
Maple for Math Majors

Roger Kraft
Department of Mathematics, Computer Science, and Statistics

Purdue University Calumet
roger@calumet.purdue.edu

8. Manipulating and Simplifying Expressions

8.1. Introduction
In this worksheet we go over some of the details of using the factor, combine, expand,
simplify and convert commands. In addition we try to give some guidelines on which
command should be used when. For convenience, this worksheet is organized in two ways. First, it
is organized by command and for each command we give a brief overview of how it can be used.
Second, this worksheet is organized by the kinds of expressions that can be manipulated and for
each kind of expression we show how it can be manipulated using appropriate Maple commands.
>

8.2. factor
Maple's factor command works in a way that may seem strange to students in calculus courses.

Recall that factoring a polynomial like − + x2 5 x 6 is equivalent to solving the equation

 = − + x2 5 x 6 0, that is, if the number a solves the equation, then − x a is a factor of the polynomial.
Maple will readily solve the following equation for us and also factor the polynomial.
> solve(x^2-5*x+6=0, x);
> factor(x^2-5*x+6);

Now consider the equation = − − x2 2 x 1 0. Maple's solve command will solve this equation, but

Maple's factor command does not factor the polynomial − − x2 2 x 1.
> solve(x^2-2*x-1=0, x);
> factor(x^2-2*x-1);

The factor command seems to be ignoring a basic fact from high school algebra.
>

Let us look at another example, one that gives us a hint of what factor is trying to do. Consider

the polynomial − + 6 x2 13 x 6. Let us see how Maple factors this polynomial and how it solves the

equation = − + 6 x2 13 x 6 0.
> solve(6*x^2-13*x+6=0, x);
> factor(6*x^2-13*x+6);

Notice that factor did not factor − + 6 x2 13 x 6 as 6

 − x

2

3

 − x

3

2
. Since the coefficients in

the polynomial given to factor are integers, factor returns a factored form that only uses
integer coefficients.
>

In general, factor returns a factored form that uses the same kind of coefficients as the

polynomial being factored. If we go back to the example − − x2 2 x 1, we see that factor would
need to use radicals in the coefficients of the factored form, but the polynomial has only integer
coefficients. So factor does not factor this polynomial.

Another example of where factor will not factor a polynomial is if the factors need to use

complex numbers. Consider the polynomial − + x2 4 x 13.
> solve(x^2-4*x+13=0, x);
> factor(x^2-4*x+13);

Since the polynomial has integer coefficients but the factored form would need complex
coefficients, factor does not factor the polynomial.
>

There are several ways to get Maple to factor polynomials like − − x2 2 x 1 and − + x2 4 x 13. In the
first polynomial, we can tell factor that it is OK to use a coefficient containing a certain radical in
the factored form. We do this as follows.
> factor(x^2-2*x-1, sqrt(2));

Of course, this requires that we know exactly what radical the factor command will need. If the
factored polynomial needs some other radical, then we need to tell factor.
> solve(x^2-x-1=0, x);
> factor(x^2-x-1);
> factor(x^2-x-1, sqrt(5));

Here is an example where more than one radical is needed.
> x^4-8*x^2+15=0;
> solve(%, x);

Without telling factor about any radicals, we get only partial factorization.
> factor(x^4-8*x^2+15);

If we tell factor about only one of the radicals, then we get more factorization but not full
factorization.
> factor(x^4-8*x^2+15, sqrt(3));
> factor(x^4-8*x^2+15, sqrt(5));

If we tell factor about both of the radicals, then we get full factorization.
> factor(x^4-8*x^2+15, {sqrt(3), sqrt(5)});
>

Let us look at a couple of cases where the factored form uses complex numbers. The roots of the

polynomial − + x2 4 x 13 are complex numbers whose real and imaginary parts are integers.

> solve(x^2-4*x+13=0, x);

Since the polynomial has integer coefficients, the factor command has no problem with the
integers in the factors but we need to tell factor that it is OK to use the imaginary number I in the
factored form.
> factor(x^2-4*x+13, I);
>

It is possible for a polynomial to have roots that are complex numbers and the complex roots have
radicals in their real or imaginary parts. Here is an example.
> solve(x^2+x+1=0, x);

To get factor to factor such a polynomial, we need to tell it to use both the imaginary number I
and also the correct radical. Here is an example.
> factor(x^2+x+1);
> factor(x^2+x+1, {I, sqrt(3)});
>

Exercise: Get factor to factor this polynomial, − + x2 2 3 x 1.
>

A very simple way to force factor to completely factor a polynomial is to make one of the
coefficients of the polynomial a decimal number. In that case, factor will produce factors, using
decimal numbers, that only approximate the true factors. Notice that in the next two commands,
there is a decimal point in the last coefficient of each polynomial.
> factor(6*x^2-13*x+6.);
> factor(x^2-2*x-1.);

Another way to tell factor to use approximate, decimal factors is to put the keyword real after
the polynomial.
> factor(6*x^2-13*x+6, real);
> factor(x^2-2*x-1, real);

Putting a decimal point somewhere in the polynomial does not help for complex factors, as shown
by the next example.
> factor(x^2-4*x+13.);

In the case of complex factors, we need to use the keyword complex to tell factor to produce
approximate, decimal factors.
> factor(x^2-4*x+13, complex);

Here are two more examples.
> factor(x^4-8*x^2+15.);
> factor(x^2+x+1, complex);
>

Another way to completely factor each of the above polynomials is to use the following combination
of (three) Maple commands. Notice that this method does not need to know beforehand what radical

is needed or whether I is needed..
> evala(AFactor(x^2-2*x-1));
> convert(%, radical);

> evala(AFactor(x^2-x-1));
> convert(%, radical);

> evala(AFactor(x^2-4*x+13));
> convert(%, radical);

> evala(AFactor(x^2+x+1));
> convert(%, radical);

Notice that in this method, the form of the factorization can be a little bit different than in the first
method.
>

A third way to factor the above polynomials is to use a special Maple command from the
PolynomialTools package. The Split command always splits a polynomial into linear
factors.
> PolynomialTools[Split](x^2-2*x-1, x);
> convert(%, radical);

> PolynomialTools[Split](x^4-8*x^2+15, x);
> convert(%, radical);

> PolynomialTools[Split](x^2+2*x+3, x);
> convert(%, radical);
>

Notice the difference between factor and Split with the polynomial − + 6 x2 13 x 6.
> 6*x^2-13*x+6;
> factor(%);
> PolynomialTools[Split](%%, x);
>

>

8.3. combine
The combine command can perform a number of different transformations. Here is a partial list of
some of the transformations that it does. (Notice that, in some sense, combine is a kind of
"factorization" for non-polynomials.)
 x^y*x^z ==> x^(y+z)

 (x^y)^z ==> x^(y*z)
 x^n*y^n ==> (x*y)^n

 sqrt(-x) ==> I*sqrt(x)
 exp(x)*exp(y) ==> exp(x+y)
 exp(x)^y ==> exp(x*y)
 exp(x+n*ln(y)) ==> y^n*exp(x) where n is an integer

 sin(x)*sin(y) ==> 1/2*cos(x-y) - 1/2*cos(x+y)
 sin(x)*cos(y) ==> 1/2*sin(x-y) + 1/2*sin(x+y)
 cos(x)*cos(y) ==> 1/2*cos(x-y) + 1/2*cos(x+y)

 y*ln(x) ==> ln(x^y)
 ln(x)+ln(y) ==> ln(x*y)
Each of these transformation rules is considered to be of a certain type. For example, the first four
are of type power, the next three of type exp (and also type power), the next three of type trig,
and the last two of type ln. The combine command has some special features and restrictions that
are related to specific types of transformations. The following help pages give the details for each of
the most useful types of transformations.
> ?combine,power
> ?combine,radical
> ?combine,exp
> ?combine,ln
> ?combine,trig
> ?combine,arctan

One important feature of the combine command is that you can tell combine to restrict the type
of transformation it can use on an expression. For example, let f denote the following expression.
> f := exp(x)*exp(y) + sin(x)*sin(y) + sqrt(2)*sqrt(x+1);

In the next command, only the trig expressions in f are combined.
> combine(f, trig);

In the next command, only the radical expressions are combined.
> combine(f, radical);

In the next command, only the exponential and radical expressions are combined (notice that
multiple options are enclosed in a pair of brackets).
> combine(f, [exp,radical]);

In the next command, which does not have any options, all of the possible combinations are
performed on f.
> combine(f);
>

It is important to note that not all of the transformations that combine can do are correct for all
values of the variables in the expression. Consider the third transformation listed above.
 x^n*y^n ==> (x*y)^n

If we let x and y have the value −1 and we let n be 1/2, then this transformation is not correct
(why?). In the following combine command, since Maple does not know anything about what
values x and y might have, the combine command refuses to perform the transformation on the

grounds that Maple does not wish to state something that may not be true.
> x^(1/2)*y^(1/2);
> combine(%);

There is a way however to force combine to perform the transformation.
> combine(x^(1/2)*y^(1/2), symbolic);

The use of the keyword symbolic tells combine to do a transformation even if it may produce an
incorrect result for some values of the variables. The keyword symbolic only works with
combine for some expression types and sometimes the expression type must also be specified.
Here are a few more examples of using the symbolic keyword.
> combine(ln(x)+ln(y));
> combine(ln(x)+ln(y), ln, symbolic);
> combine(ln(x)+ln(y), symbolic);
> combine(exp(x)^y);
> combine(exp(x)^y, symbolic);
> combine((x^y)^z);
> combine((x^y)^z, symbolic);
>

Exercise: Consider the second transformation listed above.
 (x^y)^z ==> x^(y*z)
Find specific values for x, y, and z so that (x^y)^z is not equal to x^(y*z).
>

The keyword symbolic tells combine to do a transformation without any regard for the values of
the variables in the expression. In the previous worksheet we saw how to tell Maple something
about the kinds of values that we want a variable to represent. For example, we may want to tell
Maple that such and such a variable represents a positive integer (without ever assigning the variable
a value). Once we have informed Maple about the possible values of the variables in an expression,
then the combine command can make use of this information to decide if a possible transformation
is valid on the expression. For example, the following two commands tell Maple that a and b are
positive.
> assume(a>0);
> assume(b>0);

Now combine will do the following transformation without the need for the keyword symbolic,
since the transformation is correct for any two positive numbers a and b.
> combine(a^(1/2)*b^(1/2));

Now return a and b back into unassigned variables without any assumptions on them.
> a,b:='a','b':
>

Exercise: Create an example of combine implementing each of the transformations in the list at
the beginning of this section.

>

>

8.4. expand
For polynomials, expand is the opposite of factor. For many other kinds of functions, expand
is (almost) the opposite of combine. Here is a partial list of some of the transformations that
expand can do (though some of these transformations need assumptions on the variables before
expand will do them).
 x^(y+z) ==> x^y*x^z
 x^(y*n) ==> (x^y)^n
 (x*y)^n ==> x^n*y^n
 exp(x+y) ==> exp(x)*exp(y)
 exp(x*n) ==> exp(x)^n
 exp(x+n*ln(y)) ==> y^n*exp(x)
 cos(2*x) ==> 2*cos(x)^2-1
 sin(2*x) ==> 2*sin(x)*cos(x)
 cos(x+y) ==> cos(x)*cos(y)-sin(x)*sin(y)
 sin(x+y) ==> sin(x)*cos(y)+cos(x)*sin(y)
 ln(x^y) ==> y*ln(x)
 ln(x*y) ==> ln(x)+ln(y)

Here are examples of using expand on different kinds of expressions, along with the commands
that undo what expand does.

For polynomials, expand distributes products over sums.
> (x+y)*(a+b);
> expand(%);
> factor(%);
> (x+2)^3;
> expand(%);
> factor(%);
>

For the exponential function, expand converts exponents into products.
> exp(x+y);
> expand(%);
> combine(%);
> simplify(%%); # this also undoes the expand
>

For trig functions, expand produces mostly sum identities. Here are a few examples.
> sin(x+y);
> expand(%);
> combine(%);

> tan(x+y);
> expand(%);
> combine(%); # this doesn't work
> cos(3*x);
> expand(%);
> combine(%);
> sin(2*x);
> expand(%);
> combine(%);
>

One useful feature of the expand command is that you can give it an option that prevents the
expansion of certain expressions. Here is an example.
> expand((x+y)*(a+b), a+b);

The expression a+b after the comma kept expand from expanding that expression. Here is another
example.
> (x+y)*(a+b)*(x+2)^3;
> expand(%, x+y, (x+2)^3);

In this example, two expressions were not expanded, x+y and (x+2)^3.
>

A word of warning. The option to the expand command works differently than the options to some
of the other expression manipulation commands. Consider the following example. Let f and g
represent the following expressions.
> f := sin(x+y) + exp(x+y);
> g := expand(f);

Now look carefully at the results of the following two commands.
> combine(g, exp);
> expand(f, exp);

In the combine command, the exp option caused the command to only work on the exponential
term. In the expand command, the exp option prevented the expansion from working on the
exponential term. So in one command the exp option specifies which terms the command does
work on, and in the other command the exp option specifies which terms the command does not
work on. In addition, notice that the exp option is playing very different roles in the two commands.
In the combine command, exp is one of only about 15 keywords that can be used as an option to
combine. But in the expand command, exp is an expression (as opposed to a keyword) and any
valid expression can be used as an option to expand. Whatever expression is used as an option will
not be expanded by expand. Here is a simple example.
> f := sin(x+y) + exp(x+y) + exp(a+b);
> expand(f); # expand everything
> expand(f, exp); # don't expand either exponential
> expand(f, exp(a+b)); # don't expand one of the

exponentials
> expand(f, exp(a+b), sin); # don't expand the sin function

either

Notice another difference between the expand and combine commands. When we give the
combine command multiple options to specify which types of expressions to combine, we put the
multiple options inside a pair of brackets. But when we give the expand command multiple
options to specify which expressions not to expand, we just separate the options with commas, no
brackets or braces are used.
>

Exercise: Create an example of expand implementing each of the transformations in the list at the
beginning of this section.
>

>

8.5. simplify
The first thing that should be said about the simplify command is that you should not take its
name too literally. For one thing, there is no well defined notion in mathematics of what makes one
form of an expression "simpler" than an equivalent form of the expression. For example, which of

the following two equivalent expressions, () − 1 2 x 2 or − + 4 x2 4 x 1 is "simpler"? If you need to
differentiate (or integrate) the expression, then the second form is simpler to work with since the
first form needs the chain rule (or a substitution for integration). If you need to find the roots of the
expression, then the first form (the factored form) is much simpler to work with. The only real rule
of simplification that one can state is that the simplest form of an expression is the one that makes
the next step of your problem easier to do.

Another reason not to take the name simplify to seriously is that the simplify command does
not always manipulate an expression into what most people would think is a simpler form. Consider
this example.
> simplify(sin(x)^3);
>

Exercise: What exactly did simplify do to the expression ()sin x 3?
>

Consider the following odd behavior of simplify.
> simplify((1-x)^9);
> simplify((1-x)^9 + 1);

Just a slight change in the first expression caused simplify to do a completely different
transformation, and neither transformation did much to "simplify" the original expressions.
>

Even though the name simplify may be a bit misleading, this is one of Maple's most useful and
important commands. If you have a complicated expression and you want to see if Maple can make
some improvements on it, it is always worth trying the simplify command.
>

Like the combine and expand commands, simplify can perform a number of different
transformations on many different kinds of expressions. Here is a partial list of some of the
transformations that it does. (Notice that in some cases these transformations are the same as for
combine and in some other cases they are the same as for expand.)
 x^y*x^z ==> x^(y+z)
 (x^y)^z ==> x^(y*z)

 (x*y)^n ==> x^n*y^n
 sqrt(x^2) ==> csgn(x)*x
 exp(x)*exp(y) ==> exp(x+y)
 exp(x)^y ==> exp(x*y)
 exp(x+n*ln(y)) ==> y^n*exp(x)

 sin(x)^2 ==> 1-cos(x)^2
 arcsin(sin(x)) ==> x
 arccos(cos(x)) ==> x
 arctan(tan(x)) ==> x
 ln(x^y) ==> y*ln(x)
 ln(x*y) ==> ln(x)+ln(y)
 ln(exp(x)) ==> x

Just as for combine, each of these transformations is of a certain type. The following help pages
give the details for each of the most useful types of transformations.
> ?simplify,power
> ?simplify,radical
> ?simplify,sqrt
> ?simplify,trig
> ?simplify,ln

Using these types as options for the simplify command we can specify which kinds of
subexpressions we want simplify to work on. Here are some examples.
> f := cos(x)^2+sin(x)^2 + (2^x)^(-3);
> simplify(f);
> simplify(f, trig);
> simplify(f, power); # look carefully at the result
> simplify(f, trig, power);
> simplify(f, radical);

Notice that, unlike the combine command (and somewhat more like the expand command) when
we want to specify several different options in one simplify command, we do not put the options
inside a pair of brackets.
>

There is some overlap between the simplify command and some of the other expression

manipulating commands, like combine and expand. Here are a few examples.
> f := exp(x)*exp(y);
> simplify(f);
> combine(f);
> g := ln(3*x);
> simplify(g);
> expand(g);
> h := exp(x+3*ln(y));
> simplify(h);
> combine(h);
> expand(h);

When there is an overlap between simplify and some other command, the exact details of the
overlap can be a bit mysterious. Notice how in the next example, simplify with an option is
equivalent to combine without any option, but simplify without an option does more
simplification. This example brings up two obvious questions. Why doesn't combine do the further
combining with the exponent? And what is it that simplify is using, besides the rules for powers,
that allow it to make the further simplification?
> simplify((2^x)^3, power);
> combine((2^x)^3);
> simplify((2^x)^3);
>

Like the combine command, simplify can perform some transformations that are not always
correct. For example, consider the transformation
 (a^b)^c ==> a^(b*c)

which can be done by both simplify and combine. If we let a be −1, b be 2 and c be 1/2, then
this transformation is not correct. So if simplify does not know anything about the values of a, b,
and c, then simplify will not perform this transformation.
> simplify((a^b)^c);

But we can use the keyword symbolic to force simplify to do the transformation.
> simplify((a^b)^c, symbolic);

Using the symbolic keyword is often easier than trying to figure out what assumptions are needed
for a transformation to be true. But the symbolic keyword can be dangerous to use since it can
lead to incorrect results.
>

Exercise: Create an example of simplify implementing each of the transformations in the list at
the beginning of this section.
>

>

8.6. convert

>

8.7. Polynomial expressions
The two most important Maple commands for working with polynomials are factor and expand,
but there are also several other more specialized commands, like sort, collect, coeffs,
coeff, lcoeff, tcoeff, degree, and ldegree. In this section we give examples of how each
of these commands can be used with polynomial expressions.

Maple can work with both univariate and multivariate polynomials. A polynomial is univariate if it
has only one unknown and a polynomial is multivariate if it has two or more unknowns. Here are
some examples of univariate polynomials.
> 2*x^3 - 3*x^2 - 17*x + 2;
> -t^5 + sqrt(12)*t^3 + (1/3)*t;
> (1-a)*(a^101 + a^33-10);

Here are a few examples of multivariate polynomials.
> 1 + x + y + x^2 + x*y + y^2;
> (1+a)*u + (2-3*b)*v;
> (theta-phi)^3 + (3*s-9*t)^2;
>

Exercise: Which of the following expressions are polynomials?

 − 3 w3 5 w
()−2

 + − − a t b2 t3 4 t3 2 t

 + + + 1 2 x 3 x 4 x2

 − − − 1 y y2 y3

 + a xn b cd

Hint: If you are not sure, you can ask Maple by using the type command. Here is an example.
> -t^5 + sqrt(12)*t^3 + (1/3)*t;
> type(%, polynom);
>

Exercise: Is the following polynomial univariate or multivariate?
> a[0]+a[1]*x+a[2]*x^2+a[3]*x^3;
>

The factor command can work with both univariate and multivariate polynomials.
> y^3 - 2*y^2 + y + sqrt(2)*y^2 - 2*y*sqrt(2) + sqrt(2);
> factor(%);

> 9*u*v^2 + 6*u*v*t + u*t^2 - 18*s*v^2 - 12*s*v*t - 2*s*t^2;
> factor(%);

Similarly for the expand command.
> 3*(phi-1)^2 + 3*phi^4-2*phi^2;
> expand(%);
> (u-2*s)*(3*v+t)^2;
> expand(%);
>

Sometimes the factor command needs some help with factoring a polynomial.
> factor(x^2-2*x-1);

By using the solve command, we can see that factor will need to use 2 in order to factor this
polynomial.
> solve(x^2-2*x-1, {x});

So we need to tell factor that it should use 2 when it factors the polynomial.
> factor(x^2-2*x-1, sqrt(2));

To factor the next polynomial we need to tell factor that it should use complex numbers.
> factor(x^2+1);
> factor(x^2+1, I);

We say more about this in the section above about factor.
>

After Maple has done some operation on a polynomial, the terms of the polynomial are often left in
some strange order. This can make it difficult to read and analyze the polynomial.
> (x-2)^2 + (1-x)^4 + (1-2*x)^3;
> expand(%);

When the terms of a polynomial are mixed up like this, the sort command can be used to put the
terms in order of descending powers.
> sort(%);

The sort command is a bit unusual among the commands that manipulate expressions. To see
how, consider the following polynomial.
> p := (2-x)*(39*x-45+x^3-11*x^2);

Notice that if we apply the factor command to p, this does not actually change p itself.
> factor(p);
> p; # p hasn't changed

Similarly, if we apply the expand command to p, this does not change p itself.
> expand(p);
> p; # p hasn't changed

But if we apply the sort command to p, then p itself is changed.
> sort(p);
> p; # p has changed

The reason that sort acts this way is that Maple stores only one copy of any polynomial. If a

polynomial is reentered into Maple with a slightly different order of the terms, Maple will continue
to use the order it remembers. Here is an example.
> -4*x+x^2+4;

If we now expand (x-2)^2, we will get the output printed just like the last result, rather than the

more expected − + x2 4 x 4.
> expand((x-2)^2);

Here is another example.
> 1 - x^3 + x - x^2;

Maple printed the terms in the order that we entered them. Now let us reenter this polynomial.
> -x^2 - x^3 + x + 1;

Maple printed the terms in the order that we first entered them. Maple even keeps track of
polynomials when they appear as subexpressions in some larger expression.
> cos(exp(x+1-x^2-x^3))/(1-x^2+x-x^3);

Now apply sort to the polynomial.
> sort(%%);

Since the sort command will force the terms to be reordered in the stored copy of the polynomial,
the sorted polynomial becomes the one that Maple remembers from now on.
> %%;

It is useful to keep this fact about sort in mind as you work through the following examples. If you
execute a few of the following sort commands and then re-execute them, the second time you
execute them the results may be different because the way that Maple stores the polynomial has been
changed.
>

For multivariate polynomials, the sort command orders the terms by descending total power of
each term. The total power of a term is the sum of all the powers of all the unknowns in the term.
> p1 := a^3*x^2 + x + a*x - x*a^2 + 2*a + x^4*a;
> sort(p1);

For multivariate polynomials, the sort command can also be given a second parameter that tells
sort specific variables to sort by. For example, the next command tells sort to order the terms by
descending total power and to put the a variable before the x variable in each term, and if two terms
have the same total degree (like 5), then put the term with the higher power of a first.
> sort(p1, [a,x]);

The next command tells sort to put the x variable before the a variable in each term, and if two
terms have the same total degree (like 5), then put the term with the higher power of x first.
> sort(p1, [x,a]);

We can also give sort a single variable to sort by.
> sort(p1, x);
> sort(p1, a);

Notice carefully that in the last result, the terms are no longer sorted by their total power. In that
result there is a term of degree 3 before a term of degree 5. When sort is sorting with respect to
just one variable, it uses the other variables as "coefficients". In other words, the single variable that

you give to sort will come last in each term and the terms will be sorted in decreasing powers of
that variable.
> x*10+a*x^3+x*a^2;
> sort(%, x);
> sort(%, a);

Notice once again that the last two results are not ordered by total degree.
>

There is another way to tell sort to sort the terms of a multivariate polynomial. Instead of by the
total degree of each term, the terms can be sorted in "alphabetical order", where you specify to sort
which unknowns are "alphabetically before" which others. This is called "pure lexicographical
ordering" and is denoted with the keyword plex.
> a + b^2 + x^3 + y^4;
> sort(%);
> sort(%, [a,b,x,y], plex);
> sort(%, [b,a,y,x], plex);

The next few commands compare pure lexicographical ordering with total degree ordering.
> p2 := x*y^2*z^3 + y*z^2*x^3 + z*x^2*y^3 + x*y^2 + y*z^2 +

z*x^2;
> sort(p2, [x,y,z], plex);
> sort(p2, [x,y,z]);

Notice in the next few commands how, if a variable is not listed in the sort command, then it is
used as a "coefficient". That is, the variables listed in sort come last in any term and the variables
not listed in sort come first in the terms.
> sort(p2, [x,y], plex);
> sort(p2, [x,y]);
> sort(p2, x, plex);
> sort(p2, x);

Notice that the last command seems to be using pure lexicographical ordering instead of total degree
ordering.
>

Exercise: If the sort command had been consistent and used total degree ordering in the last
command (as the online documentation implies that it should), what would the result have been?
>

If a polynomial is in a partially factored form, then sort will sort the factored parts of the
polynomial, without expanding them.
> (x+x^2-x^3)*x^2 + x + x^3;
> sort(%);
> a*x^3 + (a*10+x*a^2+a*x^2)*a^3 + x*a^3;

In the following examples, look carefully at both the "outer" and the "inner" polynomial.

> sort(%);
> sort(%, x);
> sort(%, a);
>

The collect command is another command for organizing the terms of a polynomial. The
command is used to collect all the terms in a polynomial that have the same degree in some
particular unknown.
> sqrt(2)*x-x^2+sqrt(5)*x+cos(Pi/5)*x^2;
> collect(%, x);
>

The collect command is especially useful for organizing multivariate polynomials as univariate
polynomials. For example, we can use collect to view the following polynomial as a polynomial
in x (with coefficients that are expressions in a).
> 3*x^2+a*x+a*x^2+a^2*x;
> collect(%, x);

Or we can view the original multivariate polynomial as a polynomial in a (with coefficients that are
expressions in x).
> collect(%, a);
>

It is also possible to collect terms with respect to more than one variable. Let us start with a
complicated multivariate polynomial in four unknowns.
> p3 := 3*s*u*v - v*u*t^2 + v*s^2*u^2 + v^2*s*u - v^2*t*u

 + v^2*s*t*u^2 - 2*v^2*s + u*v*s*t;

First collect p3 in terms of u.
> collect(p3, u);

Now collect p3 in terms of u and v. Notice that in the following command the order of u and v is
important. The result of the next command is the same as collecting in terms of v the "coefficients"
from the result of the last command. In other words, the collecting of terms is done, in a sense,
sequentially, first in terms of u and then in terms of v.
> collect(p3, [u,v]);

Now collect p3 in terms of u, v and s, in that order. Notice how the next result differs from the last
result.
> collect(p3, [u,v,s]);

To see that the order of the collecting matters, here is p3 collected in terms of v and u, in that order.
> collect(p3, [v,u]);

Try collecting p3 in terms of several other combinations of the unknowns.
>
>

Exercise: How do you think the commands collect(collect(p3,u),v) and

collect(collect(p3,v),u) would compare with the commands collect(p3,[u,v])
and collect(p3,[v,u])?
>

Exercise: Create a multivariate polynomial p4 in the unknowns w, x, y, z so that the following five
commands will all have different outputs.
> p4 := ???;
> collect(p4, w);
> collect(p4, [w,x]);
> collect(p4, [w,x,y]);
> collect(p4, [w,x,y,z]);
>

There is another way to collect terms of a polynomial with respect to more than one variable. Instead
of collecting in a "sequential" manner, do the collecting in the variables "simultaneously".
> collect(p3, [u,v], distributed);

In a sense, what the last command gives us is a polynomial in the unknowns u and v with
coefficients that are polynomials in s and t. The next two commands both make it a bit easier to
read the last result. (Notice how the order of the unknowns is used by these sort commands.)
> sort(%, [u,v]);
> sort(%, [v,u]);

The order of the unknowns does not matter to collect when collecting terms in this manner.
> collect(p3, [v,u], distributed);
>

The effect of collect on a multivariate polynomial is not always easy to predict since the effect
depends not just on the polynomial, but also on the form that the polynomial is presently in. Here is
an example. Start with the same polynomial p3 from above and collect it in terms of u.
> collect(p3, u);

Now collect the result of the last command in terms of v.
> collect(%, v);

Now collect the original polynomial in terms of v.
> collect(p3, v);

Notice that the last two commands produce slightly different results, even though they are both
collecting the same polynomial in terms of v. But the two commands are working on different forms
of the same polynomial.
>

It is worth mentioning here that the commands factor, expand, sort, and collect are not
just for polynomials. They can be applied to almost any expression. With some practice, they can
become useful tools for manipulating expressions. But these commands have their most intuitive use
with polynomials, and the easiest way to become familiar with them is by using them on

polynomials.

Now we consider some commands that extract information from a polynomial rather than
manipulate the form of the polynomial.

The coeffs command gives us a list of the coefficients in a polynomial.
> expand((u-2*s)*(3*v+t)^2);
> coeffs(%);

Notice that the list of coefficients is not in the same order that they appeared in the polynomial.
Also, notice that it is an error to give the coeffs command a polynomial that has not been
expanded.
> coeffs((u-2*s)*(3*v+t)^2);

If we collect the terms of a polynomial first, then we can give coeffs a second parameter and
get the list of coefficients from the collected polynomial.
> p5 := 3*x^2 + a*x + a*x^2 + a^2*x;
> coeffs(p5);
> collect(p5, a);
> coeffs(%, a);
> collect(p5, x);
> coeffs(%, x);
>

The coeff command allows us to find the coefficient of a specific term of a polynomial.
> coeff(p5, x^2);
> coeff(p5, a);

Notice that the coeff command "collected" the appropriate terms together when it found the
coefficient.
>

Two commands related to coeff are lcoeff and tcoeff for "leading coefficient" and "t
railing coefficient".
> -x^3+17*x^5+21-x;
> lcoeff(%);
> tcoeff(%%);

The terms leading and trailing coefficients may make more sense once the polynomial has been
sorted.
> sort(%%%);
>

The command degree finds the degree of a univariate polynomial, that is, the highest power of the
unknown in the polynomial. For multivariate polynomials, the degree command is a bit more
complicated; see the online documentation.

> 5*t^2-7*t^3-t+2;
> degree(%);

The command ldegree, for "low degree", finds the lowest power of the unknown in a
univariate polynomial.
> 10*x^5+11*x^4+12*x^3+13*x^2;
> ldegree(%);

Notice the following.
> p6 := 5*x^3 + 6*x^2;
> ldegree(p6); # low degree
> lcoeff(p6); # leading coefficient

This choice of terminology is almost amusing (and it sure can be confusing).
>

Maple has a lot of other commands for working with polynomials. Here we will briefly mention a
few of these commands.

The completesquare command can be used to complete the square on a quadratic polynomial.
Here is how this command is called (it is in the student package).
> student[completesquare](3*x^2-5*x+2);
>

The quo and rem commands compute the quotient and remainder for polynomial division.
> q := quo(x^3+x+1, x^2+x+1, x);
> r := rem(x^3+x+1, x^2+x+1, x);

Verify the results.
> q + r/(x^2+x+1);
> simplify(%);

Verify them another way.
> q*(x^2+x+1) + r;
> simplify(%);
> q, r := 'q', 'r':
>

The taylor command along with the convert/polynom command can be used to find Taylor
polynomials.
> taylor(exp(x), x=0, 6);
> convert(%, polynom);
> taylor(ln(x), x=1, 8);
> convert(%, polynom);
>

The command randpoly can be used to create randomly generated polynomials.

> randpoly(x);
> randpoly(t);
> randpoly({u,v}, terms=9);

Go back and re-execute the last three commands.
>

Exercise: Create a random polynomial with ten terms in the unknowns w, x, y, z, and then
collect and sort so that you have a polynomial in the unknowns x and y with coefficients that
are polynomials in w and z. Create a list of the coefficient polynomials.
>

The convert/horner command can be used to put a polynomial in Horner form. Horner form
for polynomials is often used to make evaluating a polynomial more efficient.
> 5*x^3+4*x^2+3*x+2;
> convert(%, horner);
>

Exercise: Suppose you need to evaluate the polynomial + + + 5 x3 4 x2 3 x 2 at = x 6 and your
calculator has only an addition and multiplication button on it. How many multiplications and
additions are needed to evaluate the polynomial? Now suppose you rewrite the polynomial in its
Horner form, + 2 () + 3 () + 4 5 x x x. Now how many multiplications and additions are needed to
evaluate the polynomial?
(Note: On most computers, multiplying two numbers is much slower than adding two numbers. So
rewriting an expression in a form that replaces multiplication operations with additions can help
speed up calculations considerably.)
>

If you are really interested, some other commands for working with polynomials are compoly,
content, discrim, galois, gcd, gcdex, spline, Primitive, cyclotomic, orthopoly. If you use the online
help to read about any of these commands, be sure to look at both the help browser at the top of the
help page and the "See also" section at the bottom of the help page to find many other closely related
commands.
>

>

8.8. Rational expressions
All of the commands from the last section on polynomial expressions can also be used with rational
expressions. In addition, there are a few commands specific to rational expressions. In this section
we first go over how the commands from the last section work on rational expressions, and then we
go into the commands that are specific to rational expressions, numer, denom, normal,
convert/parfrac, convert/contfrac, and laurent

A rational expression is an expression that can be written as a quotient (or ratio) of two polynomials.
Notice carefully how this definition was stated. An expression is rational if it can be written as a
quotient of two polynomials. A rational expression need not actually be written as a quotient. Here
are a couple of examples of rational expressions, both univariate and multivariate ones.
> (1+3*x-100*x^2)/(sqrt(11)-x^3);
> (s-t)^3/(s^2-s*t+t^2);
> randpoly([x,y], terms=4)/randpoly([y,x], terms=4);

The following are also rational expressions, though it may not be obvious at first.
> x^2+3*x^(-2);
> type(%, ratpoly);
> 1/(x-1) + 2/(x^2-1);
> type(%, ratpoly);

Notice that Maple uses the abbreviation ratpoly, short for "rational polynomial", as its official
name for rational expressions. Another synonym for rational expression that is used by Maple is
"rational function".
>

Exercise: Show that the last two expressions are really rational by writing each one as a quotient of
two polynomials.
>

Exercise: Explain why every polynomial is also a rational expression. (The next command gives an
example.)
> x^2-x-1;
> type(%, ratpoly);
>

Exercise: Why does the following command not produce what one would expect it to produce? Find
several ways to fix it.
> randpoly(x)/randpoly(x);
>

All of the command used to manipulate polynomials can also be applied to rational expressions.
However, what they will do to rational expressions is not always obvious. Let us examine how the
factor, expand, sort, and collect commands act on rational expressions.

The factor command will factor the numerator and denominator of a rational expression and
cancel any common terms.
> (1+2*x+x^2)/(1-x^6);
> factor(%);
> x/(x+x^2);
> factor(%);

Notice that in each example, a common term was canceled after the factorization.
>

The expand command will expand the numerator of a rational expression (but not the
denominator) and then distribute the division over the sum in the numerator.
> ((x-1)*(x-2))/((x-3)*(x-4));
> expand(%);
> (1+x+x^2+x^3)/x^4;
> expand(%);
>

The sort command will sort each of the numerator and denominator of a rational expression.
> r1 := (b*x^2+x^4+b^2*x+b*x^5)/(3*b-4*x^2-b^2*x+x^4);
> sort(r1);
> sort(r1, b);

The sort command can also be applied to a rational expression that is written in its expanded form.
> expand(r1);
> sort(%, x);

Here is another example.
> r2 := b*x^(-2)+x^3+2*x+b^2/x^2+b*x^2+3/b^2-b^(-1);
> sort(r2);

Exercise: Explain the last result in terms of sorting terms by their total degree. Is it correct?
>

Another example.
> sort(r2, b);
> simplify(r2);
> sort(%, b);
>

Exercise: Show that sort(simplify(r2),b) and simplify(sort(r2,b)) do not
produce the same result. (Hint: You can either use the results of the last three commands, or you can
try to execute the two command combinations, but if you do the latter, be sure to remember the
important difference between sort and the other expression manipulating commands.)
>

The collect command has two ways of working with rational expressions. One way is to collect
terms in the numerator and denominator of a rational expression.
> (b*x^2+x^2+b^2*x+b*x^3)/(3*b-4*x^2-b*x+x);
> collect(%, b);
> collect(%, x);

To see that this is not always the way that collect works with rational expressions, consider this
next example.
> (2*x^2+x^2*b^2+b)/(b*x);
> collect(%, x);

Notice that collect did not collect the numerator and denominator separately. If it had, the result
would have been the following.
> ((2+b^2)*x^2+b)/(b*x);

What collect did was to view the rational expression as a "general polynomial" in x and then
collect the terms of the general polynomial. To help us see how collect viewed this rational
expression, let us expand it.
> expand(%);

To collect, this is a general polynomial in x, with two terms of degree 1 and one term of degree

−1. And so collect will collect the two degree 1 terms together. (Compare the next result with
the previous collect result).
> collect(%, x);

Here is another example. The following rational expression can be considered a general polynomial
in x but not in b.
> (x+b*x^2+b)/(b*x+a*x+b*a*x);

So if we collect it in b, collect will collect the numerator and denominator separately.
> collect(%, b);

If we collect the rational expression in x, collect treats it as a general polynomial in x.
> collect(%%, x);

One more example. The following rational expression can be considered a general polynomial in
either x or b.
> f := b*x^(-2)+2*x/b+b*x^2+b*x;
> collect(f, x);
> collect(f, b);

If we rewrite the rational expression as a numerator over a denominator and then collect, notice that
the results are slightly different than the two previous collect commands. In the following two
collect commands, the "coefficients" after collecting remain in a numerator over denominator
form.
> f := simplify(f);
> collect(f, x);
> collect(f, b);

These commands show once again that the order of doing manipulations can have quite an effect on
the form of an expression. Sometimes, trying to find the right commands in the just the right order to
put an expression in a desired form can be a challenging process of trial and error.
>

Now let us look at some commands that are more specific to rational expressions. The commands
numer and denom return the numerator and denominator of a rational expression.
> (x-a)^2/(2*x^2-x-1);

> numer(%);
> denom(%%);
>

The normal command takes a rational expression, puts it over a common denominator and cancels
terms common to both the numerator and denominator. The normal command tends to leave the
numerator in expanded form.
> r5 := 1-2*1/(x-3)+6*1/(x-4);
> normal(r5);

The denominator may or may not be left in factored form. Let us add a common factor to the
numerator and denominator and then call normal again.
> expand(numer(%)*(x-5))/expand(denom(%)*(x-5));
> normal(%);

Notice that normal removed the common factor, but this time it left the denominator in expanded
form. Sometimes normal will leave the numerator in a partially factored form.
> r6 := (x-1)*(x+2)/((x+1)*x)+(x-1)/(1+x)^2;
> normal(r6);

The exact form of the result of the normal command depends on the form of its input. Equivalent
rational expressions can produce slightly different results from normal.
> expand(r6);
> normal(%);

This time normal left the numerator in expanded form. If you want both the numerator and
denominator of the result from normal fully expanded, then use the option expanded.
> normal(r6, expanded);
>

The normal command has some aspects in common with the factor and simplify
commands. Both factor and simplify will put a rational expression over a common
denominator and cancel common factors. The factor command will, in addition, leave the
numerator and denominator in factored form. But for very complicated rational expressions,
normal will work faster than simplify or factor.

There are situations however where the factor command is better at simplifying a rational
expression than normal. Consider the following example.
> (x^7+5*x^6+9*x^5+5*x^4-5*x^3-9*x^2-5*x-1)/(x^2-3*x+2);
> normal(%);
> factor(%%);

On the other hand, there are examples like the following one, where normal is clearly better than
factor.
> (x^8-x-x^7+1)/(x^2-1);
> normal(%);
> factor(%%);

Usually, the difference is not so great between the results from these two commands. In general,
there is no way to know ahead of time which command will do a better job of simplifying a
particular rational expression. Trying to find the best form for an expression is often a process of
trial and error, and you need to experiment with several different commands.
>

A command that is almost the opposite of normal is convert/parfrac which converts a
rational expression into its partial fraction expansion. Here is how we use this command.
> (x^2+1)/(x^2-1);
> convert(%, parfrac, x);

The normal command will convert this partial fraction expansion back to its original form.
> normal(%, expanded);
>

Exercise: Recall from our discussion of Maple names in a previous worksheet that
convert/parfrac is a helper function for convert. Give an example of a direct call to this
helper function.
>

Here are some examples that are a bit more complicated.
> (10+26*x^2+6*x^4+20*x+13*x^3+x^5)/((1+x)^2*(1+x^2)^2);
> convert(%, parfrac, x);

> (3*x^3-3*x^2-62*x+sqrt(3)*x^2-25*sqrt(3)-8)/(x^2-x-20);
> convert(%, parfrac, x);

Notice the decimal point in the following rational expression.
> (16*x^3-128*x^2+249*x-39)/(24*x^2-192*x+360.0);
> convert(%, parfrac, x);

> (1-2*y+x^2)/(x*(x+y)*y^2);
> convert(%, parfrac, x);
> convert(%%, parfrac, y);
>

The convert/parfrac command is very closely related to the factor command, since the first
step in computing a partial fraction expansion is to factor the denominator of the rational expression.
Earlier in this worksheet we mentioned that the factor command sometimes needs help in
factoring a polynomial.
> factor(x^2-2*x-1);

We need to tell Maple that it should use 2 when it factors this polynomial.
> factor(x^2-2*x-1, sqrt(2));

We must do the same thing when we ask for the partial fraction decomposition of

1/(x^2-2*x-1).
> 1/(x^2-2*x-1);
> convert(%, parfrac, x);
> convert(%, parfrac, x, sqrt(2));

We can also get this rational expression's partial fraction expansion the following way.
> convert(1/(x^2-2*x-1), parfrac, x, real);

This last command has the advantage that we did not need to know the specific hint to give to
convert/parfrac (i.e., sqrt(2)), but the command has the disadvantage that the result is
given only approximately, using decimal numbers. Here is another way to get the partial fraction
decomposition that does not need to be told any hints and yet produces a symbolic result.
> convert(1/(x^2-2*x-1), fullparfrac, x);
> simplify(%);
> convert(%, radical);
>

Exercise: Look at the second to last result very carefully. Try to make sense out of it. Do not be put
off by the funny looking variables _α and _Z. The result is a sum, just like the last result. Why does
the sum have two terms? Evaluate the sum by hand; it is not too difficult. (We discussed RootOf
expressions in a previous worksheet.)
>

In the next example, convert/parfrac is able to compute part of the partial fraction
decomposition, but cannot complete it without a hint.
> r := (4*x^3-6*x^2-2)/(x^4-2*x^3-2*x+4);
> convert(r, parfrac, x);

We need to give convert/parfrac a hint so that it can factor the x^3-2 term in the
denominator.
> convert(r, parfrac, x, 2^(1/3));

If you are wondering where these hints come from, we can get them from the solve command
applied to the denominator of the rational expression.
> solve(denom(r), {x});

If we give convert/parfrac two further hints, then it can factor the remaining quadratic from
one of the above denominators and we can get the complete, complex partial fraction expansion.
> convert(r, parfrac, x, {I, sqrt(3), 2^(1/3)});

Here is another way to get the complex partial fraction expansion using the
convert/fullparfrac and convert/radical commands. Notice that this method does
not need the hints.
> convert(r, fullparfrac, x);
> convert(%, radical);

Here is still another way to get the complex partial fraction expansion.
> convert(r, parfrac, x, complex);
>

Exercise: Look carefully at the result of the last command. How can you reasonably "simplify" this
numerical result? (Hint: Compare the numerators in the last result with the numerators in the second
to last result.)
>

Recall from calculus that converting a rational expression into its partial fraction expansion is a
common technique for finding the antiderivative of the expression.
> r := (-b+a)/(x^2-x*b-a*x+a*b);
> convert(r, parfrac, x);

Integrate the partial fraction expansion.
> int(%, x);
> combine(%, ln, symbolic);

Integrate the original rational expression.
> int(r, x);
> simplify(%);
> combine(%, ln, symbolic);
>

Here is another example.
> r := 2*sqrt(2)/(x^2-2*x-1);
> convert(r, parfrac, x, sqrt(2));

Now integrate the partial fraction expansion.
> int(%, x);
> combine(%, ln, symbolic);

This time, integrate the original rational expression.
> int(r, x);
> simplify(%);
> convert(%, ln);
> simplify(%);
> combine(%, ln, symbolic);

This last example provides an important lesson. Even when Maple has a powerful command like
int that will do a job for you, it is still sometimes better to use your own mathematical knowledge
to help Maple arrive at an answer. In this last example, finding the partial fraction expansion of the
rational expression before integrating it lead to a much more direct and simple answer than
integrating the rational expression itself.
>

Finally, let us look at two interesting commands that are related to rational expressions,
convert/confrac and laurent.

The convert/confrac command can be used to put a rational expression into its continued
fraction form. Like Horner form for polynomials, continued fraction form for rational expressions

is often used to make evaluating a rational expression more efficient.
> (x^3+x^2+x+1)/x^4;
> convert(%, confrac, x);
>

Exercise: Part (a): Suppose you need to evaluate the rational expression
 + + + x3 x2 x 1

x4
 at = x 6 and

your calculator only has an addition, a multiplication, and a division button. What is the total
number of multiplications and divisions needed to evaluate the rational expression? Suppose you
rewrite the rational expression in its continued fraction form. What is the total number of
multiplications and divisions needed to evaluate the continued fraction?
>

Part (b): Suppose you rewrite the polynomial that appears in the continued fraction from part (a) in
its Horner form. What is the total number of multiplications and divisions needed to evaluate the
resulting expression?
>

Part (c): Suppose you rewrite the polynomial that appears in the numerator of the rational expression
from part (a) in its Horner form. What is the total number of multiplications and divisions needed to
evaluate the resulting rational expression?
>

Part (d): Suppose you rewrite the rational expression from part (a) in its expanded form. What is the
total number of multiplications and divisions needed to evaluate the expanded expression?
>

Here is an example of an important application of rational functions. A function like ()cot x does not
have a Taylor series at = x 0 because the function has a vertical asymptote there.
> taylor(cot(x), x=0);

But ()cot x does have what is called a Laurent series at = x 0. A Laurent series approximates a
function around an asymptote, just as a Taylor series approximates a function around a point. We
can calculate a Laurent series using the laurent command from the numapprox package.
> numapprox[laurent](cot(x), x=0, 7);

We can convert this Laurent series into a rational function.
> convert(%, polynom);
> l := normal(%);

The next graph shows how this rational function (the red graph) approximates ()cot x (the green
graph) for x near zero.
> plot([cot(x), l], x=-3*Pi/2..3*Pi/2, -10..10,
 discont=true, color=[green,red]);

Notice that the red graph is nearly a perfect match for the green graph near the vertical asymptote at
 = x 0.
>

Exercise: The third parameter to the laurent command determines the degree of the
approximating rational function. Try increasing the degree of the rational function (by a fair amount)
and observe how that affects the graph of the approximation.
>

>

8.9. Power expressions
In this section we consider the following three power identities. The Maple commands needed to
demonstrate these identities are simplify/power, combine/power, and expand.

 = xy xz x
() + y z

 = ()xy
z

x
()y z

 = xz yz ()x y z

For the first identity, Maple will automatically simplify the left hand side into the right hand side if y
and z are rational numbers.
> x^(2/3)*x^(-1/2);

For the general case, we can use either the simplify/power command or the combine/power
command.
> x^y*x^z;
> simplify(%, power);
> combine(%%, power);

Notice that the simplify and combine commands, without the power option, also work.
> x^y*x^z;
> simplify(%);
> combine(%%);

For the other direction, the expand command works.
> x^(y+z);
> expand(%);
>

For the second identity, Maple will automatically simplify the left hand side into the right hand side
if y and z are integers.
> (x^2)^(3);

The simplify and combine commands will simplify the left hand side into the right hand side if

z is an integer.
> (x^y)^3;
> simplify(%);
> combine(%%);

Instead of using specific integers, we can tell Maple to make assumptions about the variables. If we
tell Maple to assume that z is an integer, then simplify and combine will transform the left
hand side into the right hand side.

> assume(z, integer);
> (x^y)^z;
> simplify(%);
> combine(%%);
> z := 'z';
>

For anything other than integers, the second identity has problems. Here is one way to see that there
is a problem. Consider the following chain of equalities.

()xy
z
= x

()y z
 = x

()z y
 = ()xz

y
.

The middle equality is obviously true, and the two outer equalities follow from our second power
identity. But it is easy to show that the extreme left and right hand sides of this equation need not be
equal. For example, let x be −1, y be 2 and z be 1/2. If you work through the equation with those
numbers, you will see that the first equality is false, but the next two equalities are correct. This
leads to the following situation. For our second power identity, Maple will automatically simplify
the left hand side into the right hand side for some choices of rational numbers y and z, but not for
other choices. As the following examples show, it is not at all obvious which ones will get
simplified.
> (x^(1/2))^2;
> (x^2)^(1/2);
> (x^(2/3))^(1/2);
> (x^(3/2))^(1/3);
> (x^(3/2))^(2/3);
> (x^(2/3))^(3/2);
>

Exercise: In Maple, is ()−1

2

3
 the same as ()()−1 2

1

3
 or is it the same as

−1

1

3

2

? In a calculus

textbook, what would be the (decimal) value of ()−1

2

3
? In Maple, what is the (decimal) value of

()−1

2

3
?

>

Exercise: (Hard) Find values for x, y, and z so that the three expressions ()xy
z
, x

()y z
, and ()xz

y
 all

have different values.
>

For the general case of our second power identity, without any assumptions on the variables, the
simplify and combine commands will work if they are given the symbolic option (but
remember, this will not be a correct transformation for all values of the variables).
> (x^y)^z;

> simplify(%, symbolic);
> combine(%%, symbolic);

For the other direction of our second identity, the expand command will work but only if one of y

or z is an integer.
> x^(y*3);
> expand(%);

Notice that if we tell Maple to assume that one of y or z is an integer, expand will not do the
transformation.
> assume(z, integer);
> x^(y*z);
> expand(%);
> z := 'z';
>

Now let us turn to our third power identity. Like our second identity, the third one is not true for all

possible values of the variables. For example, −1 −1 is not equal to ()−1 ()−1 . So we should
not expect Maple to implement this identity without some assumptions. Unfortunately, Maple seems
to have a lot of trouble with this identity, at least in the direction of transforming the left hand side
into the right hand side. For example, if z is an integer, then the identity is clearly true. So let us tell
Maple to assume that z is an integer.
> assume(z, integer);

Now simplify can do the transformation.
> x^z*y^z;
> simplify(%);

But combine/power cannot do the transformation.
> combine(%%, power);
> z := 'z';

Now replace z with an actual integer.
> x^3*y^3;

And now, strangely enough, neither simplify nor combine/power can do the transformation!
> simplify(%);
> combine(%%, power);

This identity is also true if one of x or y is positive. Let us tell Maple to assume that y is positive.
> assume(y, positive);

But neither simplify nor combine/power will do the transformation.
> x^z*y^z;
> simplify(%);
> combine(%%, power);

But simplify will work if we use an undocumented option, commonpow. (At least this option is
undocumented in Maple's online documentation. I found out about it in A Guide to Maple, by E.
Kamerich, page 195. And it is not really an option, it is a helper function, simplify/commonpow

)
> simplify(%%%, commonpow);
> y := 'y';

If we tell only simplify about the assumptions, then the integer assumption still works and the
positive assumption only works with the commonpow option.
> x^z*y^z;
> simplify(%) assuming z::integer;
> simplify(%%) assuming y::positive;
> simplify(%%%, commonpow) assuming y::positive;

For the general case, without any assumptions, we need the (undocumented)
simplify/commonpow function with the symbolic option (but remember, this will not be a
correct transformation for all values of the variables).
> x^z*y^z;
> simplify(%, commonpow, symbolic);

Notice that combine/power does not work, even with the symbolic option.
> combine(%%, power, symbolic);
>

For the other direction of our third power identity, things are a bit better. We get automatic
simplification if z is an integer.
> (x*y)^3;

But if we tell Maple to assume that z is an integer, then neither expand, simplify nor
simplify/commonpow will do the transformation.
> assume(z, integer);
> (x*y)^z;
> expand(%);
> simplify(%%);
> simplify(%%%, commonpow);
> z := 'z';

If one of x or y is a rational number, then expand and simplify will both work.
> (5/2*y)^z;
> expand(%);
> simplify(%%);

But simplify/commonpow will not do the transformation.
> simplify(%%%, commonpow);

If we tell Maple to make the assumption that one of x or y is positive, then expand and simplify
will both do the transformation.
> assume(y, positive);
> (x*y)^z;
> expand(%);
> simplify(%%);
> y := 'y';

>

In the general case, with no assumptions at all, we need the simplify command with the
symbolic option (but remember, this will not be a correct transformation for all values of the
variables).
> (x*y)^z;
> simplify(%, symbolic);
>

In the next section, we give more examples of working with powers in the special case where the
exponents are rational numbers, i.e., radical expressions. And in a later section we give some
specific information about the power identities from this section in the special case of the base being
e, i.e., exponential expressions.
>

>

8.10. Radical expressions
Maple has a few commands that are specifically for working with expressions containing radicals,
i.e., exponents that are rational numbers. The commands are radsimp, radnormal,
rationalize, surd and root. In addition, the simplify command has the helper functions
simplify/radical and simplify/sqrt, and the combine command has the helper
function combine/radical.

Trying to simplify expressions containing radicals can be tricky. Here is an example.
> r := (sqrt(2)-sqrt(3))/(sqrt(2)+sqrt(3));

The radsimp command does not do anything with this expression,
> radsimp(r);

unless we also give it an extra option.
> radsimp(r, ratdenom);

Now expand this result,
> expand(%);

and combine the last result.
> combine(%);

The radnormal command does not do much with our original expression,
> radnormal(r);

unless we provide it also with an extra option, in which case it does a bit more than radsimp did.
> radnormal(r, rationalized);

We can also use the rationalize command on our expression and get the same result that
radsimp provided.
> rationalize(r);

The simplify/radical command does not do much.

> simplify(r, radical);

Neither does simplify/sqrt.
> simplify(r, sqrt);

The combine/radical command does nothing to this expression.
> combine(r, radical);

Surprisingly enough, even though the expression that we are working with does not have any
variables in it, the factor command works!
> factor(r);

These commands show that it is not at all obvious which commands will work to simplify a radical
expression. In the rest of this section, we give a lot of examples that try to demonstrate some of what
can and cannot be done with radical expressions.
>

Here is another expression that we can try several different commands on.
> g := (x^2-1)/(1+sqrt(x));

The rationalize command provides a simplified expression (in a factored form).
> rationalize(g);

The radsimp command does nothing,
> radsimp(g);

unless we give it the ratdenom option.
> radsimp(g, ratdenom);

The radnormal command does nothing,
> radnormal(g);

unless we give it the rationalized option.
> radnormal(g, rationalized);

The factor command only does the obvious factorization of the numerator,
> factor(g);

unless we give it a (somewhat unusual) hint, in which case it produces the same result as
rationalize.
> factor(g, sqrt(x));

The following three commands do not do anything.
> simplify(g, radical);
> simplify(g, sqrt);
> combine(g, radical);
>

Exercise: Try all of the above commands on the expression
 − x y

 − x y2
.

>

Exercise: Part (a): Derive the identity =
 − x2 1

 + 1 x
() − x 1 () + x 1 yourself using paper and pencil.

>

Part (b): Given that the command factor(g,sqrt(x)) worked on the expression g, what do
you think the command factor(x-1,sqrt(x)) should produce? Does it?
>

Working with radicals in Maple can be different from what you are used to from algebra and
calculus classes. In particular, square roots and cube roots in Maple can act differently from what
you might expect. For example, in the last section we saw that Maple interprets the expression

(-1)^(2/3) differently from what it is in calculus. As another example, since = ()−2 3 −8, it is

reasonable to expect (-8)^(1/3) to evaluate to −2. But this is not what Maple does.
> (-8)^(1/3);
> simplify(%);

To get the answer −2 (instead of a complex number) we need to use a special command with a very
strange name, surd.
> surd(-8,3);

The expression surd(x,n) (where n is supposed to represent an integer) is a special way of
denoting x^(1/n).
> surd(x,n);
> convert(%, power);

The most common use for surd is, as above, to get real (instead of complex) answers for odd roots
of negative numbers. Here is another example of this. In calculus, the function x^(1/3) is
considered the inverse of the function x^3, so their graphs should be reflections of each other with

respect to the line = y x. But this is not how Maple graphs them.
> plot([x^(1/3), x^3], x=-1..1, scaling=constrained);

In the above graph, Maple computed complex numbers for the cube roots of the negative x's and
then it could not graph these complex numbers, so there is no graph of x^(1/3) for negative x. If
we instead plot the function surd(x,3) along with x^3, then we get the graph that we were
expecting.
> plot([surd(x,3), x^3], x=-1..1, scaling=constrained);

Here is a way to use a trick, instead of the surd function, to get the above graph.
> x/abs(x)^(2/3);
> plot([%, x^3], x=-1..1, scaling=constrained);
>

Now let us turn to an example with square roots. In calculus, the expression x2 simplifies to x ,

and if we know that x is a positive number, then x2 simplifies to x. But that is not how Maple
handles this expression. Let us try various commands to simplify sqrt(x^2).
> simplify(sqrt(x^2));

This result is correct for all complex numbers, which is what Maple, by default, assumes that a

variable represents. But it is not what we were expecting. Let us try radsimp.
> radsimp(sqrt(x^2));

So it seems that radsimp did not assume, as did simplify, that x is a complex number. We can
get this same result from simplify by using the option symbolic.
> simplify(sqrt(x^2), symbolic);

But what about the case where x is assumed real and the simplification should produce the absolute
value of x? We can tell simplify to assume that x is real, instead of complex, this way.
> simplify(sqrt(x^2)) assuming real;

These last few examples show that even with radicals as simple as square roots and cube roots,
working with them need not be all that simple and it helps to be aware of the specifics of how Maple
deals with these and other radicals.
>

Many of the Maple commands that work with polynomials actually work with "general
polynomials" where the terms can have variables raised to any rational exponent. Here is an example
of a general polynomial.
> f := b*x^(-1/2)+2*sqrt(x)/b+b*x^2+b*sqrt(x)-1/(2*sqrt(x));

We can sort this general polynomial.
> sort(f, x);

We can use collect to collect terms of the general polynomial.
> collect(f, x);

And coeff can find the coefficient of a radical term.
> coeff(f, x^(-1/2));
>

Finally, let us look at some conventions and notations that Maple has for working with radicals.

Maple will automatically rationalize some numbers.
> sqrt(1/2);
> 1/sqrt(3);

But not other numbers.
> 1/(1+sqrt(2));

For this number we need to specifically ask that it be rationalized.
> rationalize(%);

Even though Maple will automatically rationalize a numeric expression like 1/sqrt(2), it will
not do so with a variable expression.
> 1/sqrt(x);

In fact, Maple cannot rationalize the previous expression.
> rationalize(%);

The reason is because of the following automatic simplification.
> sqrt(x)/x;

In other words, Maple will automatically rationalize numeric expressions like
1

2
 into

2

2
, but it

will automatically simplify symbolic expressions like
x

x
 into

1

x
.

Maple will automatically convert the square root of a negative number into its imaginary number
form.
> sqrt(-5);
> sqrt(-3/2);
>

Exercise: Why do you think that Maple does not automatically convert an expression like

sqrt(-x) into I x ?
>

The root command can be used to express fractional exponents. The expression root(x,n) can
be used in place of x^(1/n), as long as n represents an integer (either positive or negative).
> root(x, 3);
> x^(1/3);
> root(3^4, 5);
> 3^(4/5);
> root(x, -2);
> x^(-1/2);

Notice that the following kind of expression is not allowed by root.
> root(3, 4/5);

There is another notation for the root command.
> root[5](10);

The root command is not completely equivalent to using radical exponents. Here is one example.
> root[5](x^4) = x^(4/5);

The root command does some different simplifications than when just using exponents.
> root[5](9) = 9^(1/5);
> root[3](4/5) = (4/5)^(1/3);
> root[-2](x^3) = x^(-3/2);

Here is a real interesting example. Is the following equation true? (It is.)
> root[3](24) = 24^(1/3);

The root command also allows the use of the keyword symbolic.
> root[2](x^2);
> root[2](x^2, symbolic);
>

>

8.11. Exponential expressions
The two most basic identities for the exponential function are

 = ex ey e
() + x y

 = ()ex
y

e
()x y

.
The Maple commands associated with these two identities are simplify/power,
combine/exp, and expand.

The first identity is true for all complex values of the variables. So we should expect Maple to do the
associated transformations without any need for assumptions on the variables. We can transform

ex ey with either the simplify or the combine commands.
> exp(x)*exp(y);
> simplify(%);
> combine(%%);

And we can transform e
() + x y

 using the expand command.
> exp(x+y);
> expand(%);
>

Now let us turn to the second identity. This identity is not true for all values of the variables. For
example, let x be −π I and let y be 1/2.
> identity := exp(x)^y = exp(x*y);
> subs(x=-Pi*I, y=1/2, identity);
> simplify(%);

In fact, we can even find values for x and y so that each of the expressions ()ex
y
, e

()x y
, and ()ey

x
 has

a different value.
> terms := [exp(x)^y, exp(x*y), exp(y)^x];
> subs(x=-Pi*I, y=2*Pi*I, terms);
> simplify(%);

The following command will simplify things some more.
> evalc(%);

Notice that the first number is very small, the second is quite large, and the third is exactly 1. The
following command will make this clear.
> evalf(%);

So we should not expect Maple to do the transformations associated with this identity without some
assumptions about the variables.
>

The second identity is true if y is an integer, or if both x and y are real numbers. The following
commands show that with an appropriate assumption, both combine and simplify can be used
to make the transformation in one direction, and expand can be used in the other direction. First,

transform ()ex
y
 where y is an integer

> exp(x)^5;
> simplify(%);
> combine(%%);

Here is the general case where we assume that y represents an integer.
> exp(x)^y;
> simplify(%) assuming y::integer;
> combine(%%) assuming y::integer;

Now use simplify and combine to do the same transformation with the assumption that both x

and y are real numbers.
> exp(x)^y;
> simplify(%) assuming real;
> combine(%%) assuming real;

We can use simplify and combine with the symbolic keyword to transform ()ex
y
 in the case

where we make no assumptions about the variables.
> exp(x)^y;
> simplify(%, symbolic);
> combine(%%, symbolic);
>

Now transform e
()x y

 where one of either x or y is an integer
> exp(5*x);
> expand(%);

We can also tell Maple to assume that one of the variables, say y, is an integer, but unfortunately,
expand will not make the transformation.
> exp(x*y);
> expand(%) assuming y::integer;

And if we tell Maple to assume that both x and y are real numbers, then expand still cannot do the
transformation.
> exp(x*y);
> expand(%) assuming real;
>

For identities that involve exponentials together with logarithms, see the section below on
logarithmic expressions.
>

>

8.12. Trigonometric expressions
Maple knows a lot of trigonometric identities. In this section we show which Maple commands are

needed for the most important and common trig identities. The commands that we use the most are
simplify/trig, combine/trig, expand, and convert.

Before going into the details of trigonometric manipulations, a bit of a warning. Using Maple
commands to manipulate trig expressions can be very non intuitive. For example, the expand
command does nothing to the following trig expression.
> expand(sin(x)^3);

However, the simplify command does "expand" the expression (and it hardly seems to make it
simpler).
> simplify(sin(x)^3);

The combine command will also "expand" this expression, and it is hard to figure out what is
being "combined".
> combine(sin(x)^3);

As we have mentioned before, learning to use Maple's abilities at algebraic manipulation involves a
lot of practice and quite a bit of trial and error. When faced with a particular trigonometric
expression that you wish to simplify, do not be surprised if you need to experiment with a variety of
commands in a variety of orders before you get what you want (or something close to it).
>

Maple can do a lot of automatic simplifications of simple trigonometric expressions. Here are some
examples.
> sin(Pi/3); cos(2*Pi/3); tan(Pi/4);
> sin(I); cos(I); tan(I);
> sin(-x); cos(-x);
> sin(x+2*Pi);
> cos(x-Pi/2);
> cos(x+Pi/2);
> arcsin(cos(x));
> arccos(sin(x));
> sin(arcsin(x));
> cos(arcsin(x));
> sin(arctan(x));
> sec(arccsc(x));
> radsimp(%);
>

 The combine/trig command does the following trigonometric transformations.

()sin x ()sin y = => −
()cos − x y

2

()cos + x y

2

()cos x ()cos y = => +
()cos − x y

2

()cos + x y

2

()sin x ()cos y = => +
()sin − x y

2

()sin + x y

2
For example.
> combine(sin(x)*sin(y));

Notice the following two special cases of the above transformations.

()sin x 2 = =>
 − 1 ()cos 2 x

2

()cos x 2 = =>
 + 1 ()cos 2 x

2
> combine(sin(x)^2);

The combine/trig command will use the transformations above to convert sums and products of

powers of ()sin x and ()cos x into sums of terms of the form ()sin n x and ()cos m x for integers n and
m.
> sin(x)^2*cos(x)^3 + cos(x)^2;
> combine(%);
> cos(x)^4;
> combine(%);

Let us look carefully at how combine/trig did the transformations that produced the last result.

First, ()cos x 4 can be considered ()cos x 2 ()cos x 2. Here is how combine/trig transforms ()cos x 2

> combine(cos(x)^2);

Now take that result and multiply it with itself.
> % * %;

Have expand multiply this out without expanding the cos(2*x) term.
> expand(%, cos(2*x));

Now we have another power of cos that needs to transformed by combine. The following

command will transform the ()cos 2 x 2 term.
> combine(%);

One important thing to notice about these steps is that while combine was in the process of

transforming ()cos x 4, combine reached a step where it needed to call itself with another term to

transform, the ()cos 2 x 2 term. This idea, of a transforming procedure needing to call itself, will
come up repeatedly in later worksheets and it has a name, recursion.
>

Exercise: Show the details of the steps that combine goes through as it transforms the expression

()sin x 3.
> sin(x)^3;
> combine(%);
>

Exercise: One of the most often used trig identities is of course = + ()cos x 2 ()sin x 2 1. The

combine command can do this transformation, even though it does not really "know" this identity.
Show the details of how the combine command uses its trigonometric transformations to transform

 + ()cos x 2 ()sin x 2 into 1.
> cos(x)^2+sin(x)^2;
> combine(%);
>

Exercise: Explain how combine does the following two transformations.
> cos(3*x)^4;
> combine(%);
> sin(exp(x))^3*cos(cos(x));
> combine(%);
>

The expand command takes expressions of the form ()cos + m x n y or ()sin + m x n y , with m and

n integers, and "expands" them into "multivariate polynomials" in ()cos x , ()sin x , ()cos y , and ()sin y
with integer coefficients. Here is an example.
> cos(2*x-3*y);
> expand(%);

In addition, expand takes expressions of the form ()tan + m x n y , with m and n integers, and

converts them into "multivariate rational functions" in ()tan x and ()tan y with integer coefficients.
Here is an example.
> tan(2*x-3*y);
> expand(%);
> normal(%);

The expand command can transform sums of the above kinds of expressions.
> cos(-3*x) + sin(2*x) - tan(2*x);
> expand(%);

And expand can also transform products of the above kinds of expressions.
> cos(-3*x)*sin(2*x)^2;
> expand(%);
>

The expand command does these kinds of transformations by repeatedly using the following
transformations.

()cos 2 x = => − 2 ()cos x 2 1
()sin 2 x = => 2 ()sin x ()cos x

()tan 2 x = =>
2 ()tan x

 − 1 ()tan x 2

()cos + x y = => − ()cos x ()cos y ()sin x ()sin y

()cos − x y = => + ()cos x ()cos y ()sin x ()sin y

()sin + x y = => + ()sin x ()cos y ()cos x ()sin y

()sin − x y = => − ()sin x ()cos y ()cos x ()sin y

()tan + x y = =>
 + ()tan x ()tan y

 − 1 ()tan x ()tan y

()tan − x y = =>
 − ()tan x ()tan y

 + 1 ()tan x ()tan y

For example, let us see what steps are needed for expand to transform ()cos 3 x .
> expand(cos(3*x));

To arrive at this result, first consider ()cos 3 x as ()cos + 2 x x and apply the fourth transformation
above to this expression. We will do this with Maple, but we need to use a trick, in order to avoid an
automatic simplification.
> expand(cos(2*x+u));
> subs(u=x, %);

Now replace the expression ()sin x 2 with − 1 ()cos x 2.
> subs(sin(x)^2=1-cos(x)^2, %);

Now multiply this out, and we get our final result.
> expand(%);

Using a procedure similar to this, we can see how expand can transform any expression of the

form ()cos m x for any integer m (and ()sin m x also).

Exercise: Explain the steps that expand uses to transform ()sin + x 2 y .
> sin(x+2*y);
> expand(%);
>

Notice that the combine command produces expressions exactly of the form that expand can
transform. And the expand command produces expression exactly of the form that combine can
transform. It might seem that each of these commands will undo the other's transformation. For
many trig expressions that is the case, but not for all trig expressions. Here is an example where
expand does not undo what combine did.
> cos(x)^2*sin(x)^2;
> combine(%);
> expand(%);

Here are two examples where combine does not undo what expand did.
> cos(4*x)*sin(3*x)+sin(x);
> expand(%);
> combine(%);
> cos(4*x)*sin(2*x)-sin(2*x);
> expand(%);
> combine(%);

>

According to the online documentation, the simplify/trig function does only one, simple,
transformation.

()sin x 2 = => − 1 ()cos x 2

But the following example shows that what simplify/trig does is more complicated than just
this one transformation. Consider this simplification.
> cos(2*x)+sin(x)^2;
> simplify(%);

The online documentation implies that the result should have been + − ()cos 2 x 1 ()cos x 2. It seems
that simplify must have done something with the ()cos 2 x term. Let us try simplify on this
term by itself.
> simplify(cos(2*x));

The command did not do anything. Let us try expand on the ()cos 2 x term.
> expand(cos(2*x));

If we add this result to − 1 ()cos x 2 (i.e., the result of simplify applied to ()sin x 2), then we get the

desired result, ()cos x 2. So simplify can expand ()cos 2 x , but it will only do so within a certain
context. We can conclude that the online documentation is not really describing all of what
simplify will do to trigonometric expressions. And I do not know what exactly simplify will
and will not do with trig expressions.
>

Exercise: Explain how each of the following three commands does its transformation.
> combine(sin(3*x)^2);
> expand(sin(3*x)^2);
> simplify(sin(3*x)^2);
>

Exercise: We saw earlier that combine knows the identity = + ()cos x 2 ()sin x 2 1. The simplify
command knows it also. Describe exactly how simplify does the following transformation.
> sin(x)^2+cos(x)^2;
> simplify(%);

Notice that this gives us an example of a transformation that can be done by two different
commands but each command does the transformation in a completely different way.
>

There are several variations on the basic identity = + ()cos x 2 ()sin x 2 1, such as

 = + 1 ()tan x 2 ()sec x 2

 = − ()sec x 2 ()tan x 2 1

 = − ()csc x 2 ()cot x 2 1.
Interestingly, the combine command cannot do any of these three transformations, but simplify
can do the last two (and I have no idea how).
> sec(x)^2-tan(x)^2;
> simplify(%);
> csc(x)^2-cot(x)^2;
> simplify(%);

Notice that simplify cannot transform + 1 ()tan x 2 into ()sec x 2.
> 1+tan(x)^2;
> simplify(%);

But with a little help from the convert/sincos command, simplify can almost complete the
transformation.
> convert(%, sincos);
> simplify(%);
> convert(%, sec);
>

Besides the two transformations mentioned just above, there are some other trigonometric
transformations that simplify will do that are not mentioned in the online documentation. For
example, simplify will simplify the composition of a trig function with its inverse (given the
appropriate assumption on the variable).
> arcsin(sin(x));
> simplify(%, assume=RealRange(-Pi/2,Pi/2));

The next example shows an automatic simplification followed by the simplify command.
> arcsin(cos(x));
> simplify(%, assume=RealRange(0,Pi));
>

The next example shows that simplify can cancel sin's and cos's from within trig functions like
tan and csc.
> tan(x)*cos(x) + sin(x)*csc(x);
> simplify(%);
>

Exercise: Find a sequence of Maple commands that will derive the transformation

 + ()cot x ()cot y = =>
()sin + x y

()sin x ()sin y
.

> cot(x)+cot(y);
>

Maple can do a number of conversions between different kinds of trigonometric forms for
expressions. The following help pages do a good job of describing these conversions.

> help(`convert/trig`); # from exponentials to trig
> help(`convert/sincos`); # from trig to sin,cos,sinh,cosh
> help(`convert/tan`); # from trig to tan
> help(`convert/expsincos`); # from trig to exp,sin,cos
> help(`convert/exp`); # from trig to exponentials
> help(`convert/ln`); # from arctrig to logarithms
> help(`convert/expln`); # from elementary functions to

exp,ln
>

Here are some examples of the convert command.
> sin(x)/cos(x);
> convert(%, tan);
> 1/cos(x);
> convert(%, tan);
> sec(x)^2-tan(x)^2;
> convert(%, sincos);
> convert(exp(x), trig);
> convert(exp(I*x), trig);
> convert(cos(x), exp);
> combine(%);
>

>

8.13. Logarithmic expressions
The two most basic identities for the logarithm function are

 = ()ln x y + ()ln x ()ln y

 = ()ln xy y ()ln x .
The Maple commands associated with these two identities are simplify/ln, combine/ln, and
expand.

Here are the Maple commands associated with the first identity (without any assumptions about the
variables).
> simplify(ln(x*y), symbolic);
> combine(ln(x)+ln(y), ln, symbolic);

Here are the Maple commands associated with the second identity (again, without any assumptions
about the variables).
> simplify(ln(x^y), symbolic);
> combine(y*ln(x), ln, anything, symbolic);
>

Maple can also do the transformation =

ln

x

y
 − ()ln x ()ln y .

> simplify(ln(x/y), symbolic);
> combine(ln(x)-ln(y), ln, symbolic);
>

A funny quirk of the simplify command is that simplify/power does much of what
simplify/ln does. This is only important to know in the case where you want to simplify a
subexpression of a larger expression without simplifying some other parts of the expression.
Consider the following commands.
> f := sin(theta)^2 + cos(theta)^2 + (x^a)^b + ln(x/y);
> simplify(f, symbolic);

The simplify command simplified both the trig, power, and log parts of the expression. If we
only want to simplify the logarithmic part, then we need the ln option.
> simplify(f, ln, symbolic);

But if we want to simplify only the power part of the expression, and we use the power keyword,
then we (somewhat unexpectedly) get both the power and log parts simplified.
> simplify(f, power, symbolic);
>

If we wish to combine some logarithmic terms at the same time that we combine some other kinds
of terms, then we need to explicitly list the types of terms that we want combine to work on, as in
the next two examples.
> 2*cos(a)*sin(a)+ln(x)+ln(y);
> combine(%, {ln, trig}, symbolic);
> exp(x)*exp(y)+y*ln(x);
> combine(%, {ln, exp}, anything, symbolic);

Try deleting the trig, exp, or ln options from the last two combine commands to see what
happens.
>

The two logarithmic identities above are not true for all values of the variables. For example, in the
first identity, let both x and y be −1.
> ln(x*y) = ln(x)+ln(y);
> subs(x=-1, y=-1, %);
> simplify(%);

In the second identity, let x be −1 and let y be 2.
> ln(x^y) = y*ln(x);
> subs(x=-1, y=2, %);
> simplify(%);
>

Exercise: Find other values of x and y that make the two logarithmic identities false.
>

Since the identities are not always true, the simplify and combine commands need the keyword
symbolic when we do not make any assumptions about the variables. An example of an

assumption that will make the identities true is that both x and y are positive real numbers.
> ln(x*y);
> simplify(%) assuming positive;
> ln(x^y);
> simplify(%) assuming positive;

The simplify command does not do the transformations in the other direction, and the combine
command does not always seem to work well with the assuming command.
> ln(x)+ln(y);
> combine(%) assuming positive;
> y*ln(x);
> combine(%, ln, anything) assuming positive; # doesn't work

Let us try the last command using assume instead of assuming.
> assume(x, positive);
> assume(y, positive);
> y*ln(x);
> combine(%, ln, anything);

With these assumptions in place, we can also use expand for the transformations in the other
direction (i.e., from left hand side to right hand side in the identities).
> expand(ln(x*y));
> expand(ln(x^y));

Its possible to weaken our assumptions. Let us remove the assumption from y.
> y := 'y';

Now try expand. and combine on the first identity.
> expand(ln(x*y));
> combine(ln(x)+ln(y));

Try expand and combine on the second identity with these assumptions.
> expand(ln(x^y));
> combine(y*ln(x), ln, anything);

expand did not work but combine did. Put back an assumption on y. Let us assume that y is real.
> assume(y, real);

Now try expand again on the second identity.
> expand(ln(x^y));
> about(x,y);
> x,y := 'x','y';
>

Now we turn to some identities involving both the exponential and logarithm functions.

To give you a sense of how working with Maple can be a bit confusing for a calculus student,
consider the following two formulas from first year calculus,

 = ()ln ex x for all real numbers x, and

 = e
()ln x

x for all positive real numbers x.
Since the first equation is true for all real numbers but the second equation has a restriction to
positive real numbers, one might expect Maple to make it easier to simplify ln(exp(x)) than to
simplify exp(ln(x)). But just the opposite is true. Maple will not, by default, simplify
ln(exp(x)).
> ln(exp(x));
> simplify(%);

But Maple will, by default, automatically simplify exp(ln(x)).
> exp(ln(x));

The reason is that Maple assumes that all variables represent complex numbers. And for (nonzero)

complex numbers, = e
()ln x

x is always true. But = ()ln ex x need not be true. Here is an example.
> ln(exp(2*Pi*I));

We can get Maple to make the transformation = ()ln ex x by telling the simplify command to
work symbolically, meaning that simplify does not worry about the validity of the transformation
it makes.
> simplify(ln(exp(x)), symbolic);

Or we can tell Maple to assume that x is a real number.
> simplify(ln(exp(x)))assuming real;

In fact, with the assumption that x is real, we do not even need the simplify command, Maple
will automatically make the simplification.
> ln(exp(x)) assuming real;
>

An important variation on the last identity above is = e
()y ()ln x

xy. In the case where y is a number,

Maple will automatically simplify e
()y ()ln x

.
> exp(2/3*ln(x));

In the case where y is a variable, Maple will not do the simplification automatically.
> exp(y*ln(x));

But both the simplify and the expand commands will make the transformation.
> simplify(%);
> expand(%%);

The combine command will also work, but it is very awkward, since it needs three options.
> combine(%%%, ln, anything, symbolic);
>

I do not know of a way to convert xy to e
()y ()ln x

. The following would seem like a reasonable guess,

but it does not work.
> convert(x^y, expln);
>

Exercise: Notice that simplify will simplify e
()y ()ln e

x

 to ()ex
y
.

> exp(y*ln(exp(x)));
> simplify(%);

For another example, let x be I and let y be I π.
> exp(I*Pi*ln(exp(I)));
> simplify(%);

Now reverse the roles of x and y. Why does e
()I ()ln e

()I π

 not simplify to ()e
()I π I

?
> exp(I*ln(exp(I*Pi)));
> exp(I*Pi)^I;

Are the last two expressions equal?
>

Another important logarithmic identity is the definition of logarithm functions to other bases,

 = ()logb x
()ln x

()ln b
Along with this definition are the two identities

 = ()logb bx x

 = b
()log

b
x

x.
The Maple notation for the logarithm function to base b, logb, is log[b]. Notice that Maple will

automatically simplify the expression ()logb x into
()ln x

()ln b
.

> log[b](x);

The simplify command will simplify b
()log

b
x

 to x.
> b^log[b](x);
> simplify(%);

The simplify command will simplify ()logb bx to x if we use the keyword symbolic.
> log[b](b^x);
> simplify(%, symbolic);

The reason that simplify needed the keyword symbolic should be clear from our discussion of

the identities = ()ln xy y ()ln x and = ()ln ex x.
>

Exercise: Part (a): Show that = ()logb bx x need not be true.
>

Part (b): Simplify the expression log[b](b^x) without using the keyword symbolic. Instead,
use appropriate assumptions.
>

>

8.14. Online information on manipulating expressions
Here are the help pages that give Maple's definition of a polynomial expression.
> ?polynom
> ?type,polynom

Here are help pages for some important commands for working with polynomials
> ?sort
> ?collect
> ?coeffs
> ?coeff
> ?degree
> ?student,completesquare
> ?quo
> ?rem
> ?randpoly
> ?taylor
> ?convert,horner

Here are the help pages that gives Maple's definition of a rational expression.
> ?ratpoly
> ?type,ratpoly

Here are help pages for some important commands for working with rational expressions.
> ?numer
> ?denom
> ?normal
> ?convert,parfrac
> ?convert,fullparfrac
> ?convert,confrac
> ?numapprox,laurent

The next two help pages give kind of a definition of what a "radical expression" is.
> ?type,radfun
> ?type,radalgfun

Here are help pages for some important commands for working with radical expressions.
> ?root
> ?radsimp
> ?radnormal

> ?rationalize
> ?surd

Here is the help page for the factor command.
> ?factor

Here are the help page for the Split and convert/radical commands.
> ?PolynomialTools,Split
> ?convert,radical

Here are the help pages for the evala and AFactor commands.
> ?evala
> ?AFactor

Here are the help pages for the combine command and its most useful helper functions.
> ?combine
> ?combine,power
> ?combine,radical
> ?combine,exp
> ?combine,ln
> ?combine,trig
> ?combine,arctan

Here is the help page for the expand command.
> ?expand

Here are the help pages for the simplify command and its most useful helper functions.
> ?simplify
> ?simplify,power
> ?simplify,radical
> ?simplify,sqrt
> ?simplify,trig
> ?simplify,ln

Here is the help page for the convert command. This help page is a hyperlinked list of all of the
helper functions for convert.
> ?convert

>

