1. Here are the three trig substitutions.

If you have $\sqrt{a^{2}-x^{2}}$ let $x=a \sin \theta$ so $\sqrt{a^{2}-x^{2}}$ becomes $\quad a \cos \theta$.
If you have $\sqrt{a^{2}+x^{2}}$ let $x=a \tan \theta$ so $\sqrt{a^{2}+x^{2}}$ becomes $a \sec \theta$.
If you have $\sqrt{x^{2}-a^{2}}$ let $x=a \sec \theta \quad$ so $\sqrt{x^{2}-a^{2}}$ becomes $\quad a \tan \theta$.
2. The trig substitutions are based on the Pythagorean trig identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 .
$$

From this identity we get the following three identities, which give us the three trig substitutions.

$$
\begin{aligned}
& 1-\sin ^{2} \theta=\cos ^{2} \theta \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \sec ^{2} \theta-1=\tan ^{2} \theta
\end{aligned}
$$

3. After you do a trig substitution, you get an integral that has only trig functions. When integrating trig functions, the following identities are often useful.
The half-angle identities.

$$
\begin{aligned}
& \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
& \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)
\end{aligned}
$$

The double-angle identities.

$$
\begin{gathered}
\sin 2 \theta=2 \sin \theta \cos \theta \\
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
\end{gathered}
$$

4. Reduction Formulas

$$
\begin{gathered}
\int u \sin u d u=\sin u-u \cos u+C \\
\int u \cos u d u=\cos u+u \sin u+C \\
\int u^{n} \sin u d u=-u^{n} \cos u+n \int u^{n-1} \cos u d u \\
\int u^{n} \cos u d u=u^{n} \sin u-n \int u^{n-1} \sin u d u
\end{gathered}
$$

