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7. Graphsof functions and equations

=[7.1. Introduction

Mathematics uses alot of different kinds of graphs and Maple has alot of commands for drawing
graphs. This worksheet helps you to understand these different kinds of graphs. This understanding
will then help you to keep straight and to use all the Maple graphing commands and it will also help
you to better understand many ideas that are taught in calculus.

In the next section we describe nine kinds of graphs commonly used in a calculus course and seven
Maple commands that are used to draw these graphs. Each of the rest of the sectionsin this
worksheet gives examples and exercises that provide you with the details of working with a

particular kind of graph and its associated M aple command.
[ >

=17.2. A review of graphs

Maple has alot of graphing commands. Thisis because Maple can draw alot of different kinds of
graphs. To understand Mapl€e's graphing abilities it helps to have away of classifying graphs so that
we can organize Maple's graphing commands according to what kind of graph they draw.

There are several ways of classifying graphs. For example, there are two dimensional graphsvs.
three dimensional graphs, or graphs of equations vs. graphs of functions. In addition, graphs of
functions can a'so be classified by how we draw the graph. For example we can graph inputs vs.
outputs, we can graph just the outputs, or we can graph a vector field. We will use all of these
classifications to help us understand graphsin general. From Mapl€e's point of view though, the main
way of classifying graphsis as either two dimensional or three dimensional. Hereisalist of the

principle kinds of two and three dimensional graphs that Maple can draw.
[ >

In two dimensions, Maple can draw the following kinds of graphs:
1) The graph of areal valued function of onereal variable.
2) The graph of a parametric curve in the plane
(that is, the graph of a 2-dimensional vector valued function of onereal variable).
3) The graph of avector field in the plane
(that is, the graph of a 2-dimensional vector valued function of two real variables).
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4) The graph of an equation in two real variables.

In three dimensions, Maple can draw the following kinds of graphs:
5) The graph of areal valued function of two real variables.
6) The graph of a parametric curve in 3-dimensional space
(that is, the graph of a 3-dimensional vector valued function of onereal variable).
7) The graph of a parametric surface in 3-dimensional space
(that is, the graph of a 3-dimensional vector valued function of two real variables).
8) The graph of avector field in 3-dimensional space
(that is, the graph of a 3-dimensional vector valued function of three real variables).
9) The graph of an equation in three real variables.
Notice that the list includes two kinds of equations and seven kinds of functions. Before going into
the details of drawing these kinds of graphs with Maple, we should look at an example of each one
of them. But before doing even that, let us go in to more detail about how we are going to classify
different kinds of graphs
[ >

We will begin our classification of graphs by reviewing exactly what we mean by the "graph of an
equation” and the "graph of afunction". Then, by looking carefully at the definition of a graph of a
function, we will see that functions can be classified in a certain way. Maple uses this classification
of functions to organize its graphing commands, so understanding Maple's graphing commands boils
down to understanding how we can classify functions. This classification of functions can also help
you to understand other ideas in mathematics, for example, al the different kinds of derivatives that
you learned about in calculus (e.g., ordinary, partial, tangent vector, gradient vector, Jacobian).

Recall that an equation is made up of an equal sign with an expression on either side of it. Equations
ask a question; does the left hand side have the same value as the right hand side? If an equation has
unassigned variablesin it, then we can ask which values of the unassigned variables make the
equation true (that is, what values of the variables solve the equation). The graph of an equation is
aplot of those values for the unassigned variables that make the equation true. If the equation isan
equation in one variable, then its graph is made up of pointsin thereal line (which is not visually
interesting, and Maple does not even have a command to "draw" such agraph). If the equation is an
equation in two variables, then its graph is made up of pointsin the plane and the graph is usually,
but not always, acurve in the plane. If the equation is an equation in three variables, then itsgraph is
made up of pointsin 3-dimensional space and the graph is usually, but not always, atwo
dimensional surface. If the equation has four (or more) variables, then its graph is made up of points
in four (or more) dimensional "space”; thisis something we cannot easily visualize and Maple
cannot draw (at least not directly), but it isimportant to realize that the graph doesin fact exist.

[ >

Recall that a function is made of three things, a set of inputs (domain), a set of outputs (codomain),
and arule for associating one output to each of the inputs. The graph of a functionisa
visualization of the relationship between the inputs and outputs of the function. Since afunctionis
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made of three things, so isits graph. The graph has to have a visualization of the input set, a
visualization of the output set, and a visualization of the rule. If afunction has an m-dimensional
input and an n-dimensional output, then the graph of the function isaplot in (m + n)-dimensional
space with the m-dimensional input axes perpendicular to the n-dimensional output axes and a point
plotted for every combination of an input with its output. Thisis abit cumbersome to describe in
words. The most important point to remember is that the graph of afunction is drawn in a space
whose dimension is the sum of the dimensions of the inputs and the outputs. We sometimes refer to
thisas an input vs. output kind of graph.

For the purpose of drawing graphs with Maple, we will consider three kinds of sets of inputs and
outputs. An input or output set will be either the 1-dimensional real line, the 2-dimensional plane, or
3-dimensional space. That gives us nine kinds of functions to worry about, i.e., all possible
combinations of the three kinds of input sets with the three kinds of output sets. But for some of
these kinds of functions, trying to draw its graph creates a problem. If mand n are the dimensions of
the inputs and the outputs and m + n is more than three, then how do we draw the graph? This
problem comes up for six of the nine possible kinds of functions we have to worry about (which
ones are they?). We solve this problem by considering two other kinds of graphs for afunction
besides the graph which plots inputs vs. outputs.

One of these other kinds of graphs, a parametric graph, visualizes afunction by plotting only the
outputs of the function. This type of graph will be used for three kinds of functions, functions from
the line to the plane, functions from the line to space, and functions from the plane to space. Notice
that for two of these kinds of functions, an input vs. output kind of graph is not possible (why?). But
for functions from the line to the plane, while an input vs. output graph is possible, it turns out that a
parametric graph has traditionally been more useful.

The other kind of graph that we will consider isavector field. A vector field iskind of aninput vs.
output graph, but the input axes are not shown perpendicular to the output axes. Instead the inputs
and the outputs are draw on the same set of axes. This only works when the function has the same
number of inputs as outputs. So we draw vector fields for functions from the plane to the plane
(2-dimensional vector fields) and for functions from space to space (3-dimensional vector fields). (It
is possible to draw a 1-dimensional vector field, but Maple does not have acommand for this.)

If you have been following along very carefully, you know that there are still two kinds of functions
that we have not considered. Functions from space to the line (real valued functions of three real
variables) and from space to the plane (2-dimensional vector valued functions of three real
variables) do not have any practical way of being visualized and Maple does not have any
commands for visualizing them, so we will not consider these two cases any further.

So we end up with seven kinds of functionsto graph. Two of these kinds of functions will have

input vs. output graphs and will require two different Maple commands, pl ot and pl ot 3d. Three
kinds of functions will have parametric graphs and will require three different Maple commands,
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pl ot ,spacecur ve, and pl ot 3d. And two kinds of functions will be graphed as vector fields
which will require two Maple commands, f i el dpl ot andfi el dpl ot 3d. If we add in the two
kinds of graphs of equations, equations in two variables and equations in three variables, which
require two more Maple commands, i npl i ci t pl ot andi nplicitpl ot 3d, thenwehavea
total of nine kinds of graphs and Maple has seven different commands for drawing these nine kinds
of graphs!

Now that we have briefly reviewed the idea of graphing functions and equations, let uslook at an
example of each of the nine kinds of graphs that we have mentioned. Each kind of graph will turn
out to have its own Maple syntax. Without the classification we made above, all these different
commands and syntaxes can become pretty confusing. Hopefully, understanding the kind of graph
that we want to draw will help us to remember the kind of command to use.

First the four kinds of two dimensional graphs. For each of these graphs, be sure to click on the
graph and then play with some of the buttons from the graphics context bar.

1) The graph of areal valued function of onereal variable. These are the functions that you are most
familiar with from the first two semesters of calculus. These are also the most common example of
an input vs output kind of graph.

[ > plot( x+2*sin(x), x=-10..10 );

[ >

2) The graph of a parametric curve in the plane (that is, the graph of a 2-dimensional vector valued
function of one real variable). These come up in second semester calculus and also in physics. They
represent the path of motion of something moving in the plane. Thisis an example of where the
parametric graph (output only graph) is more useful than the input-output graph of the function
(which could be drawn; why?).

[> plot( [t*sin(t), t*cos(t), t=0..3*Pi] );

Notice that the two formulas (why are there two?) are put in alist along with their range. It isthe
fact that the range is inside the list that makes this a parametric graph and not a graph of two
functions. Try moving the range outside of the list and see what happens (do not forget to put a

comma between the list and the range).
[ >

3) The graph of avector field in the plane (that is, the graph of a 2-dimensional vector valued
function of two real variables). These functions come up in adifferential equations course and also
in avector calculus course. In those settings a 2-dimensional vector valued function of two variables
isvisualized as avector field. Maple has a special command for graphing a vector field. Notice that
avector field is neither an input-output nor a parametric type of graph.

> plots[fieldplot]( [y/sqgrt(x"2+y*2), x/sqrt(x"2+y”"2)], x=-5..5,
{ y=-5..5);
[ >
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4) The graph of an equation in two real variables. The simplest examples of these are the equations
for the conic sections (i.e., hyperbola, parabola, ellipse). Here is a more complicated example of an
equation and it graph.

[ > plots[inplicitplot]( x"3+y"3-5*x*y=1/8, x=-3..3, y=-3..3);

[ >

In three dimensions, Maple can draw the following five kinds of graphs. For each of these graphs, be
sureto click on the graph and try rotating it. Also, play with all the buttons on the graphics context
bar.

5) The graph of area valued function of two real variables. These are the functions that are first
studied in third semester calculus. These are aso input vs. output graphs.

[ > plot3d( x"2+y"2, x=-2..2, y=-2..2);

[ >

6) The graph of a parametric curve in 3-dimensional space (that is, the graph of a 3-dimensional
vector valued function of one real variable). These come up in third semester calculusand alsoin
physics. They represent the path of motion of something moving in space. Thisis another example
of afunction where the parametric graph is more useful than the graph of the function (the graph of
the function would need four dimensions anyway).

[ > plots[spacecurve]( [t*sin(t), t*cos(t), t], t=0..9*Pi );

[ >

7) The graph of a parametric surface in 3-dimensional space (that is, the graph of a 3-dimensional
vector valued function of two real variables). These come up at the end of third semester calculus
and in vector calculus courses. (How many dimensions would the input-output graph of one of these
functions need?)

{ > plot3d( [(2+sin(v))*cos(u), (2+sin(v))*sin(u), u+cos(Vv)],

> u=-2*Pi .. 2*Pi, v=-2*Pi..2*Pi );
Try changing the brackets (| and ] ) to braces ({ and } ). Can you explain the resulting graph?
[ >

8) The graph of avector field in 3-dimensional space (that is, the graph of a 3-dimensional vector
valued function of three real variables). These functions come up in differential equations and vector
calculus courses. In those settings a 3-dimensional vector valued function of three variablesis
visualized as a vector field. Maple has a special command for graphing a vector field in
3-dimensional space. Notice again that a vector field is neither an input-output nor a parametric type
of graph.

> plots[fieldplot3d]( [2*x,2*y,1], x=-1..1, y=-1..1, z=-1..1,
{> grid=[5,5,5] );
[ >

9) The graph of an equation in three real variables. The simplest examples of these are the quadric
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surfaces that are studied in third semester calculus. But here is afar more complicated example.
> plots[inplicitplot3d]( x"3+y"3+z"3+1 = (x+y+z+1)"3,

{> X=-2..2, y=-2..2, z2=-2..2);

[ >

Finally, notice two things. First, the pl ot and pl ot 3d command each handle two kinds of graphs
(which are they?). That is why there are seven Maple commands for drawing nine kinds of graphs.
Second, the other five of these seven Maple commands are contained in the pl ot s package. We
could load the pl ot s package at this time and save ourselves some typing later in this worksheet,
but we will not do that. Instead, we will always use the long name for these commands. This has two
advantages. Firgt, it helps to remind us that these commands are from the pl ot s package and
second, all the commands in this worksheet will always work, regardless of where in the worksheet

you might jump in and start working from.
[ >

Exercise: Part () For each of the seven kinds of functions described above, describe what kind of
derivative the type of function has. Give your answersin terms of ideas from calculus, not in terms
of Maple.

Part (b) For each of the seven kinds of functions described above, explain how you might integrate a
function of each type. Again, give your answersin terms of ideas from calculus, not in terms of
Maple.

Part (¢) What about the two kinds of equations? Can you differentiate an equation? Can you
integrate an equation?
[ >

L[>

=17.3. Graphs of functions of one variable

Maple's most basic graphing command is pl ot . Thiscommand draws graphs of real valued
functions of onereal variable. We graph such functions by giving pl ot the function and arange for
the independent variable. Here is an example.

[ > plot(sin(x)/x, x=-5*Pi..5*Pi);

When pl ot drawsthe graph, it gives the horizontal axis the range we specified in the range for the
independent variable. For the vertical axis, pl ot decidesfor itself what is an appropriate range.
Usually the vertical range is from the minimum to the maximum of the function (asin the above
graph). This can sometimes cause a graph to be a bit strange. For example, the next graph seemsto
be showing a function that has the horizontal axis as a horizontal asymptote. But ook very carefully
at the vertical axis. The vertical rangeisfrom 2 to 3. The piece of the vertical axisfromOto 2 is
missing!

[ > plot(2+exp(-x"2), x=-10..10);
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If we want to, we can give pl ot arange for the dependent variable, instead of letting pl ot
determine the vertical range itself. The next command fixes the ambiguity of the last graph by
specifying a vertical range. Notice that we now see very clearly that the horizontal axisis not the
horizontal asymptote for this function.

[ > pl ot (2+exp(-x"2), x=-10..10, O0..3);

[ >

Using arange for the dependent variable is especially useful when graphing a function that has a
vertical asymptote. In the next graph, pl ot tries by default to accommodate in the graph the full
range of the dependent variable. But this range is infinite, because of the vertical asymptote at x = 1.
So the graph is not very useful.

(> plot(1/(x-1), x=-1..3);

We can fix the graph and get a useful representation of the function by providing arange for the
dependent variable.

[> plot(1/(x-1), x=-1..3, -20..20);

Notice the vertical red lineat x = 1. Thisis not Maple's way of drawing the vertical asymptote. This
vertical lineis an artifact of the way the pl ot command works. We will explain in the next
worksheet why thislineisthere. We can make it go away by using the pl ot option

di scont =t rue.

[>plot(1l/(x-1), x=-1..3, -20..20, discont=true, color=red);

[ >

When using the pl ot command, it isimportant to make a distinction between the range and the
scale of an axis. The range of an axisiswhat we have been discussing in the last few examples. It is
the part of the number line displayed on the axis. The scale of an axis is how much actual lengthis
assigned to one unit of the axis. Here is an example.

[ > plot(sin(x)/x, x=-3*Pi..3*Pi);

In this last graph, the range of the horizontal axisisfrom - 3 p to 3 p (about - 9.425 to 9.425). The
range of the vertical axisisfrom - 0.2 to 1. So the range of the horizontal axisis much more than
the range of the vertical axis. On the other hand, the scale of the horizontal axisis much less than the
scale of the vertical axis. Each unit on the horizontal axis (say from 0 to 1 on the horizontal axis) is
much shorter in length than a unit on the vertical axis. The pl ot command did not use the same
scales on the two axes. In general, once the ranges of the two axes have been determined, the pl ot
command will choose scales for each axis so that the final graph is "well proportioned”. The scales
are usually chosen so that the graph isroughly asquare. It is possible to force the pl ot command to
use the same scale on both of the axesby usingthescal i ng=const r ai ned optionto p! ot .
Here isthe last graph redrawn with the same scales on both axes.

[ > plot(sin(x)/x, x=-3*Pi..3*Pi, scaling=constrained);

If you compare the last two graphs, the horizontal scale is about the same in both graphs. It was the
vertical scale that was modified in the last graph. Sometimesthescal i ng=const r ai ned option
hel ps the appearance of a graph and often it does not. A quick way to see the difference between
constrained and unconstrained scaling isto click on agraph and look at the context bar at the top of
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the Maple window. Y ou will see a button on the context bar labelled 1:1. This button switches the
constrained scaling on and off. Try it on the last graph.
[ >

When graphing real valued functions of one variable, it isimportant to realize that for many
functions, no one graph can tell us everything we may need to know about the function. So the most
important skill to develop when using the pl ot command is modifying the ranges on the horizontal
and vertical axes to show different pieces of information about a function. Let us ook at some
examples and exercises about manipulating the ranges of a graph.

Consider the following rational function and afew of its graphs. Each graph will tell us something
different about this function.
[>f = (1-x"2)/ (x-2);
The following graph from minusinfinity to infinity tells us that the function has a vertical
asymptote, two x-intercepts, and that the graph goes to minus infinity as x goesto plusinfinity and it
goesto plusinfinity asx goes to minusinfinity.
(> plot(f, x=-infinity..infinity);
Now notice that the next graph tells us a bit more and a bit less. This graph is over avery large
domain. It tells us exactly how the graph goes to plus and minus infinity. The graph is skew
asymptotic to the liney = - x. But this graph obscures the fact that the function has two zeros, and
even the vertical asymptote isabit vague.
[ > plot((1-x"2)/(x-2), x=-100..100, -100..100);
The next graph allows us to see where the x-intercepts are and to approximate the local minimum
between these intercepts.
[> plot((1-x"2)/(x-2), x=-1.1..1.1);
And the next graph gives us a good approximation of the local maximum to the right of the vertical
asymptote.
[ > plot((1-x*2)/(x-2), x=2..8, -10..-7);
It would be difficult for any one graph to convey all of the information that the above graphs show.
After sometrial and error, the following graph shows quite a bit about the function, except for
providing good approximations of the x-intercepts and the local maximum and minimum.

> plot((1-x"2)/(x-2), x=-10..10, -15..15, discont=true,
{ col or=red);

[ >

Exercise: Consider the following function.
X a0 0
- CoOg— =
Xx+1 X 9
Part (a) Try to get a sense of what the graph of this function looks like.
[ >

Part (b) Use agraph to find the most negative and the most positive x-intercepts for this function.
(Hint: The positive answer is quite large.)
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[ >

Part (¢) How many x-intercepts does the graph of this function have between 1/10 and 10?

[ >

Part (d) Use a graph to find the most negative local maximum and minimums for this function.

[ >

Note: The function in this problem comes up in an interesting "real world" calculus problem. See
Calculus with Maple, by Frank Hagan and Jack Cohen, and the chapter called "The Asteroid
Problem".

[ >

Exercise: Find ranges for the pl ot command so that the graph of cos(x) looks like
a) ahorizontal line,

[ >

b) avertical line,

[ >

c) a45 degreeline.

[ >

Then do the same with the graph of tan(x).

[ >

All inal, thepl ot command isnot all that hard to use. For the most part, one learns to use it by
looking at examples. We gave alot of examples of its usein the first worksheet. In the rest of this
section we look at examples of afew more ways of using pl ot that were not shown in the first
worksheet.

When we use the pl ot command to graph several functions at the same time, we cannot give each
function its own domain. For example, in the following graph, suppose we only want to graph the
part of the parabolathat is contained inside the semicircle.

(> plot([x"2, sqgrt(1-x"2)], x=-1..1, scaling=constrained);

To do this, we need to draw graphs for the parabola and semicircle separately and then combine the
two graphs together using the di spl ay command from the pl ot s package. First let us draw the
semicircle.

[> plot(sqrt(1-x72), x=-1..1, col or=green);

Now let us give this graph aname for later reference.

[> plotl := %

Notice how, when we gave the graph a name, Maple returned alarge amount of data. This datais
Maple'sinternal description of the graph (it'sa PLOT data structure). In another worksheet we will
say quite a bit about these PLOT data structures but right now we are not very interested in seeing
all of this data. So for now, whenever we want to name a graph we will use a colon at the end of the
assignment command (instead of a semicolon) to suppress the printing of this data. (A quick way to
make all of that output go away isto immediately type Ctrl-Z and then skip down to the next
command.)
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Now let us solve for the two intersection points of the parabola with the semicircle. First the
negative intersection point.

[ > a := fsolve(x"2=sqgrt(1-x"2), x, -1..0);

And now solve for the positive intersection point.

[> Db := fsolve(x*2=sqgrt(1-x"2), x, 0..1);

Now graph the parabola between these two intersection points.

[ > plot(x"2, x=a..b, color=blue);

Now give thislast graph a name (notice the colon at the end of the command).

(> plot2 := %

Now we can combine our two graphs using the di spl ay command.

[ > plots[display]([plotl, plot2], scaling=constrained);
[ >

Here is an interesting way to use pl ot together with the di spl ay command. First, we need to
create a specia kind of variable, an array.
[ > graphs := array(1..2,1..2);
Now let us draw four graphs and use the array variable to name them (recall that we discussed
indexed names like these in the worksheet about variables and names).
> graphs[ 1, 1] pl ot (exp(-x"2)*sin(Pi*x"3), x=-2..2,

col or =bl ue):
> graphs[ 1, 2]

pl ot (exp(-x"2), x=-2..2, color=red):

> graphs[2,1] := plot(-exp(-x"2), x=-2..2, color=green):

> graphs[2,2] := plot([exp(-x"2)*sin(Pi*x"3), exp(-x"2),
-exp(-x"2)],

> x=-2..2, color=[blue,red, green]):

Now combine all four graphsinto a two by two array of pictures.

[ > pl ots[display] (graphs);

It isthe fact that our four graphs are named by a single array variable that tellsdi spl ay to draw
them in an array kind of format instead of superimposing all four of them on one set of axes.

[ >

So far we have drawn all of our graphs of real valued functions of one variable with the independent
variable running along the horizontal axis and the dependent variable along the vertical axis. Of
course, thisis a pretty common way to draw graphs but it is not the only way. There are times when
it is more convenient to draw a graph the other way, with the independent variable along the vertical
axis. However, the pl ot command does not make it easy to graph areal valued function of one
variable thisway. Later in this worksheet, and also in the next worksheet, we will see several ways
to graph a function with its independent variable along the vertical axis. The main point that we
want to make here though is that the pl ot command gives one of the directionsin the cartesian
coordinate system a preferred status. The preferred direction is the horizontal direction and its
preferred statusisthat thisis the direction of the axis for the independent variable when graphing a
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function. We commonly label the horizontal axis using x and the vertical axisusing y. Using these
labels, the default way for pl ot to graph afunction f using cartesian coordinatesisasy = f(x) (and
pl ot will not graph x =f(y) ). Now let us consider some other coordinate systems on the plane.

The pl ot command can use severa other coordinates systems on the plane when it graphs areal
valued function of one variable. For every one of these non-cartesian coordinates systems, thereisa
preferred "direction” that is (somewhat arbitrarily) used for the independent variable of the function.
The most common of these non-cartesian coordinate systemsis polar coordinates. Here is how we
graph the function f(x) = sin(x) using polar coordinates in the plane.

[ > plot(sin(x), x=0..Pi, coords=polar, scaling=constrained);

Here is acommand that will draw a picture of "graph paper” in polar coordinates.

[ > plots[coordpl ot] (pol ar, scaling=constrained);

In this coordinate system, the pl ot command uses the circular "direction” as the preferred direction
for the independent variable and the radial "direction” is used for the dependent variable. We
commonly label the circular direction with q (the angle) and we label the radial direction with r (the
radius). Using these |abels, the default way for pl ot to graph afunction using polar coordinatesis
asr =f(q). Thelabelsq and r may be common for polar coordinates but there is nothing that says
that we must use them and in fact the pl ot command in polar coordinates does not in any way
prefer these labels. Here is a graph of the function cos(2 u) in polar coordinates. Notice that here the
pl ot command isusing u asthe label for the circular direction.

[ > plot(cos(2*u), u=0..Pi, coords=polar, scaling=constrained);

When graphing real valued functions of one variable using polar coordinates, the pl ot command
will not graph a function with the radial direction as the independent variable. That is, if we use the
common labels for the polar coordinates, pl ot will not graph g = f(r), even though there is nothing
to prevent us from defining such a graph. (In the next section, and also in the next worksheet, we
will see atrick that does draw such agraph.)

[ >

Exer cise: One of the non-cartesian coordinates systemsthat pl ot can use on the planeis caled
hyperbolic coordinates. Here is a picture of some "graph paper” in this coordinate system.

[ > plots[coordpl ot] (hyperbolic, scaling=constrained);

Figure out which of the coordinate directions (the blue or the red one) is the preferred direction that
is used as the independent variable when pl ot graphs areal valued function of one variable using
the hyperbolic coordinate system.

[ >

Exercise: Here are examples of "graph paper” for two more coordinate systems.

[ > pl ots[coordpl ot] (bipolar, scaling=constrained);

[ > plots[coordpl ot] (Il ogcosh, scaling=constrained);

The following help page lists 14 non-cartesian coordinate systems for the plane.

[ > ?pl ot, coords

Draw graph paper for several more of these coordinates systems. Use the online help to read about
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thecoor dpl ot command and try to modify some of these pieces of graph paper. Pick a coordinate
systems and try to figure out which of its two coordinatesis used as the independent variable by the
pl ot command.

[ >

Exercise: The following command uses polar coordinates to graph acircle.

[ > plot(sin(t), t=0..Pi, coords=polar, scaling=constrained);
If we change the sin to a cosin the last command, we get the circle rotated 90 degrees clockwise.
[ > plot(cos(t), t=0..Pi, coords=pol ar, scaling=constrained);
The following command uses polar coordinates to graph a curve called a cochleoid.

> plot(sin(t)/t, t=-6*Pi..6*Pi, coords=polar,

| scal i ng=constrai ned);

If we change the sin to a cos in the last command, the graph is not rotated 90 degrees.

> plot(cos(t)/t, t=-6*Pi..16*Pi, coords=pol ar,

| scal i ng=constrai ned);

Find away to rotate the cochleoid 90 degrees clockwise.

[ >

>
=1 7.4. Graphs of parametric curves

We have two kinds of parametric curves, curvesin two dimensiona space and curvesin three
dimensional space. Curvesin two dimensiona space are drawn using a specia case of the pl ot
command. Curvesin three dimensional space have the special command, spacecur ve, from the
pl ot s package.

A curvein two dimensional space is described by two real valued functions, the component
functions. Here is a simple example.
[ > plot([cos(t), sin(t), t=0..2*Pi]);
This should have given us acircle. The extra parameter in the next example makes the graph into a
circle.
(> plot([cos(t), sin(t), t=0..2*Pi], scaling=constrained);
Notice that it is the presence inside the brackets of the range for the independent variable that
distinguishes this command from the command to draw the graph of two real valued functions. In
the next example, we move the range outside the brackets.
[ > plot([cos(t), sin(t)], t=0..2*Pi, scaling=constrained);
Here is how we graph two parametric curves (so we have four real valued functionsin two pairs).
Notice that each parametric curve has its own range.

> plot([ [3*cos(t), 1/2*sin(t), t=0..2*Pi],

> [cos(t)*sin(3*t), abs(t), t=-Pi..Pi] ],
> axes=none) ;
[ >
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In the first section of this worksheet, we said that a curve in the plane is defined by a single function,
a 2-dimensional vector valued function of asingle variable. Hereis away to use a Maple function to
emphasize that a curve isreally defined by a single (vector valued) function. The function

f(t) = (tcos(t), tsin(t)) definesaspiral curve. Here is the Maple definition of this function.

[>f =1t -> (t*cos(t), t*sin(t));

Here is how we can use the function f with the pl ot command to graph a spiral curve.

[> plot( [f(t), t=0..4*Pi] );

This example shows that a curve isreally defined by a single function. The two expressions that we
used in each of the previous curves are really the component functions of the single (vector valued)
function that defines each curve. It is usually more convenient to work with two expressions than
with a single vector valued function, so for the rest of this section we will use expressions to

describe parametric curves.
[ >

A curvein three dimensional space is described by three real valued (component) functions. Here is
an example of acurve in the shape of atrefoil knot. Be sure to click on the graph and use the mouse
to rotate it.

> pl ot s[ spacecurve] ([ (2+cos(3*t/2))*cos(t),

> (2+cos(3*t/2))*sin(t),
> sin(3*t/2)], t=0..4*Pi
> )

With the spacecur ve command, the range of the independent variable can be either inside or
outside of the brackets that enclose the three component functions. In the next example, therangeis
inside the brackets.

> pl ot s[ spacecurve] ([ (2+cos(3*t/2))*cos(t),

> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..4*Pi]
> )

The range for a curve must be inside the brackets if we want to draw more than one curve at atime.
(Notice how each curve hasits own range which can be different from the other curves.)

> pl ot s[ spacecurve] ({[(2+cos(3*t/2))*cos(t),

> (2+cos(3*t/2))*sin(t),

> sin(3*t/2), t=0..4*Pi],

> [ 5*cos(t), 5*sin(t), 2*cos(6*t), t=0..2*Pi]}
> )

Notice how, with the spacecur ve command, multiple space curves are placed inside of a pair of

braces, not brackets likein the pl ot command.
[ >

Exercise: Redraw one of the last space curves using a single (vector valued) Maple function to
define the curve.
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[ >

Exer cise: Suppose we have a 2-dimensional vector valued function of one real variable and suppose
that instead of its parametric graph we want its input-output graph. There is an easy way to draw the
input-output graph. What isit?

(Hint: You will need to use the spacecur ve command.)

[ >

Exercise: Try to explain why the following graph has the shape that it does. (Hint: Look at the
graphs of the component functions.)
> plot([sin(t+sin(t)), cos(t+cos(t)), t=0..2*Pi],
{ scal i ng=constrai ned);
[ >

Recall that in the previous section we mentioned that the pl ot command, when graphing a
function, gives the horizontal axisin cartesian coordinates the preferred status of being the axis for
the independent variable. When graphing parametric equations, the pl ot command does not give
either direction a preferred status. It does however always treat the first expression after the opening
bracket as the horizontal component and the second expression as the vertical component. We can
use this to get agraph of areal valued function of one variable with the vertical axis as the axis for
the independent variable. That is, using the common labels x and y for the horizontal and vertical
axes, we can use a parametric curve to draw a graph of x = f(y). For example, here is how we can
graph x = sin(y) (as a parametric curve).

(> plot([sin(y), y, y=0..2*Pi], scaling=constrained);

Here is the analogous way to graph y = sin(x) as a parametric curve.

[> plot([x, sin(x), x=0..2*Pi], scaling=constrained);

Here is agraph of a quadratic function with the independent variable aong the vertical axis (but
notice that we are using the label x for the vertical axis here).

[ > plot([3*x"2+5*x-4, X, x=-5..3]);

[ >

Exer cise: Use parametric curves to graph the function x=y* - 5y - 1 and itstangent line at the
pointy = 1.

[ >

After you have a good graph of the function and its tangent line, try zooming in on the point of
tangency.

[ >

The pl ot command can also draw parametric curves in non-cartesian coordinate systems. For each
coordinate system, the pl ot command has to make an arbitrary choice of which "direction" of the
coordinate system has to come first after the opening bracket. In the case of the polar coordinate
system, the first expression after the opening bracket is the radial coordinate and the second
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expression isthe angle. Here is an example showing this. We graph r = cos(2 q) using parametric
equations (compare this with the graph from the last section of the same function).

> plot([cos(2*t), t, t=0..Pi], coords=pol ar,
{ scal i ng=const rai ned) ;
Notice a subtle difference in how pl ot handles the cartesian and polar coordinate systems. In the
cartesian coordinate system the order of the parametric expressionsinside the bracketsis
independent variable then dependent variable. For the polar coordinate system it is dependent
variable then independent variable (where, by independent and dependent variable, we mean with
respect to how pl ot treats them when graphing a function instead of parametric equations).

[ >

Exercise: Inthelast pl ot command, reproduced at the next prompt, what graph would you expect
to get if you removed the option coor ds=pol ar from the command? Does the graph change from
r=cos(2q)toy=-cos(2x)?

> plot([cos(2*t), t, t=0..Pi], coords=pol ar,
{ scal i ng=constrai ned);

[ >

Exercise: Thespacecur ve command can graph parametric curves using cylindrical and spherical
coordinates systems (among many others). For each of these two coordinate systems, figure out what

the order of the parametric expressionsisinside the brackets.
[ >

Knowing how pl ot handles parametric equations in polar coordinates, we can now draw agraphin
polar coordinates of afunction of theform q=1f(r). Hereisagraph of g=sin(r).

[ > plot([r, sin(r), r=0..2*Pi], coords=pol ar);

[ >

Exercise: Study the last graph carefully. Explain why it has the shape that it does. Explain what the
following graph is demonstrating.
> plot([ [r,sin(r),r=0..2*Pi], [t,1,t=0..3], [t,-1,t=0..6] ],
{ > coords=pol ar);
[ >

Exercise: Use polar coordinates to draw a graph of awedge from acircle.

[ >

At this point it isworth emphasizing how versatile parametric curves are. Notice in the last several
examples how many kinds of graphs we have been able to draw using parametric equations. Besides
drawing curves that are not the graph of any function, we have also used parametric curves to draw
all four of the kinds of graphs that can be made from a function using cartesian and polar
coordinates. For example, the following four commands use parametric equations to draw graphs of
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y=1(x),x=1(y), r =f(q), and q = f(r) respectively, wheref is the squaring function.

[> plot( [x, x*2, x=-2..2] );

[> plot( [y*2, y, y=-2..2] );

[ > plot( [theta”2, theta, theta=-2..2], coords=polar );

(> plot( [r, r*2, r=-2..2], coords=polar );

Using parametric equations to graph functions is an important and useful technique. Make sure you

understand exactly how the last four examples work. We will return to this idea of using parametric
equations to graph functionsin the section about parametric surfaces. In that section we will see that
this technique lets us work around a couple of bugsin Maple.

[ >

Exercise: Try extending the range of the parameter for each of the last two polar graphs. Study these

two graphs until they make sense to you.
[ >

We end this section with several subsections. Each subsection explores some interesting use of
parametric equations.

=l741. Animating curves

A fun way to practice working with parametric curvesisto work with animations. It isfairly
easy to create interesting animations out of parametric curves. The next several exercises and
examples use animations to both give you an idea of what can be done and to also get you to
think some more about parametric curves.

Exercise: The following animation (from the first worksheet) uses parametric equationsin
cartesian coordinates. Convert the animation to use the graph in polar coordinates of areal
valued function of asingle variable.

> plots[animate] ([ (1+sin(t)*.5*cos(5*s))*cos(s),
> (1+sin(t)*.5*cos(5*s))*sin(s), s=0..2*Pi],
> t=0..2*Pi, scaling=constrained,
nunpoi nt s=100,
> col or =bl ue, axes=none, franes=50);

(Recall that this parametric curve defines a"circle” whose radius ( given by the term
1+sin(t)*.5*cos(5*s) ) changesboth with angle (the s variable) and with time (the t
variable)).

[ >

Exercise: The next animation (also from the first worksheet) is based on the previous one. Some
of the parameters have been changed and two circles are being morphed simultaneously. Can
you convert this animation into one that uses graphs in polar coordinates of two real valued
functions of asingle variable?

> plots[animate] ({[ (1+2*sin(t)*cos(6*s))*cos(s),

> (1+2*sin(t)*cos(6*s))*sin(s), s=0..2*Pi],
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> [(1+2*sin(t)*cos(6*s))*cos(s),
> (1-2*sin(t)*cos(6*s))*sin(s), s=0..2*Pi ]},
> t=0..2*Pi, scaling=constrained,
nunpoi nt s=150,
> col or=bl ue, axes=none, frames=100 );
[ >

Exercise: Create an animation of aline segment of length 2 p rolling itself up into acircle of
radius one.

[ >

Maple has a special command in the pl ot s package for animating curves in the plane,

ani mat ecur ve. Thiscommand animates, in a sense, the drawing of acurve. Hereisasimple

example. (When you execute this command, it seems to produce an empty graph. Click on the

graph and you will get an animation context bar at the top of the Maple window. Click on the

play button to start the animation.)

[ > plots[ani matecurve] (sin(x), x=0..2*Pi);

L et us see how we can use this command to create an informative animation of a parametric

curve.

> curves := array(1l..3):

> curves[1l] := plots[animatecurve] (cos(x), x=0..2*Pi,
frames=50):

> curves|[ 2]
frames=50):

> curves| 3] pl ot s[ ani mat ecurve] ([ cos(x), sin(x), x=0..2*Pi],

> frames=50, col or=blue):

| > plots[display](curves);

The two graphs on the left are the component functions of the parametric curve on the right. It

may be easier to follow the combined animationsif you slow them down or even "single step”

through the frames (using the buttons on the context bar). The animation looks better if you

click on the graph and then use the mouse to enlarge it as much as possible (using the corners of

the graph, much like you would enlarge any other window). Unfortunately, if you use either the

context bar or the context menu to make the graphs have constrained scaling, then the graphs

shrink in size by quite a bit. Y ou can still stretch them out (alot) to make their size reasonable

again.

[ >

pl ot s[ ani mat ecurve] (sin(x), x=0..2*Pi,

Theani mat ecur ve command does not work with curves in three dimensional space. And the
ani mat e3d command only works with surfaces in three dimensions so it also cannot animate
acurve in space. So how can we create an animation, like that of ani mat ecur ve, for a
parametric curve in space?
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L et us create an ani mation of the parameterization of the trefoil knot
a8t

X= gZ + co%———cos(t) y= gz + co%———sm(t) z= smg—:
We will do the animation two ways. The first way will have one end of the parameterization
fixed and the other end of the parameterization sweeping over the curve until it gets back to the
fixed starting point and closes the curve. The second animation will have the two endpoints of
the parameterization moving away from the fixed starting point and sweeping out the curve until
the two moving points meet and close the curve at a point "opposite” to the fixed starting point.

First, define a graph valued function that we will call f r anes. For any value of this function's
input variable, the function returns a graph of a space curve.

> franes := s -> plots[spacecurve] ([ (2+cos(3*t/2))*cos(t),
> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..s]);

Hereis an example of evaluating the function f r anes. This evaluation draws half of the trefoil
knot.

[ > frames(2*Pi);

Now use the seq command and the f r anes function to create a sequence of 50 graphs of
pieces of the trefoil knot. The seq command will evaluate thef r anes function 50 times. Each
call of thef r anmes function will increment the input of f r anes alittle bit and draw a dlightly
longer piece of the trefoil knot. (Notice the colon at the end of this command so that we do not
see the huge amount of datathat it creates.)

[ > seq( frames(4*Pi*i/50), i=1..50):

Now usethe di spl ay3d command with the option i nsequence=t r ue to create an
animation out of the 50 frames that we just computed. (Try rotating the animation asit is
running to see it from different angles. Y ou can slow it down if you wish, or set it to loop
continually.)

[ > plots[display3d]( [, insequence=true);

[ >

Exercise: Copy the three commands that create the animation into a single execution group at

the end of this exercise. Then modify the example so that the new animation will have the two
endpoints of the parameterization moving away from a fixed point and sweeping out the curve
until the two moving points meet and close the curve at a point "opposite” to the fixed starting
point. (This animation will emphasize the symmetry of the curve.)

[ >

Exercise: Thereisabug intheani mat ecur ve command. Let uslook at an example that
brings out this bug. Here is agraph of afunction.

[ > plot(sin(4*x), x=0..2*Pi);

Let us animate this last graph.

[ > plots[ani matecurve] (sin(4*x), x=0..2*Pi);
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Now let us convert the graph of the function from cartesian to polar coordinates.

[ > plot(sin(4*x), x=0..2*Pi, coords=polar);

Now let us convert the animation from cartesian to polar coordinates (which should animate this
last graph).

[ > pl ots[ani matecurve] (sin(4*x), x=0..2*Pi, coords=polar);

What went wrong? What did ani mat ecur ve do? Find away to use ani mat ecur ve to
animate the graph in polar coordinates.

[ >

[ >

ﬂ 7.4.2. Parametric squares

There are two common ways to draw a graph of the circle of radius one (and diameter two)
centered at the origin. We can either graph the equation
ﬁ+f:1
or we can graph the parametric curve
Xx=cos(2pt), y=sin(2pt), O£Ltandt£ 1.

Here are the Maple commands for doing both of these.

> plots[inplicitplot](x*2+y"2=1, x=-1..1, y=-1..1,
{ scal i ng=const rai ned) ;

> plot( [cos(2*Pi*t), sin(2*Pi*t), t=0..1],
{ scal i ng=constrai ned) ;

[ >

There is an interesting equation whose graph is a square centered at the origin with sides of
length two. The equation is
max(| x|, y[) = 1.
Hereisits graph.
{> plots[inplicitplot](max(abs(x),abs(y))=1, x=-1..1, y=-1..1,

> scal i ng=const rai ned) ;
(Notice that the graph has two "clipped” corners. We will see in the next worksheet what causes
thisanomaly.)
[ >

Our goal in this section is to find a parameterization of this curve that is analogous to the
parameterization of the circle, and then show an interesting connection between the equations

*2 +y? =1 and max(| x|, | y|) = 1.

The basic idea behind parameterizing the square is that we need two functions that "act like"
cos(2 pt) andsin(2 p t) but parameterize the square instead of the circle. Recall that cos(2 p t)
provides the horizontal component of the motion in the parameterization of the circle, and
sin(2 p t) provides the vertical component of the motion around the circle. Now think about the
kind of motion that we would want a parameterization of the square to describe. Start the
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parameterization at the point (1,0) (just like for the circle) and assume that the parameterization
will take one unit of time (just like for the circle). The horizontal component of the motion
around the square should sit still at 1 for awhile (how long?), then sweep linearly down from 1
to - 1 (how long should this take?), then sit still at - 1 for awhile (again, how long?), then sweep
linearly up from - 1to 1, and finally, sit still at 1 again for awhile. Meanwhile, the vertical
component of the motion around the square starts out sweeping linearly up from 0 to 1, then
sitting still at 1 for awhile, then sweeping linearly down from 1 to - 1, then holding still at - 1
for awhile, and finally sweeping linearly up from - 1to 0.

Here is a piecewise defined function that implements the horizontal component that we need to
parameterize the square.

>sqg :=t -> piecewse(frac(t) < 1/8, 1,
> frac(t) < 3/8, -8*frac(t)+2,
> frac(t) < 5/8, -1,
> frac(t) < 7/8, 8*frac(t)-6,
> frac(t) < 1, 1);

Here isagraph of sq compared to agraph of cos(2 p t).

[ > plot([sq(t), cos(2*Pi*t)], t=0..1);

Now what about the vertical component? Notice that in the parameterization of the circle, the
horizontal motion isreally the same as the vertical motion, they are just 1/4 of atime unit "out
of phase" with each other. To put it another way, sin(2 p t) isjust cos(2 p t) shifted by 1/4, or
sin(2pt)=cos(2p (t- .25)). Solet usjust do the same thing to define our vertical
component. Hereis aparametric curve defined by sq(t) andsq(t-1/4).

[ > plot([sq(t), sq(t-1/4), t=0..1], scaling=constrained);

Almost, but not quite right. Let uslook at the graphs of our component functions.

[ > plot([sq(t), sqg(t-1/4)], t=0..1);

We see here that there is something wrong with the first part of sq(t - 1/ 4) , the part between
Oand 1/ 8. Thispartof sq(t-1/4) isdefinedby sq(t) witht between- 1/ 8 and 0. Let us
graph sqg from- 1to 1.

(> plot(sqg, -1..1);

Now we can see what iswrong. We failed to make s an even function and define it for
negative numbers. Here is arevised definition of sq that fixes this problem.

>sqg :=t -> piecew se(frac(abs(t)) < 1/8, 1,
> frac(abs(t)) < 3/8, -8*frac(abs(t)) +2,
> frac(abs(t)) < 5/8, -1,
> frac(abs(t)) < 7/8, 8*frac(abs(t))-6,
> frac(abs(t)) < 1, 1);

Now graph our component functions again.

[ > plot([sq(t), sq(t-1/4)], t=-1..1);

Here iswhat they look like compared to the components of the parameterization of the circle.
> plot([sqg(t), cos(2*Pi*t)], t=-1..1);

{> plot([sq(t-1/4), cos(2*Pi*(t-1/4))], t=-1..1);
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[ >

Now use s to parameterize the square in the same way that cos is used to parameterize the
circle.

(> plot([sq(t), sq(t-1/4), t=0..1], scaling=constrained);

Here is the square graphed with the circle.

> plot([ [sq(t), sqg(t-1/4), t=0..1],
> [cos(2*Pi*t), cos(2*Pi*(t-1/4)), t=0..1] ],
> scal i ng=const rai ned) ;
Here isagraph of a number of "concentric” squares.
[ > squares := seq( [i*sq(t), i*sq(t-1/4), t=0..1], i=1..10):
| > plot({squares}, scaling=constrained);
[ >

Exer cise: Parameterize aregular octagon. (Try to parameterize aregular hexagon also.)

[ >

At the beginning of this section we mentioned that there is an interesting connection between

the equations x? + y? = 1 and max(| x|, | y|) = 1. The next three exercises help you to find this
connection.

Exercise: Here is another equation whose graph is a square, but this time the square is rotated to
have its corners on the axes. The equation is| x| + | y| = 1. Hereisits graph. (In the next

worksheet we will find out why this graph is not quite exactly right.)
{> plots[inplicitplot]( abs(x)+abs(y)=1, x=-1..1, y=-1..1,

> scal i ng=constrai ned) ;
Find a parametric representation of this square.
[ >

Exercise: The family of equations| x|a +| y|a =1, for a between 1 and 2, have graphs that are

somewhere between a square and acircle. That is, when a = 1 the graph of the equation isthe

square from the last exercise, and when a = 2 the graph is the circle of radius one centered at the

origin. Here is an example with a between 1 and 2.

> plots[inplicitplot]( abs(x)”1.5+abs(y)”1.5=1, x=-1..1,
y=-1..1,

> scal i ng=const rai ned) ;

Use your parameterization from the previous exercise to create an animation of a square

morphing into acircle.

[ >

Exercise: What happensif you let a belessthan 1, or greater than 2, in the above family of
equations? What happens if a becomes very large? Use your animation from the last exercise to
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watch a grow large.

[ >

What is the connection between the equations x* + y* = 1 and max(| x,| y|) = 1?
[ >

In the rest of this section we try out some interesting modifications of our parameterization of
the square using sq.

Hereis an interesting modification to sq. We will replace the flat "tops" of sq with parabolas.
Thiswill make the new s abit more cosine like.

> new sq :=t -> piecew se(

> frac(abs(t)) < 1/8, 64*(1-c)*frac(t)”2+c,

frac(abs(t)) 3/8, -8*frac(abs(t))+2,

frac(abs(t)) 5/8, -64*(1-c)*(frac(abs(t))-1/2)"2-c,
frac(abs(t)) 7/ 8, 8*frac(abs(t))-6,

> frac(abs(t)) 1, 64*(1-c)*(frac(abs(t))-1)"2+c

L> )

The following equation was used to help define new_sq. This equation solves for the

vV V V
N N NN

coefficients a, b, and c in the general quadratic polynomial a x* + b x + ¢ so that the parabola
goes through the points (-1, 1/8) and (1, 1/8).
> x:=-1/8:
> y: =1/ 8:
> sol ve( {a*x"2+b*x+c=1, a*y”2+b*y+c=1}, {a, b, c});
> X, y :="x", 'y
The parameter ¢ determines the maximum height of the parabolic segments in the graph of
new sq. Hereisagraph of new sq with a specific valuefor c.
[ > c := 5/4;
[ > plot(new sq, -1..1);
Here is how this function compares with cos(2 p t).
[ > plot([new sqg(t), cos(2*Pi*t)], t=-1..1);
Now use new_sq to graph a parametric curve.
> plot([new sqg(t), new sqg(t-1/4), t=0..1],
{ scal i ng=const rai ned) ;
Try afew different values for the parameter c.
[>c := 3/2;
> plot([new sq(t), new sqg(t-1/4), t=0..1],
{ scal i ng=constrai ned) ;
[>c .= 1/2;
[ > plot(new.sq(t), t=-2..2);
> plot([new sqg(t), new sqg(t-1/4), t=0..1],
{ scal i ng=constrai ned) ;
Y ou should try other values of ¢ also.
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[ >

L et us see how we can draw families of these "sgquares’. First, redefinenew sq sothatitis
explicitly afunction of c.
> new sq := (t,c) -> piecew se(
> frac(abs(t)) 1/8, 64*(1l-c)*frac(t)”2+c,
frac(abs(t)) 3/8, -8*frac(abs(t))+2,
frac(abs(t)) 5/8, -64*(1l-c)*(frac(abs(t))-1/2)"2-c,
frac(abs(t)) 7/ 8, 8*frac(abs(t))-6,
> frac(abs(t)) 1, 64*(1-c)*(frac(abs(t))-1)"2+c
L> )
Now create a sequence of parametersfor the pl ot command, each parameter with a different
valuesof ¢, and usetheminapl ot command.
> shapes: =seq(
> [ new sq(t,1/2+i/6), new sq(t-1/4,1/2+i/6), t=0..1],
> i =0..6):
> pl ot ([ shapes], scaling=constrained);
When c is 1, new_sq parameterizes asquare. When c islessthan 1, the "squares’ bulge
inwards toward the center, and when ¢ is greater thanl the "squares’ bulge outwards.

[ >

vV V V
AN NN NN

Hereis another family of these shapes. Thisfamily of graphsis created in aslightly different
way. Herewe usethe di spl ay command, plus we parameterize the color of the curves.
[ > shapes: =seq(

> plot( [new sq(t,1/4+i/10), new sq(t-1/4,1/4+i/10),
t=0..1],

> col or=COLOR(RGB, 0, 0, . 5+i1/40) ),

> i =1..20):

| > plots[display]([shapes], scaling=constrained);
Make thisinto amovie.
[ > pl ots[display]([shapes], scaling=constrained,
| insequence=true);
Make the movie periodic.
[ > shapes : = shapes, seq( shapes[-i], i=1..nops([shapes])):
> pl ots[display]([shapes], scaling=constrained,
I nsequence=true);

>
We can draw avery elegant spiral using new_sq.
{> plot([t*new sq(t, 1/2), t*new sq(t-1/4, 1/2), t=0..4],

> scal i ng=constrai ned) ;

[ >

Page 23



Exercise: Replace the flat tops of sq (or, to put it another way, the parabolic tops of new_sq)
with piecewise linear tops. So instead of being flat topped like sq, or with a curved top like
new_sq, the new function will have a"danted roof" top. Use the new function to draw closed
parametric curves and spiral parametric curves.

[ >

Exercise: Change the definition of new_sq so that it has two parameters, one for setting the
peak of each of the parabolic "tops". (Then the new version of new_sq need no longer be
symmetric about 1/2.) Draw some parametric curves using this new version of new_sq.

[ >

Exercise: Replace the linear "sides" of new_sq with parabolic segments. Then the graph of this
new function will be piecewise parabolic and there will be two parameters in the definition of
the function (or as many as 5 parametersif you do not want to make the parabolic "sides"
symmetric). Draw some parametric families with this new function.

[ >

L[>

=17.4.3. Thet ubepl ot command

Finally, let us consider one last topic about parametric curves. A very nice command in the
pl ot s packageist ubepl ot , which takes a parametric curve in three dimensions and graphs
atube around the curve. So, in a sense, this command allows us to convert a one dimensional
curve in space into atwo dimensional surface. Here is an example of atube formed around the
trefoil knot.
> plots[tubeplot]( [(2+cos(3*t/2))*cos(t),
> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..4*Pi] );
We can change the radius of the tube by using ther adi us optiontot ubepl ot .
> plots[tubeplot]( [(2+cos(3*t/2))*cos(t),
> (2+cos(3*t/2))*sin(t),
> sin(3*t/2), t=0..4*Pi], radius=0.4);
In the next sequence of commands, we "cut away" part of the tube and combine it with a graph
of the trefoil knot to show how the knot runs through the center of the tube.
> gl:=plots[tubeplot]([(2+cos(3*t/2))*cos(t), (2+cos(3*t/2))*sin
(t),
> sin(3*t/2), t=Pi/2..Pi], radius=0.5):
> g2: =plots[tubeplot] ([(2+cos(3*t/2))*cos(t), (2+cos(3*t/2))*sin
(t),
> sin(3*t/2), t=2*Pi..5*Pi /2],
radi us=0.5):
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> g3: =plots[tubeplot] ([(2+cos(3*t/2))*cos(t), (2+cos(3*t/2))*sin
(t),

> sin(3*t/2), t=3*Pi..7*Pi /2],
radi us=0. 5):

> g4: =pl ot s[ spacecurve] ([ (2+cos(3*t/2))*cos(t), (2+cos(3*t/2))*s
in(t),

> sin(3*t/2), t=0..4*Pi]):

| > plots[display](gl,g2,g3,94);

Try changing the curve in the last graph into a (very narrow) tube, so that the shape of the curve

ismore visible.

[ >
The radius of the tube can be give by afunction, so the radius need not be constant along the
whole tube.

> plots[tubeplot]([(2+cos(3*t/2))*cos(t),

> (2+cos(3*t/2))*sin(t),

> sin(3*t/2), t=0..4*Pi],

radi us=. 4+. 3*cos(2*t));
[ >
L[>

=1 7.5. Graphs of functions of two variables

Maple's other basic graphing command is pl ot 3d. Thiscommand draws graphs of real valued
functions of two real variables. We graph such functions by giving pl ot 3d afunction and two
ranges, one for each of the two independent variables. Here is an example. Be sure to click on this
graph with the mouse and try rotating it.

[ > plot3d(cos(2*x)+y"2, x=-3..3, y=-3..3);

When you rotate the graph with the mouse, look at the context bar at the top of the Maple window.
On the | eft edge of the context bar there are two boxes with numbers in them that change as you
rotate the graph. These numbers describe the orientation of the graph. If you rotate agraph into a
position that you think is especialy nice, you can tell the pl ot 3d command to draw the graph with
that position by specifying the orientation numbersto the pl ot 3d command using the

ori ent at i on option. Here isthe function from the last graph but with an orientation specified in
the pl ot 3d command.

[ > plot3d(cos(2*x)+y"2, x=-3..3, y=-3..3, orientation=[135,-90]);
There are many other buttons on the context bar for three dimensiona graphs. Try playing with these
buttons to see what they do.

[ >

A sometimes useful feature of the pl ot 3d command isthe ability to graph in "black and white" by
using theshadi ng=zgr eyscal e option. Graphs that are drawn this way will sometimes print
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better on a black and white laser printer than graphs that are drawn in full color.
[ > plot3d(sin(x)+sin(y/2), x=-6..6, y=-6..6, shadi ng=zgreyscal e);

[ >

Recall that the pl ot command allowed the specification of two ranges, one range for the
independent variable and one range for the dependent variable. The range for the dependent variable
was especially useful for graphing functions that had vertical asymptotes. We might therefore expect
the pl ot 3d command to allow athird range for its dependent variable. But it does not. The

pl ot 3d command always chooses the range for the dependent variable and it automatically takes
care of the fact that afunction might "blow up" somewhere. As an example we will graph the
function 1/(x y). Compare graphing this function with graphing 1/x using the pl ot command.

[ > plot3d(1l/(x*y), x=-3..3, y=-3..3);

[ >

The pl ot 3d command can draw graphs of several functions at the same time. Here is a graph of
two functions. Notice that the two functions must be put inside of a pair of braces (brackets would
mean something else here).

[ > plot3d({x*y-1, x"2+y~2}, x=-10..10, y=-10..10);

[ >

Exercise: Do the two surfacesin the last graph touch each other?
[ >

Here is an example of graphing a function and one of its tangent planes. We do this example using
Maple functions instead of expressions. First define the function.
[>f = (x,y) -> -x"2-y"2;
Now define the point where we want to compute the tangent plane.
[> x0,y0 : = 2, 2;
Now define the function that defines the tangent plane (we use the namet pf for "t angent plane of
™.
r tpf 1= (x,y) -> f(x0,y0) + D1](f)(x0,y0)*(x-x0) +

D[ 2] (f) (x0,y0)*(y-y0);
The next command returns the expression for the tangent plane function, just so that we can see
what it looks like.
[> tpf(x,y);
Now graph the original function and its tangent plane function.
[ > plot3d({f, tpf}, -5..5, -5..5);
The last graph used asingle pl ot 3d command to draw two surfaces. Using asingle pl ot 3d
command to draw multiple surfaces can be convenient, but often we can improve a graph by using
separate pl ot 3d commands for each surface and then combining the graphs using di spl ay.
Using separate pl ot 3d command lets us, for example, give each surface its own domain. The next
execution group improves the last graph by giving the tangent plane a smaller domain.
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> graphl := plot3d(f, -5..5, -5..5):
> graph2 := plot3d(tpf, -2..5, -2..5):
> pl ot s[di spl ay] (graphl, graph2);

[ >

Exercise: Hereis the graph of the function and its tangent plane as expressions. For one thing,
notice how much more quickly this graph is drawn.

[ > plot3d({-x"2-y*2, -8-4*(x-2)-4*(y-2)}, x=-5..5, y=-5..5);

The tangency in this graph is at the point (2,2,-8). Modify the pl ot 3d command to "zoom in" on
the point of tangency until the function and its tangent plane are just barely distinguishable from
each other.

[ >

Exer cise: Choose some other function and some other point and draw a graph of the function and its
tangent plane at the point. Try graphing afunction and several tangent planes at once (using Maple
functions).

[ >

The pl ot 3d command can draw graphs over regions that are not rectangular. This can have quite
an effect on the appearance of the graph of afunction. For example, the following graph of
f(x, y) = x* + y* has arectangular domain.
[ > plot3d(x"2+y"2, x=-4..4, y=-4..4, axes=boxed);
Notice how the graph has a very scalloped top edge. If you look at the graph of this function in most
calculus books, the graph will look much more bowl like than the above graph. The following
command redraws the graph with a circular, instead of rectangular, domain.

> pl ot 3d(x"2+y"2, x=-4..4, y=-sqrt(16-x"2)..sqgrt(16-x"2),
{ axes=boxed) ;
To see the shape of the region that the function is being graphed over, use the mouse to rotate the
graph so that you are looking straight down the z-axis onto the xy-plane. Here is the same function
graphed over aregion that is bounded by a piece of a parabola on one edge and a straight line on
another edge.
[ > plot3d(x"2+y"2, x=-4..4, y=-1/2*(x+4)..-(x/2)"2+4, axes=boxed);
Hereisatwo dimensional graph of the region that the above graph is drawn over. Try lining up the
above graph so that it looks similar to this next graph.

> plot([-1/2*(x+4), -(x/2)"2+4], x=-4..4,
{ > scal i ng=constrai ned, col or=Dbl ack);
Notice that the region for the graph of the surface was defined by two functions of x. One function
defines the "top edge” of the region and the other function defines the "bottom edge”. It isalso
possible to use two functions of y to define aregion over which a surface is graphed. In this case,
one function will define the "left hand edge" and the other function will define the "right hand edge”.
Here is an example using the same surface as above. The "right hand edge” of the graphing region is
asine curve.
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[ > plot3d(x"2+y"2, x=-4..sin(Pi*y)+3, y=-4..4, axes=boxed);
Here isthe region drawn by itself in two dimensions (notice that this time we need to use parametric
curves to outline the region). Again, line up the above graph so that it looks similar to the next

graph.
> plot([[-4,y,y=-4..4],[sin(Pi*y)+3,y, y=-4..4],
> [x,4,x=-4..3],[%,-4,x=-4..3] ],
> scal i ng=constrai ned, col or=bl ack);

[ >

Exercise: The following graph of the function f(x, y) = - y* has avery curved bottom.

[ > plot3d(x"2-y"2, x=-4..4, y=-4..4, axes=franed);

Find a shape for the domain of the graph so that the graph of this function has a flat bottom.
[ >

In aprevious exercise, we drew a graph of afunction and one of its tangent planes. Hereis the graph
once again.
[ > plot3d({-x"2-y"2, -8-4*(x-2)-4*(y-2)}, x=-5..5, y=-5..5);
Let us modify the region that this graph is drawn over so that the graph of the function has a flat
bottom. We will draw the graph over acircular domain.

> plot3d({-x"2-y"2, -8-4*(x-2)-4*(y-2)},
{> x=-5..5, y=-sqrt(25-x72)..sqrt(25-x"2));
This graph is abit strange looking. The tangent plane is now avery large disk, and it does not ook
very good. We really should graph the function over a circular domain and graph the tangent plane
over arectangular domain. We can do thisif we use two separate pl ot 3d commands and then
combine their graphs using thedi spl ay command.

> graphl := plot3d(-x"2-y*2, x=-5..5,

y=-sqgrt(25-x"2)..sqrt(25-x"2)):

> graph2 : = plot3d(-8-4*(x-2)-4*(y-2), x=0..4, y=0..4):

> pl ot s[display] (graphl, graph2);
[ >

Exer cise: We used expressions throughout this last example. Modify the example to use Maple
functions throughout, including using functions to define the shape of the region to draw gr aph1l
over.

[ >

An important way to study afunction of two variablesisto look at itslevel sets. A level set for a
surface is al the points on the surface that have the same elevation. The pl ot 3d command has the
styl e=cont our option for drawing afunction'slevel sets. Hereis a graph of the level setsfor a
bowl shaped surface.

> pl ot 3d(3*x"2+5*y”"2, x=-5..5, y=-5..5, style=contour,
{ axes=f ranmed) ;
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If you rotate this last graph so that the vertical axisis straight up and so that you are viewing the
edge of the xy-plane, then you will see that the level setsare al parallel to the xy-plane, that is, each
level set isall the points on the surface that are the same height above (or below) the xy-plane.

[ >

From just the level setsit can be difficult to visualize the shape of a surface. There is another option
to pl ot 3d that graphs the surface with the level sets drawn on the surface.

[ > plot3d(3*x"2+5*y"2, x=-5..5, y=-5..5, style=patchcontour);

[ >

The next command uses a non rectangular domain so that the level sets do not break up into pieces.
Notice that the idea of drawing a graph so that itstop (or bottom) edgeis"flat" isthe same as
drawing the graph so that its top (or bottom) edgeisalevel set.
> pl ot 3d(3*x"2+5*y"2, x=-5..5,
y=-sqrt(15-3/5*x"2)..sqrt(15-3/5*x"2),
> styl e=cont our) ;

[ >

The pl ot 3d command also hasacont our s option for specifying the number of level setsto

draw or for specifying the specific elevations to use for the level sets. Here is an example that

request three level sets.

[ > plot3d(3*x"2+5*y~2, x=-5..5,
y=-sqrt(15-3/5*x"2)..sqrt(15-3/5*x"2),

> cont ours=3, styl e=patchcontour);

Hereis an example that specifies exactly which level setsto draw.

[ > plot3d(3*x"2+5*y~2, x=-5..5,

y=-sqgrt(15-3/5*x"2)..sqgrt(15-3/5*x"2),
> cont ours=[ 10, 20, 65], styl e=patchcontour);

[ >

Here is an example of a more interesting surface and some of its level sets. Click on this graph with
the mouse and look at the context bar. Thereis a group of seven buttons near the middle of the
context bar. These buttons let you switch between seven different st y| e options. The third and
fifth buttons (from the | eft) are for the stylespat chcont our and cont our . Try them.

[ > plot3d(x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2, style=contour);

[ >

Closely related to the idea of afunction's level setsis the notion of a contour diagram for afunction.
A contour diagram for afunction is made by pushing level setsfor the function down into the xy
-plane. So a contour diagram is atwo dimensional representation of a surface in three dimensions.
Maple hasthe cont our pl ot command from the pl ot s package for drawing two dimensional
contour diagrams for functions of two variables.
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[ > plots[contourplot](x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2);
(Notice that the last graph is strictly two dimensional. Y ou cannot rotateit.) The cont our pl ot
command has several options. For example, the following command specifies more contour lines, it
specifies that the area between the contours should be shaded in, and the shading should shift from
green to blue. (The default shading is from red, for low contour values, to yellow, for high contour
values.) The shading helps to distinguish between peaks and valleys in the graph of the surface.

> plots[contourplot](x*y*exp(-(x"2+y"2)), x=-2..2, y=-2..2,
{ > contours=15, filled=true,

col ori ng=[ green, bl ue]);

[ >

We just mentioned that a contour diagram is made by pushing the level setsfor a surface down into
the xy-plane. Here is anice way to see how this happens. The next command draws a (two
dimensional) contour diagram.

> plots[contourplot] ((-3*y)/(x"2+y"2+1), x=-10..10, y=-10..10,
{ > contours=17, axes=boxed);
The next command draws a three dimensional graph of the level setsfor the same function asin the
last command. But the next command sets the orientation of the graph so that we are looking
straight down the z-axis onto the xy-plane. So the next graph appears at first to be atwo dimensional
contour diagram (i.e., the same one as the last graph). But you can rotate it to see that the level
curvesin this diagram are really floating in space. Looking straight down the z-axis has the visual
affect of pushing the level sets down into the xy-plane.

> plot3d((-3*y)/(x"2+y~2+1), x=-10..10, y=-10..10, styl e=contour,
{ > contours=17, axes=boxed, orientation=[-90,0]);
[ >

Just asthe pl ot command can use honcartesian coordinates on the plane when it graphs a function
of onevariable, the pl ot 3d command can use noncartesian coordinates on three dimensional space
when it graphs a function of two variables. For example, here is the same function graphed using
three different coordinate systemsin space, cartesian, cylindrical, and spherical.

[ > plot3d(x"2+y"2, x=-2..2, y=-2..2);

[ > plot3d(x"2+y"2, x=-2..2, y=-2..2, coords=cylindrical);

[ > plot3d(x"2+y"2, x=-2..2, y=-2..2, coords=spherical);

And just asthe pl ot command must, for each coordinate system on the plane, (arbitrarily) choose
one coordinate direction for the independent variable of the function, the pl ot 3d command must,
for each coordinate system on three dimensional space, (arbitrarily) choose two coordinate
directions for the independent variables of the function. In addition, the pl ot 3d command must
choose an ordering for the two independent variables, that is, a way to match up each of the two
rangesin the pl ot 3d command with one of the two preferred coordinate directions.

[ >

For example, consider the cartesian coordinate system in space. Let us use the common labels x, vy,
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and z for the coordinates. The pl ot 3d command of course chooses x and y as the independent
variables. Thefirst rangeinthe pl ot 3d command is associated to x and the second rangetoy. In
addition, the x and y coordinates are drawn on a graph so as to form aright hand coordinate system.
So given afunction f of two variables, the pl ot 3d command will by default draw the graph of

z=1(x, y). There are times when some other graph may be desirable, for exampley =f(x, z), and we
will seelater how this can be done.

Exercise: The following five commands graph two different functions. Which commands are
graphing the same function? Explain why.

[ > plot3d(cos(2*x)+y”2, x=-Pi..Pi, y=-3..3);

[ > plot3d(cos(2*x)+y"2, y=-3..3, x=-Pi..Pi);

[ > plot3d(cos(2*y)+x"2, y=-3..3, x=-Pi..Pi);

[ > plot3d(cos(2*v)+u”2, u=-Pi..Pi, v=-3..3);

[ > plot3d(cos(2*u)+v*2, v=-3..3, u=-Pi..Pi, orientation=[135,45]);
[ >

Exercise: Two students are arguing over whether or not, given afunction f of two variables,

pl ot 3d can aways graph both z=f(x, y) and z=f(y, x). Thefirst student claims it can and gives
thisexample. Let f(u, v) =u sin(v).

[>f :=(u,v) -> u*sin(v);

The next two commands seem to graph z=f(x, y) and z = f(y, x) respectively.

(> plot3d(f(x,y), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, axes=franed);

(> plot3d(f(y,x), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi, axes=franed);

On the other hand, the second student points out that the next command graphs z = f(x, y), and there
IS no way, using the Maple function form of plotting, to graph z = f(y, x) without redefining f.

[> plot3d(f, -2*Pi..2*Pi, -2*Pi..2*Pi, axes=franed);

Who do you think is more correct? Should we say that pl ot 3d can aways graph both z=1(x, y)
and z =f(y, x), or should we say that pl ot 3d graphsonly y =f(x, y)?

[ >

Next we want to look at how pl ot 3d makes choices for the cylindrical and spherical coordinates
systems. First the cylindrical coordinate system.

Let us use the common labels q, r, and z for the coordinates in the cylindrical coordinate system.
When graphing afunction in cylindrical coordinates, the pl ot 3d command chooses the angular
and vertical directions (i.e., g and z) as the independent variables and the radial direction (i.e., r) as
the dependent variable. In addition, the first range in the pl ot 3d command will be associated to the
radial direction and the second range will be associated to the vertical direction. In other words,
given afunction f of two variables, the pl ot 3d command with cylindrical coordinates will draw
thegraph of r =f(q, z). Sofor example, we graph acylinder by graphing a constant function.

> pl ot 3d(3, theta=0..2*Pi, z=-6..6, coords=cylindrical,
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| axes=boxed);
The equationr =sin(3 q) in polar coordinates graphs a three petal rosein the plane. Hereisa
"cylinder" over this three petal rose.

> plot3d(sin(3*t), t=0..2*Pi, z=0..1/2, coords=cylindrical,
{ axes=boxed) ;
The above graph does not really look very good. We can improve it by using another option. (We
will see in the next worksheet what this option does and why it is needed.)

>r :=sin(3*theta);

> plot3d(r, theta=0..2*Pi, z=0..1/2, coords=cylindrical,

axes=boxed,

> grid=[ 40, 40]);
Recall that the equationr =a (1 + 2 cos(q)) in polar coordinates defines alimacon in the plane with
a"diameter" determined by a. Here isan example witha=5.

> plot(5*(1+2*cos(t)), t=0..2*Pi, coords=pol ar,
{ scal i ng=const rai ned) ;
If we graph the function f(q, z) =5 (1 + 2 cos(q)) as afunction of two variables with cylindrical
coordinates, the graph will be a"cylinder" over the above limacon.

>r .= 5*(1+2*cos(theta));
{ > plot3d(r, theta=0..2*Pi, z=-1..1, coords=cylindrical,

> axes=boxed, grid=[40,40]);
Now let the "diameter” of the limacon vary with z. In the next graph, every horizontal cross section
isalimacon, but the "diameters' dependson z

>r 1= (1+z"2)*(1+2*cos(theta));
> plot3d(r, theta=0..2*Pi, z=-1..1, coords=cylindrical,
> axes=boxed, grid=[40, 40]);

[ >

Given afunction of one variable, it is easy to use cylindrical coordinates to graph its surface of

revolution around the z-axis. Here is a simple example.
> sqgrt(z);

{ > plot3d(% theta=0..2*Pi, z=0..4, coords=cylindrical);

Here is an animation of the one dimensional graph being revolved around the z-axis to create the

surface of revolution.

[>p :=t ->plot3d(sqrt(z), theta=0..t, z=0..4,
coords=cylindrical):

> plots[display]( [ seq(p(2*Pi*i/50), i=1..50) ],

| i nsequence=true);

Here are afew other surfaces of revolution.

[ > exp(-2z"2);

| > plot3d(% theta=0..15*Pi/8, z=-2..2, coords=cylindrical);

[ > z+sin(z);

| > plot3d(% theta=0..2*Pi, z=0..8*Pi, coords=cylindrical);
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> 1+sin(z)/ z;
{ > plot3d(% theta=0..2*Pi, z=-3*Pi..3*Pi, coords=cylindrical);
Here is the previous function again, but with a different range. This example shows that occasionally
the pl ot 3d command can draw misleading graphs. The following surface should not be broken
into two pieces.

> 1+sin(z)/ z;
{ > plot3d(% theta=0..2*Pi, z=-4*Pi..4*Pi, coords=cylindrical);
Hereis atorus (a donut shaped surface) drawn as a surface of revolution for two functions. (Try
graphing each of the two surfaces by themselves.)

> 2+sqrt(1-z72), 2-sqrt(1-z"2);
{ > plot3d( {%, theta=0..2*Pi, z=-1..1, coords=cylindrical);
In the next section we will see how to draw surfaces of revolutions around the other two axes.
[ >

Exercise: Part (a) Use pl ot 3d with cylindrical coordinates to graph a sphere of radius 4 centered at
the origin.

[ >

Part (b) Now drill acylindrical hole of radius three through the sphere along the z-axis. Draw the
remaining part of the sphere along with the wall of the cylindrical hole.

[ >

Part (c) Cut away part of the graph from part (b) so that you can see the space between the wall of
the sphere and the wall of the hole. Make both a horizontal and avertical cutaway.

[ >

Given afunction f of two variables, there are atotal of six ways that we could graph f in cylindrical
coordinates. We could chooseto graph r =1(q, z), r =f(z,q),z=1(q,r),z=1(r,q), g =1(r, z), or
g ="f(z r). By default, the pl ot 3d command will only draw the first of these six possible graphs.
In the next section of this worksheet we will see how we can draw al six of these graphs by using
parametric equations. And in the next worksheet we will see how we can draw all of these graphs by
defining new versions of cylindrical coordinates.

Why isit that pl ot 3d defaultstor =f(q, z)? Recall that in polar coordinates we usually graph
functions of theform r =f(q). And since cylindrical coordinatesis just polar coordinates with the
variable z added, it seems reasonable to just consider the z coordinate as another independent
variable and, by analogy to polar coordinates, graph functions of the formr =f(q, z).

Of the six possible graphs that we could make in cylindrical coordinates, there is one other graph
that would seem to be a very reasonable choice as the default graph for pl ot 3d. Since the default

graph in rectangular coordinatesis of the form z=f(x, y), and since (x, y) and (r, q) both
coordinatize the plane, then by analogy to rectangular coordinate it would seem reasonable for

pl ot 3d to graph z=1(r, q). Such graphs can in fact be very useful. For example, supposethat in a
calculus class we want to find the volume under the graph of afunction f(x, y) and over the cardioid
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defined by r = 1 + cos(q), and we want to visualize this volume before computing it. So we need to
draw agraph of f(x, y) over the cardioid r = 1 + cos(q). We might try to do thisusing pl ot 3d's
ability to graph over non rectangular domains in rectangular coordinates, but that would be difficult.
What we would like to do is convert the function to cylindrical coordinates using

a(r,q) =f(r cos(q), r sin(q)) and then draw a graph of z=g(r, q) using cylindrical coordinates
with the variable g ranging between 0 and 2 p and the variable r ranging between 0 and 1 + cos(q).
But pl ot 3d cannot graph afunction of the form z=g(r, q), so we will come back to this example

in the next section.
[ >

Now let us turn to spherical coordinates. Let us use the common labelsr, g, and f to represent the
coordinates. When graphing afunction of two variablesin spherical coordinates, the pl ot 3d
command uses g and f as the independent variables. The first range in the pl ot 3d command will
be associated to g and the second range will be associated to f. So given afunction f of two
variables, the pl ot 3d command with spherical coordinates will draw the graph of r =f(q, f ). For
example, we can graph a sphere using spherical coordinates by graphing a constant function. The
following command graphs a sphere but with a bit of its top removed and with a vertical slice taken
out. Try closing each of these holes (one at atime).

[ > plot3d(1l, t=0..7*Pi/4, p=Pi/8..Pi, coords=spherical);

[ >

Exercise: Hereisagraph of afunction of two variablesin spherical coordinates. Thisisa"bumpy
sphere” with a hole in the bottom.

> r = 1+ 2*cos(5*t heta)*cos(5*phi);
{ > plot3d(r, theta=0..2*Pi, phi=0..3*Pi/4, coords=spherical);
How would you change the size of the hole? How would you cut away the front half of the graph?
How would you make the bumps bigger or smaller? More or less numerous? Make a 3D animation
of the hole growing and shrinking. Make another animation of a " pulsating sphere" with the bumps
growing and shrinking.

[ >

In the last section we worked with parametric curves. Let us see how we can combine parametric
curves with graphs of functionsin two variables. First, let us draw some curvesthat lie on surfaces.
The easiest way to draw a graph of a curve on asurface is to use the surface's function to "lift" a
curve off of the plane and into the surface. Here is an example. We will lift aspiral up to the graph

of aparaboloid.
[ > gl: =pl ot 3d(x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),
> styl e=hi dden, shadi ng=xy ):
> g2: =pl ot s[ spacecurve] (
> [t*cos(20*t), t*sin(20*t),
(t*cos(20*t))"N2+(t*sin(20*t))"2],
> t=0..2, color=black, nunpoints=200 ):
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> plots[display] (g1, g2);

>r oi="r
Try removing g1 from thedi spl ay command so that you see only the spiral curve.
[ >

Exer cise: Redraw the last graph but with the spiral curvein the xy-plane added as a kind of
"shadow" of itslifted version on the paraboloid. Draw the graph with both the surface in the graph

and with the surface removed.
[ >

Here is an example of acurve drawn in cylindrical coordinates on a surface drawn in rectangular
coordinates.

> gl: =pl ot 3d(x"2-y"2, x=-1..1, y=-sqrt(x”2+1)..sqgrt(x"2+1),
> styl e=pat chnogri d):
>r = sin(4*t):
> g2: =pl ot s[spacecurve] ( [r, t, (r*cos(t))”"2-(r*sin(t))"2],
> t=0..2*Pi, coords=cylindrical, color=black,
nunpoi nt s=100) :

> plots[display] (g1, g2);

> =

[ >

Exer cise: Change the curve drawn on the surface from arose to the cardioid r = 1 + 2 cos(q).

[ >

Hereis an example of acurve drawn in rectangular coordinates on a surface drawn with cylindrical
coordinates (a sine curve running up and down the side of a cylinder).
> gl:=plot3d(1l, theta=0..2*Pi, z=0..3*Pi, coords=cylindrical,
> styl e=hi dden, shadi ng=xy ):
> g2: =pl ot s[ spacecurve] ( [2/3*sin(2*t), sqrt(1-(2/3*sin(2*t))"2),
t],
> t=0..3*Pi, col or=black, nunpoints=100 ):
. > plots[display] (g1, 92);
[ >

\%

Exercise: Modify the last example so that the sine curve lies in the yz-plane inside the cylinder and
then make the cylinder "see through" so that you can see the sine curve inside the cylinder.
[ >

Exercise: Part () Modify the sine curve on a cylinder example so that the cylinder has a diameter

that depends on z (try 2 + z as the expression for the diameter). Make sure that the graph of the sine
curve stays on the graph of the new surface.
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[ >

Part (b) Now modify the graph from part (a) so that the amplitude of the sine curve also increases as
it moves up the graph in the z direction (and again, keep the graph of the new sine curve on the
graph of the surface).

[ >

Exercise: Draw acurve on the surface of a sphere.
[ >

Exercise: Take any one of the above examples of a curve drawn on a surface and convert the curve

into a (pretty narrow) tube plot. Try this both with and without the surface itself in the graph.
[ >

Now let uslook at an example from calculus of a curve on a surface. Recall that the partial
derivative with respect to x of afunction f(x, y) at apoint (x,, Y,) is computed by holding y fixed at
Y, and then computing the ordinary derivative of f(x, y,) (which isafunction of only one variable) at
X,- Geometrically, this means that we slice the graph of f(x, y) through the point (X,, Yo, f(Xo: ¥o))
with avertical plane paralel to the yz-plane, which gives us a curve in the slicing plane, and then
compute the slope of the line tangent to this curve. Here is a picture of thisfor the function

f(x,y) =-x - y* and the point (X,, Y,) = (2, 2). Make sure you understand each step of this
execution group and how it relates to the definition of the partial derivative.

>f 1= (x,y) -> -x"2-y"2;

> x0,y0 : = 2, 2;

>tl :=x ->1f(x0,y0)+D 1] (f) (x0, y0) *(x-x0);

> graphl: =plot3d(f, -5..5, -5..5):

> graph2: =plots[inplicitplot3d](y=y0, x=-5..5, y=-5..5,

z=-50..0):
> graph3: =pl ot s[ spacecurve] ( [t, yO0, f(t,y0)], t=-5..5,
col or=bl ack ):
> graph4: =pl ot s[ spacecurve] ( [t, yO, tI(t)], t=-2..5,
col or =bl ack):
| > plots[display](graph.(1..4), style=patchnogrid, axes=franed);
[ >

Exercise: Part (4) Modify the last example so that it demonstrates the partial derivative with respect
to y at the point (X, Y,)-

[ >

Part (b) Now combine the last two graphs and demonstrate both partial derivatives at the point (

X0 Yo)-

[ >

Part () Add the tangent plane at the point (x,, Y,) to your graph from part (b).

[ >
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(>
=17.6. Graphs of parametric surfaces

Just asthe pl ot command can graph both functions of one variable and aso parametric curvesin
the plane, the pl ot 3d command can graph both functions of two variables and parametric surfaces
in three dimensional space. Before going over the details of parametric surfaces, let us quickly
review the case of the pl ot command.

Hereisagraph of one function of asingle variable.

[ > plot( cos(t), t=0..2*Pi );

Here is agraph of two functions, each of asingle variable.

[ > plot( [cos(t), sin(t)], t=0..2*Pi );

Now if we move the range inside the brackets, the graph becomes a parametric curve in the plane,
and the two functions are the horizontal and vertical component functions of the curve.

[> plot( [cos(t), sin(t), t=0..2*Pi] );

[ >

Exercise: Hereis agraph of three functions, each of asingle variable.

[ > plot( [cos(t), sin(t), 2*t], t=0..2*Pi );
What if we now move the range inside the brackets?

[> plot( [cos(t), sin(t), 2*t, t=0..2*Pi] );
How do we fix the last command so that it draws an appropriate curve?

[ >

Now let uslook at the analogous uses of the pl ot 3d command. Here is agraph of asingle function
of two variables.

[ > plot3d( u*cos(v), u=-1..1, v=-PRPi..Pi );

Hereisagraph of two functions of two variables.

[ > plot3d( {u*cos(v), u*sin(v)}, u=-1..1, v=-Pi..Pi );

And here is agraph of three functions of two variables.

[ > plot3d( {u*cos(v), u*sin(v), v}, u=-1..1, v=-Pi..Pi );

Now replace the braces with brackets, and the graph becomes a parametric surface, and the three
functions become the x, y, and z components of the parameterization.

[ > plot3d( [u*cos(v), u*sin(v), v], u=-1..1, v=-Pi..Pi );

Notice akey difference in the syntax of the pl ot and pl ot 3d commands. If we want to graph
several functions of asingle variable, the pl ot command allows usto place the list of functions
inside either apair of braces or apair of brackets, but if we want to graph a parametric curve, we
need the (two) functions along with their range inside of a pair of braces. On the other hand, if we
want to graph several functions of two variables, the pl ot 3d command requires that we put the
functionsinside of a pair of braces, and if we want to graph a parametric surface we need the (three)
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functionsinside of a pair of brackets and the (two) ranges outside of the brackets.

[ >

In the first section of this worksheet we said that a parametric surface is defined by a single function,
a 3-dimensional vector valued function of two real variables. Here is away to use a Maple function
to emphasize that a parametric surface isreally defined by a single (vector valued) function. The
function f(u, v) = (ucos(v), usin(v), v) defines the surface in the previous example. Here is the
Maple definition of this function.

(>f :=(u,v) -> [u*cos(v), u*sin(v), Vv];

Here is how we use this function to graph the parametric surface.

(> plot3d( f(u,v), u=-1..1, v=-Pi..Pi );

This example emphasizes that a parametric surface is defined by a single function. But it is usually
more convenient to work with three expressions than with a single Maple function, so for the rest of
this section we will express parametric surfaces by using three expressions for the three component
functions of the parameterization.

[ >

In general, finding equations for parametric surfaces is tricky business. Most third semester calculus
books will have several nice examples of interesting parametric surfaces. Here are afew of
examples and a couple of exercisesthat are typical of what you will find in a calculus book.

[ > plot3d( [sin(u), u*sin(v), u*cos(v)], u=-PRi..Pi, v=0..3*Pi/2);

> plot3d( [(u-sin(u))*cos(v), (1-cos(u))*sin(v), u],

> u=0..2*Pi, v=0..3*Pi/2);

> [ (2+cos(theta))*cos(phi),

> (2+cos(theta))*sin(phi),

> sin(theta) ];

| > plot3d( % theta=0..15*Pi/8, phi=0..15*Pi/8, title="Torus" );

> [ 2+cos(theta)+r*cos(thetal?2),
> 2+si n(theta)+r*cos(thetal2),
> r*sin(thetal2) ];
>
>

| > plot3d( % theta=0..2*Pi, r=-1/2..1/2, title="Mbius strip" );
[
Exercise: Redraw one of the last parametric surfaces using a single (vector valued) Maple function

to define the parameterization.

[ >

In the section on parametric curves, we saw that animations of the parameter sweeping out a curve
were helpful in visualizing how the parameterization works. We can do something similar in the
case of parametric surfaces. An animation of a parametric surface can "unfold" one parametersat a
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time. Such an animation can help us to understand the role played in the parameterization by that
parameter. Here is an example. Here is a standard parameterization of the sphere.

> [sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)]:
{> plot3d( % theta=0..2*Pi, phi=0..Pi, title="Sphere" );

(g,f)® [sin(f) cos(q), sin(f) sin(q), cos(f )] with g between 0 and 2 p and f between 0 and p.

One way to understand this parameterization is to see the cos(q) and sin(q) terms as doing a
horizontal rotation of aradius, which isthe sin(f ) term. The radius term starts out at O when f is 0,
and the radius then grows to 1 and then shrinks back to 0 asf goes from 0O to p. The height above the
xy-plane of the radius that is being rotated is given by the cos(f ) term, which starts at 1 and
decreasesto -1.

[ >

L et us animate this parameterization by unfolding the parameterization in each of the g and f
"directions’. We cannot use the ani nat e3d command for these animations since it has a
restriction that the ranges in the command must be given by constants and it is precisely the ranges
that we want to animate. So we need to usethe di spl ay command withthei nsequence=t r ue
option. The following "graph valued function™ makes the animation easier to describe. Notice that
the input to the function is the range of one of the parameters of the parameterization. Thisfirst
animation shows the rotation caused by the q parameter.
[>p :=t -> plot3d(
> [ si n(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)],
theta=0..t, phi=0..Pi

);
pl ot s[ di spl ay] ([ seq( p(2*Pi*i/100), i1=1..100)],

title="Ani mated Sphere",

orientation=[-60, 60],
| i nsequence=true );
The next animation shows how the f parameter determines the radius swept out by the q parameter.
[>p :=s -> plot3d(
> [ sin(phi)*cos(theta), sin(phi)*sin(theta),

cos(phi)],

V V.V V V V

theta=0..2*Pi, phi=0..s

);
pl ot s[ di spl ay] ([ seq( p(Pi*i/100), i=1..100)],

title="Ani mated Sphere",

ori entation=[ 30, 100],
> I nsequence=true );
The next animation shows how we can unfold both parameters at once. The resulting animation is
interesting to watch, but it probably does not help one to understand the parameterization as much as
the previous two animations.

V V. V V V
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>
>

V V.V V V V V

p = (t,s)->plot3d(

[ si n(phi)*cos(theta), sin(phi)*sin(theta),
cos(phi)],
theta=0..t, phi=0..s
);
pl ot s[ di spl ay] ([ seq( p(2*Pi*i/100, Pi*i/100), i=1..100)],
title="Ani mated Sphere",
orientation=[-60, 90],
i nsequence=true, scaling=constrained );

Here are three similar animations for the torus parameterization.

[

>

\

V V.V V V VYV

V VVVVVYVYVYV

V VVVVVYVYVVYV

p:=t ->plot3d([(2+cos(theta))*cos(phi),
(2+cos(theta))*sin(phi),
sin(theta)],
theta=0..t, phi=0..2*Pi
);
pl ot s[ di spl ay] ([ seq( p(2*Pi*i/100), i1=1..100)],
title="Ani mated Torus",
orientation=[ 30, 160],
i nsequence=true );

p:=s -> plot3d([(2+cos(theta))*cos(phi),
(2+cos(theta))*sin(phi),
sin(theta)],
t heta=0..2*Pi, phi=0..s
);
pl ot s[ di spl ay] ([ seq( p(2*Pi*i/100), i=1..100)],
title="Ani mated Torus",
orientation=[-90, 15],
I nsequence=true );

p = (t,s)->plot3d([(2+cos(theta))*cos(phi),
(2+cos(theta)) *sin(phi),
sin(theta)],
theta=0..t, phi=0..s
);
pl ot s[ di spl ay] ([ seq( p(2*Pi*i/100, 2*Pi*i/100),
title="Ani mated Torus",
orientation=[-110,-160],
i nsequence=true );
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Exercise: Study the following parameterization. How would you get more spirals to show in the
graph? What if you wanted thisto be a spiral water trough with no top?
> plot3d( [(2+sin(Vv))*cos(u),

> (2+sin(v))*sin(u),
> u+cos(v)], u=0..4*Pi, v=0..2*Pi );
[ >

Exercise: Can you make this one into an open topped water trough? How can you get more spirals?
(Hint: Experiment with the various constants in the formulas and try to get a sense of what they
determine.)

> [ (1-u)*(3+cos(v))*cos(4*Pi *u),

> (1-u)*(3+cos(v))*sin(4*Pi *u),

> 3*u+(1-u)*sin(v) ];

> plot3d( % u=0..1, v=0..2*Pi, orientation=[-14,76] );
[ >

Exercise: Let f(x) bearea vaued function of one variable. Find away to parameterize the surface
of revolution generated by revolving the graph of f(x) around the x-axis. Graph a few surfaces of
revolution for different functionsf.

[ >

Exercise: Part (a) Here are four different parameterizations of the sphere of radius one centered at
the origin. For each parameterization try to change just one range so that the parameterization draws
only the upper hemisphere. If you cannot do this by changing just one range, explain why.

> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
| > plot3d( % theta=0..2*Pi, phi=0..Pi, title="Sphere" );
[ >
> [ cos(phi)*cos(theta), cos(phi)*sin(theta), sin(phi) ];
| > plot3d( % theta=0..Pi, phi=0..2*Pi, title="Sphere" );
[ >
> [ sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi) ];
| > plot3d( % theta=0..Pi, phi=0..2*Pi, title="Sphere" );
[ >
> [ sqrt(1-z72)*cos(theta), sqrt(1l-z"2)*sin(theta), z |;
> plot3d( % theta=0..2*Pi, z=-1..1, title="Sphere" );

I5art (b) Repeat part (a) but thistime try to draw only the right hemisphere.

[ >

Part () Repeat part (a) but thistime try to draw 3/4 of the sphere (say, the upper hemisphere and the
left or right half of the lower hemisphere).

[ >

Exercise: This exercise compares the second of the four sphere parameterizations above with a
parameterization of atorus. Explain how the following minor change in the sphere parameterization
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manages to become half of atorus. First, the sphere parameterization again.

> [ cos(phi)*cos(theta), cos(phi)*sin(theta), sin(phi) ];

| > plot3d( % theta=0..Pi, phi=0..2*Pi, title="Sphere" );

Now aminor change that makes it into a parameterization of atorus.

> [ (2+cos(phi))*cos(theta), (2+cos(phi))*sin(theta), sin(phi) ];
| > plot3d( % theta=0..Pi, phi=0..2*Pi, title="1/2 Torus" );

[ >

Exercise: The following parameterization draws a"can". Explain how this parameterization works
by comparing it to the standard parameterization of a sphere. Also, how would you make this can's
height twice what its diameter is? How would you turn this into a parameterization of a can with no
lid?

>f 1= x -> piecewi se(x<l1l/4, 4*x, x<3/4, 1, x<=1, -4*x+4),;

> Qg =X -> piecewi se(x<1l/4, 1, x<3/4, 2-4*x, x<=1, -1);

> [ f(phi)*cos(theta), f(phi)*sin(theta), g(phi) ]:

> plot3d( % theta=0..2*Pi, phi=0..1, title="Can" );
[ >

Exer cise: How would you graph two (or more) parametric surfaces at the same time, but with
different parameter ranges for each surface? (Compare thiswith using pl ot or spacecur ve to
draw several parametric curves.)

[ >

Recall that in the previous section we mentioned that the pl ot 3d command, when graphing a
function of two variables, gives the x and y coordinates the preferred status of being the independent
variablesand pl ot 3d awaysdraws agraph of z=f(Xx, y). When graphing a parametric surface,

pl ot 3d does not give any coordinate direction a preferred status. It does however aways treat the
first expression after the opening bracket as the x-component, the second expression asthey

-component, and the third expression as the z-component. We can use this to get other kinds of
graphs from afunction of two variables. That is, we can use parametric equations to draw any of the

six graphsz=1(x,y), z=1(y, X),y=1(%, 2), y=1(z x), x=1(y, z), or x=1(z y). For example, here
is how we can graph x = y? + Z (as a parametric surface).

[ > plot3d( [yr2+z"2, vy, z], y=-2..2, z=-2..2);

Hereis the analogous way to graphy = x + y? as a parametric surface,

(> plot3d([x, Yy, x"2+y"2], x=-2..2, y=-2..2);

[ >

Exercise: Use the scroll bar on the Maple window so that you can see both of the last two graphs at
the same time. Use the mouse to rotate the two graphs into the same position. Then notice how
similar mouse motions on each graph can cause different rotations of the graphs. Also, notice that
each graph can be rotated around an axis that the other graph cannot be rotated aboui.

[ >
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The pl ot 3d command can draw parametric surfaces using other spatial coordinates systems
besides rectangular coordinates. Here is an example that uses cylindrical coordinates. Thisisa
ribbon winding its way up the side of a paraboloid.

> plot3d([sqgrt(theta+t), theta, theta+t], theta=0..7*Pi, t=0..3,
{ > coords=cylindrical, style=patchnogrid, grid=[50,50]);
Hereisasimilar example on the surface of a sphere and done with spherical coordinates. It looks
like an apple being peeled.
> plot3d( [1, 8*t+s, t], t=0..Pi, s=-2..2,
> coords=spherical, style=patchnogrid, grid=[50,50]);
Here is a sphere with its surface being peeled off of it.
> gl:=plot3d( [1+.2*(Pi-t), 8*t+s, t], t=0..Pi, s=-2.4..2.4,

> coords=spherical, style=patchnogrid, grid=[50,50]):
> g2:=plot3d(1l, theta=0..2*Pi, phi=0..Pi,
> coords=spherical, style=hidden, grid=[50,50] ):

| > plots[display](gl,g2, scaling=constrained);

[ >

In the previous section we mentioned that the pl ot 3d command, when using cylindrical
coordinates to graph afunction of two variables, gives the g and z coordinates the preferred status of
being the independent variables and pl ot 3d always draws a graph of r =f(q, z). When graphing a
parametric surface in cylindrical coordinates, pl ot 3d does not give any coordinate direction a
preferred status. It does however aways treat the first expression after the opening bracket asther

-component, the second expression as the g-component, and the third expression as the z

-component. As you might expect by now, given any function of two variables, we can use

parametric equations to draw any of the six graphsr =f(q, z),r =f(z,q),q=1(r,z),q=1(zr),

z="1(q, r),or z=1(r, q). For example, here are the six different graphs of a constant function (over

anon rectangular domain) in cylindrical coordinates.

> plot3d([1, theta, z], theta=0..2*Pi, z=0..theta,
coords=cylindrical);

> plot3d([1, theta, z], theta=0..z, z=0..2*Pi ,
| coords=cylindrical);

> plot3d([r, 1, z], r=0..2*Pi, z=0..r,

| coords=cylindrical);

> plot3d([r, 1, Zz], r=0.. z, z=0..2*Pi,

coords=cylindrical);
> plot3d([r, theta, 1], theta=0..2*Pi, r=0..theta,
| coords=cylindrical);
> plot3d([r, theta, 1], theta=0..r, r
coords=cylindrical);

I
©

. 2*Pi,
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Exercise: Draw the six different graphsin cylindrical coordinates of the function f(u, v) = u- VA
with the domain u between -1 and 1 and v between 2 and 3. For each graph, make sure that the graph
makes sense for you.

[ >

In the previous section we mentioned the problem of visualizing the graph of afunction z=1f(x, y)
over the cardioidr =1 + cos(q). Oneway to do thisisto useg(r, q) =f(r cos(q), r sin(q)) to
convert the function to cylindrical coordinates and then use cylindrical coordinates to graph
z=9(r, q) with the variable g ranging between 0 and 2 p and the variable r ranging between 0 and
1+ cos(q). The problem with thisideais that the pl ot 3d command with polar coordinates will
only graph functions of the form r = g(q, z). We get around this limitation of pl ot 3d, and get the
graph that we want, by using parametric equations in polar coordinates to graph z=g(r, q). Hereis
an example with f(x, y) = x* + v, so g(r, q) = r*.

> plot3d([r,t,r*2], r=0..1+cos(t), t=0..2*Pi,
{ coords=cylindrical);
The next graph shows that the previous graph is correct. The next graph redraws the previous graph
and combines it with agraph of the paraboloid. From the next graph we see that the previous graph
really is part of the paraboloid.
> gl:=plot3d([r,t,r*2], r=0..1+cos(t), t=0..2*Pi,

coords=cylindrical):

> g2: =pl ot 3d(x"2+y"2, x=-2..2, y=-sqrt(4-x"2)..sqrt(4-x"2),

> styl e=wi refrane):
| > plots[display] (g1, g2);
Hereisaway to add the "walls" to the volume under the graph of f(x, y) = x* + y* and over the
cardioid r =1 + cos(t), so that we can see the exact shape of this volume.
[ > gl:=plot3d([r,t,r*2], r=0..1+cos(t), t=0..2*Pi,

coords=cylindrical):
> g2:=plot3d([1+cos(t), t, (l+cos(t))"2*z], t=0..2*Pi, z=0..1,

> coords=cylindrical):
| > plots[display] (g1, g2);
[ >

Exercise: The graph named g2 in the last example draws the walls of the volume. The walls are
drawn as a parametric surface in cylindrical coordinates. Redraw the walls of the volume as the
graph of afunctionr =h(q, z) in cylindrical coordinates.

[ >

Exercise: Draw agraph of the volume under the function f(x, y) = x +y and over petal in the first
guadrant of the three leaf roser = sin(3 q). Be sure to draw both the top of the volume and its side

walls.
[ >
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In the previous section we mentioned that the pl ot 3d command, when using spherical coordinates
to graph afunction of two variables, givestheq and f coordinates the preferred status of being the
independent variables and pl ot 3d alwaysdraws agraph of r =f(q, f ). When graphing a
parametric surface in spherical coordinates, pl ot 3d does not give any coordinate direction a
preferred status. It does however aways treat the first expression after the opening bracket asther
-component, the second expression as the g-component, and the third expression as the f
-component. And of course, given any function of two variables, we can use parametric equations to
draw any of thesix graphsr =f(q,f),r =f(f,q),q="1(r,f),q=1(f,r),f =f(qg,r), or

f =f(r, ). For example, here are the six different graphs of a constant function (over annon
rectangular domain) in spherical coordinates.

> plot3d([1, theta, phi], theta=0..2*Pi, phi=0..theta,
coords=spherical);

> plot3d([1, theta, phi], theta=0..phi, phi=0..2*Pi,
coords=spherical);

"> plot3d([rho, 1, phi], rho=0..2*Pi,  phi=0..rho,
coor ds=spheri cal);
[ > plot3d([rho, 1, phi], r ho=0. . phi, phi =0. . 2*Pi,

| coords=spherical);

> plot3d([rho, theta, 1], theta=0..2*Pi, rho=0..theta,
coords=spherical);

> plot3d([rho, theta, 1], theta=0..rho, rho=0..2*Pi,
coor ds=spheri cal);

Exercise: Draw the six different graphsin spherical coordinates of the function f(u, v) = uw- VA

with the domain u between 0 and p/2 and v between p/2 and p.
[ >

Here are some general exercises using parametric surfaces.

Exercise: Given anon vertical plane in three dimensional space and a point on the plane, draw a
square centered at the point and lying in the plane. Also draw the projection of the square onto the xy
-plane.

[ >

Exer cise: Part (a) Given a plane through the origin, draw a disk centered at the origin and lying on
the plane.

[ >

Part (b) Given aplane and a point on the plane, draw a disk centered at the point and lying on the
plane and draw the projection of the disk onto the xy-plane.

[ >
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Exercise: In Section 7.4.2, we defined afunction s that we used to parameterize asquare. Usesq
to modify the standard parameterization of the sphere into a parameterization of a cube.

[ >

Exer cise: Parameterize various kinds of "tori" using combinations of sine, cosine and sq functions.
[ >

Exer cise: Experiment with various parameterizations from this section by replacing trig functionsin
the parameterizations with the s g function. Also, try using some of the variations on the sq function
that were define in Section 7.4.2.

[ >

We end this section with three animations of parameterizations that we used earlier. The following
two animations provide clues for doing the exercise about parameterizing just parts of a sphere.
[>p :=s ->plot3d( [ cos(phi)*cos(theta),
cos(phi)*sin(theta),
sin(phi) T,
theta=0..Pi, phi=0..s,
styl e=pat chcont our ):
pl ot s[di spl ay] ([ seq( p(2*Pi *s/100), s=1..100)],
title="Ani mated Sphere",
ori entation=[ 30, 100],
i nsequence=true );

\%

V V.V V V VYV

p:=s ->plot3d( [ sin(phi)*cos(theta),
sin(phi)*sin(theta),
cos(phi) ],
t heta=0..Pi, phi=0..s,
styl e=pat chcont our ):
pl ot s[di spl ay] ([ seq( p(2*Pi *s/100), s=1..100)],
title="Ani mated Sphere",
orientation=[-45, 60],
| i nsequence=true );
The next animation shows one of the sphere parameterizations becoming a torus parameterization.
[>p :=s ->plot3d( [ (s+cos(phi))*cos(theta),
> (s+cos(phi))*sin(theta),
sin(phi) ],
theta=0..7*Pi/4, phi=0..7*Pi/4 ):
pl ot s[ di spl ay] ([ seq( p(2*s/100), s=0..100)],
title="Sphere to 1/2 Torus",
orientation=[-60, 35],
I nsequence=true );

V V.V V VYV YV VYV

V V.V V VYV
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[ >

=l For MapleV Releases4 and 5

Here is an example of how we can make use of parametric graphs of functions. In Maple 5
Releases 4 and 5 thereis abug (at least on Windows 98 thereis) in the way that the pl ot 3d
command handles "non rectangular domains" in either cylindrical or spherical coordinates and
we can get around this bug by graphing functionsin their parametric form. (I do not know if this
bugisasoin MapleV Release5.1.)

First an example of anon rectangular domain in cylindrical coordinates. Notice that the range of
the second variable (z) depends on first variable (q). The following graph is not correct.
[ > plot3d(1l, theta=0..2*Pi, z=0..theta, coords=cylindrical);
Here is what the graph was supposed to have looked like. Notice that all we are doing hereis
converting the above graph of afunction into its equivalent graph as a parametric surface.
> plot3d([1, theta, z], theta=0..2*Pi, z=0..theta,
{ coords=cylindrical);
Here is how we can reproduce the buggy graph above as a parametric surface. The next
command is drawing a graph of the form z=1f(r, q) but theradial variableiscaledt het ain
the next command, the angular variableis called z, and the function f is the constant function 1.
> plot3d([theta, z, 1], theta=0..2*Pi, z=0..theta,
{ coords=cylindrical);
So now we see that the pl ot 3d command somehow gets coordinate directions mixed up when
we try to use non rectangular domains with the graph of afunction in cylindrical coordinates.

[ >

Now hereisan example of using a "non rectangular" domain in spherical coordinates. This
graph is not correct.

> plot3d(1, t=0..2*Pi, p=Pi/4+. 2*sin(5*t)..Pi,
{ coor ds=spherical);
Here is what the graph was supposed to have looked like. Notice that al we are doing hereis
converting the above graph of afunction into its equivalent graph as a parametric surface.

> plot3d([1, t, p], t=0..2*Pi, p=Pi/4+. 2*sin(5*t)..Pi,
{ coor ds=spherical);
Here is how we can reproduce the buggy graph above as a parametric surface. The next
command is drawing a graph of theformf =f(r, q) but theradia variableiscalledt and the
angular variableis called p and the function is the constant function 1 (so f is constantly equal
to 1 in the graph, which explains the cone like slope of the surface).

> plot3d([t, p, 1], t=0..2*Pi, p=Pi/4+. 2*sin(5*t)..Pi,
{ coor ds=spherical);
Asin the case of cylindrical coordinates, pl ot 3d somehow gets coordinate directions mixed
up when we try to use non rectangular domains with the graph of afunction in spherical
coordinates.
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B
>
=17.7. Graphs of equations

Maple can draw graphs of equations in two and three variables, it can graph equationsin severa
coordinate systems, and it can graph more than one equation at atime. For example, hereis how we
can draw "graph paper" for cartesian coordinates.

> plots[inmplicitplot] ({x=-2, x=-1, x=0, x=1, x=2,
> y=-2, y=-1, y=0, y=1, y=2},
> x=-3..3, y=-3..3, axes=franed);

And here is some "graph paper" for polar coordinates.
> plots[inplicitplot] ({r=0, r=1, r=2, r=3, r=4,

> t heta=0, theta=Pi/4, theta=Pi/2,
t het a=3*Pi / 4,

> theta=Pi, theta=5*Pi/4, theta=3*Pi/2,
t het a=7*Pi / 4},

> r=0..4, theta=0..2*Pi, axes=franed,

| coords=pol ar) ;
It does not do much good to draw "graph paper” in three dimensions (why?). Instead, here are graphs
of three "coordinate planes' for each of the rectangular, cylindrical, and spherical coordinate

systems.
[ > plots[inmplicitplot3d] ({x=0, y=0, z=0}, x=-1..1, y=-1..1,
| z=-1..1);
> plots[inplicitplot3d]({r=1, theta=0, z=0},
> r=0..2, theta=0..2*Pi, z=-2..2,
> coords=cylindrical);
> plots[inplicitplot3d] ({rho=1, theta=Pi, phi=Pi/4},
> rho=0..1.5, theta=Pi/8..15*Pi/8,
phi =0. . Pi ,
| > coor ds=spherical);
[ >

Exercise: Explain why the following graph isnot acircle
> plots[inmplicitplot](r=1, theta=0..2*Pi, r=0..2,
{ > coords=pol ar, scaling=constrained);
Explain why the following graph is not a sphere and explain in detail exactly why it has the shape
that it does.

> plots[inplicitplot3d](rho=1, theta=0..2*Pi, phi=0..Pi,
rho=0. .1,
> coords=spherical, scaling=constrained);
[ >
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Exercise: Explain in detail why the following graph has the shape that it does.
{> plots[inplicitplot3d](1-u=sin(w/2, u=0..2, v=0..7, w=0..2*Pi,
> coords=cylindrical);

[ >

Exercise: In third semester calculus you learn that the element of volume in cylindrical coordinates
isgiven by dV =r dr d g dz Draw apicture of an element of volume in cylindrical coordinates.
(Hint: The element of volume has six faces. Draw three graphs, each of a pair of opposite faces, and
then combine the three graphs together.)

[ >

Exercise: In third semester calculus you learn that the element of volume in spherical coordinatesis

givenbydv=r 2 sin(f)dr dqdf. Draw apicture of an element of volume in spherical
coordinates.

[ >

Exercise: Here are eight different ways to graph a sphere. Explain how each one works.

> plots[inplicitplot3d] (x"2+y"2+z72=16, x=-4..4, y=-4..4,
z=-4..4);

> plots[inplicitplot3d](rho=4, rho=0..4, theta=0..2*Pi,

phi =0. . Pi ,

| > coor ds=spheri cal);

> plots[inplicitplot3d](r*"2+z722=16, r=0..4, theta=0..2*Pi,
z=-4. .4,

> coords=cylindrical);

[ > plot3d([4*sin(v)*cos(u), 4*sin(v)*sin(u),4*cos(v)], u=0..2*Pi,
v=0..Pi);

> plot3d([x, sqgrt(16-x"2)*cos(theta), sqrt(16-x"2)*sin(theta)],

> Xx=-4..4, theta=0..2*Pi);

[ > plot3d(4, theta=0..2*Pi, phi=0..Pi, coords=spherical);

> plot3d(sqrt(16-z”72), theta=0..2*Pi, z=-4..4,

| coords=cylindrical);

[ > plot3d({sqrt(16-x"2-y"2), -sqrt(16-x"2-y"2)}, x=-4..4,

> y=-sqgrt(16-x"2)..sqrt(16-x"2));

[ >

Whenusingi npl i ci tpl ot ori nplicitplot3d,theorder of the rangesisvery important. As
some of the above exercises demonstrate, these commands use the order of the ranges to determine
exactly which coordinate a variable represents. A variable named r need not represent radiusin
polar coordinates. A variablenamedr inani npl i ci t pl ot equation will represent the radial
coordinate in polar coordinates only if the first range given isfor r (and of course the
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coor ds=pol ar optionisused). On the other hand, there is nothing wrong with using the variable
X to represent the radial coordinate in polar coordinates, we just have to list the range for x first (and
usethecoor ds=pol ar option).

[ >

Exercise: Explain why the following two graphs ook the way they do.

[ > plots[inplicitplot] (y=x"2-1, y=-1..3, x=-2..2);
[> plots[inplicitplot] (x"2-1=y, x=-2..2, y=-1..3);
Predict what the following graph will look like before drawing it.

(> plots[inplicitplot] (y*2-1=x, y=-1..3, x=-2..2):
[ >

We can use the ordering of rangesini npl i ci t pl ot commandsto find another way to draw
nonstandard graphs of functions. Recall that if f(s) isareal valued function of asingle variable, then
we can draw graphs of either y = f(x) or x =f(y) in cartesian coordinates or we could draw graphs of
either r =f(q) or q=1(r) in polar coordinates. By default, the pl ot command will draw only
y =f(x) in cartesian coordinates and r = f(q) in polar coordinates. Earlier we saw how to use the
pl ot command with parametric equations to draw the graphs of x =f(y) and q =f(r). We can also
draw these graphsusing i npl i ci t pl ot . Here are the graphs of x =sin(y) and q =sin(r) drawn
usingi npl i citplot.
[ > plots[inplicitplot](x=sin(y), x=-1..1, y=0..2*Pi);

> plots[inplicitplot](theta=sin(r), r=0..4*Pi, theta=0..2*Pi,
{ > coor ds=pol ar);
[ >

Exercise: Usei npl i ci t pl ot todraw the graph of y = sin(x) in cartesian coordinates and the
graph of r =sin(q) in polar coordinates.

[ >

Given areal valued function f(u, v) of two real variableswe can usethei npl i ci t pl ot 3d
command to draw any one of the six possible graphs of f in each of rectangular, cylindrical, and
spherical coordinates.

[ >

Exercise: Usei npl i ci t pl ot 3d to graph the function z= sin(x* + y?) using cylindrical
coordinates. Also graph this function using pl ot 3d and both rectangular and cylindrical
coordinates. Try to make the graphs as nearly equivaent as you can. Which graph turns out the
"best", which the "worst"?

[ >

Exercise: For the function f(u, v) =vsin(u) usei npl i ci t pl ot 3d with spherical coordinates to
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draw graphsof r =f(f,q),q=1f(f,r),andf =f(q, r ). For each graph, find ranges for the variables
that produce an interesting graph. Also, redraw each of these graphs using pl ot 3d and parametric
equations.

[ >

Earlier in this worksheet we drew contour diagrams for functions of two variables. These contour
diagrams are closely related to graphs of equations. Suppose we have a function f(x, y) of two
variables. If we let ¢ be any number, then we can make an equation of the form f(x, y) =c. The
graph of an equation of thisformisalevel curvefor the function f. A level curve for the functionf is
acurve in the plane such that the graph of f has constant elevation over this curve. If we use

i nmplicitpl ot tograph severa level curves, then we get a contour diagram for f. Hereisan

example with the function f(x, y) = x° - V.
[>f = (Xx,y) -> x"2-y"2;
> plots[inplicitplot] ({f(x,y)=0, f(x,y)=2, f(x,y)=4,

> f(x,y)=-2,f(x,y)=-4}, x=-5..5,

y=-5..5);

Hereisthe equivalent cont our pl ot command.
[ > plots[contourplot] (f(x,y), x=-5..5, y=-5..5,
| contours=[-4,-2,0,2,4]);
Notice that the equation f(X, y) = ¢ does not define alevel set for the graph of f. We defined level
sets as curves of constant elevation in three dimensiona space and the equation f(x, y) = ¢ hasits
graph in two dimensional space. Hereisapl ot 3d command that draws the level setsthat are
equivalent to the above level curves. Notice how you can rotate the next graph and see that these
curves arereally curvesin three dimensional space and that they lie on the graph of f.

> plot3d(f(x,y), x=-5..5, y=-5..5,

> styl e=contour, contours=[-4,-2,0,2,4],
> orientation=[-90,0], axes=normal, views[-5..5, -5..5,
-5..5]);
[ >
L[>

= 7.8. Graphs of vector fields

Maple has two commands for drawing vector fields. Thef i el dpl ot command draws vector fields
intheplaneand f i el dpl ot 3d draws vector fieldsin space. Recall that a vector field in the plane
is defined by a 2-dimensional vector valued function of two real variables and a vector field in space
is defined by a 3-dimensional vector valued function of threereal variables. Hereisasimple
example of afunction that defines a vector field in the plane, f(x, y) =(2x, 2y). If welet p,
represent a point in the plane and we let (x,, Y,) be the coordinates of p,, then the value of f(x,, y,)
gives us the horizontal and vertical coordinates of a vector to be drawn at the point p,. So at p, we
would draw a vector with horizontal component 2 x, and vertical component 2 y,,. If we do this at
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every point p in the plane, then we will draw a vector field that always points away from the origin,
and the length of every vector in the field is twice the distance of the base of the vector from the
origin. Here is agraph of this vector field.

[ > plots[fieldplot]( [2*x, 2*y], x=-3..3, y=-3..3);

[ >

Notice one thing right away about this graph. While the directions of the vectorsin the graph are
accurate, the lengths of the vectors are not accurate. For example, at the point (1,1) there is supposed

to be a 45 degree vector with length 2 «/E , which would put the tip of the vector past the point (3,3).
But at (1,1) in the above graph there isavery short 45 degree vector. The vectors in the graph do get
longer asthey get further from the origin, but the lengths are nowhere near what they should be (why
do you think that is?). A vector field drawn by f i el dpl ot isnot meant asaliteral representation
of the true vector field. The graphsdrawn by f i el dpl ot are meant to give an impression of how a
vector field looks. These graphs usually give us agood qualitative (instead of quantitative)
information about a vector field. In the above example, the graph shows us that every vector in the
field points away from the origin and that the length of each vector is proportional to its distance
from the origin, and this gives us a good idea of what the true vector field looks like.

[ >

Exer cise: How would you expect the graphs of the vector fieldsf(x, y) =(2x, 2y) and

a(x, y) =(3x, 3y) to differ? How would the graph of h(x, y) = (- X, - y) compare with the graphs of
fand g?

[ >

A vector field in the plane is defined by a single function but that function has two components,
each of whichisarea valued function of two variables. In the abovef i el dpl ot command we
used two expressionsin alist to describe the vector field, one expression for each component
function. By making use of Maple functions, we can emphasize that a vector field is really defined
by asingle function. Here is a Maple function that defines the vector field used above

[>f = (xy) ->[2"x, 2*y];

Hereisaf i el dpl ot command that uses the Maple functionf .

(> plots[fieldplot]( f(x,y), x=-3..3, y=-3..3);

Recall from the section on vector valued functions in the last worksheet that there is unfortunately
no standard way to work with vector valued functions. So for example, the following obvious
version of the last command does not work.

[ > plots[fieldplot]( f, -3..3, -3..3);

Andif we definef in the following common way (with parentheses instead of brackets)

[>f = (x,y) ->(2*%, 2%y);

then we have to modify dightly theway weusef infi el dpl ot .

[ > plots[fieldplot]( [f(x,y)], x=-3..3, y=-3..3);

The most common way to usef i el dpl ot isto use expressions for each of the component
functions of the vector field and for the most part that is the way we will work with the command
(just as we did with parametric curves and parametric surfaces, both of which also use vector valued
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functions).

[ >

Here are some examples of the kinds of vector fields that come up in a course on vector calculus or
differential equations.
[ > plots[fieldplot]( [-y, X], x=5..5, y=-5..5);
[> plots[fieldplot]( [In(1+y*2), In(1+x"2)], x=-5..5, y=-5..5);
[ > plots[fieldplot]( [x/2, -y/3], x=-2..2, y=-2..2);
Here are afew 3-dimensional vector fields. It is not easy to get much information out of these kinds
of graphs.
(> plots[fieldplot3d]( [y, z, Xx], x=-2..2, y=-2..2, z=-2..2);
> plots[fieldplot3d]( [y/z, -x/z, z/4], x=-2..2, y=-2..2,
{ z=1..3);
[ > plots[fieldplot3d]( [-%x, -y, -z], x=-2..2, y=-2..2, z=-2..2);
[ >

There is an important specia class of vector fields that comes up very often in mathematics, gradient
vector fields. Thiskind of vector field is used often enough that Maple has two special commands
for drawing them, gr adpl ot for 2-dimensional gradient fieldsand gr adpl ot 3d for
3-dimensional gradient fields.

Recall from third semester calculus that if we have areal valued function of two real variables, then
its derivative at a point is a vector whose two components are the two partial derivatives of the
function at the point. If we compute the derivative of the function at every point in its domain, then
we get avector field of gradient vectors. This vector field is called a gradient field and the original
function is called gradient field's potential function. Let uslook at an example. Consider the function
f(x,y) =sin(x +y). Here are two ways to draw its gradient field, using f i el dpl ot and using

gr adpl ot . Firgt, let us define the function to Maple.

(> f 1= (x,y) -> sin(x)+sin(y);

Here is how we can compute its two partial derivative functions.

[>D{1](f); DI2](f);

Hereishow wecanusef i el dpl ot todraw the gradient vector field for f . Wegivefi el dpl ot
the two partial derivatives of f as the components of the vector field.

(> plots[fieldplot]( [ D 1](f), D2](f) ], -6..6, -6..6 );
Hereishow we use gr adpl ot to draw the same gradient vector field for f . We only need to give
gr adpl ot the potential function.

[ > plots[gradplot]( f(x,y), x=-6..6, y=-6..6 );

[ >

Recall from calculus that if p isany point in the domain of the potential function f(x, y), then the
gradient vector at p is perpendicular to the level curve passing through p. Let us demonstrate this by

drawing both the gradient field and the contour diagram for f in the same graph. (The parameter b is
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there to make it easier to change the domain of the graph.)
> Db = 3:
> plots[contourplot]( f(x,y), x=-b..b,
> plots[gradpl ot]( f(x,y), x=b..b
> plots[display] (% %4;
If you look closely at the above graph, you can see that all of the gradient vectors are perpendicul ar
to thelevel curves. (Thisisabit easier to see if you zoom in on the graph a bit. Try letting b equal 3
or 2.) A bit more can be said about the directions of the gradient vectors. Recall that the color coding
on level curves goes from red for low values to yellow for high values. The gradient vectors are
pointing from red curves toward yellow curves. This shows, as you learned in calculus, that the
gradient vectors point in the direction of steepest increase in the potential function. To help you see
that the gradient vectors are pointing "uphill", compare the above graph with the following three
dimensional graph of f and itslevel sets.
> Db = 3:
> plot3d( f(x,y), x=-b..b, y=-b..b, style=contour,
orientation=[-90,0] );

[ >
Exercise: Draw a combined graph of the level curves and gradient field for the potential function
y
f(x,y) = :
X +y+1
[ >

So far in this section, we have always considered a function of the form (u, v) =f(x, y) as
representing a vector field in the plane, that is u and v are the horizontal and vertical components of
avector that we draw at the point with coordinates (X, y). But there are other ways of interpreting
thiskind of function. Let uslook briefly at one of these other interpretations. We can use a
2-dimensional vector valued function of two variables as a change of variables. Here is an example.
Consider the function (u, v) =f(r, q) defined by f(r, q) =(r cos(q), r sin(q)). If we let p represent
apoint in the plane, and suppose that p has polar coordinates (r, ), then
(u,v) =(rcos(q), r sin(g)) will be the cartesian coordinates for p. In other words, given apoint in
the plane, the function f takes as input the polar coordinates of the point and returns the cartesian
coordinates for the same point. The function f changes the polar coordinates of a point into cartesian
coordinates, and so we call it a change of variables. Of course, the function f can also be given a
vector field interpretation. Let us demonstrate using both of these interpretations for f. Let us define
f to Maple.
[>f :=(r,theta) -> [r*cos(theta), r*sin(theta)];
Hereisalist of four pointsin the plane given in polar coordinates. These point are at the four
corners of a sgquare.

> points =] [sqrt(2), Pi/l4], [sqrt(2), 3*Pi/4],
{> [sqgrt(2), 5*Pi/4], [sqrt(2), 7*Pi/4] ];
L et us graph these points using polar coordinates.
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[ > plot( points, style=point, coords=polar );

Now let us apply the change of variables function f to these points and get alist of the cartesian
coordinates for the points. In the following command, p represents an ordered pair from the list

poi nts, p[ 1] isthefirst numberinp (i.e., theradial coordinate) and p[ 2] isthe second number
inp (i.e., theangular coordinate).

[> seq( f(p[1].p[2]), p=points );

Now graph the points using cartesian coordinates.

[>plot( [, style=point );

Wejust used f to change the coordinates of four pointsin the plane from polar to cartesian. Now let
usinterpret f asavector field and graph the vector field.

[ > plots[fieldplot]( f(x,y), Xx=-6..6, y=-6..6 );

So we have given the same function f two very different interpretations, as a change of variables
and as a vector field. Neither interpretation is more correct than the other. Some 2-dimensional
vector valued functions of two variables are more useful as a vector field and some are more useful

as a change of variables.
[ >

Exercise: Thefunction T(r, g, f) =(r sin(f) cos(q), r sin(f) sin(q), r cos(f )) can be interpreted
as achange of variables or as a vector field. Create a short list of spherical coordinates for some
points in space, plot the list using spherical coordinates, then use T to change the coordinates to
rectangular coordinates and plot the points using rectangular coordinates, and then graph T asa
vector field. (Note: To plot pointsin space, you need to use the poi nt pl ot 3d command from the
pl ot s package. The pl ot 3d command does not plot points.)

[ >

L[>
=17.9. Online help for graphing and visualization

Mapl e has extensive graphing abilities. Besides the two main graphing commands, pl ot and

pl ot 3d, and the main package of graphing commands, pl ot s, Maple hasalot of other graphing
facilities scattered throughout a number of packages. Thereisalot of online documentation and
examples for these facilities. Below we try to outline this documentation. First we mention the
documentation for the pl ot and pl ot 3d commands and their most important options, and then we
outline the documentation for the most important commands within the pl ot s package. (Notice, as
you go along, that ahelp page like ?pl ot , coor ds isabout an option to the pl ot command, and
ahelp page like ?pl ot s, coor dpl ot isabout acommand inthe pl ot s package.) Finally, at the
end of this section we try to outline most of the documentation for Mapl€e's other graphing
commands and packages.

When you click on any two-dimensional or three-dimensional graph, the menus available at the top
of the Maple window and the context bar just below the menus change appropriately. Here are two
help pages that describe the items in the graphics menus.
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[ > ?pl ot 2dMenul t ens

[ > ?pl ot 3dMenul t ens

And here are two help pages that briefly describe the items in the graphics context bars.
[ > ?style2

[ > ?style3

At this point we should also mention that on afew platforms, Maple has defined two special
commands that try to make it easier to draw basic graphs. Thesearethesnar t pl ot and

smar t pl ot 3d commands. The graphs drawn by these commands can be manipulated by right
clicking on the graph to bring up a context menu. These context menus have more items in them
than the context menus for regular graphs.

[ > ?smart pl ot

[ > ?smart pl ot 3d

See also the following help page.

[ > ?cont ext menu

Maple's most basic graphing command is of course pl ot .

[ > ?pl ot

Thepl ot help page has amost no information about the optionsto pl ot . These are all described
in the following important help page.

[ > ?pl ot, options

Many of the special features of the pl ot command, like parametric graphs, polar graphs, using
infinity in arange, etc., have their own help pages.

[ > ?plot, multiple

[ > ?pl ot, col or

[ > ?plot,style

[ > ?pl ot, ranges

[> ?plot,infinity

[ > ?plot, function

[ > ?pl ot, paranetric

[ > ?pl ot, pol ar

[ > ?pl ot, coords

Most of the optionsto the pl ot (and pl ot 3d) command trandate directly into pieces of a PLOT
data structure. In alater worksheet we will say alot more about PLOT data structures. The following
command brings up a description of the PLOT data structure and all of its pieces. Sometimes,
looking up the PLOT data structure analogue of apl ot option will provide some clue about the
option that is not in the option's documentation.

[ > ?plot,structure

We mentioned the di scont =t r ue option of thepl ot command. This option does not have its

own help page. But thedi scont =t r ue option to pl ot makes use of aMaple function called
di scont . Thefollowing help pageisabout thedi scont function and therefore it also sheds
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some light on the di scont option of pl ot .

[ > ?di scont

Thef di scont function, whichisalso used by pl ot withthedi scont =t r ue option, doesthe
samething asdi scont but it works numerically instead of symbolically.

[ > ?fdiscont

Mapl€e's basic three dimensional graphing command ispl ot 3d.

[ > ?pl ot 3d

Thepl ot 3d help page says very little about the optionsto the pl ot 3d command. All of these
options are explained in the next help page.

[ > ?pl ot 3d, opti ons

The pl ot 3d command has two other help pages about some of its special features.

[ > ?pl ot 3d, coords

[ > ?pl ot 3d, col orfunc

Thepl ot 3d command hasthest yl e=cont our option for drawing the level curves of a surface.
Two closely related commands from the pl ot s package arecont our pl ot and

cont our pl ot 3d. Thecont our pl ot command draws al of the level curves of a surface as
level setsinthe plane. Thecont our pl ot 3d command draws the level curves as curvesin space.
(Notice that the cont our pl ot 3d command seems to be equivalent to the pl ot 3d command
withthest yl e=cont our option.) The following help page describes both cont our pl ot and
cont our pl ot 3d.

[ > ?pl ots, cont our pl ot

If you are drawing alot of graphs and they all are using the exact same options, it might be
convenient to redefine the default pl ot and pl ot 3d optionsusing theset opt i ons and
set opt i on3d commands from the pl ot s package.

[ > ?setoptions

[ > ?setoptions3d

Maple can draw graphsin 15 two-dimensional coordinate systems and 31 three-dimensional
coordinate systems. The next help page lists all of these coordinate systems, and, additionally, gives
the formulas for the coordinate transformation of each coordinate system to cartesian coordinates.

[ > ?coords

The next two help pages briefly summarize the two and three dimensiona coordinate systems
respectively.

[ > ?pl ot, coords

[ > ?pl ot 3d, coords

The next two help pages describe the commands for drawing pictures of the two and three
dimensional coordinate systems. For the two-dimensional coordinate systems, the coor dpl ot
command draws a picture of "graph paper" for each coordinate system. For the three-dimensional
coordinate systemsthe coor dpl ot 3d command draws a surface of constant value for each of the

Page 57



three coordinate variables.

[ > ?pl ots, coordpl ot

[ > ?pl ots, coordpl ot 3d

The command for defining your own coordinate systemsisaddcoor ds. (You havetor eadl i b
this command in order to useit.)

[ > ?addcoor ds

It isworth mentioning that the pl ot s package contains three functions for graphing in non
cartesian coordinate systems that seem to be redundant with options for the pl ot and pl ot 3d
commands. The pol ar pl ot command seemsto be equivalent to the pl ot command with the
coor ds=pol ar option, thecyl i nder pl ot command seemsto be equivalent to the pl ot 3d
command with thecoor ds=cyl i nder option, andthespher epl ot command seemsto be
equivalent to the pl ot 3d command with the coor ds=spheri cal option.

[ > ?pl ots, pol ar pl ot

[ > ?plots, cylinderpl ot

[ > ?pl ots, spherepl ot

Closely related to the idea of using different coordinate systems in the plane or in space is the idea of
using a different coordinate system on the real line when graphing areal valued function of one
variable. Asthe following three help pages describe, Maple can draw graphs of real valued functions
of asingle variable with alogarithmic scale on either or both of the axes.

[ > ?pl ots, | ogpl ot

[ > ?pl ots, sem | ogpl ot

[ > ?pl ots, | ogl ogpl ot

The pl ot 3d command only draws graphs of surfaces, that is, graphs of real valued functions of two
variables and parametric surfaces. To draw curvesin three dimensions Maple needs a special
command, spacecur ve, fromthepl ot s package

[ > ?pl ots, spacecurve

Thet ubepl ot command lets us convert aone dimensional curve in three dimensional spaceinto a
two dimensional "tube".

[ > ?pl ots, tubepl ot

There are two commands for graphing equations, one that draws two dimensional graphs of
equations in two variables, and one that draws three dimensional graphs of equationsin three
variables.

[ > ?plots,inplicitplot

[ > ?plots,inplicitplot3d

There are two commands for graphing vector fields, one for two dimensional vector fieldsin the
plane and one for three dimensional vector fieldsin space.

[ > ?plots, fieldplot

[ > ?plots, fieldplot3d
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In addition, there are two commands for the special case of drawing gradient vector fields.
[ > ?pl ots, gradpl ot
[ > ?pl ots, gradpl ot 3d

One very important command from the pl ot s packageisthedi spl ay command, which can be
used to combine severa (usually ssmple) graphs into a more complicated graph.

[ > ?pl ots, display

Oneway that di spl ay can combine several graphs together is as the frames of an animation. This
iIsdone by using thei nsequence=t r ue optionto di spl ay. Thereis no separate help page for
thei nsequence option. The previous help page includes a description of this option and severa
examples of its use. Another way to create animationsis by using the ani mat e and ani mat e3d
commands. These commands provide an easy way to make simple animations, but they are not as
versatileasthei nsequence=t r ue optionto di spl ay.

[ > ?ani mate

[ > ?ani mat e3d

There is a special animate command specifically for animating curvesin the plane. In particular, this
command makes nice animations of parametric curves.

[ > ?ani mat ecurve

Mapl e animations can be used to create animated GIF files for use in web pages on the Internet. A
brief explanation of this, along with an explanation of some other graphics formats that Maple can
produce, isin the next help page.

[ > ?pl ot, devi ce

The plot devices described in the last help page are used as options in either the pl ot set up or

I nt er f ace commands.

[ > ?pl otsetup

[ > ?interface

An interesting command from the pl ot s packageismat ri xpl ot , which lets you draw athree
dimensional visualization of the contents of a matrix.
[ > ?plots, matri xpl ot

In the New User's Tour there is aworksheet containing examples of using some basic graphics
commands.
[ > ?newuser, topi c05

Besidesthe pl ot and pl ot 3d commands and the commands mentioned above from the pl ot s
package, Maple has many other commands for drawing graphs. In the rest of these paragraphs we
show where to get additional information about most of these commands.

There are many graphing commandsin the pl ot s package that we have not yet mentioned. The
next page is a summary of the entire pl ot s package and it contains hyperlinks to the help pages of

al the commands in the package.
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[ > ?plots

Thepl ot t ool s package has a number of special functions for drawing "graphical objects’, like an
arrow. The next page is an overview of this package and it contains hyperlinks to the help pages of
the all the commands in the package.

[ > ?plottools

Maple also hasageonet r y package that can be used to create illustrations of ideas and theorems
from two dimensional Euclidean geometry. Hereis a help page giving an overview of this package.
[ > ?geonetry

Within this package you can work with the following kinds of geometric objects.

[ > ?geonetry, obj ects

Y ou can apply the following types of transformations to the geometric objects.

[ > ?geonetry,transformation

The dr awcommand inthe geonet r y package is used to actually draw the geometric objects that
you define using the package's commands.

[ > ?geonetry, draw

Here is a help page that contains several examples of using the geonet r y package. Y ou can cut
each example out of the help page and paste it into a worksheet and then execute the example.

[ > ?geonetry, exanpl es

And here is aworksheet that has more examples of the geonet r y package. Y ou can execute these
examples directly in this worksheet.

[ > ?exanpl es, geonetry

For doing Euclidean geometry in three dimensions Maple has the geonBd package. Hereisan
overview of this package.

[ > ?geonBd

Within this package you can work with the following kinds of geometric objects.

[ > ?geonBd, obj ects

Y ou can apply the following types of transformations to the geometric objects.

[ > ?geonBd, transfornmation

[ > ?geonBd, transform

The dr awcommand in the geonBd package is used to actually draw the geometric objects that you
define using the package's commands.

[ > ?geonBd, draw

Here is aworksheet that has some examples of the transformations available in the geon8d

package. Y ou can execute these examples directly in this worksheet.
[ > ?exanpl es, transform

Maple has many commands for working with polyhedra. These commands are contained in three

packages, pl ot s, pl ot t ool s, and geonBd. | do not really understand the division of labor
involved here. I'll try to give some pointers to the documentation. In the pl ot s package thereisthe
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pol yhedr apl ot command.

[ > ?pl ots, pol yhedr apl ot

There isacommand that will list the polyhedra supported by the pol yhedr apl ot command.
[ > ?pol yhedra_support ed

Hereisthe list of the polyhedra supported by pol yhedr apl ot . It isinteresting to see the names
of so many kinds of polyhedra. (Can you say parabidiminishedrhombicosidodecahedron?)

[ > pol yhedra_supported();

Inthepl ot t ool s package there are five commands that act as an interface to the

pol yhedr apl ot command.

[ > ?pl ottool s, dodecahedr on

[ > ?pl ott ool s, hexahedr on

[ > ?pl ottool s, icosahedron

[ > ?pl ottool s, oct ahedron

[ > ?plottools,tetrahedron

Thepl ot t ool s package has afew commands for modifying polyhedra, for example the

st el | at e command.

[ > ?plottools,stellate

The geonBd package has a number of commands that can be used to define polyhedra. The
polyhedra defined with these commands can be drawn using the dr aw command from the same
package. The commands for creating polyhedra are organized into three groups.

[ > ?geonBd, Regul ar Pol yhedr on

[ > ?geonBd, Quasi Regul ar Pol yhedr on

[ > ?geonBd, Ar chi nedean

The geonBd package has acommand for creating the dual of a given polyhedron.

[ > ?geonBd, dual ity

Likethepl ot t ool s package, the geonBd package has a command to stellate a polyhedron.
[ > ?geonBd, stell ate

In addition, the geonBd package has a command for faceting a polyhedron.

[ > ?geonBd, f acet

There are six worksheets that give examples of how to use the geonBd package to work with
polyhedra. Y ou can execute the examples directly in these worksheets. Some of the examplesin
these worksheets create very striking polyhedra.

[ > ?exanpl es, regul ar

[ > ?exanpl es, ar chi

[ > ?exanpl es, dual

[ > ?exanpl es, stellate

[ > ?exanpl es, facet

[ > ?exanpl es,transform

Here are several other packages with some specialized plotting and visualization commands in them.
[ > ?student
[ > ?DEt ool s
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[ > ?PDEt ool s

[ > ?stats,statplots

Here are two worksheets that contain examples of using the DEt ool s package to graph solutions of
differential equations. Y ou can execute the examples directly in these worksheets.

[ > ?exanpl es, depl ot

[ > ?exanpl es, depl ot 3d

Here is aworksheet with some examples from the st at pl ot s (sub) package.

[ > ?exanpl es, statplots

[ >
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