
MA 26100 Chapter 14 Review Spring, 2013

This reviews the material up to Section 14.4.

1. Let ∇ ≡
∂

∂x
i+

∂

∂y
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∂z
k. We think of the symbol ∇ as representing a certain kind of

vector, but it is not really a vector (it is a very convenient notation for a “differential
operator”).

2. For a scalar field f(x, y, z) and a vector field F(x, y, z) = M(x, y, z)i + N(x, y, z)j +
P (x, y, z)k,

grad(f) = ∇f = fxi+ fyj+ fzk

div(F) = ∇ · F = Mx +Ny + Pz

curl(F) = ∇× F =
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3. Notice that ∇f can be thought of as a vector ∇ times a scalar f which results in a
vector (the gradient vector field). And ∇ · F can be thought of as a vector dotted with
a vector, so the result should be a scalar (the divergence scalar field). And ∇ × F can
be thought of as the cross product of two vectors, so the result should be a vector (the
curl vector field).

4. If a vector field is only 2-dimensional, F(x, y) = M(x, y)i+N(x, y)j, then

curl(F) =
∂N

∂x
−

∂M

∂y

5. The line integral of a scalar field over a curve C is defined as

∫

C

f(x, y) ds =

∫ b

a

f(x(t), y(t))
√

x′(t)2 + y′(t)2 dt

where the curve C is parameterized by x(t) and y(t) with a ≤ t ≤ b.

6. The line integral of a vector field over a curve C is defined as

∫

C

F ·T ds =

∫

C

M(x, y) dx+N(x, y) dy =

∫ b

a

M(x(t), y(t)) x′(t) +N(x(t), y(t)) y′(t) dt

where the curve C is parameterized by x(t) and y(t) with a ≤ t ≤ b.



7. You can parameterize the graph of a function y = f(x) for a ≤ x ≤ b with

x(t) = t and y(t) = f(t) with a ≤ t ≤ b.

In particular, you can use this with the graph of any line y = mx+ b.

8. If p0 and p1 are two points, then you can parameterize the line segment that connects
p0 to p1 with

r(t) = (1− t)p0 + tp1 with 0 ≤ t ≤ 1.

In particular, if p0 = (x0, y0, z0) and p1 = (x1, y1, z1), then

x(t) = (1− t)x0 + tx1, y(t) = (1− t)y0 + ty1, and z(t) = (1− t)z0 + tz1.

9. You can parameterize a circle (or part of a circle) with radius r using

x(t) = r cos(t) and y(t) = r sin(t).

10. The line integral of a scalar function f(x, y) over a curve C in the xy-plane can be
interpreted as the (signed) area of a vertical “curtain” stretching from C up to the
graph of f .

If the scalar function is f(x, y) = 1, then the scalar line integral of f over a curve C is
the arc length of C.

If the scalar function f(x, y) is a density function (usually written as δ(x, y)), then the
scalar line integral of δ(x, y) over a curve C represents the total mass of a wire shaped
like C with the variable density at each point in the wire being given by δ.

11. If a vector field F is interpreted as a force field, then the vector line integral of F over
a curve C represents the work done to move a particle along the curve C from one end
of the curve to the other end. To see how this interpretation works, we divide C up
into many small pieces of length ds, where ds is small enough so that we can think
of each piece of C as being a straight line segment. The work done when moving a
particle along one line segment is, as always, force × distance. The distance here is
ds, the length of the line segment, and the force needs to be the component of F that

is in the direction of the line segment (you should draw yourself a small picture). The
unit tangent vector T points in the same direction as the line segment, because the line
segment is supposed to be small enough so that it is straight. (Remember, the unit
tangent vector T is the velocity vector divided by its length, T = v/||v||, so the unit
tangent vector has length 1.) So the dot product F · T is exactly what we need, the
component of force in the direction that we are moving. So, for each small segment of
C, the work done is force × distance = (F · T) ds. Then the integral sign tells us to
add up all the small elements or work to get the total work done while moving over the
whole curve,

∫

C
(F ·T) ds.



12. Fundamental Theorem of Line Integrals: If a vector field F is the gradient of a
scalar function f , so F = ∇f , then for any curve C, with parameterization x(t) and y(t)
with a ≤ t ≤ b, we have

∫

C

F ·T ds = f(x(b), y(b))− f(x(a), y(a)).

That is, in order to evaluate the line integral of F over C, all we need to do is evaluate
the change in the scalar function f at the two end points of C. Such a scalar function
f is called a potential function for the vector field F (it is sometimes called a stem

function for F).

13. The Fundamental Theorem of Line Integrals is analogous to the Fundamental Theorem of
Calculus because they both say that to evaluate the integral of a function, you only need
to find the change in something called an antiderivative (an antiderivative is a function
whose derivative is the function you are integrating). In the case of the Fundamental
Theorem of Line Integrals, the scalar function f is an “antiderivative” for the vector
field F since we “differentiate” f to get F, ∇f = F.

The biggest, most important, difference between the two fundamental theorems is that
for the Fundamental Theorem of Calculus, if the integrand is a continuous function,
then an antiderivative function always exits, but for the Fundamental Theorem of Line
Integrals, it is possible that no “antiderivative” function (i.e., potential function) exists
for a vector field F.

14. If a vector field F has a potential function f , so ∇f = F, then curl(F) = 0. But
curl(F) = 0 does not mean that F has a potential function (see below).

15. It is helpful to make the following definitions.

• A vector field F is a conservative vector field if it is the gradient of a scalar
function, that is, there is a scalar function f such that

F = ∇f.

• A vector field F is independent of path if, given any two curves C1 and C2 that
have the same starting point and the same ending point, then

∫

C1

F ·T ds =

∫

C2

F ·T ds.

• If C is a closed curve, so it starts and ends at the same point, then the line integral
of a vector field F over the closed curve C is called the circulation of F around C.

16. Let F be a vector field defined on a region R. Then the following three statements are
equivalent, meaning that if one of them is a true statement about F, then the other two
must also be true statements about F



• F is a conservative vector field.

• F is independent of path.

• The circulation of F around every closed curve is zero.

If, in addition, the region R does not have any holes in it (we say the region is simply

connected), then we can add a fourth equivalent condition to the above list.

• curl(F) = 0.

17. When a 2-dimensional vector field F(x, y) is define on a simply connected region and
the vector field has the property that curl(F(x, y)) = 0, then there is a procedure that
lets us calculate the potential function f(x, y) for F(x, y).

Let F(x, y) = M(x, y) i+N(x, y) j be a vector field with the property

curl(F(x, y)) =
∂N(x, y)

∂x
−

∂M(x, y)

∂y
= 0.

We want to find a function f(x, y) that solves ∇f(x, y) = F(x, y). More specifically,
given the two functions M(x, y) and N(x, y), we want to find f(x, y) such that

∂f

∂x
= M(x, y) and

∂f

∂y
= N(x, y).

Step 1: Compute the antiderivative of M(x, y) with respect to x. This should give us,
according to the equation just above on the left, f(x, y) plus some unknown constant of
integration. But that unknown “constant of integration” is in fact an unknown function
of y (since the derivative with respect to x of any function of y must be 0). So Step 1
gives us

f(x, y) =

∫

M(x, y) dx+ g(y)

where we do not, yet, know what the function g(y) is.

Step 2: Differentiate the answer from Step 1 with respect to y and set the result equal
to N(x, y) (since it must me that fy(x, y) = N(x, y)).

N(x, y) =
∂

∂y

[
∫

M(x, y) dx+ g(y)

]

=
∂

∂y

[
∫

M(x, y) dx

]

+ g′(y)

Step 3: Solve the equation from the last step for g′(y).

Step 4: Find the antiderivative with respect to y of g′(y),

g(y) =

∫

g′(y) dy.

Step 5: Substitute the function g(y) found in Step 4 into the answer from Step 1.



18. The formula from Green’s Theorem:
∮

C

M(x, y) dx+N(x, y) dy =

∫∫

S

(

∂N

∂x
−

∂M

∂y

)
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