1. (50 points) Evaluate the following integrals. Show your work.
(a) $\int \frac{x+x^{3}}{1+x^{4}} d x \quad$ Hint: $x^{4}=\left(x^{2}\right)^{2}$
(b) $\int \frac{1}{\left(x^{2}-4\right)(x-2)} d x$
(c) $\int x \ln x d x$
(d) $\int \cos ^{3} x \sin ^{2} x d x$
(e) $\int \frac{1}{\left(1+x^{2}\right)^{3 / 2}} d x$
2. (14 points) Let R be the homogeneous lamina (with density 1) bounded by the graph of $y=x(x-2)$ and the graph of $y=2 x$. Compute the value of \bar{x} for this lamina. Draw a sketch of the region. Show all of your work.
3. (12 points) Write out the form of the partial fraction decomposition of the following rational function. Do not determine the values of the coefficients.

$$
\frac{3 x^{3}+2 x^{2}+x}{x^{2}\left(x^{2}+2 x+1\right)\left(x^{2}+x+1\right)}
$$

4. (12 points) For each limit, show which kind of indeterminant form it has, and then evaluate the limit. Show all of your work. (Hint: Use L'Hopital's rule twice.)

$$
\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}
$$

5. (12 points) Use the reduction formulas on the formula sheet to find the following antiderivative. Show all of your steps.

$$
\int x^{3} \sin x d x
$$

