Introduction to Shading
CptS 442/542

Modeling how light interacts with surfaces is complex. We will start with a relatively simple model
focusing on achromatic light (i.e., intensity only, no color) and then generalize to colored light. The model
we introduce here is based on how light reflects off surfaces (much of this model is inaccurate physically, but
produces nice images).

1. Ambient light

e Light not tied to any single source, but uniformly bathes objects in the scene. Ambient light is
non-directional, and is the collective product of multiple reflections of light from the many surfaces
present in the environment.

e [llumination equation
I =1k,

I, is the intensity of the ambient light (constant for all objects). The amount of ambient light
reflected is governed by the surface’s ambient reflection coefficient 0 < k, < 1 (a property of the
surface’s material).

2. Diffuse Reflection

e Now we consider light emanated from a particular light source.

e Dull surfaces (e.g. chalkboard) exhibit diffuse reflection (aka Lambertian reflection) which appears
equally bright from all viewing directions.

e The brightness depends only on the angle 6 between the direction L to to the light source and
the surface normal N.

A

N b
Zgi N

e Illumination equation

I = I kgcos8 = Ipkq(N - L)

I, is the intensity of the point light source, and 0 < kg < 1 is the material’s diffuse reflection
coefficient.

3. Specular Reflection

e Specular reflection can be observed on a shiny surface (e.g., highlight on an apple).

e The observed reflection depends on the position of the eye since shiny surfaces reflect light un-
equally in different directions.

N/
AN

A perfect mirror will only reflect light in the direction of the reflection R (which is L mirrored
about]?) With a mirror, the viewer will only see the reflected light if R is the same as the view
vector V' (i.e., @ = 0 in the above figure).

e The Phong Hack

— The Phong illumination model was developed for non-perfect reflectors. It assumes maximum
reflectance occurs when o = 0, and falls of sharply as « increases. This falloff is approximated
by cos™ & where n is the material’s specular reflection exponent (e.g., n = oo for a mirror, n
small for a dull surface); n typically ranges from 1 to 100.

— Illumination equation o
I =1I,kscos" a=Iks(R- V)"

0 < kg <1 is the specular reflection coefficient. In practice we clamp the cos™ a term so that
it can never be negative. We can compute R as follows:

R=2(L-N)N — L.

— The “halfway vector”
In order to avoid computing R, another hack can be used to speed things up by computing
the halfway vector L
H=L+V
and then using the illumination equation

I = Ikscos™ B = Lks(H - N)"

. Combining ambient, diffuse, and specular terms

e For ambient light and a single point light source
I =1,kq+ Ip(kqcos+ ks cos™ o).

e For m point light sources

I =1,k,+ Z I, (kqcosb; + ks cos™ ;).
i=1

5. Light Attenuation

We simulate atmospheric attenuation of light using an attenuation factor fq:. In OpenGL, this

factor is computed as follows:
1

fart = 41% Fkid + f,d2

where

d distance between the light’s position and the vertex
k. constant attenuation factor

k; linear attenuation factor

k; quadratic attenuation factor

Our illumination equation becomes

I =1k, + Z fattilp, (kqcos8; + ks cos™ ;).

=1

6. Colored lights and surfaces

We could define an object’s diffuse color by its red, green, and blue components as (Ogr, Ouc, OuB)-
We could also represent a light’s illuminated color as (I,r, Ipa, Ips). The illuminated surface colors
for a singled colored light become:

Ir = I,rk.O4r + fattIpR(kdOdRC089 + kg cos™ Oé)
I = I,ckyOuc + fattIpG (kdOdG cos B + kg cos™ a)
Ip = I1,8kaO04p + fartlpp(kiOap cos O + ks cos™)

Note that the above equations consider the diffuse color of a surface to be the same as its ambient
color. The specular color is generally governed by the light source.

OpenGL combines colors and coefficients into single coefficients yielding the following equations:

Ir = I,rkar + fatt(Iarkar cos0 + Isrdsp cos™ a)
Iea = I.,¢ kaG —+ fatt (Idgde cosf + ISGdsg cos™ Oé)
I = I,kaB + fart(laBkaip cost + I;pdsp cos™ a)

Colored lights

— The ambient light color is (I4g, Ioc, o). Even though we do not consider point light sources
to have an ambient term, OpenGL strangely enough allows light sources to have an ambient
term (isn’t this contrary to the idea of ambient light?). OpenGL also allows for a “model
ambience” which is not tied to any particular light source.

— The diffuse and specular light colors are (Igr, lac, lag) and (Isg, Isq, Isp) respectively (most
of the time these are white).

Material colors/coefficients (i.e. properties)
ambient reflection coefficients kqr, ko, kaB

diffuse reflection coefficients kqg, kic, kaB
specular reflection coefficients kgg, ksa, ksB

Other material/light properties
Shininess n, attenuation properties, ...

7. Shading in the graphics pipeline

Vi Ng
— M >PViewort*{ }
V2 Np f P
shading
Vo No done here

e Transforming normal vectors

— In OpenGL, a normal vector is associated with each vertex of a polygon. If the model-view
matrix used to transform the vertices is M, we use (M ~1)T to transform the normal vectors
(remember how M transforms a plane).

+ The homogeneous coordinate of a direction vector is 0 (e.g., N = (N, N,, N.,0)).
* For this to work right, M must be a rigid transformation (e.g., no scales or shears). A
uniform scale can be used if you are willing to renormalize N after multiplication by M.

— glNormal3f () sets the “current normal vector” which is applied to subsequent vertices passed
to glVertex3f ().

— glShadeModel (GL_SMOOTH) tells OpenGL to use different normals for each vertex (polygon
will be shaded by interpolating vertex colors).

— glShadeModel (GLFLAT) tells OpenGL to use the same normal for each vertex (all pixels in
the polygon will end up the same color).

e Light sources are objects too and are transformed by the model-view matrix (often this is not
what you want).

e After passing through the model-view matrix, but before being passed through the projection
matrix, vertex normals are converted to color values (Gouraud Shading). Each vertex is now
associated with a color instead of a normal. The colors are clipped along with the vertices. More
on this later. ..

