a procedure

Page 40

definition is no different than editing an execution group. If you want to enter anew line into the
middle of a procedure definition, you can either use F3, Ctrl-j, and F4 to create the new line, or you
can place the cursor to the left of aprompt and hit enter, or you can place the cursor at the end of a
line and type Shift-Enter. Any one of these three methods will work and each one has its advantages
and disadvantages.

The techniques mentioned here for working with execution groups and procedure definitions also
work for the control statements discussed in the next chapter. In particular, if you want to create a
multi-line for-loop or while-loop, you just do it the way we created a procedure definition. After you
have typed the key word f or on aline, you can keep hitting the Enter key to create new input lines
until you enter the closing key word od (or end do). Once Maple sees the closing keyword (with a
semi colon or colon after it), it digests the definition and executes the loop. Similarly for while-loops
and if-statements. And if you should nest one control statement inside of another, then Maple needs
to see closing keywords (in the right order) for both of the control statements before Maple will
digest and execute the commands.

L[>
=113.18. Online help for procedures

We covered quite afew ideas in this worksheet. The most important are
(i) defining a procedurein Maple,
(i) formal and actual parameters,
(i) what a procedure call is,
(iv) what areturn valueis,
(v) local and global variables.

Here are some references to Maple's online help about these ideas. (All in all, thereis not awhole lot
of online help about procedures.) The following command calls up an overview of proceduresin
Maple.

[> ?procedures

The next command calls up an overview of Maple functions and their relationship with procedures.
[> ?functional

The next help page has some information about the various options that can be declared in a
procedure definition.

[> ?o0ptions

The remember option has it own help page.

[> ?renmenber

The next page describes how Maple does parameter passing in a procedure call.
[> ?paraneter

This page has some information about return values for procedures.

Page 41

[> ?RETURN

The next page gives some information about type checking of the actual parameters passed to a
procedure.

[> ?procedure, parantype

When doing type checking of actual parameters, the types used are usually structured types (as
opposed to the more basic surface types).

The next command brings up a Maple worksheet, not a help page, that details how Maple handles
local and global variables. This example worksheet is informative but not easy reading.
[> ?exanpl es, | exi cal

The next page is the help page that describesthe local variablesar gs and nar gs, i.e, the
expression sequence of actual parameters passed to a procedure from a procedure call and the
number of actual parameters.

| > ?args

Many Maple commands have options that are given in the form of equations (like the pl ot
command'soption st yl e=poi nt). Maple has a specia boolean function, hasopt i on, that
makes it easy for a procedure to find these optionsinitsar gs expression sequence.

[> ?hasoption

Along with ar gs and nar gs, thereis athird special local variable for every procedure call,
pr ocnane, the name by which the procedure was invoked.

[> ?procnane

The next command brings up a Maple worksheet that is part of the New User's Tour. This worksheet
isavery brief introduction to procedures.
[> ?newuser, topiclO

The next command brings up a help page that is an index to many of the Maple commands that are
specific to writing procedures and doing Maple programming.
[> ?i ndex, procedures

If you are writing your own procedures and the procedures get a bit long or complicated, then you
are sureto have afew "bugs" in your procedure definitions. Finding mistakes (i.e. bugs) in a
procedure can be difficult. Maple provides some tools for "debugging" your procedure. These tools
can also be used to watch, or examine, how a correct procedure does its work. Maple's main tool for
finding mistakes in a procedure is its "interactive debugger”. The next three commands call up help
pages about the debugger.

[> ?debugger

[> ?showst at

[> ?stopat

Page 42

Another useful command for debugging a procedure, or for just watching a procedure work, isthe
printlevel facility. Thislets you see, for example, the results of all the commandsin a procedure, not
just the results of the return statement.

[> ?printlevel

When procedures start to get complicated, they quite often do their work by calling other
procedures. Thetrace facility lets you see how one procedure calls another procedure.
[> ?trace

The following help page describes a special command that returns a very abstract representation of a
procedure data structure and a procedure definition. This command is meant for very sophistcated
Maple programming, but it can also be used for getting an understanding of how Maple represents
procedures. Using this command you can notice, for example, that all variable names areredly
stripped out of the body of a procedure definition. The names of local variables and formal
parameters are not really needed by a procedure. But they are stored in the procedure data structure
(mostly for debugging purposes).

[> ?procbody

The next help page gives some information about how to read the representation of a procedure
returned by pr ocbody.

[> ?procneke

And the next help page describes another command that returns another kind of an abstract
representation of a Maple procedure.

[> ?codegen, mapl e2i ntrep

It isvery difficult to write long procedures directly into a Maple worksheet. When people write long
procedures (that is, anything more than about 10 or 15 lines) it is usually easier to write the
procedure in file using atext editor and then read the file into Maple so you can test the procedure.
The following help page describes how to read a procedure into Maple from afile.

[> ?procfile

[>

Page 43

