1. Find the eigenvalues (but not the eigenvectors) for the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$. Show your work.

Solution: We need to find the solutions of the characteristic equation.

 $det(A - \lambda I) = 0$ $\begin{vmatrix} 1 - \lambda & 2 \\ 4 & 8 - \lambda \end{vmatrix} = 0$ $(1 - \lambda)(8 - \lambda) - 8 = 0$ $(\lambda - 1)(\lambda - 8) - 8 = 0$ $\lambda^2 - 9\lambda + 8 - 8 = 0$ $\lambda^2 - 9\lambda = 0$ $\lambda(\lambda - 9) = 0$

So the eigenvalues are $\lambda = 0$ or $\lambda = 9$.

- 2. Find matrices P and D, where D is a diagonal matrix, such that $A = PDP^{-1}$. Show your work.
 - $A = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

Solution: Since the matrix is triangular, the eigenvalues are the entries on the main diagonal. So the eigenvalues are $\lambda = 4, 3, 2$. For each eigenvalue we need to compute an eigenvector.

For $\lambda = 4$ we need to solve $(A - 4I)\mathbf{x} = \mathbf{0}$ for \mathbf{x} .

$$\begin{bmatrix} 0 & 0 & 0 & | & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -2 & | & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

So $x_1 = 2t$, $x_2 = 2t$, and $x_3 = t$. The eigenvector is $\mathbf{x} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$ For $\lambda = 3$ we need to solve $(A - 3I)\mathbf{x} = \mathbf{0}$ for \mathbf{x} . $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 1 & 0 & 0 & | & 0 \\ 1 & 0 & -1 & | & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ So $x_1 = 0$, $x_2 = t$, and $x_3 = 0$. The eigenvector is $\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ For $\lambda = 2$ we need to solve $(A - 2I)\mathbf{x} = \mathbf{0}$ for \mathbf{x} . $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ So $x_1 = 0$, $x_2 = 0$, and $x_3 = t$. The eigenvector is $\mathbf{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ So the values for *D* and *P* are $D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, $P = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.