Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then

1.
$$\mathbf{u} + \mathbf{v} = (u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j} + (u_3 + v_3)\mathbf{k}$$

2.
$$a\mathbf{u} = (au_1)\mathbf{i} + (au_2)\mathbf{j} + (au_3)\mathbf{k}$$

3.
$$||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

4.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (Commutative law)

5.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (Associative law)

6.
$$(ab)\mathbf{u} = a(b\mathbf{u})$$
 (Associative law)

7.
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$
 (Distributive law)

8.
$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$$
 (Distributive law)

9.
$$||a\mathbf{u}|| = |a| ||\mathbf{u}||$$

10.
$$\left| \left| \frac{\mathbf{u}}{||\mathbf{u}||} \right| \right| = 1$$
 (The vector $\frac{\mathbf{u}}{||\mathbf{u}||}$ is called the *unit vector in the direction of* \mathbf{u} .)

11. Definition of the dot product: $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

12.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 (Commutative law)

13.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 (Distributive law)

14.
$$(a\mathbf{u}) \cdot \mathbf{v} = a(\mathbf{u} \cdot \mathbf{v})$$
 (Associative law)

15.
$$\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$$

16.
$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos \theta$$
 where θ is the angle between \mathbf{u} and \mathbf{v} .

17. $\mathbf{u} \cdot \mathbf{v} = 0$ means that \mathbf{u} and \mathbf{v} are perpendiccular.

18.
$$\operatorname{\mathbf{proj}}_{\mathbf{u}} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u} = \left(\frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||^2}\right) \mathbf{u} = \left(\frac{\mathbf{v} \cdot \mathbf{u}}{||\mathbf{u}||}\right) \frac{\mathbf{u}}{||\mathbf{u}||} = \left(\mathbf{v} \cdot \frac{\mathbf{u}}{||\mathbf{u}||}\right) \frac{\mathbf{u}}{||\mathbf{u}||}$$

19. $\operatorname{comp}_{\mathbf{u}} \mathbf{v} = \mathbf{v} \cdot \frac{\mathbf{u}}{||\mathbf{u}||} = ||\mathbf{v}|| \cos \theta$ is called the *component of* \mathbf{v} *in the direction of* \mathbf{u} .

20. $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ is the equation of the plane containing the given point $\mathbf{p} = (x_1, y_1, z_1)$ and the given normal vector $\mathbf{n} = (A, B, C)$. Another way to write this is

$$A(x - x_1) + B(y - y_1) + C(z - z_1) = 0$$

or even

$$Ax + By + Cz = D$$
 where $D = Ax_1 + By_1 + Cz_1$.

- 21. Definition of the cross product: $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$
- 22. $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta = \text{ the area of the parallelogram determined by } \mathbf{u} \text{ and } \mathbf{v}$
- 23. $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0 = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})$ (The vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .)
- 24. $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ means that \mathbf{u} and \mathbf{v} are parallel.
- 25. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (Anticommutativity)
- 26. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$ (Left distributive law)
- 27. $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \times (a\mathbf{v})$ (Associative law)
- 28. $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- 29. $\mathbf{u} \times \mathbf{u} = \mathbf{0}$ (Notice that $\mathbf{0}$ is the zero *vector*, not the number zero.)
- 30. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$ (The "scalar triple product")
- 31. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) =$ the volume of the parallelepiped determined by \mathbf{u} , \mathbf{v} , and \mathbf{w}
- 32. $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
- 33. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (The "vector triple product")
- 34. The vector triple product is often written the following way,

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{b} \cdot \mathbf{a})\mathbf{c} - (\mathbf{c} \cdot \mathbf{a})\mathbf{b}$$

and it is remembered by using the mnemonic "bac-cab".

35. **NOTE:** The cross product is **not** associative. That is,

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$$
 is **not** equal to $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$

36. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, and $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$