
Maple for Math Majors
Roger Kraft

Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

4. Mathematical Identities and Maple's Assume Facility

4.1. Introduction
In this worksheet we consider mathematical identities as another example of a use of an equal sign
in mathematical notation. We show how to get Maple to demonstrate a number of mathematical
identities. We look at the case of identities that are true for only some values of the variables in the
identity. This leads us to introduce Maple's assume facility, which allows us to place assumptions on
the values that an unassigned variable is supposed to represent.
>

4.2. Mathematical identities
In a previous worksheet we emphasized that equal signs are used in mathematical formulas in at
least two different ways, to represent an assignment and as part of an equation. So for example, we
interpret the equal sign in the formula = x 0 as an assignment and assume that the formula means
that x is a name for zero. We translate this into Maple as the assignment statement x:=0. On the

other hand we interpret the formula = − − x2 2 x 1 0 as an equation that should be solved for x. We
translate this directly into Maple as the equation x^2-2*x-1=0, which can then be solved using
the solve command.
> x^2-2*x-1=0;
> solve(%, x);

Now consider the mathematical formula = () − 1 x 2 − + 1 2 x x2. Here the equal sign is definitely not
an assignment. And this is not really an equation either since this formula is not asking for which x
is the equation true. The equation is true for all x and in fact the purpose of the formula is to tell us
that. This formula is an example of an identity and the purpose of the equal sign in an identity is to
tell us that the left and right hand sides are (under certain circumstances) interchangeable. So now
we have a third use for an equal sign in a mathematical formula. How should this use of an equal

sign be translated into Maple? We would want Maple to tell us that − + 1 2 x x2 is equivalent to

() − 1 x 2. The expand command in Maple will tell us exactly that.
> expand((1-x)^2);

So the mathematical identity = () − 1 x 2 − + 1 2 x x2 is represented in Maple by an application of one
of Maple's commands.
>

Page 1

Let us look at some other examples of identities and how Maple would demonstrate them. The
factor command allows Maple to demonstrate the following algebraic identity.

 = − − 3 x2 7 x 20 () − x 4 () + 3 x 5
> factor(3*x^2-7*x-20);

Here is an identity involving the exponential function.

 = ex ey e() + x y

For this identity we can use the simplify command.
> simplify(exp(x)*exp(y));

Here is a trig identity.

 = ()sin x ()cos y +
()sin + x y

2

()sin − x y

2
For this identity we need the combine command.
> combine(sin(x)*cos(y));

Here is an identity about a rational function.

 =
 − a b

() − x a () − x b
 −

1

 − x a

1

 − x b
For this identity we need the convert command with the special option parfrac.
> convert((a-b)/((x-a)*(x-b)), parfrac, x);

The option parfrac is an abbreviation of "partial fraction". So this convert command
converts a rational function into its partial fraction expansion.
>

Here is an identity involving the integers.

 = ∑
 = k 1

n

k
n () + n 1

2

We translate this into an application of Maple's sum command.
> sum(k, k=1..n);

Well, we are not quite there yet. Try the factor command.
> factor(%);

We can combine these two steps into one Maple command.
> factor(sum(k, k=1..n));

Suppose that we wanted Maple to actually display the whole identity in its output, not just the right
hand side of the identity. We could do this using what is called the inert form of a Maple command.
Many Maple commands have an inert form, which is the command with its initial letter capitalized.
The inert form of sum is Sum. The inert form of a Maple command (if the command has an inert
form) does not carry out the action of command. Instead, the inert form is a way to tell Maple to
typeset the command in Standard Math Notation as the command's output. So for example, the inert

Page 2

form of sum does not do any summation, but it does display a nicely typeset summation formula.
> Sum(k, k=1..n);

(The fact that the summation symbol is black, instead of blue, is meant to show that it is the result of
an inert command.) So here is how we get Maple to display the entire identity. Use the inert form of
sum on the left hand side of an equal sign and the regular sum on the right hand side.
> Sum(k, k=1..n) = factor(sum(k, k=1..n));

Here is an integral identity, displayed by using both the regular and inert forms of the int
command.
> Int(sqrt(x^2+a^2), x) = int(sqrt(x^2+a^2), x);

We can get Maple to display all of our previous identities. These identities do not even need the use
of an inert command.
> (1-x)^2 = expand((1-x)^2);
> 3*x^2-7*x-20 = factor(3*x^2-7*x-20);
> exp(x)*exp(y) = simplify(exp(x)*exp(y));
> sin(x)*cos(y) = combine(sin(x)*cos(y));
> (a-b)/((x-a)*(x-b)) = convert((a-b)/((x-a)*(x-b)), parfrac, x

);
>

Here is how we would do each of these identities in its other direction.
> 1-2*x+x^2 = factor(1-2*x+x^2);
> (3*x+5)*(x-4) = expand((3*x+5)*(x-4));
> exp(x+y) = expand(exp(x+y));
> sin(x+y)/2 + sin(x-y)/2 = expand(sin(x+y)/2 + sin(x-y)/2);
> 1/(x-a) - 1/(x-b) = simplify(1/(x-a) - 1/(x-b));
>

Notice that it took quite a few Maple commands to demonstrate these identities and it is not always
obvious which Maple command might be useful for demonstrating a particular identity. In the next
worksheet we will go over some of the details of using these commands and we will try to give
some guidelines on which command should be used when. In particular, the commands that are
covered in detail in the next worksheet are simplify, factor, expand, combine, and
convert.

All of the identities demonstrated above have the property that they are true for all the possible
values of the variables in the identity. Not all identities have this property. For some identities, the
identity is true for only some values of the variables involved. For example, the trigonometric
identity = ()arcsin ()sin x x is true only if x is between −π/2 and π/2. Because of this, Maple will not
readily demonstrate this identity for us.
> arcsin(sin(x));

Page 3

> simplify(%);

But we can tell the simplify command to make an assumption about the possible values that the
variable x can represent.
> simplify(arcsin(sin(x)), assume=RealRange(-Pi/2, Pi/2));

In the next section we look at more examples of identities that are true for only some values of the
involved variables. And in the section after that we show how to make use of Maple's assume
facility to place assumptions on what values a variable can represent.
>

>

4.3. A closer look at mathematical identities
An important idea to remember about mathematical identities is that they need not be true for all
values of the variables involved. An identity may be true only when the variables in the identity have
their values restricted to a certain set of numbers. To put it another way, an identity may only be true
if we make an assumption about what values the variables in the identity may represent. For
example, here are three identities, each with a set of numbers for which the identity is true.

 = x2 x is true for all positive real numbers,

 = x2 x is true for all real numbers,

 = x2 ()csgn x x is true for all complex numbers.
Let us see how we get Maple to demonstrate each of these identities and also some similar identities.
>

Maple assumes, by default, that variables represent complex numbers. So Maple will, by default,
only express identities that are true for all complex numbers. Of the three identities from the
previous paragraph, the last one is true for all complex numbers, and so that is how Maple will, by
default, simplify the expression sqrt(x^2).
> simplify(sqrt(x^2));

On the other hand, if we tell the simplify command to make an assumption about x, then it will
simplify the expression sqrt(x^2) differently. Here is how we use the assume option to the
simplify command to express the first of the three identities.
> simplify(sqrt(x^2), assume=positive);

The second identity from the previous paragraph turns out to be not as straight forward as the other
two. If we tell simplify to assume that x represents only real numbers, then we get an expression
that is equivalent to, but not exactly the same as, what we want.
> simplify(sqrt(x^2), assume=real);

We can convert this result into a form using absolute values, but again we get a result that is
equivalent to, but not exactly the same as, what we want.
> convert(%, abs);

If we simplify the last result and once again tell simplify that x represents a real number, then we
get exactly what we want.

Page 4

> simplify(%, assume=real);

The last three commands can be abbreviated a bit. It turns out that we can skip the middle convert
command.
> simplify(sqrt(x^2), assume=real);
> simplify(%, assume=real);

In fact, the last two commands can be abbreviated even more. We can drop the assumption on x in
the first simplify command.
> simplify(sqrt(x^2));
> simplify(%, assume=real);

We can combine the last two commands together into one command that demonstrates the identity.
> sqrt(x^2) = simplify(simplify(sqrt(x^2)), assume=real);

This example shows that even when telling simplify to use an appropriate assumption, it may not
always be obvious how to go about demonstrating a particular identity.
>

Here is an identity that is a slight variation on the above three examples.

 = () − x 10 2 − x 10 is true for all real numbers greater than or equal to 10.
To get the simplify command to demonstrate this identity we need to be able to tell simplify
to assume that x represents a real number that is greater than 10. Here is how we do this.
> sqrt((x-10)^2);
> simplify(%, assume=RealRange(10,infinity));
>

Here is a slight variation on the last example.

 = () + x 10 2 −() + x 10 is true for all real numbers less than or equal to −10.
In order to demonstrate this identity we need to tell simplify to assume that x represents a real

number that is less than or equal to −10.
> sqrt((x+10)^2);
> simplify(%, assume=RealRange(-infinity,-10));
>

Now let us consider the identity = () − x2 1
2

 − x2 1. This is true if x is less than −1 or if x is greater
than 1. In other words, we need to assume that x is contained in one of two disjoint intervals.
> sqrt((x^2-1)^2);
> simplify(%, assume=OrProp(RealRange(-infinity,-1),
> RealRange(1,infinity)));

Here is an interesting example. Modify the last identity by factoring − x2 1 to get the following

equivalent identity = ()() + x 1 () − x 1 2 () + x 1 () − x 1 . This is still true if x is less than −1 or if x
is greater than 1. But to demonstrate this identity we need to use simplify three times in a row.
This shows, once again, that even when we make an appropriate assumption about a variable, it may

Page 5

not be obvious how to get the desired result.
> sqrt(((x+1)*(x-1))^2);
> simplify(%, assume=OrProp(RealRange(-infinity,-1),
> RealRange(1,infinity)));
> simplify(%, assume=OrProp(RealRange(-infinity,-1),
> RealRange(1,infinity)));
> simplify(%, assume=OrProp(RealRange(-infinity,-1),
> RealRange(1,infinity)));
>

Now consider the identity = () − x2 1
2

 − 1 x2. This is true if x is greater than −1 and less than 1.
> sqrt((x^2-1)^2);
> simplify(%, assume=RealRange(-1,1));
>

Maple tries hard to not to apply an identity to an expression unless the identity is provably correct
under the assumptions made on the variables in the expression. But if Maple should use an identity
incorrectly, this could lead to incorrect results from a calculation. Here is an example of how Maple
can get tripped up and return an incorrect identity. Recall that the identity = ()arctan ()tan x x is true
only if x is between −π/2 and π/2.
> arctan(tan(x));
> simplify(%);
> simplify(%%, assume=RealRange(-Pi/2,Pi/2));

Now consider the following combination of the convert and simplify commands.
> arctan(tan(x));
> convert(%, exp);
> simplify(%);

These two commands managed to simplify arctan(tan(x)) to x without any assumption on the

value of x. So if x should in fact be representing a number greater than π/2 for example, then the
above calculation would be wrong. And if the expression arctan(tan(x)) appeared in a long
calculation along with this combination of convert and simplify, then the long calculation
would be incorrect. This shows that Maple can sometimes make incorrect simplifications, and it also
shows that the results of complicated calculations always need to be double checked for correctness.
>

Exercise: Try to determine if the error in the last two commands was caused by the convert
command or by the simplify command.
>

So far, all of the identities we have done in this section have involved intervals of real numbers. But
other kinds of sets of numbers can be used in identities. Here are a few that use integers. For

Page 6

example, = ()sin n π 0 for any integer n.
> sin(n*Pi);
> simplify(%, assume=integer);

And = ()cos n π ()−1 n for any integer n.
> cos(n*Pi);
> simplify(%, assume=integer);

And of course, ()−1 n is either 1 or −1, depending on whether n is even or odd.
> simplify(%, assume=even);
> simplify(%%, assume=odd);

Here are two more identities that depend on even and odd integers.
> cos(n*Pi/2);
> simplify(%, assume=even);
> sin(n*Pi/2);
> simplify(%, assume=odd);
>

The last several examples have shown how to demonstrate some identities that are true for various
kinds of sets of real numbers. There are many other kinds of identities and many different kinds of
sets of numbers that an identity can be true for. But the assume option of the simplify
command is not versatile enough to handle most of them. In the next section we will look at Maple's
assume command, which can be used in far more situations than the assume option for
simplify.
>

>

4.4. Using Maple's assume facility
In the last section we used the assume option for the simplify command to demonstrate the
following identity.

 = x2 x is true for all positive real numbers.
We can also use Maple's assume command to demonstrate this identity. The assume command
allows us to "permanently" attach an assumption to a variable. We can use assume to tell Maple
that the unassigned variable x is meant to represent only real, positive numbers.
> assume(x, positive);

The assume command did not return anything. But we can use the about command to find out
that Maple is now making an assumption about the values represented by x.
> about(x);

Many Maple commands can make use of this information about the values that x is supposed to
represent. In fact, Maple itself will make use of this information and automatically simplify the
expression sqrt(x^2) and thereby demonstrate the identity that we want.
> sqrt(x^2);

Page 7

Notice that the output has a tilde (~) after the variable x. This is to remind us that there is an
assumption being made about the values represented by x. Notice that the about command started
its out by mentioning that x has been renamed x~. The name x~ is used by Maple for x in the
output of commands, but we should continue to use the name x in the inputs to commands.
> x;

Using assume to make an assumption about a variable's values leaves the variable unassigned in
the sense that it does not have a specific value assigned to it. But the assume command does
"assign" a property to the variable, the property being the set of numbers that the variable is
supposed to take its values from. We remove an assumption from a variable the same way that we
would remove a specific value from the variable, by unassigning the variable.
> x := 'x';
> about(x);

Here are two other ways to use the assume command to make the same assumption about the
posible values of the variable x.
> assume(x, RealRange(Open(0),infinity));
> about(x);

And we can also use the following, much more convenient, notation.
> assume(x>0);
> about(x);

Notice that the assumption does not prevent us from assigning any value to the variable, since the
process of assigning a value causes the assumption to be removed.
> x := -1;
>

There is a larger set of numbers for which the identity = x2 x is true. Instead of assuming that x is a
positive real number, we can assume that x is a complex number with positive real part. In other
words, the following identity is also true.

 = x2 x is true for all complex numbers x with < 0 ()ℜ x .
The assume option for simplify is not versatile enough to demonstrate this identity. We have to
use the assume command. Here is how we use the assume and simplify commands to
demonstrate this identity. First we use assume to tell Maple that the unassigned variable x is meant
to represent only complex numbers with positive real part (but first we need to unassign x to remove
the constant value that we just gave to it).
> x := 'x':
> assume(Re(x)>0);

We can use about to check the assumption about the values represented by x.
> about(x);

The simplify command, without any options, will make use of this information about the values
that x can represent and demonstrate the identity that we want. (Notice that automatic simplification
does not work this time.)
> sqrt(x^2);

Page 8

> simplify(%);
>

Here is still another version of the previous identity.

 = x2 x if x is purely imaginary with positive imaginary part.
Here is how we can use assume to make this assumption about x. First, we make the assumption
that x is a purely imaginary complex number.
> assume(Re(x)=0);

Now we make the additional assumption that the imaginary part of x is positive.
> additionally(Im(x)>0);

The about command shows us that the last two commands have a cumulative affect on the
assumptions that Maple now makes about what numbers x can represent.
> about(x);

And now the simplify command will use these assumptions to demonstrate the identity for us.
> sqrt(x^2);
> simplify(%);
>

The assume command has many advantages over the assume option to simplify. As we have
just seen, it is more powerful in that it allows us to make assumptions that cannot be made from
within the simplify command. Also, once we use the assume command to make an assumption,
that assumption can be used by many other commands, not just the simplify command. In fact,
the assume facility is useful for more than just demonstrating identities. For example, below we
show how it can also be used for doing calculations with quantities that depend on a parameter. But
there are some limitations on the use of assume. For example, if we combine the previous two
examples, we get the following identity.

 = x2 x if x has positive real part, or if x has zero real part and positive imaginary part.
I do not know of any easy way to use the assume command to make the assumptions needed to
demonstrate this identity.
>

Not all commands are aware of the assumptions that assume can place on a variable. For example,
the evalb command is not aware of these assumptions. Let us assume that x is between -1 and 1.
> assume(x, RealRange(-1,1));

If x is assumed to be between -1 and 1, then each of the following three inequalities should be true.
But evalb leaves the inequalities unevaluated.
> evalb(x^2<=1);
> evalb(x<=2);
> evalb((x-1)*(x+1)<=0);

Fortunately, Maple has a separate command that is aware of assumptions and lets us ask questions
about a variable in an equation or inequality. We can use the is command to evaluate all three of

Page 9

the above inequalities.
> is(x^2<=1);
> is (x<=2);
> is((x-1)*(x+1)<=0);

is will return true if an equation or inequality is true for every possible value of every variable in
the relation, and is returns false if the equation or inequality is false for some possible value of a
variable. The following is command returns false since x>0 is not true for all of the values the x
represents.
> is(x>0);

Notice that the inequalities x>0 and x>2 are different in an important way. While x>0 is false for
some of the values that x represents, x>2 is false for all of the values that x represents. Maple's
assume facility has as interesting (undocumented) command, coulditbe, that lets us distinguish
between these two possible reasons for is to return false.
> coulditbe(x>0);
> coulditbe(x>2);

coulditbe will return true if an equation or inequality is true for some possible value of the
variables in the relation, and coulditbe returns false if the equation or inequality is false for
every possible value of every variable. So given an equation or inequality, if is returns true then
the relation is true for all possible values of all the variables, if coulditbe returns false then
the relation is false for all possible values of all the variables, and if is returns false and
coulditbe returns true then the relation is true for some possible values and false for some
possible values. (Could it be that is returns true and coulditbe returns false?)
>

If there are no assumptions on a variable in an inequality or equation, then is returns the special
value FAIL, which means that is cannot determine if the inequality or equation is true for all
values or false for some value of the variable.
> x := 'x';
> is(x>0);
>

Here is an example of is and coulditbe working with more than one variable.
> assume(x>1);
> assume(y<0);
> is(x-y>1);
> is(x+y<1);
> coulditbe(x+y<1);

Unfortunately, coulditbe can sometimes have trouble producing the correct result. The following
command should return true.
> coulditbe(x+y>1);

Here is an example where is has trouble producing the correct result.
> assume(x>1);

Page 10

> assume(y>1);
> is((x-1)*(y-1)>0);

But if we reverse the direction of the last inequality, then is has no problem, which makes the
previous result all the more surprising.
> is((x-1)*(y-1)<0);
>

Here is a typical example of how assume can be used while doing a calculation. Let us define a
function f with a parameter a.
> a := 'a': x := 'x':
> f := x->exp(a*x);

Unless we know something about the parameter a, we cannot say much about the limit of f as x
goes to infinity.
> limit(f(x), x=infinity);

The previous command returned unevaluated, reflecting Maple's lack of knowledge about a. Now
let us assume that a is positive.
> assume(a>0);
> Limit(f(x), x=infinity) = limit(f(x), x=infinity);

And now assume that a is negative.
> assume(a<0);
> Limit(f(x), x=infinity) = limit(f(x), x=infinity);
>

Here is an interesting example of what assume can do with a piecewise defined function.
> f := x -> piecewise(x<=0, x^2, x<1, x^3, x>=2, x^4);

If we evaluate this piecewise defined function at an unassigned variable, then we just get the
function displayed as an expression.
> f(y);

Assume that y is a negative real number.
> assume(y<0);

Now if we evaluate f at y, we get the appropriate sub expression from the definition of f.
> f(y);

However, if we assume that y is a positive real number and then evaluate f at y, Maple does not
return just the two appropriate sub expressions. Instead, Maple returns the whole definition of f.
> assume(y>0);
> f(y);

If we add another assumption to y and then re-evaluate f at y, then Maple can return an appropriate
sub expression from the definition of f.
> additionally(y<1);
> f(y);
>

Page 11

>

4.5. Online information on assume
Maple's assume facility is pretty complex and the online documentation is not very helpful. Here is
the help page for the assume command. It is also the help page for the about, additionally,
and is commands.
> ?assume

The assume command assigns properties to names. The following two help pages give some
information about properties.
> ?property
> ?asspar

One way to get a sense of how properties are defined is to look at the definitions of several
predefined properties. Here are some examples.
> about(complex);
> about(real);
> about(positive);
> about(fraction);
> about(integer);
> about(posint);
> about(odd);

We mentioned the use of inert functions for displaying nicely typeset identities. The following help
page has some general information about inert functions.
> ?value

There are other ways to demonstrate an identity besides deriving it algebraically. The testeq
command provides a probabilistic way to determine if an equation is an identity or not.
> ?testeq

>

Page 12

