1. Given a function of two variables $f(x, y)$ and a "region" R that is a subset of the $x y$ plane, remember that the double integral of f over R represents the "signed volume" that is trapped between the graph of f and the region R. Here is a way to "read" the double integral.

$$
\underbrace{\iint_{R} \underbrace{f(x, y)}_{\text {small bit of volume }} \underbrace{d A}_{\text {area }}}_{\text {total volume }}
$$

Start with $f(x, y)$ which represents the height of the function f at the point (x, y) (so its unit is the unit of length). The $d A$ represents a small rectangular piece of area located at the point (x, y) (so $d A$ has the units of length ${ }^{2}$). Then $f(x, y) d A$ represents the small piece of volume over the small piece of area at the point (x, y), that is height \times area $=$ volume (which has the unit of length ${ }^{3}$). Finally, we "sum over" all of the little rectangular pieces of area that make up the region R to get the "total volume," $\iint_{R} f(x, y) d A$. (The integral sign, \int, is an elongated S and represents the verb "sum." The double integral, \iint, represents summing over both the rows and columns of small rectangles that make up the region R.)
2. The double integral has many of the same properties as the single integral. The integral of a sum of two functions is the sum of two integrals.

$$
\iint_{R} f(x, y)+g(x, y) d A=\iint_{R} f(x, y) d A+\iint_{R} g(x, y) d A
$$

And the integral of a constant times a function is the constant times the integral (or, constants can factor out in front of the integral sign).

$$
\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A
$$

If the region R is cut into two regions R_{1} and R_{2} (so we can say something like $R=$ $R_{1}+R_{2}$, then

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

3. We evaluate (or compute) a double integral by converting it into an iterated integral. But in order to convert a double integral into an iterated integral, the region R must be a "nice" region in one of two senses.
A region R is a Type 1 region if it looks something like this.

That is, there are two numbers a and b and two functions $g_{1}(x)$ and $g_{2}(x)$ such that the region R can be described as all the points (x, y) with

$$
\left\{(x, y) \mid a \leq x \leq b \text { and } g_{1}(x) \leq y \leq g_{2}(x)\right\} .
$$

If we are given a double integral over a Type 1 region, then we can evaluate the double integral by converting it into a Type 1 iterated integral.

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Here are two ways to "read" this iterated integral.

Remember that in the "inner integral" we are holding x fixed and are integrating with respect to y (that is what we mean by a x-slice). After you complete the inner integral, there should no longer be any y 's in the integral, and you do the "outer integral" with respect to x.
4. A region R is a Type 2 region if it looks something like this.

That is, there are two numbers c and d and two functions $h_{1}(y)$ and $h_{2}(y)$ such that the region R can be described as all the points (x, y) with

$$
\left\{(x, y) \mid c \leq y \leq d \text { and } h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

If we are given a double integral over a Type 2 region, then we can evaluate the double integral by converting it into a Type 2 iterated integral.

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Here is a way to "read" this iterated integral.

Remember that in the "inner integral" we are holding y fixed and are integrating with respect to x (that is what we mean by a y-slice). After you complete the inner integral, there should no longer be any x 's in the integral, and you do the "outer integral" with respect to y.
5. Given a Type 1 or a Type 2 iterated integral, you should be able to reconstruct, from the limits of integration, what the region R looks like. (See problems 1-14 on page 691.)
6. Given a double integral over a region R, you should be able to determine if the region is a Type 1 or a Type 2 region (or possibly both) and convert the double integral into the appropriate iterated integral. (See problems $15-20$ on page 691.)
7. Given a Type 1 iterated integral, you should be able to determine if the region R is also a Type 2 region and, if so, change the order of integration into a Type 2 iterated integral.
Given a Type 2 iterated integral, you should be able to determine if the region R is also a Type 1 region and, if so, change the order of integration into a Type 1 iterated integral. (See problems 33-38 on page 692.)
8. Given a point (x, y) in the $x y$-plane, we can find that point's polar coordinates by using the conversion formulas

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\arctan (y / x) .
$$

(Remember that the second formula is only correct in the first quadrant of the plane.) Given the (r, θ) coordinates of a point in the plane, we can find that point's rectangular coordinates by using the conversion formulas

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

9. Before we can do double integrals in polar coordinates, we need to know what the element of area, $d A$, is in polar coordinates. A "polar rectangle," with dimensions $d r$ and $d \theta$, looks like the following picture on the left.

The area of this "polar rectangle" is not $d r d \theta$. The picture on the right shows why. This picture shows two polar rectangles with the exact same dimensions, the same $d r$ and the same $d \theta$. But one polar rectangle has larger area than the other because it is further from the origin. The area of a polar rectangle with dimensions $d r$ and $d \theta$ is directly proportional to its distance r from the origin. So the area, $d A$, of the polar element of area is

$$
d A=r d r d \theta
$$

For the polar rectangles in the pictures, the value of r is the average of the inner and outer radiuses of each rectangle.
10. A region R is a polar region (the textbook calls this a r-simple region) if it looks something like this.

That is, there are two angles α and β and two functions $g_{1}(\theta)$ and $g_{2}(\theta)$ such that the region R can be described as all the points with polar coordinates (r, θ) with

$$
\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta \text { and } g_{1}(\theta) \leq r \leq g_{2}(\theta)\right\} .
$$

If we are given a double integral over a polar region, then we can evaluate the double integral by converting it into a polar iterated integral.

$$
\iint_{R} f(x, y) d A=\underbrace{\int_{\alpha}^{\beta} \underbrace{\underbrace{f(r d e}_{\text {-tlice }}}_{g_{1}(\theta) \underbrace{g_{2}(\theta)}_{\text {height }} \underbrace{f(r \cos \theta, r \sin \theta)}_{\text {small bit of volume }} \underbrace{r d r d \theta}_{\text {polar area }}}}_{\text {total volume }}
$$

In the inner integral we are holding θ fixed and are integrating with respect to r. After you complete the inner integral, there should no longer be any r 's in the integral, and you do the outer integral with respect to θ.

Be sure to remember to convert the function f from a function of rectangular coordinates, $f(x, y)$, into a function of polar coordinates, $f(r \cos \theta, r \sin \theta)$. This means that every occurrence of x in the original formula for f should be replaced with $r \cos \theta$ and every occurrence of y should be replaced with $r \sin \theta$. (Sometimes the function f is given to you already in polar coordinates, $f(r, \theta)$, and doesn't need to be converted.)
11. Given a region R in the $x y$-plane and a density function, $\delta(x, y)$, for the region, we can compute the mass of the region and the region's center of mass.
The mass of a region R with density function $\delta(x, y)$ is given by

$$
m=\iint_{R} \delta(x, y) d A
$$

Recall that the units for density are (unit of mass)/(unit of area), and the value of $\delta(x, y)$ should be read as " $\delta(x, y)$ units of mass per unit of area." Here is the way to "read" the integral for mass.

$$
m=\underbrace{\iint_{R} \underbrace{\underbrace{\delta(x, y)}_{\substack{\text { mass } \\ \text { area }}} \underbrace{d A}_{\text {area }}}_{\text {mass of one small element }}}_{\text {total mass }}
$$

The center of mass, for a region R with density function $\delta(x, y)$, is a point (\bar{x}, \bar{y}) where the region would be "balanced." The formulas for the two coordinates of the center of mass are

$$
\bar{x}=\frac{M_{y}}{m}=\frac{\iint_{R} x \delta(x, y) d A}{\iint_{R} \delta(x, y) d A}
$$

and

$$
\bar{y}=\frac{M_{x}}{m}=\frac{\iint_{R} y \delta(x, y) d A}{\iint_{R} \delta(x, y) d A} .
$$

