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6.  Functions in Maple

6.1. Introduction
Functions play a major role in Mathematics so it is important to know how to work with them in 
Maple. There are two distinct ways to represent a mathematical function in Maple. We can represent 
a mathematical function in Maple using either an "expression" or a "Maple function". The 
distinction that Maple makes between "expressions" and "functions" has its roots in concepts from 
both Mathematics and Computer Science. Making this distinction, and learning to understand it and 
work with it, will help us to better understand how we use ideas like function, equation, and 
variables in Mathematics, and it will also help introduce us to the Computer Science ideas of a "data 
structure" and a "procedure".
> 

6.2. Functions in Mathematics
We quickly review here the definition of a mathematical function. A function is three things bundled 
together. It is a set of inputs (the domain), a set of outputs (the codomain), and a rule for associating 
one of the outputs to each of the inputs. Functions can be defined in several ways, for example by 
formulas, by tables, and by graphs. Most of the time in mathematics, the sets of inputs and outputs 
are sets of numbers. For most people, the "rule" part of a function's definition seems the most 
important, but that is not really a good way to think about functions.  To demonstrate that a 
mathematical function is really more than just its rule, let us look at an example.
> 

We shall define three different functions named f, g, and h. The rule for each of these functions will 
be given by a formula. In fact we will use the same formula in all three cases. What will make the 
three functions different will be their domains.

The function f  has as its domain the set of all real numbers, its codomain is the set of all positive 

real numbers, and its rule is given by the formula  = ( )f x x2.

The function g  has as its domain the set of all positive real numbers, its codomain is the set of all 

positive real numbers, and its rule is given by the formula  = ( )g x x2.

The function h  has as its domain the set of all negative real numbers, its codomain is the set of all 
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positive real numbers, and its rule is given by the formula  = ( )h x x2.

Exercise: Draw graphs for each of the functions f, g, and h.
> 

How do we know that these three functions are different? The answer is that they have different 
properties. For example, the function f is not invertible (why?). The functions g and h are both 
invertible (why?) but they have different inverses. The inverse of the function g has its rule given by 

the formula  = ( )( )g( )−1 x x . The inverse of the function h has its rule given by the formula 

 = ( )( )h( )−1 x − x .

So f, g, and h all have the exact same formula (i.e., rule) but they are not the same function. The 
domain (and codomain) really are important parts of the definition of a mathematical function.

Exercise: What is the domain and codomain for each of g( )−1  and h( )−1 ?
> 

> 

6.3. Functions in Maple
Recall that we have said that there are two ways to represent mathematical functions in Maple, as 
Maple expressions and as Maple functions. First we will look at mathematical functions represented 
as Maple expressions.

We define an expression in Maple as just about any mathematical formula that you can write down 
that does not have an equals sign or any inequalities in it. Here are some examples of expressions.
> 3*x^2 - 5*x + 17;
> sin( (x+1)^b ) + ln(y);
> exp(x+y)/sec(x);
> n! + sum(n^2, n);
> a*x + b*y + c*z;

Notice that some of these are expressions in one variable, others are expressions in two or more 
variables. (How many variables are in the last expression?)  Also notice that calls to Maple 
procedures are allowed as parts of expressions.
> 

These expressions look a lot like the definitions of mathematical functions, which is why they can 
be used to define mathematical functions in Maple. But expressions are not what Maple refers to as 
"functions". A Maple function is something defined using arrow notation. Here are several 
examples of Maple functions.
> x -> x^2;
> x -> a*x^2 + b*x + c;

Page 2



> (x,y) -> x^2 + y^2;
> z -> sin(z) + exp(z^2);

Look at the first example. We read this as "the function that sends x to x squared" (the arrow 
represents the verb "sends"). Another common way to read this arrow notation is "the function that 
maps x to x squared". On the left of the arrow are variables that represent the input to the function. 
On the right hand side of the arrow there is an expression that represents the rule of the function. 
(The arrow, by the way, is made up of a minus sign and a greater than sign. There should not be a 
space between them.) Notice that Maple functions are not really mathematical functions since there 
is no mention of a domain or a codomain. But Maple functions are clearly meant to define a rule 
showing how an output is computed from an input. 
> 

So both Maple expressions and Maple functions can be used in Maple to represent mathematical 
functions. To see how Maple functions can differ from Maple expressions when used to represent 
mathematical functions, consider the following three examples.
> a*x^2;
> x -> a*x^2;
> (x,a) -> a*x^2;

In the first example the expression is defining a function of two variables since there is really no way 
in Maple to give either of the unknowns x or a any more importance than the other. But in the 
second example the arrow notation clearly singles out the unknown x as the input so this defines a 
function of one variable, and the unknown a is to be thought of as a constant (or a "parameter"). In 
the third example the arrow notation clearly defines a function of two variables. What does the 
following command define?
> a -> a*x^2;

Notice how these last examples demonstrate a difference between Maple and standard mathematical 
notation. For example, when one writes a formula for the general quadratic, one usually writes 

 +  + a x2 b x c, and it is understood that this defines a function of one variable (the x) and the function 
has three parameters (the a, b, and c). This is because we have a convention in mathematics to treat 
some letters as variables (for example x, y, and z) and some other letters as constants or parameters 
(for example a, b, and c). Maple does not have any knowledge of this convention so in an expression 
Maple treats all unassigned names (i.e., all unknowns) as variables.

In all the examples of expressions and Maple functions given above, we never gave any of them a 
name. But we can always use the assignment operator to give an expression or function a name, and 
this makes working with expressions and functions much more convenient. So for example, here is 
an expression named f and a Maple function named g.
> f := x^2 - 1;
> g := x -> x^2 - 1;

Notice that the last command does two distinct things. It defines a Maple function and it assigns the 
function a name. When you define a Maple function using the arrow notation and give it a name at 
the same time using the assignment operator, you get a Maple command that can look quite strange 
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at first, but you need to get very used to this notation. 
> 

Let us compare Maple's notation with the standard mathematical notation for defining and naming a 
function. The mathematical notation

 = ( )g x  − x2 1
defines a mathematical function named g that is equivalent to the Maple function named g defined 
by the Maple command

g := x -> x^2 - 1.
When we compare these two notations we notice a major difference right away. The Maple notation 
clearly separates the defining of the function (the arrow operation) from the naming of the function 
(the assignment operation) but the mathematical notation combines these two operations into one 
use of the equals sign. The mathematical notation has one clear advantage over the Maple notation. 
The mathematical notation  is more compact. But, as we have seen in previous worksheets and will 
see again later in this worksheet, the mathematical notation has the disadvantage of being somewhat 
ambiguous. 

We end this section with some more examples of using the arrow notation. These examples are 
purposely a bit confusing, to start you thinking about this important notation.

Here is a function named f.
> f := x -> (1 + x^2)/x^3;

Here is another way to define the same function f.
> f := (1 + (x -> x^2))/(x -> x^3);

Why did this define the same function as the first definition? Here is a third definition of the same 
function f.
> f := (1 + (z -> z^2))/(y -> y^3);

How does this definition handle an input to f?
> 

Here is a function named g.
> g := x -> (1 + exp(x))/x^3;

Here is another way to define the same function g.
> g := (1 + exp)/(x -> x^3);

How does this definition handle an input to g?
> 

Here is an expression named f.
> f := x^2;

Here is a function named g defined using f.
> g := x -> 2 * x^3 * f;

What is g(x) equal to?
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> 

Here are two functions, f and g, where g is defined using f.
> f := x -> x^2;
> g := 2 * (x -> x^3) * f;

What is g(x) equal to?
> 

Here is another way to define g using the function f.
> g := x -> 2 * x^3 * f(x);

Be sure to examine the last three definitions of g carefully. They all define the same function. How 
does each of them make use of functions, expressions, and the arrow notation?
> 

Exercise: Explain the result of the following command.
> (x -> x + x^(-1))(w);
> 

Maple has some built in functions that have already been assigned names. Here is an example that 
uses a couple of these built in functions. 
> h := 2*sin - 9/exp;

h is a function, not an expression. Here is another way to define the same function h.
> h := x -> 2*sin(x) - 9/exp(x);
> 

Exercise: Use the arrow notation to define a function that takes two numbers as input and then 
squares the first number minus the second number and subtracts from that the quotient of the first 
number squared with one minus the second number.
> 

Exercise: Use the arrow notation to define a function that takes one number as input and then 
returns three times the cosine of pi times the cube of the input.
> 

> 

6.4. Working with expressions and Maple functions
There are many operations that you might want to perform on a function, for example, graph it, 
evaluate it, differentiate or integrate it, compose it with another function, etc. How you do these 
operations in Maple depends on how you choose to represent the function in Maple, as either a 
Maple expression or as a Maple function. Let us look at a number of examples.

Page 5



First, an example of graphing a mathematical function defined as an Maple expression.
> plot( x^2, x=-5..5 );

Now graph the same mathematical function defined as a Maple  function. 
> plot( x->x^2, -5..5 );

Notice the subtle difference in the syntax of these two commands. For example, both of the 
following Maple commands are incorrect.
> plot( x^2, -5..5 );
> plot( x->x^2, x=-5..5 );
> 

Let us do an example where we give the functions names. Here is an expression named f and a 
Maple function named g that both represent the same mathematical function.
> f := x^2 - 3*x-10;
> g := x -> x^2-3*x-10;

Now plot them.
> plot( f, x=-3..6 );
> plot( g, -3..6 );

Notice that both of the following commands are incorrect. You need to be very careful to distinguish 
between Maple expressions and Maple functions! 
> plot( f, -3..6 );
> plot( g, x=-3..6 );
> 

Let us see why it makes sense that Maple would have a different syntax for plotting Maple 
expressions and Maple functions. Suppose we give Maple the following command.
> plot( a*x^2, -5..5 );

We have asked Maple to plot an expression with two variables but we have given Maple only one 
range. Which of the variables should Maple assign the range to? We have to tell Maple which of the 
variables the range is to be associated with (and the other variable has to be given a value so that it 
acts like a constant). So when we plot an expression, it makes sense to specify which variable the 
range is associated with (even if there might only be one variable). Now suppose we give Maple the 
following command.
> plot( x->a*x^2, -5..5 );

The function being graphed does not have two variables. The arrow notation specifies that the 
function has only one variable (and one "parameter"). Since the function only has one variable and 
there is one range given, it is clear that the range is supposed to be associated with the single 
variable. The command is not ambiguous (as long as we make sure that the "parameter" a has a 
value). Now consider the following command.
> plot3d( (x,a)->a*x^2, -5..5, -10..10 );

The arrow notation specifies that the function being graphed is a function of two variables and there 
are two ranges given in the command. The ranges are associated with the variables in the order they 
are given, so the -5..5 range is associated with the variable x and the -10..10 range is 

Page 6



associated with a. Again, there is no ambiguity about the variables, so there is no need when 
plotting a function to explicitly associate the range with a variable name as when you graph an 
expression. 

Exercise: How would you graph the expression a*x^2 as a function of two variables?
> plot3d(   );
> 

Here are some other differences in how Maple treats an expression and a Maple function. The 
following command tells us the definition of the expression f.
> f;

But the following command does not tell us much about the function g.
> g;

Here is a way to get the definition of g.
> print(g);

Here are two more ways to get the definition of g.
> eval(g);
> op(g);
> 

Now suppose we wanted to evaluate our mathematical function at a point, say at 1. We use different 
syntax for the Maple expression and the Maple function. For the expression, we substitute 1 for x 
in f.
> subs( x=1, f );

For the Maple function we can use traditional functional notation.
> g(1);

Notice that the following two commands do not work.
> f(1);
> subs( x=1, g );
> 

We should mention that there is another way to evaluate an expression at a point. We can use a form 
of the eval command (which is, of course, an abbreviation of evaluate). This form of the eval 
command is new to Maple V Release 5, so it is not mentioned in many of the Maple books that are 
currently available.
> eval( f, x=1 );

Notice the difference in the syntax between eval and subs.
> subs( x=1, f );

Think of reading eval(f,x=1) as "evaluate f at x=1" and think of reading subs(x=1,f) as 
"substitute x=1 into f". As you should expect, the following command does not work with the 
Maple function g.
> eval( g, x=1 );
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> 

The following command will factor the expression f.
> factor( f );

But the following command does not factor the Maple function g.
> factor( g );

Here is how we can factor it.
> factor( g(x) );
> 

Here are commands for finding the derivative of an expression and a Maple function.
> diff( f, x );
> D( g );

(Explain why the diff command needed a reference to x in it but the D command did not. ) As you 
might expect by now, the following two commands do not do what we want them to do.
> D( f );
> diff( g, x );

Why is the following command's output like that of D(f)?
> D( g(x) );

Notice how Maple did not complain about any of these last three commands. They were not 
syntactically incorrect. As far as Maple is concerned, we asked it to do something valid, and it did it. 
What we asked it to do is not clear at this point, but what ever it was, Maple did it. But what Maple 
did was not what we were expecting. There are two lessons to be learned from this. First, be careful 
to keep track of when you are working with expressions and when you are working with Maple 
functions. Second, you need to always look carefully at your Maple outputs. Just because Maple 
computed something does not mean that it computed something that made sense or that it computed 
what you wanted it to compute.
> 

Let us do an example of combining two mathematical functions f and g by composing them to make 
a new function h(x) = f(g(x).  Here is how we would compose two mathematical functions if they 
are represented by expressions.
> f := x^2 + 3*x;
> g := x + 1;
> h := subs( x=g, f );

We substituted the inner function g into the outer function f and we got the expression h that 
represents the composition f(g(x)). Now here is how we would do this if f and g are represented by 
Maple functions.
> f := x -> x^2 + 3*x;
> g := x -> x + 1;
> h := f@g;

Here is how we can verify that the Maple function h represents the composition of f and g.
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> h(x);

We do not need to use a separate name like h for the composition of the Maple functions f and g. 
The symbol f@g can be used as a name for the composition, but we need to put parentheses around 
this name when we use it to evaluate the composition.
> (f@g)(x);

The at sign (@) is used in Maple to mean composition of two Maple functions. The at sign is used 
because it is the closest character on the standard computer keyboard to the little raised circle used in 
mathematics books to denote composition of functions. (If you do not remember the symbol, look up 
composition in almost any calculus book.)

Exercise: In what way are the following four expressions similar to (f@g)(x)?
> (f+g)(x);
> (f-g)(x);
> (f*g)(x);
> (f/g)(x);
> 

Exercise: Explain the results of the following two commands. (Try executing these two commands 
with f and g as unassigned variables.)
> ((f+g)@g-f)(x);
> ((f+g)@(g-f))(x);
> 

Let us do an example of representing a mathematical function of two variables. Here is an 
expression in two variables.
> f := (x^2+y^2)/(x+x*y);

And here is the equivalent Maple function of two variables.
> g := (x,y) -> (x^2+y^2)/(x+x*y);

Here is how we evaluate the expression and the Maple function at a point.
> subs( x=1,y=2, f );
> eval( f, {x=1,y=2} );
> g(1,2);

Neither of the next two commands works.
> f(1,2);
> subs( x=1,y=2, g );

Here is how we get the definitions of f and g.
> f;
> print(g);

Notice that Maple can simplify the expression a bit.
> f;  simplify( f );

But the simplify command does nothing to g.
> simplify( g );
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Here is how we can do the simplification using g.
> simplify( g(x,y) );

Here is how we compute partial derivatives of the expression.
> diff( f, x );
> simplify( % );
> diff( f, y );
> simplify( % );

Here is how we compute the partial derivatives of the Maple function.
> D[1](g);
> simplify( %(x,y) );

(What did the % refer to in the last command?)
> D[2](g);
> simplify( %(x,y) );

Notice how the notation for partial derivatives of expressions uses the name of the independent 
variable but with Maple functions the partial derivative notation does not use the name of the 
independent variable. The D operator uses a number to indicate the first, second, third, etc, 
independent variable. This is an indication of the fact that, for example, the expression 
3*x^2+5*y^2 is not the same expression as  3*u^2+5*v^2, but the Maple function 
(x,y)->3*x^2+5*y^2 is exactly the same function as (u,v)->3*u^2+5*v^2. (Consider 
(s,t)->3*t^2+5*s^2. Is it the same function?) So the D operator differentiates with respect to 
the position of the independent variable in the input list on the left hand side of the arrow operator, 
not with respect to the name given to the independent variable. For Maple functions, it is the 
position of the independent variable in this list that matters, not the name of the independent 
variable.

Suppose we want to compose our mathematical function with the function  = ( )h z z  where h will 
be the outer function in the composition. Let h1 represent h as an expression and let h2 represent h 
as a Maple function. Let k1 be the name of the composition as an expression and let k2 be the name 
of the composition as a Maple function.
> h1 := sqrt(z);
> h2 := z -> sqrt(z);

Here is the composition using expressions.
> k1 := subs( z=f, h1 );

Here is the composition using Maple functions.
> k2 := h2@g;
> k2(x,y);

Explain why k1 is the same thing as k2(x,y).
> 

Recall that in the last section we defined a function h as follows.
> h := 2*sin - 9/exp;

h is a function, not an expression. The next two commands show that h really is a function, not an 
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expression, since h must be plotted using the syntax for a function, not an expression.
> plot( h, 0..10 );      # The function syntax works.
> plot( h, x = 0..10 );  # The expression syntax does not work.

Here is another way to define the same function h.
> h := x -> 2*sin(x) - 9/exp(x);
> 

Exercise: Let  = ( )f ,x y  + 3 x 5 y and let  = ( )h z  + z 1 . We have already seen how to compute the 
composition h(f( ,x y)) using either expressions or Maple functions. Explain why the composition 
f(h(z)) does not make sense mathematically. Compute the compositions f(h(x),y), f(x,h(y)), and f(h(x
),h(y)). First do this exercise using expressions. Can you do these compositions using Maple 
functions and the @ operator?
> 

Exercise: Let f be the following function of two variables.
> f := (x,y) -> 3*x^2+5*y^2;

If we hold one of the inputs to f fixed, then we get a function of one variable that we will call a 
"slice of f". Let fx3 be the slice of f defined by letting y be fixed at 3. Find a Maple command that 
uses f to define fx3 as a Maple function.
> 

Note: The following Maple command represents the function we want as an expression, so it is not 
the correct answer to this exercise.
> fx3 := f(x,3);

Let f3y denote the slice of f with x fixed at 3. Use f to define f3y as a Maple function.
> 

Explain the mathematical meaning of D(fx3) and D(f3y). (The following two commands do not 
mean anything until you have properly defined fx3 and f3y.)
> D( fx3 );
> D( f3y );

Find another way to compute D(fx3) and D(f3y) that does not use the slice functions fx3 and 
fy3.
> 

Almost anything you would like to do with an expression you can do with a Maple function, and 
visa versa. Unfortunately, as we have seen above, the syntax for doing the same thing with an 
expression and a Maple function can be quite different. Is one of the two methods "better" than the 
other? Most people do most of their Maple work using expressions to represent mathematical 
functions. Overall, expressions seem to be a bit easier to work with. But Maple functions are 
indispensable at times, so you must get used to working with both concepts.
> 

> 
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6.5. Converting Maple functions to expressions and back again
It is possible to switch from one kind of representation of a mathematical function to the other kind. 
Here are a few examples. Lets us start with a mathematical function of a single variable represented 
as a Maple function.
> g := t -> cos(2*t)+sin(t)^2;

The next two commands give us expressions in t and x respectively from this function.
> g(t);
> g(x);

Notice that these commands did not change the definition of g, they just used the definition of g to 
create two expressions equivalent to g. 
> print(g);  # g is unchanged.

Generating an equivalent expression from a Maple function is how we can get commands like 
simplify to work on Maple functions. For example, the following command does nothing to 
simplify g.
> simplify( g );

The following command shows how g can be simplified by first converting it to an expression.
> simplify( g(t) );

Similarly, this technique is commonly used so that the expression syntax of many Maple commands 
can be used with Maple functions. For example
> eval( g(x), x=Pi/4 );
> subs( x=Pi/4, g(x) );
> diff( g(t), t );

> plot( g(w), w=0..2*Pi );
> 

If we really wanted to change g from a Maple function to an expression, we would use an 
assignment operator to redefine g. The following command redefines g to be an equivalent 
expression (in the variable y).
> g := g(y);

Now g is an expression in y.
> g;
> 

Now that we have g as an expression, let us see how we can change it into an expression in another 
variable and how we can change it into a Maple function. If we substitute a different variable into g, 
then we change the variable in the expression.
> g; subs( y=z, g );

But this change only shows up in the output of the command, the definition of g has not yet been 
changed. It is still an expression in the variable y.
> g;

To really change the definition of g we need an assignment operator.
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> g := subs( y=t, g );

Now g is an expression in t.
> g;

Now let us convert g back into a Maple function. We do this with a Maple command called 
unapply (I'm not really sure why it has that name).
> unapply( g, t );

Actually, this command did not convert g into a Maple function. It just created a Maple function 
equivalent to the expression g; g itself is still unchanged.
> g;   # g is still an expression.

If we want to make g the name of the Maple function created by unapply, then we also need to 
use an assignment operator.
> g := unapply( g, t );

Now g is the name of a Maple function.
> g;
> print(g);
> 

If you have an expression that contains more than one unassigned variable, then you can use 
unapply to create several different functions from the expression. Here is an expression named f 
in three unassigned variables.
> f := a+u*v;

Here are several different applications of unapply to g.
> unapply( f, a );
> unapply( f, u, v );
> unapply( f, u, v, a );
> unapply( f, a, u, v );

Notice the subtle difference between the last two examples. Of course there are still other functions 
that could be defined from the expression f. (Can you determine how many functions can be derived 
from f using unapply?)
> 

We have seen how to create an equivalent expression from a Maple function, and how to create an 
equivalent Maple function from an expression. Remember that creating an equivalent expression out 
of a Maple function is the only way to get most of Maple's symbolic manipulation commands to 
work on Maple functions. Creating an equivalent Maple function from an expression is something 
that is not done as often, but it is occasionally very useful.
> 

> 

6.6. Anonymous functions and expressions
We can give functions and expressions names, and this of course makes it easier to work with them. 

Page 13



But we do not have to give a function or expression a name in order to work with it. For example, 
the following plot commands graph a function and an expression, neither of which is given a 
name.
> plot( z->z^2*sin(z)-1, -2..2 );

> plot( w^2/(1+exp(w)), w = -1..10 );

There is a name for the concept of an "unnamed function or expression". We call a Maple function 
(or expression) that has not been assigned a name an anonymous function (or an anonymous 
expression). The rest of this section is a number of examples and problems that make use of 
anonymous functions and expressions.
> 

Here we define an anonymous function and then evaluate, differentiate, and integrate it.
> x -> x^3 + 2*x;
> %(2);
> D( %% );
> int( (%%%)(x), x );

Notice that we can no longer refer to our anonymous function. We have run out of ditto operators.
> 

The next command defines another anonymous function.
> z -> z/sqrt(1-z);

Now let us give the function a name, so that it is no longer anonymous.
> f := %;

Notice that these last two commands show once again that defining a function and naming a 
function are two very distinct steps. 
> 

The next example defines a named function g using a (very simple) anonymous function x -> x 
and the built in function sin.
> g := (x -> x) * sin;

Here is another way to define the same function, this time using the anonymous expression 
x*sin(x).
> g := x -> x * sin(x);
> 

Exercise: Here is a little puzzle. Consider the following command.
> g := x -> x * sin;

Does this command make sense?
> 

Here is a very awkward command that defines a function f of two variables as the sum of two 
anonymous functions.
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> f := ((x,y) -> x^2) + ((x,y) -> y^3);
> f(u,v);

The following command is of course a much better way to define f.
> f := (x,y) -> x^2 + y^3;

Now compare f with the next example, g, which uses two anonymous functions and defines a 
function of one variable (not two).
> g := (x -> x^2) + (y -> y^3);
> g(u);

What would be a more straight forward way to define g?
> 

Exercise: Is the following function k,defined using two anonymous functions, a function of one, 
two or three variables?
> k := (z -> z^2) + ((x,y) -> sin(x*y));
> 

The next command defines an anonymous function and evaluates it right away.
> (z -> z^2*tan(z))(Pi/4);

Why should the next command be considered an anonymous expression?
> (z -> z^2*tan(z))(w);
> 

Exercise: Explain what the following command is doing.
> (D(z->3*z^2-2*x+z))(3);

Translate the above command into a single, equivalent Maple command that uses an anonymous 
expression instead of an anonymous function.
> 

Here is an expression named f.
> f := x^2*sin(1/x);;

Why should the following be considered an anonymous function?
> unapply( f, x );
> 

Exercise: Why should the following be considered an anonymous function?
> exp*sin;

Define this function in at least two other ways.
> 

Exercise: Is the following an anonymous function?
> x -> sin(x);
> 
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Exercise: The next command uses an anonymous expression to create a sequence.
> seq( 3*n-2, n=1..10 );

Can you rewrite this command to somehow make use of an anonymous function?
> 

Exercise: Explain in detail what the following two commands do and how they do it. How does 
each command make use of anonymous functions and/or expressions?
> plot( ((x,y)->x^3-y^3)(w,-1), w = -1..1 );
> plot( w->(((x,y)->x^3-y^3)(w,-1)), -1..1 );
> 

Exercise: Explain what is wrong with the following plot command and then fix it by changing 
only one character in the command. (There are two ways to solve this problem.)
> plot( (z->z^2+1)(y), z=-3..3 );
> 

Anonymous functions are very common in mathematics. For example, the following two formulas 
make use of them.

                                                 
∂

∂

x
( ) + ( )sin x y ( )ln  − x3 1

                                                 d
⌠
⌡
  −  + 16 x5 20 x3 5 x x

Mathematics textbooks are filled with formulas like these. We usually do not think of such formulas 
as using "anonymous functions"; the concept of an anonymous function is not all that useful in most 
mathematics books. But as we will see, in Maple, and in computer programming in general, the 
concept of an anonymous function is very useful.
> 

> 

6.7. Vector valued functions
The most basic functions that we study in mathematics are the real valued functions of one real 
variable. These functions have as their input one number and as their output another number. These 
are the functions that occupy us during most of first and second semester calculus. This is also the 
kind of function that we have been using for most of our examples so far in these worksheets. In 
these worksheets we have sometimes used examples of real valued multivariate functions. These are 
functions of several real variables, or to put it another way, functions whose input is two or more 
numbers and whose output is a single number. These are the functions that are studied mostly in 
third semester calculus where one learns about partial derivatives and double and triple integrals. 
Real valued multivariate functions are sometimes referred to as scalar functions (or scalar fields). 
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In this section we want to look at how Maple can represent the vector valued functions. These are 
functions that have two or more numbers as their output. We will look at both vector valued 
functions of a single real variable (also called parametric curves) and multivariate vector valued 
functions. Parametric curves (i.e., vector valued functions of a single real variable) are, as their name 
implies, used to model curves in the plane and in space. These kinds of functions are usually first 
introduced in first or second semester calculus and they play a big role in vector calculus. The class 
of multivariate vector valued functions is huge and has many applications. Some examples of 
multivariate vector valued functions that you may have already studied are parametric surfaces in 
space, vector fields in the plane and in space, and linear matrix transformations in linear algebra.

Before showing how to represent vector valued functions in Maple, let us quickly review how Maple 
represents the other kinds of functions. The real valued functions of a real variable are represented as 
either Maple functions of one variable or as expressions in one variable.
> f := x -> x^2;

or
> f := x^2;

Notice that Maple functions, since they identify the independent variable, have the advantage of 
allowing for unambiguous parameters in the definition of the function. So for example
> f := x -> y*x^2;

is unambiguously a function of one variable. But the expression
> f := y*x^2;

can be very ambiguous about what it represents.
> 

Multivariate functions are represented in Maple as Maple functions of several variables or as 
expressions in several variables.
> g := (x,y) -> y*x^2;

or
> g := y*x^2;

Notice how the Maple function g is completely distinguished from the last version of the Maple 
function f. But the expression g cannot really be distinguished from the last definition of the 
expression f. 
> 

Multivariate functions of more than two variables are also easy to represent.
> h := (x,y,z,t) -> x^2+y^2+z^2-t^2;

or
> h := x^2+y^2+z^2-t^2;
> 

Now we can look at an example of a vector valued function. First we will represent a 2-dimensional 
vector valued function of a single real variable, and we will represent it using expressions. For any 
given number as an input, our function needs to compute two numbers as the output. Each output 
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number needs an expression to express the rule for computing it. We call these expressions the 
component functions of the vector valued function. The vector valued function is defined by 
putting the component functions in a list inside square brackets.
> f := [t^3-2*t, t^2-t];

If we want to, we can define the component functions first, and then define the vector valued 
function in terms of the two component functions. Notice that each component function is a real 
valued function of a single variable.
> f1 := t^3-2*t;
> f2 := t^2-t;
> f := [f1, f2];

Using standard mathematical notation, this vector valued function can be expressed in a variety of 
ways. For example

 = ( )f t ( ), − t3 2 t  − t2 t
or 

 = ( )f t ( ),( )f1 t ( )f2 t   where   = ( )f1 t  − t3 2 t  and   = ( )f2 t  − t2 t
or even

 = x  − t3 2 t    and     = y  − t2 t.

Now that we have a representation of a vector valued function, let us see how we can work with it. 
We can evaluate our function using the subs command.
> subs( t=2, f );

We can differentiate our function using the diff command.
> diff( f, t );

Notice that the derivative is computed componentwise and the derivative of this vector valued 
function is another vector valued function.
> 

Let us try to compose this vector valued function with some other function. If we want a 
composition of the form ( )h ( )f x  then we need a multivariate function h that takes two input 
numbers (why?). We will use the following definition for our h.
> h := x+y;

Now we can compute the composition.
> subs( x=f1,y=f2, h );

Notice two things. We needed to refer to the component functions f1 and f2 to do the composition, 

we could not refer to the function f by its name. And the function ( )h ( )f x  is a real valued function 
of a single variable.
> 

Let us try to graph our vector valued function.
> plot( f, t=-3/2..2 );

Wait, that is not correct! The last command did not draw the graph of our vector valued function f. 
Instead, the plot command simply interpreted f as a list of two real valued functions of a real 
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variable, and so it drew two graphs, one for each component function. How do we get the plot 
command to interpret f as one (vector valued) function? The answer to this is messy. One way is to 
use the component functions f1 and f2 in the following syntax of the plot command. Notice that 
the range for the independent variable needs to be inside the brackets with the component functions.
> plot( [f1, f2, t=-3/2..2] );

This is the graph of our function f, it is a curve in the plane (remember, vector valued functions of a 
single variable are also called "parametric curves").
> 

The other way to get the plot command to graph the function f  is to define f using a slightly 
different syntax. Instead of putting the component functions in a list inside of brackets, put the 
component functions in a list inside of parentheses.
> f := (f1, f2);

Now put f in the plot command using the following syntax.
> plot( [f, t=-3/2..2] );

At least we were able to graph f by referring to it by name rather than having to refer to the names 
of the component functions. But now we have another problem!
> diff( f, x );

Now the diff command does not work. We need to put brackets around f in the diff command.
> diff( [f], t );

And evaluating the function needs to be changed also.
> subs( t=2, f );
> subs( t=2, [f] );

As we will see several times in this section, Maple unfortunately does not have a consistent syntax 
for defining and using vector valued functions. Of the two syntaxes given just above, the first one is 
preferable since it works better with the diff and subs commands.
> 

Now we shall turn to representing our vector valued function using Maple functions. There are two 
reasonable ways to do this and they have to do with slightly different ways of thinking about the 
vector valued function. One way thinks of the vector valued function as a function that takes in one 
number and outputs two numbers. The second way thinks of the vector valued function as being 
made up of two real valued component functions. These two ways of thinking lead to the following 
two representations that we will call g1 and g2.
> g1 := t->(t^3-2*t, t^2-t);
> g2 := [t->t^3-2*t, t->t^2-t];

Notice the subtle differences in these two definitions. The first representation is somewhat 
analogous to the mathematical notation

 = ( )f t ( ), − t3 2 t  − t2 t .
The second representation is more analogous to the mathematical notation.

 = ( )f t ( ),( )f1 t ( )f2 t   where   = ( )f1 t  − t3 2 t  and   = ( )f2 t  − t2 t.
As we will now show, each of these Maple representations has advantages and disadvantages. Let us 
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see how we can work with them.
> 

With either representation, we can use functional notation to evaluate the function.
> g1(2);
> g2(2);
> 

We should be able to use the D operator to differentiate the function.
> D( g1 );
> D( g2 );

The D operator only worked on the second representation, g2.
> 

Let us try composition. Here is a function we can compose with.
> h := (x,y) -> x+y;

We should be able to use the @ operator to do the composition with h.
> (h@g1)(z);
> (h@g2)(z);

The @ operator only worked on the first representation, g1 (and the D operator only worked on g2!).
> 

There is a second way to do the composition. We should be able to compose h with the vector 
valued function using functional notation.
> h(g1(z));
> h(g2(z));

Again, this only worked with the first representation.
> 

What about graphing the vector valued function? To make a long story short, neither representation 
will work with the plot command because it needs the component functions and the range all 
together inside a pair of brackets.
> plot( [t->t^3-2*t, t->t^2-t, -3/2..2] );
> 

Maple's documentation is very unclear about how vector valued functions should be represented 
using the arrow notation. The following help page implies that the way we defined g1 is the "correct 
syntax" for vector valued functions, but we saw that g1 did not work with the D operator nor with 
the plot command.
> ?operators,functional

On the other hand, the way we defined g2 worked with the D operator and, as we will see in the next 
example, the way we defined g2 does work with the plot3d command (but the way we defined g1 
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does not). But g2 does not work with composition. And to make things even more confusing, if we 
use unapply to convert the expression version of the function f into a Maple function, then we get 
neither g1 nor g2.
> unapply( f, t );

So it seems that there really is no preferred way in Maple to define vector valued functions using the 
arrow notation. From a mathematical point of view, the two ways of thinking about vector valued 
functions that lead to the two ways of using the arrow notation are both valid, and so both uses of 
the arrow notation are reasonable. In any given situation we need to pick the representation that 
works best.
> 

Exercise: There are two other ways to represent our vector valued function using Maple functions.
> g3 := t->[t^3-2*t, t^2-t];
> g4 := (t->t^3-2*t, t->t^2-t);

In each representation we have switched parentheses and brackets. Play around with these two 
representations and see how they work with respect to evaluation, differentiation, composition, and 
graphing. (For example, g4 works reasonably well with the plot command.) Notice that g3 was 
the result of the unapply command just above.
> 

Now that we have looked at the basics of representing vector valued functions, let us look at a more 
complex example. Here is an example of a multivariate vector valued function. First we represent it 
using expressions.
> f := [2*cos(u)*sin(v), 2*sin(u)*sin(v), 2*cos(v)];

Now represent it using Maple's arrow notation (two ways).
> g1 := (u,v)->(2*cos(u)*sin(v), 2*sin(u)*sin(v), 2*cos(v));
> g2 := [(u,v)->2*cos(u)*sin(v), (u,v)->2*sin(u)*sin(v), 

(u,v)->2*cos(v)];
> 

Using standard mathematical notation, this multivariate vector valued function can be expressed in a 
variety of ways. For example

 = ( )f ,u v ( ), ,2 ( )cos u ( )sin v 2 ( )sin u ( )sin v 2 ( )cos v
which is analogous to the first way we used the arrow notation. Or

 = ( )f ,u v ( ), ,( )f1 ,u v ( )f2 ,u v ( )f3 ,u v
where

 = ( )f1 ,u v 2 ( )cos u ( )sin v          = ( )f2 ,u v 2 ( )sin u ( )sin v         = ( )f3 ,u v 2 ( )cos v
which is more analogous to the second way we used the arrow notation. A third way might be

 = x 2 ( )cos u ( )sin v          = y 2 ( )sin u ( )sin v         = z 2 ( )cos v .
which is somewhat analogous to the expression way of representing the function.
> 
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Out of curiosity, let us see what the unapply command will do with the expression representation 
f.
> unapply( f, u, v );

Notice that the result is neither g1 nor g2.
> 

Let us see how we work with our three different representations. Here is how we evaluate our 
function.
> subs( u=Pi,v=Pi/4, f );
> g1(Pi, Pi/4);
> g2(Pi, Pi/4);

Notice that the subs command did not do any simplification after it made the substitution.
> 

Here is how we differentiate our function. Since the function is multivariate, we compute partial 
derivatives.
> diff( f, u ), diff( f, v );
> D[1]( g1 ), D[2]( g1 );
> D[1]( g2 ), D[2]( g2 );

Notice that the D operator did not work on g1.
> 

This multivariate vector valued function can be interpreted as a parametric surface. Here is how we 
graph it using the plot3d command and the expression representation.
> plot3d( f, u=0..2*Pi, v=0..Pi );

Notice that, surprisingly, the plot3d command did not interpret f as a list of three separate real 
valued functions of two variables and draw three simultaneous graphs. (Recall how the plot 
command interpreted a similar f earlier in this section.) This brings up the question of how does one 
graph a list of three separate real valued functions of two variables?
> 

The arrow notation used in defining g2 does work with the plot3d command.
> plot3d( g2, 0..2*Pi, 0..Pi );

But the arrow notation used in defining g1 does not work with the plot3d command.
> plot3d( g1, 0..2*Pi, 0..Pi );
> 

Exercise: Define functions f, g,  and h by

 = ( )f t ( ), − t3 2 t  − t2 t

 = ( )g ,u v ( ), ,2 ( )cos u ( )sin v 2 ( )sin u ( )sin v 2 ( )cos v
and

 = ( )h , ,x y z x y z.
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Represent these functions in Maple as functions f, g, and h using the arrow notation. (Notice that f 
and g are the examples that we used above.) Use the @ operator to compute expressions for the 
compositions g@f, h@g, and h@g@f. Draw a graph for g@f using the plots[spacecurve] 
command. What kind of graph do you expect to get? Also draw graphs for the functions h@g and 
h@g@f.
> 

> 

6.8. Piecewise defined functions
Now we will see how to define "piecewise-defined" functions in Maple. Piecewise-defined functions 
are functions that are defined by different formulas at different parts of the function's domain. In 
other words, the definition of a piecewise defined function comes in several pieces. Probably the 
most common piecewise defined function is the absolute value function.

 = x {
−x  < x 0
x  ≤ 0 x

This tells us that if x is a negative number, then we negate it (to get a positive number) and if x is 
positive, then we just leave it alone.

Consider the following piecewise defined function.

 = ( )g x










( ) + x 1 2  < x −1

 − 1 x2  and  ≤ −1 x  < x 1
 − x 1  ≤ 1 x

We can represent this function in Maple using a combination of the arrow operator and the 
piecewise command.
> g := x -> piecewise(x<-1, (x+1)^2, x<1, sqrt(1-x^2),  x>=1, 

x-1);

Notice a few things about the syntax of the piecewise command. First, conditions come before 
their associated expressions. Second, the conditions in the piecewise command are cumulative. 
Notice how in the mathematical notation for this function, for the middle condition we wrote 

 and  ≤ −1 x  < x 1 but in the piecewise command for the middle condition we wrote just x<1. 
This is because, in the piecewise command the x<1 comes after the condition x<-1, and we only 
would "get to" the condition x<1 if x<-1 is false, so we only "get to" x<1 if it is already true that 
-1<=x. The mathematical notation that you see in most math books for piecewise defined functions 
rarely uses cumulative conditions like the piecewise command does, so this may take some getting 
used to. This cumulative way of expressing the conditions, and also the placing of the conditions 
before the expressions, comes from the way that computer programming languages write 
"conditional statements". We will say a lot more about this in the worksheets about Maple 
programming.
> 
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If we call the piecewise function by itself, we get a "piecewise expression", and the expression is 
nicely typeset. Notice that this looks just like the mathematical notation for the function, except for 
the cumulative use of the conditions.
> piecewise(x<-1, (x+1)^2, x<1, sqrt(1-x^2),  x>=1, x-1);

If we convert g into an expression by evaluating g at an unassigned variable, we get the same 
"piecewise expression". 
> a := 'a':
> g(a);

If we evaluate the name g, we do not get much information.
> g;

Here is how we get the full definition of g.
> eval(g);

If we evaluate g at a number, then we get the value of the function.
> g(4); g(-3); g(0);
> 

We can graph g like any other Maple function.
> plot( g, -2..2, scaling=constrained );  

(Try graphing g without the option scaling=constrained.)
> 

Let us add another condition to the domain of g.
> g2 := x -> piecewise(x<-1, (x+1)^2, x<1, sqrt(1-x^2), x<3, x-1, 
>                      x>=3, 3*(x-3)+2);
> g2(x);
> plot( g2, -2..4 );
> 

Piecewise expressions can be used in almost exactly the same way as we would use other 
expressions. Here is a simple example.
> h := piecewise(x<1, x*(1-x), x>=1, (1-x)*(2-x));

We can ask Maple to differentiate this expression.
> diff(h, x);

We can use this expression in other expressions.
> exp(x*h)*h;

We can even ask Maple to simplify this last result.
> simplify( % );

We can evaluate the expression at a point, but here we need to be careful. The subs command will 
give strange results.
> subs( x=1/2, h );

That is not what we wanted (can you see what happened?). In a later worksheet we will be able to 
explain why the subs command produced this result. For evaluating a piecewise expression at a 
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point, the eval command should be used instead of subs.
> eval( h, x=1/2 );
> 

Exercise: Define the following two functions (as expressions).
> f := piecewise(x<1, 4*x*(1-x), x>=1, 4*(1-x)*(2-x));
> g := sin(Pi*x);

In the following graph, identify which graph is from which function.
> plot( [f,g], x=0..2 );

These two graphs demonstrate how strikingly similar a sine curve and a parabola can be. Try 
"zooming in" on the domain from zero to one. It is also interesting to graph the derivatives of these 
two functions.
> df := diff(f, x);
> dg := diff(g, x);
> plot( [df,dg], x=0..2 );

Notice that the derivatives are not at all hard to distinguish.
> 

There can be unexpected problems with piecewise defined functions in Maple. Consider this next 
example. The following function f is well defined for all values of x. But we will see that Maple 
has a problem when it tries to evaluate f at zero.
> f:= x-> piecewise(x<=0, x^2, x>0, 1/x);
> f(x);

We can graph f without any problem. Here is what the graph looks like.
> plot( f, -3..3, y=0..9 );

The value of f at zero is clearly defined to be zero. But watch what happens when we try to evaluate 
f(0).
> f(0);

The reason Maple returns an error has to do with Maple's evaluation rules. Maple evaluates all the 
parts of  the definition of f  before  it decides which value it should return. So Maple evaluates both 
the x^2  part and the 1/x  part of f no matter what the value of x is. So even when x is zero, 
Maple insists on evaluating 1/x, even though it should not. Hence, Maple returns an error when the 
value of x is 0, though it should return 0.

This example shows the importance of understanding Maple's  "evaluation rules", the rules that 
govern how Maple evaluates expressions. This is something that we will study in another worksheet.
> 

> 

6.9. Equations vs. functions
Earlier in this worksheet we mentioned that mathematical formulas like the following one can be 
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somewhat ambiguous.

 = ( )g x  − x2 1
On the one hand it can be interpreted as the definition and naming of a function ( )g x . On the other 
hand, it can be interpreted as an equation. To see how this ambiguity might arise, suppose that we 
follow this formula with the next formula. (We did an example similar to this in a previous 
worksheet.)

 = ( )g x  −  + 3 x2 x 5
How should we interpret this second formula? Is it a redefinition of the function ( )g x , or is it a short 
hand formula for the following equation?

 =  − x2 1  −  + 3 x2 x 5
There is really no way to tell from the second formula itself which interpretation is correct. The 
cause of this ambiguity is that in standard mathematical notation, the equals sign has two distinct 
uses, as either part of an assignment statement or as part of an equation. If the second formula above 
is meant to be a redefinition of the function ( )g x , then the equals sign in that formula is acting as 
part of an assignment statement. If on the other hand the second formula is meant to be a short hand 
for the third formula, then the equals sign in the second formula is acting as part of an equation. Let 
us translate these formulas into Maple and see what the two interpretations lead to. We will translate 
the first mathematical formula as the definition of a function g represented as a Maple function.
> g := x -> x^2 - 1;

Notice that since this was a definition, we used the assignment operator, colon equals (:=). Now 
suppose that the second mathematical formula is to be interpreted as a short hand for the third 
formula. In this case the second formula is an equation, so it will be translated into a Maple equation 
using an equals sign (=).
> g(x) = 3*x^2 - x + 5;

We see right away that Maple interpreted this equation as a short hand for the third mathematical 
formula above. Notice that the last Maple command did not change the definition of g.
> g(x);

Now suppose that the second mathematical formula is to be interpreted as a redefinition of the 
function ( )g x . In this case we will translate the second mathematical formula into a Maple statement 
that redefines g by using the assignment operator.
> g := x -> 3*x^2 - x + 5;

Now g has a new definition.
> g(x);

Notice that in Maple, the two possible interpretations of the second mathematical formula translate 
into two distinctly different commands, one using an equals sign and the other using a colon equals. 
Maple makes a clear distinction between an equation and an assignment but, unfortunately, standard 
mathematical notation does not.
> 

Warning: Interpreting the second mathematical formula as a redefinition of ( )g x  might lead one to 
use the following Maple command.
> g(x) := 3*x^2 - x + 5;
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Unfortunately, this (reasonable looking) command does not redefine the function ( )g x . Just what it 
does is a bit confusing. Here is an example that shows that it does not redefine the function ( )g x . Let 
us try redefining ( )g x  again.
> g(x) := x^2 -1;

Now evaluate the function g at a point.
> g(2);

That is not what we might have expected. Let us check the formula for g.
> g(x);

That looks correct. Let us try something different. Let us check the formula for g in a different way.
> g(t);

Exactly what is going on here is a bit hard to explain. We will return to this odd situation in another 
worksheet. For now, remember not to use the g(x) notation on the left hand of an assignment 

operator when you define a Maple function, even though the mathematical notation does use ( )g x  on 
the left hand side of the equals sign when defining a function.
> 

Here is an example that shows that the distinction between an equation and an assignment can be 
quite subtle. Consider the following formula.

 = y  −  − x2 12 x 5
Is this a function definition or an equation (or both)? If it is a function definition, then we should 
take y to be the name of the function and we can represent the function in Maple as either an 
expression named y, like this
> y := x^2-12*x-5;

or we can represent the function as a Maple function named y, like this
> y := x -> x^2-12*x-5;

But if the mathematical formula is meant to be an equation, then we should enter it into Maple like 
this
> y := 'y': x := 'x';
> y = x^2-12*x-5;

Now here is where the subtlety occurs. If we consider   = y  −  − x2 12 x 5 to be an equation, and if we 
graph all the ordered pairs ( ,x y) that solve this equation, then the graph of this solution set will 
satisfy the vertical line test in the plane, and so the graph of this equation will define a function. In 
this sense we can say that the equation defines a function and, of course, it is the same function that 
we defined when we interpreted the formula as an assignment. Here is a way to see this. The 
implicitplot command can be used to graph an equation, that is, it plots all the points in the (

,x y)-plane that solve an equation. Lets us use implicitplot to graph our mathematical formula 
interpreted as an equation.
> plots[implicitplot]( y=x^2-12*x-5, x=-10..20, y=-45..220 );

Now let us plot the our mathematical formula interpreted as a Maple function (in this case, an 
anonymous function).
> plot( x->x^2-12*x-5, -10..20 );

We see that the graph of the equation is the same as the graph of the function. So for either 
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interpretation of the mathematical formula, as either an equation or as a definition of a function, we 
arrive at the same conclusion, the formula defines a function.

This is one reason why standard mathematical notation is kind of vague about distinguishing 
between functions and equations; many equations naturally define functions, and in these cases it is 
"convenient" to be vague about the distinction. But in Maple we must always be clear about this 
distinction; in Maple equations are equations and functions are functions. (In particular, notice that 
we needed distinctly different commands for graphing the equation and the function.)
> 

> 

6.10. Equation vs. assignment: Another example
Here is another example of how the two possible interpretations of an equals sign in standard 
mathematical notation can lead to some confusion. This example is made up of two problems that 
can be found in almost any calculus book.

Problem A: In this problem, FarmerAlpha wants to make a rectangular lettuce patch of A square 
feet (he does not know yet what the value of A will be). What are the dimensions for FarmerAlpha's 
lettuce patch that will minimize the amount of rabbit-proof fencing that he needs? To help him solve 
this problem, FarmerAlpha lets the variables x and y denote the dimensions of his lettuce patch and 
then he writes down the following two formulas
                                                        = P  + 2 x 2 y

                                                        = A x y
where the first formula represents the perimeter of the lettuce patch and the second formula 
represents its area. FarmerAlpha decides that if he can solve these two formulas then he can solve 
his problem.

Problem B: In this problem, FarmerBeta wants to make a rectangular lettuce patch using P feet of 
rabbit-proof fencing (he does not know yet what the value of P will be). What are the dimensions for 
FarmerBeta's lettuce patch that will maximize its area? To help him solve this problem, FarmerBeta 
lets the variables x and y denote the dimensions of his lettuce patch and then he writes down the 
following two formulas
                                                        = P  + 2 x 2 y

                                                        = A x y
where the first formula represents the perimeter of the lettuce patch and the second formula 
represents its area. FarmerBeta decides that if he can solve these two formulas then he can solve his 
problem.

Notice that FarmerAlpha and FarmerBeta are trying to solve different problems but they came up 
with exactly the same two formulas. How can the exact same formulas describe two different 
problems? Shouldn't we be able to distinguish the problems by looking at their mathematical 
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representations as formulas? The answer has to do with the interpretations of the equals signs in 
these formulas. To see this let us suppose that FarmerAlpha and FarmerBeta decide to use Maple to 
solve their problems. Here is how they would translate their problems into Maple.

FarmerAlpha looks carefully at his two formulas and realizes that his first formula defines the 
objective function that he wishes to minimize and it is a function of the variables x and y. He 
decides to represent this mathematical function as a Maple expression and give it the name P.
> P := 2*x+2*y;

FarmerAlpha looks at his second formula and realizes that it is a constraint equation, an equation 
that the variables x and y must satisfy. So FarmerAlpha translates this formula into a Maple 
equation, where he will give the constant A a value later on.
> A = x*y;
> 

Now it is FarmerBeta's turn to use Maple. Let us clear all the variables for him, so that he can start 
with a clean slate.
> restart;

FarmerBeta looks carefully at his two formulas and realizes that his first formula is a constraint 
equation, an equation that the variables x and y must satisfy. So FarmerBeta translates this formula 
into a Maple equation, where he will give the constant P a value later on.
> P = 2*x+2*y;

FarmerBeta looks at his second formula and realizes that it defines the objective function that he 
wishes to maximize and it is a function of the variables x and y. He decides to represent this 
mathematical function as a Maple expression and give it the name A.
> A := x*y;
> 

Now we see that, when translated into Maple, we can distinguish the two problems by looking at 
their Maple representations. The standard mathematical notation did not make a distinction between 
an assignment and an equation and that is why the two problems looked the same when represented 
mathematically. When you read a mathematics book you need to always be aware that an equals sign 
can be interpreted (at least) two ways and you always need to look carefully at the context that 
formulas are written in to decide which interpretation to give an equals sign.
> 

Let us see how FarmerBeta would use Maple to finish solving his problem. First he needs to solve 
for one of the variables in the constraint equation. He decides to solve for y.
> solve( P=2*x+2*y, y );

Now he needs to take that solution and substitute it in for y in the objective function A.
> subs( y=%, A );

This last expression needs to be differentiated, the derivative set to zero, and the resulting equation 
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solved for x.
> solve( diff(%, x)=0, {x} );

And now he has the value for the variable x in terms of the constant P. To get the value for y he 
takes the value for x and substitutes it into the constraint equation and then solves for y.
> solve( subs(%, P=2*x+2*y), {y} );

The answer, of course, is that a square lettuce patch maximizes the area for a given amount of 
rabbit-proof fencing.
> 

Exercise: Use Maple to solve FamerAlpha's problem.
> 

Exercise: Use Maple to solve FarmerBeta's problem again, but this time represent the objective 
function as a Maple function instead of as an expression.
> 

> 

6.11. Expressions vs. functions: A few more examples
These examples are meant to show that there are still a lot of subtle things to learn about variables 
and functions and how Maple handles them. Do not expect to fully understand these examples now. 
You should return to these examples after you have gone through the worksheet on Maple's 
evaluation rules and the worksheet on procedures in Maple.
> 

Example 1
Here is a subtle example of a difference between an expression and a function. First we define a 
couple of expressions. The first is an expression in x and the second is an expression in y.
> f1 := x^2 + 1;
> f2 := y^2 + 1;

Now we add these two expressions and get an expression in the two variables x and y.
> f3 := f1 + f2;

 Now let us define a couple of Maple functions equivalent to the above expressions. Each of the 
next two functions is a function of one variable.
> g1 := x -> x^2+1;
> g2 := y -> y^2+1;

Now add these two Maple functions; what do we get?
> g3 := g1 + g2;   # What kind of function is g3?

Is  g3 a function of two variables like f3  is an expression in two variables? Or is it a function 
of one variable? The following command shows the formula for g3.
> g3(x);

So in fact, g3 is not a function of two variables like f3 is an expression in two unknowns; g3 is 
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a function of one variable. This shows that Maple functions and Maple expressions handle 
unassigned  variables in different ways.  Let us look at g3 again. Here is another way to see the 
formula for g3.
> g3(y);

If we try to treat g3 as a function of two variables, g3 just ignores the second variable.
> g3(w,z);

Why is it that the sum of f1 and f2 has two variables in it but the sum of g1 and g2 does not?
> 

> 

Example 2
We have looked at one way that a Maple expression can be converted into a Maple function. It 
turns out that there are two ways to do this but they are not equivalent. Here is an example.  
First, make sure x is unassigned and give a, b, and c values.
> x:='x': a:=1: b:=2: c:=3:

Here is an expression.
> a*x^2+b*x+c;

Here is one way to convert this expression into a Maple function.
> f := unapply( a*x^2+b*x+c, x );

Here is another way; just use the expression on the right hand side of the arrow operator.
> g := x -> a*x^2+b*x+c;

Notice that f does not have the constants a, b, and c in its definition, but g does! The 
unapply command evaluates all variable names, but the "arrow operator" does not. Here are 
some consequences of this. Let us try evaluating both functions.
> f(x); g(x);

Now they both have the values for a, b, and c in them. Let us try to differentiate each of these 
functions.
> D(f);
> D(g);

Notice that the derivative of g has the unevaluated constants in it, but the derivative of f has the 
constants evaluated. 
> 

Let us try changing one of the "constants". Change the value of c.
> c:=15;

Now evaluate the functions again.
> f(x);
> g(x);

 Notice that the definition of f did not change, but the definition of g did, when we changed c.
> 
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> 

Example 3
First, let us give the variable x a value.
> x := 5;

Now try to plot the expression x^2.
> plot( x^2, x=-10..10 );

Maple returned an error (why?). Now try to plot the function x->x^2.
> plot( x->x^2, -10..10 );

There is no problem with this, even though the variable x still has a value.
> x;

This shows once again that there are subtle differences in the way that Maple treats variables 
used in expressions and variables used in functions.
> 

> 

Example 4
Let f be the name for an expression.
> f := x^2;

Now use f to redefine f.
> f := x*f;
> f;

Let us try to do something similar with functions. Let g be the name for a function equivalent to 
f.
> g := x -> x^2;

Now use g to redefine g.
> g := (x->x)*g;
> g(x);

Let us try a slightly different way.
> g := 'g';
> g := x -> x^2;

Now use g to redefine g.
> g := x -> x*g(x);
> g(x);

There was no problem when we used f to redefine f, but we cannot use g to redefine g. This 
shows that there are subtle differences in the way that Maple treats the names of expressions and 
the names of functions.
> 

> 

Example 5
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Here is an anonymous expression.
> 3-x^2;

Now let us give it a name.
> f := %;

Now graph the expression by referring to its name.
> plot( f, x=-3..3 );
> 

Now let us try to do something similar with a Maple function. Here is the anonymous 
expression again.
> 3-x^2;

Use the anonymous expression to define a Maple function.
> g := x -> %;

But now the following graph is empty.
> plot( g, -3..3 );
> 

In this sequence of commands we used the last result variable, %, twice. But the last result 
variable in the definition of f has a different meaning from the last result variable in the 
definition of g, which is why the definition of g does not work the way we might (reasonably) 
expect it to. Once again this shows that we need to understand the details of exactly how Maple 
interprets different kinds of variables in different kinds of situations.
> 

> 

6.12. Functions that return a function (optional)
Note: If you happen to be using Maple V Release 4, or any earlier version of Maple, then please read 
the note at the end of this section.

It is possible to do some unusual things with the definitions of Maple functions. For example, we 
can define functions whose return value is another function. Here is a simple example.
> f := a -> ( y->a*y );

The Maple function f takes in a number and returns a function that multiplies its input by the 
number.
> f(3);

So f(3) is a function that multiplies its input by 3. Here is how we apply f(3) to the input 4.
> f(3)(4);

Here is another call to f.
> f(-5);

Here is a call to the function returned by f.
> f(-5)(2);

In some sense you can think of f as a function of two variables. 
> f(x)(y);

Page 33



But this can be misleading. Consider the next two function calls.
> f(x);
> f(y);
> 

Exercise: Consider the output of f(y).
> f(y);

Now explain why the following function call does not return 9.
> f(y)(3);
> 

Here is an example of how we might use the idea of a function that returns a function. Start with a 
function of two variables.
> f := (x,y) -> 3*x^2+5*y^2;

Now we shall define "slicing" functions for f. If we hold one input to f fixed, then we get a new 
function of a single variable that is sometimes called a "slice" (or a "section") of f. If we just plug a 
constant into f for say y, then we get back an expression in x.
> f(x,3);

We can turn that into a Maple function like this.
> fx3 := x -> f(x,3);

Now fx3 is the slice of f with y fixed at 3.
> fx3(x);

We can use a function that returns a function to automate these steps for generating slicing 
functions.
> slice_f_with_y_fixed := c -> ( x->f(x,c) );

The input to slice_f_with_y_fixed is the number we want the slice function at and the 
output is the slice function.
> fx3:= slice_f_with_y_fixed(3);
> fx3(x);
> 

Now do the same for slices in the other direction.
> slice_f_with_x_fixed := c -> ( y->f(c,y) );
> f3y:= slice_f_with_x_fixed(3);
> f3y(y);
> 

One nice feature of our slicing functions is that they still work if we redefine f. We do not need to 
redefine the slicing functions.
> f := (u,v) -> sin(5*u-v);
> fu3 := slice_f_with_y_fixed(3);
> fu3(u);
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Did you notice something a bit funny about the redefinition of f and the call to 
slice_f_with_y_fixed?
> 

Exercise: Come up with better names for slice_f_with_y_fixed and 
slice_f_with_x_fixed.
> 

Exercise: Define a Maple function slicer1 with two inputs, one input a Maple function h of two 
variables and the other input a number c, that returns a Maple function that is the slice of the input 
function with its second input held fixed at c. Also define slicer2 in an analogous way. Test the 
functions slicer1 and slicer2.
> 
> 

Exercise: Write Maple functions shift_vertically and shift_horizontally (you can 
abbreviate these names if you wish) that each take in two inputs, one input is a function of a single 
variable and the other input is a number, and that each return a function. The procedure 
shift_vertically produces an output function that is its input function shifted vertically by 
the amount of the input number, and shift_horizontally produces an output function that is 
its input function shifted horizontally by the amount of the input number. Apply your procedures to 
some test functions and show that they work by graphing the test functions and their shifted versions 
in the same graph.
> 

Exercise: Suppose you wanted to write a version of slicer1 that worked on expressions instead 
of Maple functions. That is, suppose you wanted to write a procedure slicer1 that takes as its 
input an expression of two variables and a number, and produces as its output an expression in one 
variable that represents the slice function of the function represented by the input expression with 
one of the inputs held fixed at the input number. What kind of problems are you going to have with 
trying to write this version of slicer1? (The problems you will have are in fact one of the major 
weaknesses of working with expressions.)
> 

The idea of a function that returns a function is very common in mathematics. Sometimes these 
kinds of functions are given the special name functionals. One important branch of mathematics is 
called functional analysis. It is the study of the properties of functionals. In particular, functional 
analysis tries to generalize classical analysis, that is calculus with real and vector valued functions, 
to function valued functions.

Functions that return functions are also important in computer science. They lead to an important 
family of programming languages called functional programming languages. The two most 
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common functional programming languages are called Lisp and Scheme. These languages are very 
different from more traditional programming languages like C, C++, Java, Fortran and Basic. As 
might be expected, functional programming languages have a much more mathematical feel to them 
then the more traditional programming languages. Functional programming languages have played 
an important role in the development of the field of artificial intelligence.

When we get to the worksheets about Maple programming, we will generalize the idea of a function 
that returns a function to the idea of a procedure that returns a procedure.
> 

Note: None of the examples in this section will work properly in Maple V Release 4, nor in any 
earlier version of Maple. Maple V Release 5 introduced the idea of lexically scoped variables for 
procedures and this idea is used in all of our examples in this section. We will define lexically 
scoped variables in the worksheet on procedures. In Maple 5 Release 4 you can write functions that 
return a function, but they rarely work the way you would expect them to.
> 

> 

6.13. Online information for functions and expressions
Unfortunately, there is not a lot of online help for the topics that we have gone over in this 
worksheet.

Here are two lists of Maple's built in mathematical functions. These two lists are not identical. Each 
list contains functions that are not in the other list.
> ?inifcn
> ?type,mathfunc

There is also a nice list of references to some books about all of these built in mathematical 
functions.
> ?funcrefs

Maple functions are defined using the arrow operator. The following help page gives a little bit of 
information about the arrow operator.
> ?operators,functional

The next page contains a few examples using the arrow operator.
> ?operators,examples

We can use expressions to represent mathematical functions and of course expressions are used on 
the right hand side of the arrow operator. But expressions are not well documented in Maple's online 
help. The following two help pages contain two different lists of the operators that can be used to 
form Maple expressions.
> ?expression
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> ?syntax

The last page listed the operators in the order of their precedence. Here is a third list of operators 
that can be used to form expressions, again listed in order of precedence.
> ?operators,precedence

The following page contains links to other pages about Maple's operators (including more lists of 
operators).
> ?operators

Converting an expression into a Maple function is done using the unapply command.
> ?unassign

The subs command can be used to evaluate an expression at a point and for composing 
mathematical functions represented as expressions.
> ?subs

The use of eval to evaluate an expression at a point is explained in the following help page. This 
use of eval is new to Maple V Release 5 and it has some advantages over subs.
> ?eval

The at sign represents the composition operator for composing Maple functions.
> ?atsign

We did a few examples of differentiating expressions and functions. Here are the help pages for both 
differentiation commands.
> ?diff
> ?D

There are quite a few more examples of using the piecewise command in the next help page.
> ?piecewise

And there is also an online worksheet with more advanced examples of working with the 
piecewise command. (Note: The misspelling in the next command is intentional since the name 
of the worksheet is spelled that way.)
> ?examples,piecwise

If you want to read about lexically scoped variables, they are explained (a little) in the following two 
worksheets.
> ?examples,lexical
> ?updates,R5,highlights
> 

> 
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