1. Let $f(x, y)=\frac{x^{2}}{y}$.
(a) Find the gradient vector $\nabla f(x, y)$. Show your work
(b) Find $D_{\mathbf{u}} f(2,-1)$ where \mathbf{u} points in the same direction as $(2,-2)$. Show all of your work.
2. If a function $f(x, y)$ has a horizontal tangent plane at a point $\left(x_{0}, y_{0}\right)$, what would be the normal vector for the tangent plane? What would be the value of the gradient vector $\nabla f\left(x_{0}, y_{0}\right)$?

$$
\begin{aligned}
\mathbf{n} & = \\
\nabla f\left(x_{0}, y_{0}\right) & =
\end{aligned}
$$

3. Find the equation of the plane tangent to the surface

$$
f(x, y)=x^{3} y+3 x y^{2}
$$

at the point $(2,-2,8)$. Show all your work.

