1. Know the formula for the distance between two points,

$$
\left|P_{0} P_{1}\right|=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}}
$$

and know the equation for a sphere with radius r and center $\left(x_{0}, y_{0}, z_{0}\right)$,

$$
\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}=r^{2} .
$$

2. Know the algebra rules for vectors (Theorem A page 565, Theorem A page 577, Theorem C page 579).
3. Know how to compute the unit vector in the direction of $\mathbf{u}\left(\right.$ that is, $\frac{\mathbf{u}}{\|\mathbf{u}\|}$).
4. Know the definitions of the dot product,

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.
Know that $\mathbf{u} \cdot \mathbf{v}=0$ means that \mathbf{u} and \mathbf{v} are perpendicular.
Know that $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}$.
5. Know the definition of the cross product

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

Know that $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ means that \mathbf{u} and \mathbf{v} are parallel.
Know that
$\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta=$ the area of the parallelogram determined by \mathbf{u} and \mathbf{v}.
Know that $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$, that is, the cross product is anticommutative.
Know that the cross product is not associative. That is,

$$
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \quad \text { is not equal to } \mathbf{u} \times(\mathbf{v} \times \mathbf{w}) .
$$

6. $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad$ and $\quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad$ and $\quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$.
7. The projection of \mathbf{v} onto \mathbf{u} is given by
$\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\left(\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}=\left(\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}}\right) \mathbf{u}=\left(\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|}\right) \frac{\mathbf{u}}{\|\mathbf{u}\|}=\left(\mathbf{v} \cdot \frac{\mathbf{u}}{\|\mathbf{u}\|}\right) \frac{\mathbf{u}}{\|\mathbf{u}\|}$
and the component of \mathbf{v} in the direction of \mathbf{u} is given by
$\operatorname{comp}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|}=\|\mathbf{v}\| \cos \theta$.
8. Know the "scalar triple product",
$\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=$ the volume of the parallelepiped determined by \mathbf{u}, \mathbf{v}, and \mathbf{w}.
9. Know the equation for a plane in three-dimensional space,

$$
\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{p}_{\mathbf{0}}\right)=0
$$

where $\mathbf{p}_{\mathbf{0}}=\left(x_{0}, y_{0}, z_{0}\right)$ is a given point on the plane and $\mathbf{n}=(A, B, C)$ is a vector perpendicular (normal) to the plane. Another way to write this is

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .
$$

10. Know the parametric vector equation for a line in three-dimensional space,

$$
\mathbf{r}(t)=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}
$$

where $\mathbf{r}_{\mathbf{0}}=\left(x_{0}, y_{0}, z_{0}\right)$ is a given point on the line and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is a vector that points in the same direction as the line. Another way to write this is

$$
x(t)=x_{0}+t v_{1} \quad y(t)=y_{0}+t v_{2} \quad z(t)=z_{0}+t v_{3} .
$$

11. Know that a vector valued function of a single variable

$$
\mathbf{F}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

represents a particle moving on a curve in space. The derivative

$$
\mathbf{F}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
$$

is the velocity vector (which is a tangent vector to the curve of motion). The length of the velocity vector is the (instantaneous) speed of motion

$$
\text { speed }=\left\|\mathbf{F}^{\prime}(t)\right\|=\sqrt{\mathbf{F}^{\prime}(t) \cdot \mathbf{F}^{\prime}(t)}=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}}
$$

12. Know how to find the vector equation for the line tangent to a vector valued function $\mathbf{F}(t)$ at some given time t_{0}.
13. The distance traveled, which is also called arc length, is given by the definite integral of the speed,

$$
L=\int_{t_{0}}^{t_{1}} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}} d t=\int_{t_{0}}^{t_{1}}(\text { instantaneous speed }) \times(\text { small interval of time })
$$

14. Know the derivative rules for vector valued functions (Theorem B page 583), in particular, the three different product rules (why three?).
15. Be able to use the table of quadratic surfaces (pages 607-608) to be able to name and sketch a given equation of the form

$$
A x^{2}+B y^{2}+C z^{2}+D x+E y+F z+G=0 .
$$

