1. For a function of two variables $f(x, y)$, a vertical slice is the intersection of the graph of $z=f(x, y)$ with a plane perpendicular to the $x y$-plane. Know how to use the idea of a vertical slice to describe what we mean by the "partial derivatives" of $f(x, y)$ at a given point $\left(x_{0}, y_{0}\right)$.
2. For a function of two variables $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, the two vectors

$$
\left(1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right) \quad \text { and } \quad\left(0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)
$$

are both tangent vectors to the graph of $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.
3. The cross product of the two vectors from the previous item,

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & f_{x}\left(x_{0}, y_{0}\right) \\
0 & 1 & f_{y}\left(x_{0}, y_{0}\right)
\end{array}\right|=\left(-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right),-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), 1\right)
$$

is perpendicular to the graph of $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, so it is a normal vector for the plane tangent to the graph of $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.
4. Let $\mathbf{x}_{\mathbf{0}}=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ be a given point on the graph of $z=f(x, y)$, let $\mathbf{n}=$ $\left(-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right)$ be the normal vector at that point, and let $\mathbf{x}=(x, y, z)$ be a point on the plane tangent to the graph of $z=f(x, y)$ at the given point. Then the vector equation $\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0$ for this tangent plane can be rewritten as

$$
\left(-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right) \cdot\left(x-x_{0}, y-y_{0}, z-f\left(x_{0}, y_{0}\right)\right)=0
$$

Doing the dot product, we get

$$
-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z-f\left(x_{0}, y_{0}\right)=0
$$

Rearranging terms, we get the following equation for the tangent plane.

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Notice its similarity to the equation for a tangent line at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ for a function of one variable $y=f(x)$,

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

5. The tangent plane formula is itself a function of x and $y, T_{\left(x_{0}, y_{0}\right)}(x, y)$, that we call the tangent plane approximation function for $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$,

$$
T_{\left(x_{0}, y_{0}\right)}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

For arbitrary points (x, y) "near" the given point $\left(x_{0}, y_{0}\right)$

$$
f(x, y) \approx T_{\left(x_{0}, y_{0}\right)}(x, y)
$$

The tangent plane function approximates the original function.

Figure 14.22: Local linearization: Approximating $f(x, y)$ by the z-value from the tangent plane
6. For the function $f(x, y)$, the gradient vector is the two-dimensional vector

$$
\nabla f(x, y)=\left(f_{x}(x, y), f_{y}(x, y)\right)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

7. Know the derivative rules for the gradient as given in Theorem B on page 642.
8. Let $\mathbf{x}_{\mathbf{0}}=\left(x_{0}, y_{0}\right)$ and $\mathbf{x}=(x, y)$ denote a known and an unknown point. We can use the gradient to rewrite the formula for the plane tangent to the graph of $f(x, y)=f(\mathbf{x})$ at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)=\left(\mathbf{x}_{\mathbf{0}}, f\left(\mathbf{x}_{\mathbf{0}}\right)\right)$. Start with the formula from item 5 .

$$
T(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Interpret the right hand side as a dot product of two-dimensional vectors.

$$
T(x, y)=f\left(x_{0}, y_{0}\right)+\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right) \cdot\left(x-x_{0}, y-y_{0}\right)
$$

Interpret the second vector in the dot product as a difference of two vectors.

$$
T(x, y)=f\left(x_{0}, y_{0}\right)+\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right) \cdot\left((x, y)-\left(x_{0}, y_{0}\right)\right)
$$

Now replace each $\left(x_{0}, y_{0}\right)$ with $\mathbf{x}_{\mathbf{0}}$ and each (x, y) with \mathbf{x}.

$$
T(\mathbf{x})=f\left(\mathbf{x}_{\mathbf{0}}\right)+\left(f_{x}\left(\mathbf{x}_{\mathbf{0}}\right), f_{y}\left(\mathbf{x}_{\mathbf{0}}\right)\right) \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)
$$

Now use the definition of the gradient.

$$
T(\mathbf{x})=f\left(\mathbf{x}_{\mathbf{0}}\right)+\nabla f\left(\mathbf{x}_{\mathbf{0}}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)
$$

Notice how much this looks like the formula for the tangent line at the point ($\left.x_{0}, f\left(x_{0}\right)\right)$ for a function of one variable $f(x)$.

$$
T(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

