\qquad
\qquad

1. Find the eigenvalues (but not the eigenvectors) for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right]$. Show your work.

Solution: We need to find the solutions of the charateristic equation.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
1-\lambda & 2 \\
4 & 8-\lambda
\end{array}\right| & =0 \\
(1-\lambda)(8-\lambda)-8 & =0 \\
(\lambda-1)(\lambda-8)-8 & =0 \\
\lambda^{2}-9 \lambda+8-8 & =0 \\
\lambda^{2}-9 \lambda & =0 \\
\lambda(\lambda-9) & =0
\end{aligned}
$$

So the eigenvalues are $\lambda=0$ or $\lambda=9$.
2. Find matrices P and D, where D is a diagonal matrix, such that $A=P D P^{-1}$. Show your work.
$A=\left[\begin{array}{lll}4 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 2\end{array}\right]$
Solution: Since the matrix is triangular, the eigenvalues are the entries on the main diagonal. So the eigenvalues are $\lambda=4,3,2$. For each eigenvalue we need to compute an eigenvector.
For $\lambda=4$ we need to solve $(A-4 I) \mathbf{x}=\mathbf{0}$ for \mathbf{x}.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 0 & -2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

So $x_{1}=2 t, x_{2}=2 t$, and $x_{3}=t$. The eigenvector is

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

For $\lambda=3$ we need to solve $(A-3 I) \mathbf{x}=\mathbf{0}$ for \mathbf{x}.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

So $x_{1}=0, x_{2}=t$, and $x_{3}=0$. The eigenvector is

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

For $\lambda=2$ we need to solve $(A-2 I) \mathbf{x}=\mathbf{0}$ for \mathbf{x}.

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

So $x_{1}=0, x_{2}=0$, and $x_{3}=t$. The eigenvector is

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

So the values for D and P are $D=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right], \quad P=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.

