1. (24 points) Determine whether the series converges or diverges. If it converges, find its sum. Show your work
(a) $\sum_{n=0}^{\infty} \frac{4(-1)^{n}}{5^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{3^{2 n}}{4^{n}}$
2. (24 points) Determine whether the series converges or diverges. Explain your answers.
(a) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n^{2}+1}}$
(b) $1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{1}{4 \sqrt{4}}+\frac{1}{5 \sqrt{5}}+\ldots$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
3. (12 points) Determine whether the series converges absolutely, converges conditionally, or diverges. (You don't need to provide an explanation.)
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{2}+1}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}}$
4. (12 points) Find the interval of convergence for the power series below. Show your work.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n 3^{n}}
$$

5. (12 points) Find the interval of convergence for the power series below. Show your work.

$$
\sum_{n=1}^{\infty} \frac{n(x-2)^{n}}{(n+1)^{2}}
$$

6. (6 points) For what values of q does the following series converge? Give a brief explanation of your answer.

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{q}+1}}
$$

7. (10 points) Determine whether the improper integral converges or diverges. If it converges find its value. Important: Show clearly how limits are involved.

$$
\int_{0}^{\infty} \frac{x d x}{\left(1+x^{2}\right)^{2}}
$$

