1. A definite integral

$$
\int_{a}^{b} f(x) d x
$$

means "find the signed area trapped between the graph of f and the interval $[a, b]$."
2. Here is a way to "read" a definite integral.

Start with $f(x)$ which represents the height of the function f at the point x. The $d x$ represents a small piece of length located at the point x. Then $f(x) d x$ represents a piece of area at the point x, that is height \times width $=$ area. Finally, we "sum over" all of the little pieces of length that make up the interval $[a, b]$ to get the "total area," $\int_{a}^{b} f(x) d x$. (The integral sign, \int, is an elongated S and represents the verb "sum." The definite integral, \int_{a}^{b}, represents summing over the whole row of small rectangular areas that make up the region under the graph of f between the points a and b.)
3. Linearity of the definite integral. The integral of a sum of two functions is the sum of two integrals.

$$
\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

And the integral of a constant times a function is the constant times the integral (or, constants can factor out in front of the integral sign).

$$
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x
$$

4. Additivity of the definite integral

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

NOTE: In this formula, the point b need not be between the points a and c. Draw a picture to see what this formula says when c isn't between a and c.
5. Two more useful properties

$$
\begin{gathered}
\int_{a}^{a} f(x) d x=0 \\
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
\end{gathered}
$$

6. The definite integral is defined, using an infinite limit of Riemann sums, as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where the Riemann sum

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
$$

means divide the interval between a and b into n equal size subintervals, each of length $\Delta x=\frac{b-a}{n}$, and then find a value $f\left(x_{i}\right)$ of the function $f(x)$ over the i th subinterval. Each product $f\left(x_{i}\right) \Delta x$ represents the height \times the width of a rectangle, i.e., the area of a rectangle. So the sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ is a sum of many rectangular areas, so it represents an approximation of the exact area under the graph of $f(x)$ between a and b. (Question: Why can this "area" be negative?) As we let the number of rectangles get larger (i.e., as $n \rightarrow \infty$), the rectangles must get narrower and narrower, and thus the approximate area becomes a better and better approximation of the exact area.

7. The Fundamental Theorem of Calculus is

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

where $F^{\prime}(x)=f(x)$, that is, $F(x)$ is an antiderivative of $f(x)$. (Notice that the Fundamental Theorem shows us how the two different ideas of "definite" and "indefinite" integrals are connected.)
8. The Fundamental Theorem gives us a reasonable way of computing the exact value of a definite integral, as long as we can find the antiderivative F. But finding antiderivatives is hard, so in reality, many calculations of definite integrals are actually done as approximations, on a computer, using many rectangles (or, better yet, trapezoids).
9. The substitution method is done a bit differently with definite integrals. The main thing to remember is to change the limits of integration when you make the substitution. Here is a summary of what a substitution looks like with a definite integral.

$$
\underbrace{\int_{a}^{b} f(g(x)) g^{\prime}(x) d x}_{\text {start with this problem }}=\underbrace{\int_{g(a)}^{g(b)} f(u) d u}_{\text {make the } u \text {-substitution }}=\underbrace{\left.F(u)\right|_{g(a)} ^{g(b)}}_{\text {solve the easier problem }}=\underbrace{F(g(b))-F(g(a))}_{\text {plug in the (new) limits }}
$$

In practice, what this means is that in a definite integral, once you replace $g(x)$ with u, you never go back to the x variable.

