This reviews the material up to Section 14.4.

1. Let $\nabla \equiv \frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$. We think of the symbol ∇ as representing a certain kind of vector, but it is not really a vector (it is a very convenient notation for a "differential operator").
2. For a scalar field $f(x, y, z)$ and a vector field $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+$ $P(x, y, z) \mathbf{k}$,

$$
\begin{aligned}
& \operatorname{grad}(f)=\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k} \\
& \operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=M_{x}+N_{y}+P_{z} \\
& \operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right| .
\end{aligned}
$$

3. Notice that ∇f can be thought of as a vector ∇ times a scalar f which results in a vector (the gradient vector field). And $\nabla \cdot \mathbf{F}$ can be thought of as a vector dotted with a vector, so the result should be a scalar (the divergence scalar field). And $\nabla \times \mathbf{F}$ can be thought of as the cross product of two vectors, so the result should be a vector (the curl vector field).
4. If a vector field is only 2-dimensional, $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$, then

$$
\operatorname{curl}(\mathbf{F})=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}
$$

5. The line integral of a scalar field over a curve C is defined as

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

where the curve C is parameterized by $x(t)$ and $y(t)$ with $a \leq t \leq b$.
6. The line integral of a vector field over a curve C is defined as

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} M(x, y) d x+N(x, y) d y=\int_{a}^{b} M(x(t), y(t)) x^{\prime}(t)+N(x(t), y(t)) y^{\prime}(t) d t
$$

where the curve C is parameterized by $x(t)$ and $y(t)$ with $a \leq t \leq b$.
7. You can parameterize the graph of a function $y=f(x)$ for $a \leq x \leq b$ with

$$
x(t)=t \quad \text { and } \quad y(t)=f(t) \quad \text { with } a \leq t \leq b .
$$

In particular, you can use this with the graph of any line $y=m x+b$.
8. If \mathbf{p}_{0} and \mathbf{p}_{1} are two points, then you can parameterize the line segment that connects \mathbf{p}_{0} to \mathbf{p}_{1} with

$$
\mathbf{r}(t)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \quad \text { with } 0 \leq t \leq 1
$$

In particular, if $\mathbf{p}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{p}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$, then

$$
x(t)=(1-t) x_{0}+t x_{1}, \quad y(t)=(1-t) y_{0}+t y_{1}, \quad \text { and } \quad z(t)=(1-t) z_{0}+t z_{1} .
$$

9. You can parameterize a circle (or part of a circle) with radius r using

$$
x(t)=r \cos (t) \quad \text { and } \quad y(t)=r \sin (t) .
$$

10. The line integral of a scalar function $f(x, y)$ over a curve C in the $x y$-plane can be interpreted as the (signed) area of a vertical "curtain" stretching from C up to the graph of f.
If the scalar function is $f(x, y)=1$, then the scalar line integral of f over a curve C is the arc length of C.

If the scalar function $f(x, y)$ is a density function (usually written as $\delta(x, y)$), then the scalar line integral of $\delta(x, y)$ over a curve C represents the total mass of a wire shaped like C with the variable density at each point in the wire being given by δ.
11. If a vector field \mathbf{F} is interpreted as a force field, then the vector line integral of \mathbf{F} over a curve C represents the work done to move a particle along the curve C from one end of the curve to the other end. To see how this interpretation works, we divide C up into many small pieces of length $d s$, where $d s$ is small enough so that we can think of each piece of C as being a straight line segment. The work done when moving a particle along one line segment is, as always, force \times distance. The distance here is $d s$, the length of the line segment, and the force needs to be the component of \mathbf{F} that is in the direction of the line segment (you should draw yourself a small picture). The unit tangent vector \mathbf{T} points in the same direction as the line segment, because the line segment is supposed to be small enough so that it is straight. (Remember, the unit tangent vector \mathbf{T} is the velocity vector divided by its length, $\mathbf{T}=\mathbf{v} /\|\mathbf{v}\|$, so the unit tangent vector has length 1.) So the dot product $\mathbf{F} \cdot \mathbf{T}$ is exactly what we need, the component of force in the direction that we are moving. So, for each small segment of C, the work done is force \times distance $=(\mathbf{F} \cdot \mathbf{T}) d s$. Then the integral sign tells us to add up all the small elements or work to get the total work done while moving over the whole curve, $\int_{C}(\mathbf{F} \cdot \mathbf{T}) d s$.
12. Fundamental Theorem of Line Integrals: If a vector field \mathbf{F} is the gradient of a scalar function f, so $\mathbf{F}=\nabla f$, then for any curve C, with parameterization $x(t)$ and $y(t)$ with $a \leq t \leq b$, we have

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=f(x(b), y(b))-f(x(a), y(a)) .
$$

That is, in order to evaluate the line integral of \mathbf{F} over C, all we need to do is evaluate the change in the scalar function f at the two end points of C. Such a scalar function f is called a potential function for the vector field \mathbf{F} (it is sometimes called a stem function for \mathbf{F}).
13. The Fundamental Theorem of Line Integrals is analogous to the Fundamental Theorem of Calculus because they both say that to evaluate the integral of a function, you only need to find the change in something called an antiderivative (an antiderivative is a function whose derivative is the function you are integrating). In the case of the Fundamental Theorem of Line Integrals, the scalar function f is an "antiderivative" for the vector field \mathbf{F} since we "differentiate" f to get $\mathbf{F}, \nabla f=\mathbf{F}$.
The biggest, most important, difference between the two fundamental theorems is that for the Fundamental Theorem of Calculus, if the integrand is a continuous function, then an antiderivative function always exits, but for the Fundamental Theorem of Line Integrals, it is possible that no "antiderivative" function (i.e., potential function) exists for a vector field \mathbf{F}.
14. If a vector field \mathbf{F} has a potential function f, so $\nabla f=\mathbf{F}$, then $\operatorname{curl}(\mathbf{F})=0$. But $\operatorname{curl}(\mathbf{F})=0$ does not mean that \mathbf{F} has a potential function (see below).
15. It is helpful to make the following definitions.

- A vector field \mathbf{F} is a conservative vector field if it is the gradient of a scalar function, that is, there is a scalar function f such that

$$
\mathbf{F}=\nabla f
$$

- A vector field \mathbf{F} is independent of path if, given any two curves C_{1} and C_{2} that have the same starting point and the same ending point, then

$$
\int_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s
$$

- If C is a closed curve, so it starts and ends at the same point, then the line integral of a vector field \mathbf{F} over the closed curve C is called the circulation of \mathbf{F} around C.

16. Let \mathbf{F} be a vector field defined on a region R. Then the following three statements are equivalent, meaning that if one of them is a true statement about \mathbf{F}, then the other two must also be true statements about \mathbf{F}

- \mathbf{F} is a conservative vector field.
- \mathbf{F} is independent of path.
- The circulation of \mathbf{F} around every closed curve is zero.

If, in addition, the region R does not have any holes in it (we say the region is simply connected), then we can add a fourth equivalent condition to the above list.

- $\operatorname{curl}(\mathbf{F})=0$.

17. When a 2-dimensional vector field $\mathbf{F}(x, y)$ is define on a simply connected region and the vector field has the property that $\operatorname{curl}(\mathbf{F}(x, y))=0$, then there is a procedure that lets us calculate the potential function $f(x, y)$ for $\mathbf{F}(x, y)$.
Let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a vector field with the property

$$
\operatorname{curl}(\mathbf{F}(x, y))=\frac{\partial N(x, y)}{\partial x}-\frac{\partial M(x, y)}{\partial y}=0
$$

We want to find a function $f(x, y)$ that solves $\nabla f(x, y)=\mathbf{F}(x, y)$. More specifically, given the two functions $M(x, y)$ and $N(x, y)$, we want to find $f(x, y)$ such that

$$
\frac{\partial f}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial f}{\partial y}=N(x, y)
$$

Step 1: Compute the antiderivative of $M(x, y)$ with respect to x. This should give us, according to the equation just above on the left, $f(x, y)$ plus some unknown constant of integration. But that unknown "constant of integration" is in fact an unknown function of y (since the derivative with respect to x of any function of y must be 0). So Step 1 gives us

$$
f(x, y)=\int M(x, y) d x+g(y)
$$

where we do not, yet, know what the function $g(y)$ is.
Step 2: Differentiate the answer from Step 1 with respect to y and set the result equal to $N(x, y)$ (since it must me that $f_{y}(x, y)=N(x, y)$).

$$
N(x, y)=\frac{\partial}{\partial y}\left[\int M(x, y) d x+g(y)\right]=\frac{\partial}{\partial y}\left[\int M(x, y) d x\right]+g^{\prime}(y)
$$

Step 3: Solve the equation from the last step for $g^{\prime}(y)$.
Step 4: Find the antiderivative with respect to y of $g^{\prime}(y)$,

$$
g(y)=\int g^{\prime}(y) d y
$$

Step 5: Substitute the function $g(y)$ found in Step 4 into the answer from Step 1.
18. The formula from Green's Theorem:

$$
\oint_{C} M(x, y) d x+N(x, y) d y=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

