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4.  Mathematical Identities and Maple's Assume Facility

4.1. Introduction
In this worksheet we consider mathematical identities as another example of a use of an equal sign 
in mathematical notation. We show how to get Maple to demonstrate a number of mathematical 
identities. We look at the case of identities that are true for only some values of the variables in the 
identity. This leads us to introduce Maple's assume facility, which allows us to place assumptions on 
the values that an unassigned variable is supposed to represent.
> 

4.2. Mathematical identities
In a previous worksheet we emphasized that equal signs are used in mathematical formulas in at 
least two different ways, to represent an assignment and as part of an equation. So for example, we 
interpret the equal sign in the formula  = x 0 as an assignment and assume that the formula means 
that x is a name for zero. We translate this into Maple as the assignment statement x:=0. On the 

other hand we interpret the formula  =  −  − x2 2 x 1 0 as an equation that should be solved for x. We 
translate this directly into Maple as the equation x^2-2*x-1=0, which can then be solved using 
the solve command.
> x^2-2*x-1=0;
> solve( %, x );

Now consider the mathematical formula  = ( ) − 1 x 2  −  + 1 2 x x2. Here the equal sign is definitely not 
an assignment. And this is not really an equation either since this formula is not asking for which x 
is the equation true. The equation is true for all x and in fact the purpose of the formula is to tell us 
that. This formula is an example of an identity and the purpose of the equal sign in an identity is to 
tell us that the left and right hand sides are (under certain circumstances) interchangeable. So now 
we have a third use for an equal sign in a mathematical formula. How should this use of an equal 

sign be translated into Maple? We would want Maple to tell us that  −  + 1 2 x x2 is equivalent to 

( ) − 1 x 2. The expand command in Maple will tell us exactly that.
> expand( (1-x)^2 );

So the mathematical identity  = ( ) − 1 x 2  −  + 1 2 x x2 is represented in Maple by an application of one 
of Maple's commands. 
> 
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Let us look at some other examples of identities and how Maple would demonstrate them. The 
factor command allows Maple to demonstrate the following algebraic identity.

 =  −  − 3 x2 7 x 20 ( ) − x 4 ( ) + 3 x 5
> factor( 3*x^2-7*x-20 );

Here is an identity involving the exponential function.

 = ex ey e( ) + x y

For this identity we can use the simplify command.
> simplify( exp(x)*exp(y) );

Here is a trig identity.

 = ( )sin x ( )cos y  + 
( )sin  + x y

2

( )sin  − x y

2
For this identity we need the combine command.
> combine( sin(x)*cos(y) );

Here is an identity about a rational function.

 = 
 − a b

( ) − x a ( ) − x b
 − 

1

 − x a

1

 − x b
For this identity we need the convert command with the special option parfrac.
> convert( (a-b)/((x-a)*(x-b)), parfrac, x );

The option parfrac is an abbreviation of "partial fraction". So this convert command 
converts a rational function into its partial fraction expansion.
> 

Here is an identity involving the integers.

 = ∑
 = k 1

n

k
n ( ) + n 1

2

We translate this into an application of Maple's sum command.
> sum( k, k=1..n );

Well, we are not quite there yet. Try the factor command.
> factor( % );

We can combine these two steps into one Maple command.
> factor( sum(k, k=1..n) );

Suppose that we wanted Maple to actually display the whole identity in its output, not just the right 
hand side of the identity. We could do this using what is called the inert form of a Maple command. 
Many Maple commands have an inert form, which is the command with its initial letter capitalized. 
The inert form of sum is Sum. The inert form of a Maple command (if the command has an inert 
form) does not carry out the action of command. Instead, the inert form is a way to tell Maple to 
typeset the command in Standard Math Notation as the command's output. So for example, the inert 
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form of sum does not do any summation, but it does display a nicely typeset summation formula.
> Sum( k, k=1..n );

(The fact that the summation symbol is black, instead of blue, is meant to show that it is the result of 
an inert command.) So here is how we get Maple to display the entire identity. Use the inert form of 
sum on the left hand side of an equal sign and the regular sum on the right hand side.
> Sum(k, k=1..n) = factor( sum(k, k=1..n) );

Here is an integral identity, displayed by using both the regular and inert forms of the int 
command.
> Int( sqrt(x^2+a^2), x ) = int( sqrt(x^2+a^2), x );

We can get Maple to display all of our previous identities. These identities do not even need the use 
of an inert command.
> (1-x)^2 = expand( (1-x)^2 );
> 3*x^2-7*x-20 = factor( 3*x^2-7*x-20 );
> exp(x)*exp(y) = simplify( exp(x)*exp(y) );
> sin(x)*cos(y) = combine( sin(x)*cos(y) );
> (a-b)/((x-a)*(x-b)) = convert( (a-b)/((x-a)*(x-b)), parfrac, x 

);
> 

Here is how we would do each of these identities in its other direction.
> 1-2*x+x^2 = factor( 1-2*x+x^2 );
> (3*x+5)*(x-4) = expand( (3*x+5)*(x-4) );
> exp(x+y) = expand( exp(x+y) );
> sin(x+y)/2 + sin(x-y)/2 = expand( sin(x+y)/2 + sin(x-y)/2 );
> 1/(x-a) - 1/(x-b) = simplify( 1/(x-a) - 1/(x-b) );
> 

Notice that it took quite a few Maple commands to demonstrate these identities and it is not always 
obvious which Maple command might be useful for demonstrating a particular identity. In the next 
worksheet we will go over some of the details of using these commands and we will try to give 
some guidelines on which command should be used when. In particular, the commands that are 
covered in detail in the next worksheet are simplify, factor, expand, combine, and 
convert.

All of the identities demonstrated above have the property that they are true for all the possible 
values of the variables in the identity. Not all identities have this property. For some identities, the 
identity is true for only some values of the variables involved. For example, the trigonometric 
identity  = ( )arcsin ( )sin x x is true only if x is between −π/2 and π/2. Because of this, Maple will not 
readily demonstrate this identity for us.
> arcsin( sin(x) );

Page 3



> simplify( % );

But we can tell the simplify command to make an assumption about the possible values that the 
variable x can represent.
> simplify( arcsin( sin(x) ), assume=RealRange(-Pi/2, Pi/2) );

In the next section we look at more examples of identities that are true for only some values of the 
involved variables. And in the section after that we show how to make use of Maple's assume 
facility to place assumptions on what values a variable can represent.
> 

> 

4.3. A closer look at mathematical identities
An important idea to remember about mathematical identities is that they need not be true for all 
values of the variables involved. An identity may be true only when the variables in the identity have 
their values restricted to a certain set of numbers. To put it another way, an identity may only be true 
if we make an assumption about what values the variables in the identity may represent. For 
example, here are three identities, each with a set of numbers for which the identity is true.

 = x2 x is true for all positive real numbers,

 = x2 x  is true for all real numbers,

 = x2 ( )csgn x x is true for all complex numbers.
Let us see how we get Maple to demonstrate each of these identities and also some similar identities.
> 

Maple assumes, by default, that variables represent complex numbers. So Maple will, by default, 
only express identities that are true for all complex numbers. Of the three identities from the 
previous paragraph, the last one is true for all complex numbers, and so that is how Maple will, by 
default, simplify the expression sqrt(x^2).
> simplify( sqrt(x^2) );

On the other hand, if we tell the simplify command to make an assumption about x, then it will 
simplify the expression sqrt(x^2) differently. Here is how we use the assume option to the 
simplify command to express the first of the three identities.
> simplify( sqrt(x^2), assume=positive );

The second identity from the previous paragraph turns out to be not as straight forward as the other 
two. If we tell simplify to assume that x represents only real numbers, then we get an expression 
that is equivalent to, but not exactly the same as, what we want.
> simplify( sqrt(x^2), assume=real );

We can convert this result into a form using absolute values, but again we get a result that is 
equivalent to, but not exactly the same as, what we want.
> convert( %, abs );

If we simplify the last result and once again tell simplify that x represents a real number, then we 
get exactly what we want.
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> simplify( %, assume=real );

The last three commands can be abbreviated a bit. It turns out that we can skip the middle convert 
command.
> simplify( sqrt(x^2), assume=real );
> simplify( %, assume=real );

In fact, the last two commands can be abbreviated even more. We can drop the assumption on x in 
the first simplify command.
> simplify( sqrt(x^2) );
> simplify( %, assume=real );

We can combine the last two commands together into one command that demonstrates the identity.
> sqrt(x^2) = simplify(simplify( sqrt(x^2) ), assume=real);

This example shows that even when telling simplify to use an appropriate assumption, it may not 
always be obvious how to go about demonstrating a particular identity.
> 

Here is an identity that is a slight variation on the above three examples.

 = ( ) − x 10 2  − x 10 is true for all real numbers greater than or equal to 10.
To get the simplify command to demonstrate this identity we need to be able to tell simplify 
to assume that x represents a real number that is greater than 10. Here is how we do this.
> sqrt((x-10)^2);
> simplify( %, assume=RealRange(10,infinity) );
> 

Here is a slight variation on the last example.

 = ( ) + x 10 2 −( ) + x 10  is true for all real numbers less than or equal to −10.
In order to demonstrate this identity we need to tell simplify to assume that x represents a real 

number that is less than or equal to −10.
> sqrt((x+10)^2);
> simplify( %, assume=RealRange(-infinity,-10) );
> 

Now let us consider the identity  = ( ) − x2 1
2

 − x2 1. This is true if x is less than −1 or if x is greater 
than 1. In other words, we need to assume that x is contained in one of two disjoint intervals.
> sqrt((x^2-1)^2);
> simplify(%, assume=OrProp(RealRange(-infinity,-1), 
>                           RealRange(1,infinity)) );

Here is an interesting example. Modify the last identity by factoring  − x2 1 to get the following 

equivalent identity  = ( )( ) + x 1 ( ) − x 1 2 ( ) + x 1 ( ) − x 1 . This is still true if x is less than −1 or if x 
is greater than 1. But to demonstrate this identity we need to use simplify three times in a row. 
This shows, once again, that even when we make an appropriate assumption about a variable, it may 
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not be obvious how to get the desired result.
> sqrt(((x+1)*(x-1))^2);
> simplify( %, assume=OrProp(RealRange(-infinity,-1), 
>                            RealRange(1,infinity)) );
> simplify( %, assume=OrProp(RealRange(-infinity,-1), 
>                            RealRange(1,infinity)) );
> simplify( %, assume=OrProp(RealRange(-infinity,-1), 
>                            RealRange(1,infinity)) );
> 

Now consider the identity  = ( ) − x2 1
2

 − 1 x2. This is true if x is greater than −1 and less than 1.
> sqrt((x^2-1)^2);
> simplify( %, assume=RealRange(-1,1) );
> 

Maple tries hard to not to apply an identity to an expression unless the identity is provably correct 
under the assumptions made on the variables in the expression. But if Maple should use an identity 
incorrectly, this could lead to incorrect results from a calculation. Here is an example of how Maple 
can get tripped up and return an incorrect identity. Recall that the identity  = ( )arctan ( )tan x x is true 
only if x is between −π/2 and π/2.
> arctan( tan(x) );
> simplify( % );
> simplify( %%, assume=RealRange(-Pi/2,Pi/2) );

Now consider the following combination of the convert and simplify commands.
> arctan( tan(x) );
> convert( %, exp );
> simplify( % );

These two commands managed to simplify arctan(tan(x)) to x without any assumption on the 

value of x. So if x should in fact be representing a number greater than π/2 for example, then the 
above calculation would be wrong. And if the expression arctan(tan(x)) appeared in a long 
calculation along with this combination of convert and simplify, then the long calculation 
would be incorrect. This shows that Maple can sometimes make incorrect simplifications, and it also 
shows that the results of complicated calculations always need to be double checked for correctness.
> 

Exercise: Try to determine if the error in the last two commands was caused by the convert 
command or by the simplify command.
> 

So far, all of the identities we have done in this section have involved intervals of real numbers. But 
other kinds of sets of numbers can be used in identities. Here are a few that use integers. For 
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example,  = ( )sin n π 0 for any integer n.
> sin(n*Pi);
> simplify(%, assume=integer);

And  = ( )cos n π ( )−1 n for any integer n.
> cos(n*Pi);
> simplify(%, assume=integer);

And of course, ( )−1 n is either 1 or −1, depending on whether n is even or odd.
> simplify(%, assume=even);
> simplify(%%, assume=odd);

Here are two more identities that depend on even and odd integers.
> cos(n*Pi/2);
> simplify(%, assume=even);
> sin(n*Pi/2);
> simplify(%, assume=odd);
> 

The last several examples have shown how to demonstrate some identities that are true for various 
kinds of sets of real numbers. There are many other kinds of identities and many different kinds of 
sets of numbers that an identity can be true for. But the assume option of the simplify 
command is not versatile enough to handle most of them. In the next section we will look at Maple's 
assume command, which can be used in far more situations than the assume option for 
simplify.
> 

> 

4.4. Using Maple's assume facility
In the last section we used the assume option for the simplify command to demonstrate the 
following identity.

 = x2 x is true for all positive real numbers.
We can also use Maple's assume command to demonstrate this identity. The assume command 
allows us to "permanently" attach an assumption to a variable. We can use assume to tell Maple 
that the unassigned variable x is meant to represent only real, positive numbers.
> assume( x, positive );

The assume command did not return anything. But we can use the about command to find out 
that Maple is now making an assumption about the values represented by x.
> about( x );

Many Maple commands can make use of this information about the values that x is supposed to 
represent. In fact, Maple itself will make use of this information and automatically simplify the 
expression sqrt(x^2) and thereby demonstrate the identity that we want.
> sqrt(x^2);
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Notice that the output has a tilde (~) after the variable x. This is to remind us that there is an 
assumption being made about the values represented by x. Notice that the about command started 
its out by mentioning that x has been renamed x~. The name x~ is used by Maple for x in the 
output of commands, but we should continue to use the name x in the inputs to commands.
> x;

Using assume to make an assumption about a variable's values leaves the variable unassigned in 
the sense that it does not have a specific value assigned to it. But the assume command does 
"assign" a property to the variable, the property being the set of numbers that the variable is 
supposed to take its values from. We remove an assumption from a variable the same way that we 
would remove a specific value from the variable, by unassigning the variable.
> x := 'x';
> about( x );

Here are two other ways to use the assume command to make the same assumption about the 
posible values of the variable x.
> assume( x, RealRange(Open(0),infinity) );
> about( x );

And we can also use the following, much more convenient, notation.
> assume( x>0 );
> about( x );

Notice that the assumption does not prevent us from assigning any value to the variable, since the 
process of assigning a value causes the assumption to be removed.
> x := -1;
> 

There is a larger set of numbers for which the identity  = x2 x is true. Instead of assuming that x is a 
positive real number, we can assume that x is a complex number with positive real part. In other 
words, the following identity is also true.

 = x2 x is true for all complex numbers x with  < 0 ( )ℜ x .
The assume option for simplify is not versatile enough to demonstrate this identity. We have to 
use the assume command. Here is how we use the assume and simplify commands to 
demonstrate this identity. First we use assume to tell Maple that the unassigned variable x is meant 
to represent only complex numbers with positive real part (but first we need to unassign x to remove 
the constant value that we just gave to it).
> x := 'x':
> assume( Re(x)>0 );

We can use about to check the assumption about the values represented by x.
> about( x );

The simplify command, without any options, will make use of this information about the values 
that x can represent and demonstrate the identity that we want. (Notice that automatic simplification 
does not work this time.)
> sqrt(x^2);
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> simplify( % );
> 

Here is still another version of the previous identity.

 = x2 x if x is purely imaginary with positive imaginary part.
Here is how we can use assume to make this assumption about x. First, we make the assumption 
that x is a purely imaginary complex number.
> assume( Re(x)=0 );

Now we make the additional assumption that the imaginary part of x is positive.
> additionally( Im(x)>0 );

The about command shows us that the last two commands have a cumulative affect on the 
assumptions that Maple now makes about what numbers x can represent.
> about( x );

And now the simplify command will use these assumptions to demonstrate the identity for us.
> sqrt(x^2);
> simplify( % );
> 

The assume command has many advantages over the assume option to simplify. As we have 
just seen, it is more powerful in that it allows us to make assumptions that cannot be made from 
within the simplify command. Also, once we use the assume command to make an assumption, 
that assumption can be used by many other commands, not just the simplify command. In fact, 
the assume facility is useful for more than just demonstrating identities. For example, below we 
show how it can also be used for doing calculations with quantities that depend on a parameter. But 
there are some limitations on the use of assume. For example, if we combine the previous two 
examples, we get the following identity.

 = x2 x if x has positive real part, or if x has zero real part and positive imaginary part.
I do not know of any easy way to use the assume command to make the assumptions needed to 
demonstrate this identity.
> 

Not all commands are aware of the assumptions that assume can place on a variable. For example, 
the evalb command is not aware of these assumptions. Let us assume that x is between -1 and 1.
> assume( x, RealRange(-1,1) );

If x is assumed to be between -1 and 1, then each of the following three inequalities should be true. 
But evalb leaves the inequalities unevaluated.
> evalb( x^2<=1 );
> evalb( x<=2 );
> evalb( (x-1)*(x+1)<=0 );

Fortunately, Maple has a separate command that is aware of assumptions and lets us ask questions 
about a variable in an equation or inequality. We can use the is command to evaluate all three of 
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the above inequalities.
> is( x^2<=1 );
> is ( x<=2 );
> is( (x-1)*(x+1)<=0 );

is will return true if an equation or inequality is true for every possible value of every variable in 
the relation, and is returns false if the equation or inequality is false for some possible value of a 
variable. The following is command returns false since x>0 is not true for all of the values the x 
represents.
> is( x>0 );

Notice that the inequalities x>0 and x>2 are different in an important way. While x>0 is false for 
some of the values that x represents, x>2 is false for all of the values that x represents. Maple's 
assume facility has as interesting (undocumented) command, coulditbe, that lets us distinguish 
between these two possible reasons for is to return false.
> coulditbe( x>0 );
> coulditbe( x>2 );

coulditbe will return true if an equation or inequality is true for some possible value of the 
variables in the relation, and coulditbe returns false if the equation or inequality is false for 
every possible value of every variable. So given an equation or inequality, if is returns true then 
the relation is true for all possible values of all the variables, if coulditbe returns false then 
the relation is false for all possible values of all the variables, and if is returns false and 
coulditbe returns true then the relation is true for some possible values and false for some 
possible values. (Could it be that is returns true and coulditbe returns false?)
> 

If there are no assumptions on a variable in an inequality or equation, then is returns the special 
value FAIL, which means that is cannot determine if the inequality or equation is true for all 
values or false for some value of the variable.
> x := 'x';
> is( x>0 );
> 

Here is an example of is and coulditbe working with more than one variable.
> assume(x>1);
> assume(y<0);
> is( x-y>1 );
> is( x+y<1 );
> coulditbe( x+y<1 );

Unfortunately, coulditbe can sometimes have trouble producing the correct result. The following 
command should return true.
> coulditbe( x+y>1 );

Here is an example where is has trouble producing the correct result.
> assume( x>1 );
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> assume( y>1 );
> is( (x-1)*(y-1)>0 );

But if we reverse the direction of the last inequality, then is has no problem, which makes the 
previous result all the more surprising.
> is( (x-1)*(y-1)<0 );
> 

Here is a typical example of how assume can be used while doing a calculation. Let us define a 
function f with a parameter a.
> a := 'a': x := 'x':
> f := x->exp(a*x);

Unless we know something about the parameter a, we cannot say much about the limit of f as x 
goes to infinity.
> limit( f(x), x=infinity );

The previous command returned unevaluated, reflecting Maple's lack of knowledge about a. Now 
let us assume that a is positive.
> assume( a>0 );
> Limit( f(x), x=infinity ) = limit( f(x), x=infinity );

And now assume that a is negative.
> assume( a<0 );
> Limit( f(x), x=infinity ) = limit( f(x), x=infinity );
> 

Here is an interesting example of what assume can do with a piecewise defined function.
> f := x -> piecewise(x<=0, x^2, x<1, x^3, x>=2, x^4);

If we evaluate this piecewise defined function at an unassigned variable, then we just get the 
function displayed as an expression.
> f(y);

Assume that y is a negative real number.
> assume(y<0);

Now if we evaluate f at y, we get the appropriate sub expression from the definition of f.
> f(y);

However, if we assume that y is a positive real number and then evaluate f at y, Maple does not 
return just the two appropriate sub expressions. Instead, Maple returns the whole definition of f.
> assume(y>0);
> f(y);

If we add another assumption to y and then re-evaluate f at y, then Maple can return an appropriate 
sub expression from the definition of f.
> additionally(y<1);
> f(y);
> 
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> 

4.5. Online information on assume
Maple's assume facility is pretty complex and the online documentation is not very helpful. Here is 
the help page for the assume command. It is also the help page for the about, additionally, 
and is commands.     
> ?assume

The assume command assigns properties to names. The following two help pages give some 
information about properties.
> ?property
> ?asspar

One way to get a sense of how properties are defined is to look at the definitions of several 
predefined properties. Here are some examples.
> about(complex);
> about(real);
> about(positive);
> about(fraction);
> about(integer);
> about(posint);
> about(odd);

We mentioned the use of inert functions for displaying nicely typeset identities. The following help 
page has some general information about inert functions.
> ?value

There are other ways to demonstrate an identity besides deriving it algebraically. The testeq 
command provides a probabilistic way to determine if an equation is an identity or not. 
> ?testeq

> 
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