
Maple for Math Majors
Roger Kraft

Department of Mathematics, Computer Science, and Statistics
Purdue University Calumet
roger@calumet.purdue.edu

3. Solving Equations

3.1. Introduction
The solve command for solving equations symbolically is one of Maple most useful commands. In
this worksheet we go into the details of using the solve command to solve single equations and
systems of equations. We also consider more carefully what kinds of equations solve can and
cannot solve. We introduce Maple's RootOf expressions, which are used throughout Maple and are
often used in the results returned by solve, and the allvalues command for interpreting
RootOf expressions. Finally, we show how the numerical solving command fsolve can be used
when solve does not work.
>

3.2. The basics of solve
We give the solve command an equation in some unknowns and also one specific unknown that it

should solve the equation for. For example, an equation like = 1 − a x2 b has three unknowns in it.
Each of the following solve commands solves this equation for one of the unknowns.
> solve(1=a*x^2-b, a);
> solve(1=a*x^2-b, b);
> solve(1=a*x^2-b, x);

The next two commands check that the last solution really does solve the equation for x.
> subs(x=%[1], 1=a*x^2-b);
> subs(x=%%[2], 1=a*x^2-b);

If we put a pair of braces around the unknown to solve for, then solve returns the solution written
as an equation.
> solve(1=a*x^2-b, {a});
> solve(1=a*x^2-b, {b});
> solve(1=a*x^2-b, {x});

The next two commands once again check that the last solution solves the equation for x. Notice
how the form of the subs command changes slightly because of the braces around x in the solve
command.
> subs(%[1], 1=a*x^2-b);
> subs(%%[2], 1=a*x^2-b);

In each of these examples, solve is solving for one variable in terms of the other two variables,

Page 1

and so we expect solve to return an expression. In the rest of this worksheet we emphasize
equations in just one variable (or systems of two equations in two variables) where we expect
solve to return specific numbers that solve the equation.
>

>

3.3. Solving a single polynomial equation
If we ask solve to solve a polynomial equation (in one variable) of degree n with ≤ n 3, then

solve will always produce n explicit solutions. Some of the solutions may be complex numbers.
Here are a few simple examples.
> solve(x^2+1=0, x);
> solve(x^2+x-1=0, {x});
> solve(x^3-4*x^2+8*x-8=0, x);

When the degree of the polynomial is 3, the solve command can produce some pretty impressive
looking answers.
> solve(x^3-x^2-x-1=0, {x});

If we give solve a polynomial equation of degree n with ≤ 4 n, then solve will always produce n
solutions, but some of the solutions may not be explicitly given. Instead, some of the solutions may
be represented by a RootOf expression. Here is an example.
> solve(x^5+2*x^4-4*x^3-4*x^2-4*x^1-3=0, {x});

One of the solutions of the equation is given explicitly, −3, and the other four solutions are
expressed by the RootOf part of the result. A RootOf expression usually (but not always) means
that Maple does not know how to find explicit symbolic solutions for the roots of some polynomial,
in this case the polynomial x^4-x^3-x^2-x-1.
> solve(x^4-x^3-x^2-x-1=0, {x});

When solve returns a RootOf expression, we can use the allvalues command to find out
more about the solutions represented by the RootOf expression. In the case where a RootOf
expression contains a polynomial of degree 4, the allvalues command will in fact return
symbolic values for the roots, but as the next command shows, the symbolic result may be so
incredibly large and complicated that it is almost useless (and that is why it was represented by a
RootOf expression).
> allvalues(%);

As we said above, the last symbolic result is so complicated that it is almost useless. So we use the
evalf command to get decimal approximations of these solutions.
> evalf(%);

When a RootOf expression contains a polynomial of degree 5 or more, then the allvalues
command applied to the RootOf expression may return decimal approximations of the roots
represented by the RootOf expression. In this case, Maple actually cannot return symbolic results
and decimal approximations are the only option. Here is an example.
> solve(x^5-x^4-x^3-x^2-x-1=0, x);

Page 2

> allvalues(%);

What if we would like to convince ourselves that these really are correct solutions? The next
command substitutes the above results into the original polynomial.
> for i in % do subs(x=i, x^5-x^4-x^3-x^2-x-1=0) od;

When we substitute a solution into the original equation, we expect to get the equation = 0 0, and
that is what we get with two of the solutions above. But for the single solution that is a real number,

we get the equation = .6 10()−8 0 when the solution is substituted into the original equation. Does
this mean that we do not have a correct solution? Yes and no. The "solution" in question is
1.965948237. This numerical result is meant to be an approximation of an exact solution, so we
should not expect it to be a correct, exact solution. When this result is substituted into the original
equation, we should not expect to get exactly = 0 0. But we should expect to "almost" get = 0 0, and

that is what we do get, since .6 10()−8 is a very small number. So the equation = .6 10()−8 0 tells us
that 1.965948237 is an approximate solution to the original equation, not an exact solution.
Similarly, the above substitutions tell us that the other two complex solutions are also correct
approximations of exact solutions.
>

With polynomial equations, solve can always return all of the solutions to the equation, some of
the solutions as exact symbolic results and some possibly as decimal approximations. On the other
hand, with non polynomial equations there is no guarantee that solve will return all solutions of
the equation, or even any solutions. In the next section we look at some examples of the kinds of
results that solve can return for non polynomial equations.
>

>

3.4. Solving a single nonlinear equation
In the last section we saw that with a polynomial equation, solve will always returns all the
solutions to the equation. On the other hand, with non polynomial equations there is no guarantee
that solve will return all solutions of the equation, or even any solutions. Here are some examples
of the kinds of results that solve can return for non polynomial equations.

The equation = − x3 ()cos 3 x2 0 three real roots, but solve cannot find symbolic expressions for
any of them, and so it does not return a result.
> solve(x^3-cos(3*x^2)=0, x);

We can show that the equation has three real roots by using a graph.
> plot([x^3, cos(3*x^2)], x=-2..2, -2..2);
>

Exercise: In the last plot command, change the comma just after x^3 to a minus sign.
>

Page 3

We know that the equation = ()sin x 0 has an infinite number of solutions, but if we solve it with
solve, we only get one solution.
> solve(sin(x)=0, x);
>

The equation = ()sin − x2 1 0 also has an infinite number of solutions, which we can verify by

graphing the function ()sin − x2 1 .
> plot(sin(x^2-1), x=-8..8);

But if we solve the equation with solve, we get only two solutions, 1 and -1. This is because to
solve, sin(x^2-1)=0 is true when x^2-1=0, which is solved by either 1 or -1.
> solve(sin(x^2-1)=0, x);
>

The equation = ()sin + x2 1 0 also has an infinite number of real solutions, which we can again verify
using a graph.
> plot(sin(x^2+1), x=-8..8);

But if we solve the equation using solve, we get two imaginary solutions.
> solve(sin(x^2+1)=0, x);
>

Exercise: Explain why solve returned two imaginary solutions for the equation = ()sin + x2 1 0.
>

Similarly, for the two equations = ()sin + x2 1 1 and = ()sin + x2 1 −1, both of which have an infinite
number of real solutions, solve will return two real solutions and two imaginary solutions,
respectively.
> solve(sin(x^2+1)=1, x);
> solve(sin(x^2+1)=-1, x);
>

Exercise: The number π to five decimal places is 3.1415. So the two equations

 = ()sin + + x2 1 π −1
and

 = ()sin + x2 4.1415 −1
are almost exactly the same equation. Explain why the following command produces two real
solutions
> solve(sin(x^2+1+Pi)=-1, x);
> evalf(%);

but the following command produces two imaginary solutions. (In the following command 4.1415
is written as 41415/10000 in order to prevent solve from returning a decimal answer.)

Page 4

> solve(sin(x^2+41415/10000)=-1, x);
> evalf(%);
>

Recall that with polynomial equations, solve sometimes represents solutions with a RootOf
expression. We can get alsoRootOf expressions as a result of solving non polynomial equations.
Here is a simple example.
> solve(x=cos(x), x);

As with the case of polynomial equations, we can use the allvalues command to find out what
values are represented by the RootOf expression.
> allvalues(%);

So we got a decimal approximation to one solution of the equation. The following graph shows us
that this is the only real solution to the equation.
> plot([x, cos(x)], x=-3*Pi/2..3*Pi/2, -2..2);
>

With non polynomial equations, we can even get results from solve that contain nested RootOf
expressions. Here is an example.
> solve(x^2=cos(x^2), x);

Again we use the allvalues command to find out what values are represented by the RootOf
expression.
> allvalues(%);

We got decimal approximations to two solutions of the equation. The following graph shows us that
these are the only two real solutions to the equation.
> plot([x^2, cos(x^2)], x=-3..3);

Let us go back to the nested RootOf expression returned by the solve command and try to see

exactly how it represents the solutions to the equation = x2 ()cos x2 . Here is the RootOf expression
again.
> solve(x^2=cos(x^2), x);

To derive this RootOf expression, let us start with the equation = x2 ()cos x2 and make a

substitution = _Z x2 in the equation. So then we have the equation = _Z ()cos _Z . Let the expression
RootOf(_Z-cos(_Z)) denote a solution of the equation = − _Z ()cos _Z 0. Given the solution
RootOf(_Z-cos(_Z)) of the equation = − _Z ()cos _Z 0, we plug this solution back in for _Z in the

substitution = _Z x2 and we get the equation = ()RootOf − _Z ()cos _Z x2. Solving this equation for x
gives us a solution to our original equation. Let the expression

()RootOf − + ()RootOf − _Z ()cos _Z x2 denote a solution to the equation

 = − x2 ()RootOf − _Z ()cos _Z 0. Then ()RootOf − + ()RootOf − _Z ()cos _Z x2 also represents a

solution to our original equation = x2 ()cos x2 . To get the nested RootOf expression returned by

solve, the only thing left to do is replace the variable x in our last nested RootOf expression with
the variable _Z. We can do this because changing the name of the variable used in an equation does
not affect the solution values of the equation. Notice that this means that the variable _Z that appears

Page 5

in the outer RootOf expression is not the same variable _Z that appears in the inner RootOf
expression (the inner _Z is the unknown in the equation _Z-cos(_Z)=0, and the outer _Z is the

unknown in the equation = − r _Z2 0 where r is a solution of the former equation). The fact that there
can be two distinct variables both called _Z in a nested RootOf expression is one of the things that
can make nested RootOf expressions hard to understand.
>

Exercise: Explain how each of the following three solve commands derived its RootOf
expression.
> solve(x-sin(x^2)=0, x);

(Hint: First take the arcsin of both sides of the equation = x ()sin x2 , and then let = x ()sin _Z .)
> solve(x-sin(x^2)=1, x);

(Hint: First make a substitution = u − x 1. Later, let = u ()sin _Z .)
> solve(x^2-sin(x^2)=1, x);

(Hint: Let = w x2.)
>

Exercise: First, explain how solve derived the following nested RootOf expression from the

equation = x2 ()sin + x2 1 .
> solve(x^2-sin(x^2+1)=0, x);

Now explain how the following nested RootOf expression can also be derived from the equation

 = x2 ()sin + x2 1 .
> RootOf(-RootOf(_Z-sin(_Z)-1)+1+_Z^2);

To prove that the last two nested RootOf expressions both represent the same solutions to the
equation, let us evaluate both of them using allvalues.
> soln1 := solve(x^2-sin(x^2+1)=0, x);
> soln2 := RootOf(-RootOf(_Z-sin(_Z)-1)+1+_Z^2);
> allvalues(soln1);
> allvalues(soln2);

The following graph shows that these are in fact the only two real solutions to the equation.
> plot([x^2, sin(x^2+1)], x=-3..3, -1..2);
>

Exercise: One of the amazing things that Maple can do is algebra with RootOf expressions. Here is
an example (from A Guide to Maple, by E. Kamerich, page 174).
> r := solve(x^5-t*x^2+p=0, x);
> simplify(r^7);
> simplify(r^8);

Explain why these results are correct. (Hint: Derive the first result from the equation in the solve
command. Derive the second result from the first one.) Also, explain why the following result is
correct.

Page 6

> simplify(r^11);
>

The last several examples have shown what kind of results we can get from the solve command
with non polynomial equations. In summary, we can get no solution, a list of solutions that may or
may not be complete, or we can get RootOf expressions that, when evaluated using allvalues,
give us a list of decimal approximations of solutions. And the solutions that we get can be either real
or complex numbers.
>

>

3.5. Solving a system of equations
We can use the solve command to solve systems of equations, that is, two or more equations that
we want solved simultaneously. When we work with systems of equations we put the equations to
be solved inside of a pair of braces and we put the variables to be solved for inside another pair of
braces. Here is an example with two (nonlinear) equations in two unknowns.
> solve({x^2-y^2-y=0, x+y^2=0}, {x, y});

As with solving a single equation, sometimes we can get the answer given implicitly in terms of
RootOf expressions. As before, we can use the allvalues command to find out more about the
solutions represented by the RootOf expressions. Sometimes allvalues will return symbolic
solutions and sometimes it will return decimal approximations. In the case of the last example,
allvalues returns a list of very complicated symbolic solutions.
> allvalues(%[2]);

We can get decimal approximations of these solutions by using evalf.
> evalf(%);

Notice that the RootOf expressions represented three solutions, one real solution and two complex
solutions. The following commands check that these really are solutions.
> seq(subs(%%[i], {x^2-y^2-y=0, x+y^2=0}), i=1..3):
> simplify([%]);
>

Here is an interesting result where solve mixes a partly symbolic solution with a RootOf
expression.
> solve({x^2+y^2=9, x^y=2}, {x,y});

And allvalues mixes symbolic results with numeric values.
> allvalues(%);

Let us check that this is a valid solution.
> subs(%, {x^2+y^2=9, x^y=2});
> simplify(%);
>

Page 7

Exercise: How many real solutions does the system of equations = + x2 y2 9 and = xy 2 have? (Hint:
Graph the equations.)
>
>

Here is an example that shows how important it is to check that the results from solve and
allvalues are correct. In this example, allvalues will produce incorrect results. Let us find

the intersection of a circle and a parabola. The system of equations = + x2 y2 1 and = y x2 obviously
has exactly two real solutions, and they are not very hard to find using paper and pencil. Here is one
way to solve them using Maple.
> equations := {x^2+y^2=1, y-x^2=0};
> solve(equations, {x,y});
> solutions := allvalues(%);

It looks like we have eight solutions. Some of them are complex. Here is an easy way to see this.
> evalf(solutions);

Notice that only four of the eight solutions are complex. This means that we have four real solutions,
which is clearly two too many. Close inspection of the numerical values shows which two real
solutions are incorrect (the ones with negative y values). But what about the complex solutions? Are
any of them correct? (It is easy to see that two of the complex values are incorrect; which ones?) The
next command checks all of the solutions to see how many are correct.
> seq(subs(solutions[i], equations), i=1..8);
> simplify([%]);

We can now clearly see that four of the results returned by allvalues are incorrect; they do not
solve the original system of equations. Never take the results from Maple at face value! Learn how
to verify and double check all of Maple's results.
>

Exercise: Go back and change the definition of equations from {x^2+y^2=1, y-x^2=0} to
{x^2+y^2=1, y=x^2} and then re-execute the rest of the commands in the example. What
affect does this minor change in the form of the equations have on the example? Is one form of the
equations preferable?
>

Exercise: Part (a): Solve the system of equations = + x2 y2 1 and = − y x2 0 using paper and pencil.
Pay close attention to your steps. Notice that there are two approaches to solving the problem; either

substitute for the x2 term in the equation = + x2 y2 1 or substitute for the y2 term.
>

Part (b): Verify that the nested RootOf expressions returned by solve are correct, that is, show how
they can be derived from the system of equations. Which of the two approaches mentioned in part
(a) did the solve command choose?
>

Page 8

Part (c): Figure out exactly what mistake was made by the allvalues command when it
interpreted the RootOf expressions returned by solve. (Hint: Part (d) of this exercise.)
>

Part (d): Use the next command to read about the keywords dependent and independent in
the online documentation for allvalues. Pay particular attention to the very last example in the
section of examples (the last three commands in the section). Should these two keywords be relevant

to our solution of the system = + x2 y2 1 and = − y x2 0?
> ?allvalues

Part (e): Write a RootOf expression that represents solutions of the system = + x2 y2 1 and = − y x2 0
but is different than the RootOf expression returned by solve. (Hint: Use the approach mentioned
in part (a) that is not used by solve.) Use allvalues to check your RootOf expression.
>

Exercise: Use solve to solve the equation = x2 7 ()cos x2 . Convert that equation to the equivalent

system of equations = y x2 and = y 7 ()cos x2 and use solve to solve this system. Then convert the

equation to the equivalent system = y x2 and = y 7 ()cos y and use solve to solve this system.
>

>

3.6. Using fsolve
We have seen that the solve command does not always produce all of the solutions of an equation
or system of equations. When that happens, and we need to know the value of some solution that
solve did not find, then we need to use the fsolve command. The fsolve command is used to
find decimal approximations to solutions of equations.

For a single polynomial equation, fsolve will return decimal approximations for all of the real
roots of the equation. Here is an example.
> fsolve(1-x-2*x^3-x^4=0, x);

To also get decimal approximations for the complex roots of the polynomial equation we need to use
the keyword complex.
> fsolve(1-x-2*x^3-x^4=0, x, complex);

As with the solve command, if we put braces around the unknown that we are solving for, then
fsolve returns the results as equations (which can make the results a bit easier to read).
> fsolve(1-x-2*x^3-x^4=0, {x}, complex);

For a single polynomial equation, using fsolve does not provide us with anything that we could
not get using solve together with allvalues and evalf. The real use for fsolve is with non
polynomial equations and with systems of equations.

For a single, non polynomial equation, fsolve will try to return a decimal approximation for one
real root of the equation. Even if the equation should have several real roots, fsolve only tries to

Page 9

approximate one of the roots. Recall that earlier we showed that the equation = − x3 ()cos 3 x2 0 has
three real roots but solve could not find any of them. The fsolve command will readily return
one of the roots.
> fsolve(x^3-cos(3*x^2)=0, x);

Let us check this result.
> subs(x=%, x^3-cos(3*x^2)=0);
> simplify(%);

This is close enough to = 0 0 to convince use that fsolve really has found an approximate
solution. But what about the other real solutions? To find them, we need to use an option for
fsolve that allows us to give fsolve a hint about where it should look for a solution. But how
do we know where fsolve should look? We use a graph of the equation (which, you will recall, is
also how we figured out that the equation actually had real solutions).
> plot(x^3-cos(3*x^2), x=-1..1);

From the graph we see that there are two more real solutions near −1. The following fsolve
command will find one of these two solutions. We give fsolve a hint of where to find a solution
by giving fsolve a range that we know includes a solution.
> fsolve(x^3-cos(3*x^2)=0, x, -1..0);

Since the range we gave fsolve included two solutions, we really could not predict which one of
them fsolve would find. To find the other solution, we give fsolve a more specific range to
look in.
> fsolve(x^3-cos(3*x^2)=0, x, -1..-0.9);

So now we have approximate values for all three real solutions of the equation. This example is
typical of how fsolve gets used with a single equation. We need a graph of the equation to give us
an idea of how many (real) solutions there are and about where they are. Then we use this rough
information from the graph to give fsolve hints so that it can find each of the solutions.
>

There is also another way to give fsolve a hint about where to find a solution. We can give
fsolve a "starting value" for the unknown in the equation.
> fsolve(x^3-cos(3*x^2)=0, x=-1);
> fsolve(x^3-cos(3*x^2)=0, x=-.8);

This way of giving a hint to fsolve is not as good as the previous way. For a given starting value,
it is often difficult to predict which solution fsolve will find. It is not uncommon for fsolve to
find a solution that is far away from a starting value even when there is another solution very near to
the starting value. Here is an example of the unpredictability of fsolve using a starting value. In
the following command, out of the three real roots of the equation, fsolve finds the one that is
furthest from the starting value.
> fsolve(x^3-cos(3*x^2)=0, x=0);
>

What about complex solutions for the equation? To get fsolve to look for a complex solution we
need to use the keyword complex. But the keyword complex, by itself, need not lead to a

Page 10

complex solution.
> fsolve(x^3-cos(3*x^2)=0, x, complex);

In the next command we give fsolve a complex starting value along with the keyword complex,
and then it finds a complex solution.
> fsolve(x^3-cos(3*x^2)=0, x=I, complex);

A different complex starting value leads to a different complex solution.
> fsolve(x^3-cos(3*x^2)=0, x=2+I, complex);
>

Exercise: What happens if you give fsolve a complex starting value but not the keyword
complex?
>

Exercise: Part (a): How many real solutions does the equation = x2 7 ()cos x2 have? Use fsolve to
find approximations to all of the solutions. How many solutions does solve along with
allvalues find?
>

Part (b): Can you find any complex solutions to the equation in part (a)? (Hint: Try many different
complex starting values.)
>

Part (c): How many real solutions does the equation = z 7 ()cos z have? Use fsolve to find
approximations to all of the solutions. How many solutions does solve along with allvalues
find?
>

Part (d): How are the solutions from part (c) related to the solutions from parts (a) and (b)?
>

Part (e): Can you find any complex solutions to the equation in part (c)?
>

Part (e): How are the solutions from part (e) related to the solutions from part (b)?
>

It is interesting to see what happens when we give fsolve a bad hint. In each of the following two
commands, there is no solution of the equation within the range given to fsolve. In the first
example, fsolve does not return any value.
> fsolve(1-x-2*x^3-x^4=0, x, -2..0);

But notice what fsolve does in the next example.
> fsolve(x^3-cos(3*x^2)=0, x, -2..-1);

In this example, fsolve returned unevaluated. I do not know why, when there is no solution within
the given range, fsolve sometimes does not return a value and sometimes returns unevaluated.
>

Page 11

>

3.7. Using fsolve with a system of equations
We can use fsolve to find numerical solutions for systems of equations. For example. the system

of equations = + x2 y2 9 and = xy 2 has three real solutions, as the following graph shows.
> plots[implicitplot]({x^2+y^2=9, x^y=2}, x=-4..4, y=-4..4,
> scaling=constrained);

But the solve command can only find one of the solutions.
> solve({x^2+y^2=9, x^y=2}, {x,y});
> allvalues(%);
> evalf(%);

To find approximations for the other two solutions, we need to use the fsolve command.
> fsolve({x^2+y^2=9, x^y=2}, {x,y});

Without any hints, the fsolve command found the same solution that solve and allvalues
found. When solving a system of equations, we can give fsolve hints about either or both of the
unknowns that it is solving for. The next command gives fsolve a hint about the x value of the
solution that we wish to find.
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, x=0..2);

Within that range for x there are two solutions of the system and fsolve found one of them. If we
want to find the other, we can also give fsolve a range for y.
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, x=0..2, y=2..4);

Or, we could just give fsolve a range for y.
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, y=2..4);
> fsolve({x^2+y^2=9, x^y=2}, {x,y}, y=-4..-2);

As with single equations, we can give fsolve hints by using starting values instead of ranges.
> fsolve({x^2+y^2=9, x^y=2}, {x=1,y=-3});

We can try to find a complex solution to the system by using the keyword complex and giving
fsolve complex starting values.
> fsolve({x^2+y^2=9, x^y=2}, {x=I,y=I}, complex);

Let us check this last solution.
> subs(%, {x^2+y^2=9, x^y=2});

Does that seem reasonable?

Exercise: Find another complex solution for the system of equations = + x2 y2 9 and = xy 2. Be sure
to check any solution that you find.
>

Exercise: Use fsolve to solve the equation = x2 7 ()cos x2 . Convert that equation to the equivalent

system of equations = y x2 and = y 7 ()cos x2 and use fsolve to solve this system. Then convert the

equation to the equivalent system = y x2 and = y 7 ()cos y and use fsolve to solve this system.
>

Page 12

>

3.8. Online help for solving equations
The following command calls up the help page for solve.
> ?solve

The following help pages provide more details about how the solve command works. Each page
discusses a special case of what the solve command can do.
> ?solve,scalar
> ?solve,system
> ?solve,linear
> ?solve,radical
> ?solve,float
> ?solve,ineq

The following command brings up a worksheet, from the New User's Tour, called "Algebraic
Computations". Notice that this worksheet has a section called "Solving Equations and Systems of
Equations".
> ?newuser,topic04

The next command brings up one of the "Examples Worksheets" called "Solving Equations".
> ?examples,solve

It is common for solve to return a RootOf expression. Here is a help page that provides some
information about these expressions.
> ?RootOf

The allvalues command is used to find out more information about RootOf expressions.
> ?allvalues

When solve cannot find a symbolic solution for an equation, we need to use the fsolve
command.
> ?fsolve

The solvefor command is closely related to solve.
> ?solvefor

The eliminate command also, in a sense, allows one to "solve" a set of equations.
> ?eliminate

The following two commands are special kinds of solve commands. The isolve commands
solves equations for integer solutions. The msolve command solves equations for integers
solutions mod m.
> ?isolve

Page 13

> ?msolve

>

Page 14

