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CHAPTER 11
Color and Light

O
ur objects so far have mostly looked as if they plan to spend the
afternoon home watching the game. It’s time now to dress up and
go party. The goal for this chapter is to learn how to use light

sources to illuminate a scene and complementarily define material properties
of objects to determine how they appear when lit.

We begin with a brief discussion of the theory of vision and color models in
Section 11.1, learning particularly about the RGB color model so important
in CG, as well as a few other models which pop up occasionally, such as CMY,
CMYK and HSV. In Section 11.2 we study Phong’s lighting model and how
it conceives of light coming off an object as comprised of three components
– ambient, diffuse and specular – based on the nature of their reflectance.
This section concludes with a formula to derive the RGB intensities of the
light reflected at a vertex based on Phong’s model.

We move on to OpenGL in Section 11.3 and see how faithfully it
implements Phong’s model. And, we begin extensively to experiment and
code. In Section 11.4 we describe OpenGL’s so-called lighting model – not to
be confused with Phong’s lighting model – which sets certain environmental
parameters. Directional light sources, located far from the scene, and
positional lights, located in or near it, are discussed in Section 11.5, as is the
related notion of attenuation of light over distance. Spotlights are the topic
of Section 11.6. At this point we have all the parts needed to formulate in
Section 11.7 the famous lighting equation that OpenGL actually implements
to calculate color intensities at a vertex.

We discuss the two so-called shading models OpenGL offers, smooth and
flat, in Section 11.8. The former familiarly interpolates the vertex colors
through a primitive, while the latter is a somewhat idiosyncratic discrete
coloring scheme. Animation of light sources is the topic of Section 11.9.

Specifying appropriate surface normals is critical to good lighting. 405
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OpenGL can sometimes help with automatic normals, but often the user is
on her own and the task can require a fair amount of calculation. Before we
begin with normal computation proper, we have an optional introduction in
Section 11.10 to the calculus of partial derivatives, to the extent required to
calculate tangent planes and normals to the kinds of surfaces typical in CG.
We recommend it be skipped at first and consulted subsequently if need be.

The long Section 11.11 is devoted to computing and applying surface
normals to lighting. It begins by following the informal taxonomy of 2D
objects introduced in Section 10.2, and moves on to Bézier and quadric
surfaces for which automatic normals are available.

Section 11.12 contains a discussion of an alternate shading model proposed
by Phong, which is more sophisticated (and more computation-intensive)
than OpenGL’s smooth shading. We conclude in Section 11.13.

11.1 Vision and Color Models

We begin with a little of the physics and biology underlying color and its
perception.

Electromagnetic (EM) radiation consists of oscillating electric and
magnetic fields moving through space. It is produced by the motion of
electrically charged particles. From a physics point of view, EM radiation
can be treated dually as waves or a stream of massless particles called
photons traveling through a vacuum at the speed of light. EM radiation
is characterized by its frequency or, equivalently, wavelength, the inverse
of frequency. The EM spectrum consists of EM radiation of all possible
frequencies, of which visible light is a very small part. See Figure 11.1.

Gamma-rayRadio Microwave Infrared Visible UV X-ray
Hz:

Red O Violet
Visible spectrum

Y G B I

3*109 3*1011 4*1014 3*1016 3*10197.5*1014

Figure 11.1: EM spectrum indicating approximate frequency ranges in Hz.

Visible light emitted from a source is rarely pure, i.e., of one particular
frequency. Rather, there is an intensity distribution across the entire visible
spectrum, and the perceived color depends on the particular distribution.
Light from a source with an intensity distribution, for example, as in
Figure 11.2(a), would be perceived as blue, as this color’s intensity dominates,
while one with the distribution of Figure 11.2(b) would appear white, because
white is a mix of all colors in the visible spectrum.406
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Figure 11.2: Intensity distributions across the visible spectrum: (a) appears blue (b)
appears white.

We humans can see because of millions of light-sensitive cells embedded
in the retinas of our eyes (see Figure 11.3 for a simplified anatomy). These
cells are of two kinds, rod and cone. Rod cells are sensitive to low-intensity
light, but not its frequency, which accounts for our night vision, as well as
the fact that we have particular difficulty distinguishing colors in the dark.
Cone cells, on the other hand, are stimulated only by fairly bright light, but
can efficiently distinguish frequencies in the visible light spectrum, enabling
us to perceive color. In fact, there are three kinds of cones – red, green and
blue – according to the color of the light that most stimulates them. This is
the basis of the tristimulus theory of human vision that perceived color is
the net effect of the stimulation of these three kinds of cells.
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Figure 11.3: The eye.

11.1.1 RGB Color Model

A consequence of the tristimulus theory is the ubiquitous RGB color model :
each color is represented as a sum of the three primary colors, red, green
and blue, and each with a certain intensity, typically a value between 0 and
1 (for this reason RGB is called an additive color model). A color is denoted
by a color tuple (r, g, b), where each component is the respective primary
color’s intensity. 407
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Note: An intensity distribution curve, as those in Figure 11.2, one
corresponding to each primary color, has been standardized by the
International Commission on Illumination (CIE, from its French name
Commission Internationale de L’Éclairage), as also a standard to convert
intensity distributions across the visible spectrum to RGB triplets.

The RGB color space can be depicted as a cube, called a color cube, with
axes corresponding to R, G and B values (see Figure 11.4(a)). The origin
(0, 0, 0) of the cube corresponds to black, while its diagonally opposite vertex
(1, 1, 1) to white, which, of course, is the maximal equal mix of red, green
and blue. The other three diagonally opposite pairs each corresponds to a
primary color and its complement (the complement of a color being that
which with it combines to produce white). The straight line segment from
black to white, each point (x, x, x) of which has equal parts of the primary
colors, represents the gray scale. Figure 11.4(b) is a popularly drawn Venn
diagram, where discs correspond to primary colors and their intersections
are colored according to the mixing of the primaries.

(a) (b)

b

r

g

Cyan
(0, 1, 1)

Gray
sca

leBlack
(0, 0, 0)

Red
(1, 0, 0)

Yellow
(1, 1, 0)

Green
(0, 1, 0)

White
(1, 1, 1)

Blue
(0, 0, 1)

Magenta
(1, 0, 1)

Figure 11.4: (a) The RGB color cube (b) Venn diagram combining colors.

The mechanics of the “addition” of colors in the RGB model is interesting.
The color cube, for instance, indicates that an equal mix of red (which is
(1, 0, 0)) and green ((0, 1, 0)) produces yellow ((1, 1, 0)). The reason for this
is that the sensation produced in the human eye by a mix of two lights,
one whose red frequency dominates and another whose green dominates, is
similar to that produced by a single light dominant in the yellow frequency.
This is a consequence of how our optic nerves react to the stimulation of
particular combinations of cone cells, and not because the frequencies of
red and green combine according to some law of physics to produce that
of yellow! The RGB model, therefore, rests more on the biology of human
vision than the physics of light.

408
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RGB Color Model and Computer Graphics

The RGB model is implemented in millions of color display units around
us, including computer monitors, both CRT and LCD. A CRT (cathode-ray
tube) monitor has phosphors of the three primary colors located at each
one of a rectangular array of pixels, and three electron guns that each fires
a beam at phosphors of one color. A mechanism to aim and control their
intensities causes the beams to travel together row by row, striking successive
pixels in order to excite the RGB phosphors at each to values specified for it
in the color buffer. See Figure 11.5(a).

pixel

electron
guns

electron beams

(a) (b)

phosphors

Figure 11.5: (a) Color CRT monitor with electron beams aimed at a pixel with
phosphors of the 3 primaries (b) A raster of pixels showing a rasterized triangle.

Pixels in an LCD (liquid crystal display) monitor, on the other hand, each
consist of three subpixels made of liquid crystal molecules, which separately
filter through light of only one primary color. The amount of primary color
emerging through each subpixel is controlled by an electric charge, whose
intensity in turn is determined by the corresponding value in the color buffer.

From the point of view of OpenGL and, indeed, most CG theory, what
matters most is that the pixels in a monitor, CRT or LCD, are, in fact,
arranged in a rectangular array, called a raster (as depicted in Figure 11.5(b)).
The number of rows and columns in the raster determines the monitor’s
resolution. For, this layout is the basis of the lowest-level CG algorithms,
the so-called raster algorithms, which actually select and color the pixels to
represent user-specified shapes such as lines and triangles on the monitor.
Figure 11.5(b), for example, shows the rasterization of a right-angled triangle
(with terrible jaggies because of the low resolution). We’ll be studying raster
algorithms in fair depth ourselves in Chapter 14.

Furthermore, a memory location called the color buffer , either in the
CPU or graphics card, contains, typically, 32 bits of data per raster pixel
– 8 bits for each of RGB and 8 for the alpha value (used for blending). It
is the RGB values in the color buffer which determine the corresponding
raster pixel’s color intensities. The values in the color buffer are read by the 409
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raster – at which time the raster is said to be refreshed – at a rate called the
monitor’s refresh rate. Beyond this, the technology underlying a particular
display device matters little practically in computer graphics.

11.1.2 CMY and CMYK Color Models

The CMY color model , whose augmentation CMYK is typically used in
color printing, is a subtractive color model . CMY stands for cyan, magenta
and yellow, and they are, respectively, the complements of red, green and
blue. For example, cyan reflects blue and green but absorbs (or subtracts)
red. Likewise, magenta and yellow subtract green and blue, respectively.
Accordingly, cyan, magenta and yellow are referred to as the subtractive
primaries. The color cube and Venn diagram for the CMY color model are
depicted in Figure 11.6.

(a) (b)

y

c

m

Cyan

BlackRed

Yellow Green

White

BlueMagenta

Figure 11.6: (a) The CMY color cube (b) Venn diagram of the CMY model.

Going between the RGB and CMY color spaces is simple: c
m
y

 =

 1
1
1

−
 r
g
b

 and

 r
g
b

 =

 1
1
1

−
 c
m
y

 (11.1)

Ink of the color of each of the three subtractive primaries is coated as
a grid of dots (called a screen) on a sheet of paper during printing. The
relative proportions of CMY ink at each dot determines the amounts of light
of various frequencies subtracted there; the remaining light emerges through
the ink layers and imparts to the dot its perceived color.

However, in practice, the combination of CMY ink to produce RGB color
does not work as well as the equations (11.1) might suggest. The CMY
pigments in printer toner cartridges are never pure enough that an equal
mix produces 100% black or even proper shades of gray. In addition to this
technical problem there is an economic one too: making blacks and grays, by
far the most common colors in printing, by mixing colored inks is expensive.410
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Modern color printers, accordingly, supplement their CMY inks with a black
ink to directly produce both blacks and the gray scale, the resulting process
called four-color printing .

The CMY model augmented with black is called the CMYK color model
(for reasons to do with printing terminology black is denoted by K rather
than B). Conversion formulae between the CMYK color space and the RGB
and CMY color spaces are more complicated than those between the latter
two and we’ll not discuss them here. However, drawing and image editing
programs, such GNU’s GIMP (freeware [49]), which offer both RGB and
CMYK models will automatically convert between the two.

A practical point to keep in mind is that mapping from RGB to CMYK
is often device-dependent and rarely 100% accurate, which is why CMYK
print-outs are frequently significantly different from the original RGB display.
Moreover, the space of colors representable in the RGB and CMYK color
models – their gamuts – are not identical either, so some colors simply cannot
be transferred exactly from monitor to paper (or vice versa).

11.1.3 HSV (or HSB) Color Model

The RGB color model, though pretty much ingrained into applications
around us, is not particularly intuitive for the mixing of colors. For example,
what RGB values should an artist combine for a jungle green, sunset orange,
ocean blue, . . .? The HSV color model was created by Alvy Ray Smith (one
of the co-founders of Pixar Corporation) in 1978 as a more user-friendly
alternative for designers. HSV is the abbreviation for hue, saturation and
value. The model is also called HSB, where B stands for brightness.

The HSV model gets past the problem of having to numerically mix
primaries by allowing the designer to choose a color’s “coloredness” (that
which we perceive as jungle green, sunset orange, ocean blue, etc.) directly
with a single parameter, the hue. The hue parameter space is circular and
often called the color wheel .

Here’s how the color wheel is derived. See Figure 11.7. Begin with a
triangle with corners representing the red, green and blue hues. Double
the number of vertices to make a hexagon and fill in the middle hues,
yellow, cyan and magenta (e.g., yellow is an equal mix of red and green, so
midway between them). Again double to a dodecagon and add new hues
by interpolating between previous ones. Continuing the process leads to a
continuum of hues in a circle. A position on this circle – or, the color wheel
as it’s called – thus represents a particular hue. Typically, red, green and
blue are located at 0◦, 120◦ and 240◦, respectively.

The hue parameter by itself is insufficient to specify a color. Two other
parameters are required as well. The saturation of a color, typically given
as a percentage, represents its purity. The higher the saturation the richer
and more vibrant the color appears; conversely, less saturated colors (called
desaturated) appear faded and grayish. The final parameter is value, given 411
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Green DodecagonTriangle Hexagon Circle (Color Wheel)

0o

120o
240o

Figure 11.7: Hues on a triangle, hexagon, dodecagon and circle (color wheel).

as a percentage as well, representing a color’s intensity or brightness.
The saturation and value amounts of a color are often specified by

positioning a point on an equilateral triangle inscribed in the color wheel,
with a vertex of that triangle located at and turning with the color’s hue
position on the wheel. As indicated in Figure 11.8(a), value changes parallel
to the edge opposite the hue vertex, while saturation increases with distance
from the opposite edge. Figure 11.8(b) shows GIMP’s color dialog box
setting a 100% blue in HSV mode.

(a) (b)

H

S

V

Figure 11.8: (a) The outer small hollow circle is positioned on the colored wheel to set
the H value and the inner one inside the triangle to set S and V values. (b) The Gimp
color dialog box making a 100% blue using the HSV color wheel option.

11.1.4 Summary of the Models

In drawing applications the predominant model is RGB and we’ll really not
have use for any other through the rest of this book. It’s useful, though,
to have a nodding acquaintance with models that may occasionally pop
up elsewhere. With CMY, CMYK and HSV we have covered the ones the
user is most likely to encounter. CMYK does, in fact, become particularly
important when one goes from drawing to printing. There are other color
models not used as much, such as Lab (an option in Adobe’s Photoshop)
and HLS (for hue, lightness, saturation).412
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The gold standard among color models was established by the CIE in
1931. It’s called the CIE XYZ model (also the CIE 1931 model) where the
X, Y and Z parameters represent, respectively, three theoretical primaries,
each corresponding to a particular intensity distribution standardized by the
CIE. Although not seen in practical interfaces, the CIE XYZ color model is
used to calibrate implementations of the other ones.

11.2 Phong’s Lighting Model

A model of interaction between light sources and objects is called a lighting
model (or reflection model, or illumination model). In 1975 Vietnamese
computer scientist Phong Bui Tuong [105] invented a particular lighting
model, now known by his name, which is currently the one most widely used
in practice. Despite the subsequent development of more authentic lighting
models, e.g., Cook-Torrance [28], ray tracing, etc., Phong’s has endured
in popularity, especially because it delivers realistic lighting at moderate
computational cost. OpenGL implements Phong’s model. But, before we
start coding up light let’s first get an understanding of the model.

11.2.1 Phong Basics

In Phong’s model the light reflected off an object O is the sum of three
components – ambient , diffuse and specular – based on the reflectance
properties of its surface. We’ll describe each component next before
explaining how to specify and calculate them.

Ambient: Ambient reflectance models O’s reflection of background light
that strikes it from multiple directions. Ambient light is scattered equally in
all directions from the surface of O as well because of fine-scale graininess.
See Figure 11.9.

Of the light sources in the environment – e.g., lamps and the sun –
a part of the light from each is presumed ambient in that it’s scattered
by minute particles such as dust in the environment, effectively becoming
part of background light before striking O. The direction of the light’s
source, therefore, is lost in that part of it which is ambient. Neither does
it matter where the viewer is located because of the scattered reflection
from the surface of O, presumed equal in all directions. In practical terms,
the ambient component models that part of light which supplies constant
illumination throughout a scene. An example of a familiar light source which
is mostly ambient is a tube lamp recessed behind a frosted panel.

In addition to the ambient parts of each light source, there is presumed
to be a global ambient light as well, from no identifiable source (i.e., “true”
background light). For example, when modeling a scene inside a building,
we can adjust the global ambient to account for light coming in from outside 413
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through doors and windows, without trying to model every possible light
source such as the sun and lights on the street, which would be very complex
indeed.

The total ambient component of the light reflected from an object O is
the sum of what it reflects of the ambient parts from each source, plus what
it reflects of the global ambient. Informally:

ambient reflectance from O =
∑

(reflectance of ambient part from each

light source) + reflectance of global

ambient

Ambient Diffuse Specular

Figure 11.9: Ambient, diffuse and specular reflectance: incident light drawn blue,
reflected red.

Diffuse: Diffuse reflectance specifically models the fine-scale graininess
of the surface: the diffuse part of light from a particular source travels in a
coherent beam toward O and then is scattered equally in all directions by
diffuse reflectance from the surface of O. Therefore, the direction of the light
source does matter in case of diffuse reflectance, but not that of the viewer.
Practically then, the diffuse component models the “soft” part of the light
with little focus, e.g., that reflected off polished wood or silky fabric.

The total diffuse component of light reflected from O is the sum of the
reflectances of the diffuse parts from each source:

diffuse reflectance from O =
∑

(reflectance of diffuse part from each

light source)

Specular: Specular reflectance models the shininess of the surface: the
specular part of light from a particular source travels in a coherent beam414
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toward O and then is reflected in mirror-like manner, again in a coherent
beam, by specular reflectance from the surface of O. Both the direction of
the light source and the viewer matter in the case of specular reflectance.
Specular light is “hard” light with a focus, e.g., that from a beam bouncing
off a polished metal surface.

The total specular component of the light reflected from O is the sum of
the reflectances of the specular parts from each source:

specular reflectance from O =
∑

(reflectance of specular part from each

light source)

Remark 11.1. Because specular reflection is mirror-like, while the ambient
and diffuse reflections are due to scattering from the surface of the object,
the color of specularly reflected light depends primarily on that of the source
itself, while those of the ambient and diffusely reflected on the native color
of the object, as well as the light source.

Sp
ec

ul
ar

A
m

bi
en

t

D
iff

us
e

R
ed

R
ed

G
re

en

B
lu

e

R
ed

R
ed

G
re

en

G
re

en

G
re

en

B
lu

e

B
lu

e

B
lu

e

Sp
ec

ul
ar

Sp
ec

ul
ar

Sp
ec

ul
ar

A
m

bi
en

t

A
m

bi
en

t

A
m

bi
en

t

D
iff

us
e

D
iff

us
e

D
iff

us
e

(a) (b)

Figure 11.10: Orthogonal splitting of light: (a) Reflectance followed by color (b) Color
followed by reflectance.

Important : The split of light into the three components of ambient, diffuse
and specular according to reflectance is independent of the split into the
primary color components of red, green and blue, in that each of the ambient,
diffuse and specular components has RGB subcomponents and all nine
subcomponents can be independently set. Or, one can equivalently say that
each of RGB has ambient, diffuse and specular subcomponents which can all
be independently set. In other words, you can think of light as being split 415
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as in Figure 11.10(a) or Figure 11.10(b) – it does not matter. Yet another
way this is often phrased is by saying that color and reflectance splits are
orthogonal .

A final component of light emerging from O is not reflected.

Emissive: The emissive component of light from an object O is that
which is “manufactured” at O and unrelated to external light sources or the
global ambient light. An example of an emissive object would be a lamp or
the headlight of an automobile.

It is extremely important to keep in mind that, in OpenGL imple-
mentations, emissive light is perceived only by the viewer and does not
illuminate other objects – it does not make O a light source for the rest of
the environment.

11.2.2 Specifying Light and Material Values

OpenGL allows several light sources to be specified – the exact number
depending on the implementation. For each of the N light sources Li,
0 ≤ i ≤ N − 1, the RGB intensities of each of its ambient, diffuse and
specular components can be set to between 0 and 1, for nine values altogether
per light source. These are written, typically, in a 3 × 3 light properties
matrix :  Liamb, R Liamb, G Liamb, B

Lidif, R Lidif, G Lidif, B
Lispec, R Lispec, G Lispec, B

 (11.2)

Similarly, for each object O or, more precisely, each vertex V of O, one
can set scaling factors between 0 and 1 to determine how much of each
component of the incident light is reflected, for again nine values, contained
in a 3× 3 material properties matrix : Vamb, R Vamb, G Vamb, B

Vdif, R Vdif, G Vdif, B
Vspec, R Vspec, G Vspec, B

 (11.3)

These so-called reflectance values represent the object’s color: the higher
one is, the more of the corresponding incoming light is reflected, and the
more of that color the object appears to be.

The RGB values of the global ambient light are contained in a 3-vector
called the global ambient light vector :

[globAmbR globAmbG globAmbB ] (11.4)

The RGB values of the emissive light from a vertex V is a 3-vector called
the emissive light vector :

[Vemit, R Vemit, G Vemit, B ] (11.5)416
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11.2.3 Calculating the Reflected Light

We come now to calculating each component of the reflected light.

Ambient

Calculating the ambient component emerging from a vertex V owing to a
particular light source consists simply of scaling the light’s ambient intensity
by V ’s ambient reflectance. If the original intensity of the ambient light of
some primary color from a source L (or the global ambient) is I, then that
of its reflection from the surface at V is

I ∗material ambient scaling factor (11.6)

The material ambient scaling factor is the fraction of the incident ambient
light that the material reflects. It is nothing but the ambient reflectance
value Vamb, X , where X may be R, G or B, in the first row of the material
properties matrix. An example will clarify use of the equation.

Example 11.1. Say the intensities of the ambient light from source L are
given by

Lamb, R = 0.4, Lamb, G = 0.9, Lamb, B = 0.2

and the ambient reflectances of V by

Vamb, R = 0.9, Vamb, G = 0.9, Vamb, B = 0.1

Then the part of the red light emanating from V owing to the L ambient
is

Lamb, R ∗ Vamb, R = 0.36

and the part of the green light emanating from V owing to the L ambient is

Lamb, G ∗ Vamb, G = 0.81

and the part of the blue light emanating from V owing to the L ambient is

Lamb, B ∗ Vamb, B = 0.02

Exercise 11.1. If the global ambient light vector is

[0.2 0.2 0.2]

and all the ambient reflectances of a vertex V are as in the preceding example,
calculate the parts of the RGB light emanating from V owing to the global
ambient. 417
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Diffuse

Calculation of the diffuse component of the light reflected from V is more
complex than that of the ambient as, not only must the incident light be
scaled by the reflectance at V , but its direction taken into account as well.
The latter is done by measuring the angle between the direction of the light
source and the normal to the surface at V .

Remark 11.2. A line l is normal to a surface s at the point P if it is
perpendicular to the tangent plane p of s at P . Any non-zero vector n
parallel to l is a normal vector to s at P . See Figure 11.11. (Think intuitively
of the tangent plane as a hard board pressed to touch s at P .)

n

P

l
s

p

Figure 11.11: A normal vector n to a surface s at P lies along the normal line l there
and is perpendicular to the tangent plane p at P .

The light source L is modeled as a point. Further, the surface of the
object O around the illuminated vertex V is assumed flat; in fact, it’s taken
to coincide with its own tangent plane at V . See Figure 11.12(a). Diffuse
light is reflected in all directions from V .

light pencil

w’(= w/cos θ) 

n

light pencil

V

L

(a) (b)

tangent plane

w

lθ

Figure 11.12: Calculating the diffuse component: (a) A light pencil from a point source
L hits the surface, represented by it tangent plane at V (b) A blow-up of the pencil
showing the normal vector n and the light direction vector l.

One observes from the blow-up in Figure 11.12(b) that a pencil of light
of cross-sectional width w from L illuminates an area of width w′, which is,418
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typically, greater than w.
In this figure, θ is the angle between a direction vector l from V to the

light source L, called the light direction vector and an outward normal vector
n at V . The angle θ is called the angle of incidence of the light. We ask the
reader to show next, by elementary trigonometry in Figure 11.12(b), that
the width w′ = w/ cos θ.

Exercise 11.2. Verify the claim just made about the width of the area
illuminated by a light of width w being w′ = w/ cos θ.

Since the area illuminated is greater by a factor of 1/ cos θ than the
cross-sectional area of the light pencil, the intensity of the light is diminished
by a factor of 1/ cos θ from I to 1/(1/ cos θ) ∗ I = cos θ ∗ I. Accordingly, if
the original intensity of the diffuse light of some primary color emanating
from the light source L is I, then that of its reflection from the surface of O
at V is

cos θ ∗ I ∗material diffuse scaling factor (11.7)

The material diffuse scaling factor, given by the values Vdif, X , where X is
R, G or B, in the second row of material properties matrix, determines the
fraction of the incident diffuse light the material reflects.

Example 11.2. Say the intensities of the diffuse light from source L are
given by

Ldif, R = 0.3, Ldif, G = 1.0, Ldif, B = 1.0

and the diffuse reflectances of a vertex V by

Vdif, R = 0.8, Vdif, G = 1.0, Vdif, B = 0.8

and that the angle θ of incidence at V is 60◦.
Then the part of the red light emanating from V owing to the L diffuse

is

cos θ ∗ Ldif, R ∗ Vdif, R = 0.5 ∗ 0.3 ∗ 0.8 = 0.12

Likewise, the part of the green light emanating from V owing to the L diffuse
is

cos θ ∗ Ldif, G ∗ Vdif, G = 0.5

and the part of the blue light emanating from V owing to the L diffuse is

cos θ ∗ Ldif, B ∗ Vdif, B = 0.4

Remark 11.3. The relationship that the intensity of the reflected lighted
varies as the cosine of the angle of incidence is known as Lambert’s law . It is
Lambert’s law which explains why early mornings and late evenings, when
the sun is lower in the sky, are cooler and darker than mid-day. 419



i
i

i
i

i
i

i
i

Chapter 11

Color and Light

Specular

For specular light, as in the case of diffuse light, the light source L is modeled
as a point, and so too the eye E. And, again, the surface of O is identified
with its tangent plane at the illuminated vertex V . An outward normal
vector to the surface of O at V is n. Let s be a vector, call it a halfway
vector , which bisects the angle between a light direction vector l from V
toward the light source L and an eye direction vector e from V toward the
eye E. See Figure 11.13(a) (ignore r for now).

V V

E

L Lr

e ψ
φ φ = 0

n = s n

(a) (b)

l
ψ = 0

e = r
l

E
s

tangent plane

Figure 11.13: Calculating the specular component: (a) The light direction vector l, eye
direction vector e, halfway vector s, normal vector n and reflection vector r (b) The
special case when reflection is in the direction of the eye. (Double arcs indicate equal
angles.)

We’ll next state a relationship between the intensity of the reflected
specular light and that of the incident which may seem unintuitive at first,
but motivation will soon be apparent:

If the intensity of the specular light of some primary color emanating
from the light source L is I, then that of its reflection from the surface of O
at V is

cosf φ ∗ I ∗material specular scaling factor (11.8)

where φ is the angle between halfway vector s and the normal vector n,
f ≥ 0 is a scalar, called the shininess exponent and the material specular
scaling factor, a value read from the material properties matrix, determines
the fraction of the incident specular light the material reflects.

Here’s what’s happening. If the surface of O is perfectly mirror-like, then
a ray of light from L to V reflects according to the laws of reflection, which
say that the normal to O at V , the incident ray and the reflected ray all lie
on the same plane and, moreover, that the incident ray and the reflected ray
make the same angle with the normal. In this particular case, if the eye E
is located in the direction of reflection, given by the reflection vector r, then
it perceives all the incident light, if not no light at all.

Say ψ is the angle the reflection vector makes with the eye direction
vector e, as in Figure 11.13(a). Figure 11.13(b) shows a particular case of the
general Figure 11.13(a), where the eye is actually situated in the direction420
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of reflection, so that ψ = 0. Observe, in this case, that the halfway vector is
aligned with the normal, in other words, φ = 0 as well.

Most real surfaces, however, are not perfectly mirror-like and do not
reflect light only along the direction of reflection, but, rather, spread it about
that direction with an intensity which diminishes with increasing angle. In
other word, maximum intensity is perceived by the viewer in a configuration
as in Figure 11.13(b); nevertheless, even in a general configuration as in
Figure 11.13(a), the eye receives light, though, with intensity inversely related
to ψ.

This suggests that the intensity of specular reflection be modeled by the
formula

angular attenuation factor ∗ I ∗material specular scaling factor (11.9)

where the angular attenuation factor is, in fact, the factor in inverse
relationship with ψ.

Phong suggested the angular attenuation factor cosf ψ, where the
exponent f is larger the more mirror-like (i.e., shiny) the surface is. His
considerations were empirical rather than based on actual physics. In
particular, cosψ is a function of ψ which is at its maximum of 1 when ψ = 0
and drops off as ψ increases, behavior expected of the angular attenuation
factor. The function cosf ψ also shows the same behavior, but more markedly,
as f increases. In particular, the larger the value of f the more rapid the
drop from the value of 1 as ψ increases from 0. See Figure 11.14. Intuitively,
the shinier the surface the more rapidly the light diminishes away from the
direction of reflection.

π/2

1

00

f =1
f =5

f =50

ψ

Figure 11.14: Graphs of
cosf ψ for different values
of f (not exact plots).

The angle ψ is often replaced by φ, the angle between the halfway vector
s and the normal vector n, because φ is easier to compute, and because it is
legitimate to do so given the following linear relation between the two.

Example 11.3. Show that ψ = 2φ.

Answer : Label the angles from the tangent plane to the light direction,
the reflection and eye direction vectors θ1, θ2 and θ3, respectively, as in
Figure 11.15.

r ns

l

e

L

V

E

θ3
θ2

θ1

tangent plane

Figure 11.15: Proving that ψ = 2φ. 421
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The angle to the halfway vector, then, is (θ1 + θ3)/2, implying that the
angle between the halfway vector and the normal is φ = (θ1 + θ3)/2− π/2.

The angle between the light vector and the normal, which is π/2− θ1, is
the same as the angle between the normal and the reflection vector, by laws
of reflection. Therefore, θ2 = π/2 + (π/2− θ1) = π − θ1. This, then, implies
that the angle between the eye direction vector and the reflection vector is
ψ = θ3 − θ2 = θ3 − (π − θ1) = θ1 + θ3 − π. That ψ = 2φ now follows.

Given the relationship between φ and ψ contained in the preceding
example, substituting cosf φ for cosf ψ as the angular attenuation factor
in Equation (11.9) makes no qualitative difference. The result of the
substitution, in fact, is Equation (11.8), which is now fully justified.

Example 11.4. Give a formula for the halfway vector s in terms of the
light direction vector l and the eye direction vector e from V , which are, of
course, the two vectors that s bisects. Assume that both l and e are of unit
length. Give s as a unit vector as well.

Answer : See Figure 11.16, where l =
−→
OA, e =

−−→
OB, and where l + e is

drawn with the help of the parallelogram law of addition of vectors. Since
|l| = |e| = 1, all four sides of the parallelogram OACB are of unit length as
well. A consequence is that corresponding sides of the triangles OAC and
OBC are of equal lengths. The two triangles are, therefore, congruent, so
∠AOC = ∠BOC. One concludes that the vector l + e bisects l and e.

l+e

O

A
B

e 

C

l

Figure 11.16: The vector
l = e bisects l and e.

Accordingly, the unit halfway vector

s =
l + e

|l + e|
(provided that l + e is not the zero vector)

Remark 11.4. When a vector u is used to represent a direction, so that its
magnitude is not of importance, it is often convenient to scale it to unit
length, a step called normalizing u. Normalization of a non-zero vector u
(note that a vector representing a direction cannot be zero) consists simply
of dividing it by its length, in other words, replacing u by u/|u|.

Exercise 11.3. Give a simple formula, in an OpenGL setting, for the eye
direction vector from a vertex V whose position vector is v. Accordingly,
rewrite the formula for the halfway vector of the preceding example in terms
of l and v.

Example 11.5. Say the intensities of the specular light from source L are
given by

Lspec, R = 1.0, Lspec, G = 1.0, Lspec, B = 1.0

and the specular reflectances of a vertex V by

Vspec, R = 0.0, Vspec, G = 1.0, Vspec, B = 0.6422
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and that the angle φ between the halfway vector and the outward normal
vector at V is 60◦ and that the shininess exponent is 2.0.

Then the part of the red light emanating from V owing to the L specular
is

cosf φ ∗ Lspec, R ∗ Vspec, R = 0.25 ∗ 1.0 ∗ 0.0 = 0.0

Likewise, the part of the green light emanating from V owing to the L
specular is

cosf φ ∗ Lspec, G ∗ Vspec, G = 0.25

and the part of the blue light emanating from V owing to the L specular is

cosf φ ∗ Lspec, B ∗ Vspec, B = 0.15

It’s interesting that calculation of the reflected light never actually
required determination of the reflection vector r itself. It’s not hard though
to find r, as we see next.

Exercise 11.4. Suppose that n is the unit (outward) normal vector and l
the unit light direction vector at a vertex V . Prove that the unit vector r in
the direction of reflection is given by the equation

r = 2(n · l)n− l

Part answer : According to the laws of reflection we have to verify that r
lies on the plane of l and n and makes the same angle with n as l. We must
also prove that r is of unit length.

That r lies on the plane of l and n follows from its formula above, because
of the linear dependence of r on l and n. Now

|r|2 = r ·r = (2(n · l)n− l) · (2(n · l)n− l) = 4(n · l)2−4(n · l)2 + l · l = |l|2 = 1

proving that r indeed is a unit vector.

We’ll leave the reader to prove that r makes the same angle with n as l
by computing its dot product with n.

11.2.4 First Lighting Equation

Our formulae from the last section straightforwardly combine into a single
so-called lighting equation. Assume that we are given the values of the
lighting properties matrix (11.2) for each light source Li, 0 ≤ i ≤ N − 1,
the material properties matrix (11.3) for the vertex V , the global ambient
light vector (11.4), as well as the emissive light vector (11.5) at V . Further,
denote the normalized light direction and halfway vectors corresponding to
light source Li at vertex V by li and si, respectively. Denote the normalized
outward surface normal vector at V by n and its shininess exponent by f . 423



i
i

i
i

i
i

i
i

Chapter 11

Color and Light

Here then is the lighting equation giving the color intensity VX at V ,
where X may be any of RGB:

VX = Vemit, X +

globAmbX ∗ Vamb, X +

N−1∑
i=0

(
Liamb, X ∗ Vamb, X +

max{li ·n , 0} ∗ Lidif, X ∗ Vdif, X +

(max{si ·n , 0})f ∗ Lispec, X ∗ Vspec, X
)

(11.10)

Note: The dot product of two unit vectors gives the cosine of the angle
between them.

Note: If the RHS sums to more than 1, for any of X equal to R, G or B,
then it is clamped to 1.

The lighting equation simply collects the components we have already
discussed separately. The first summand on the RHS is the emissive
component, while the second the global ambient scaled by the ambient
reflectance. The third summand is a summation over the n light sources of

(a) The incident ambient component scaled by the ambient reflectance
(Equation (11.6)).

(b) The incident diffuse component scaled by the diffuse reflectance and
the cosine of the incident angle (Equation (11.7)).

(c) The incident specular component scaled by the specular reflectance
and the angular attenuation factor (Equation (11.8)).

The reason for the max{∗ , 0} terms is to not allow a negative multiplier,
which would imply the physically impossible phenomenon of light being
subtracted. For example, li · n is negative when the angle between li and
n is greater than π/2, which means that the light source Li is behind the
surface on which V is located, contributing zero light, rather than negative
light.

Equation (11.10) is actually a first draft. The final lighting equation
of OpenGL, which we’ll see soon, enhances it by taking into account the
attenuation of light over distance, as well as the spotlight effect, where light
from a source emerges as a cone, rather than in all directions.

Exercise 11.5. There are two light sources L0 and L1, the respective
values of whose lighting properties matrices are 0.0 0.0 0.0

0.7 0.1 0.1
0.7 0.1 0.1

 and

 0.0 0.0 0.0
0.1 0.7 0.1
0.1 0.7 0.1


424
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The material properties matrix at a vertex V is 0.1 0.8 0.9
0.1 0.8 0.9
1.0 1.0 1.0


Furthermore, the shininess exponent of the surface at V is 2.0, there is no
emission from V , and the unit outward normal vector at V is

[0.0 1.0 0.0]T

The position vectors of L0, L1, V and the eye are, respectively,

[0.0 5.0 5.0]T , [5.0 5.0 5.0]T , [0.0 0.0 5.0]T and [0.0 0.0 0.0]T

The global ambient light vector is

[0.1 0.1 0.1]T

Compute the color vector at V using the lighting equation (11.10).

Remark 11.5. It is important to realize that Phong’s lighting model is
local : the color at each vertex V depends only on the interaction between
the external light properties and the material properties at V itself . No
account is taken of whether V is obscured from a light source by another
object (shadows), or of light that strikes V not directly from a light source
but having bounced off other objects (reflection and secondary lighting).
Colloquially, object-object light interaction is not considered, only light-
object. We will discuss two global lighting models, ray tracing and radiosity,
where shadows, reflections and other secondary effects are captured, in a
later chapter.

11.3 OpenGL Light and Material Properties

The mapping from Phong’s lighting model to OpenGL syntax is pretty much
one-to-one. For each light source the user defines the values in the lighting
properties matrix (11.2), as also the values in the material properties matrix
(11.3) for each vertex. The global ambient vector (11.4) is user-defined as
well. The user, too, defines the shininess exponent f , the emission color
vector (11.5) and, very importantly, the normal vector at each vertex.

If you are beginning to worry that that’s a lot of values to specify to
light a scene, don’t! Remember that OpenGL is a state machine, so material
properties – which are state variables – persist in their current setting until
explicitly changed, making it convenient for the programmer to apply the
same properties to all vertices of a single object. Moreover, OpenGL has
sensible defaults for values the programmer doesn’t care to define.

Time to look at code. 425
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Experiment 11.1. Run again sphereInBox1.cpp, which we ran the first
time in Section 9.4. Press the up-down arrow keys to open or close the box.
Figure 11.17 is a screenshot of the box partly open. We’ll use this program
as a running example to explain much of the OpenGL lighting and material
color syntax. End

Figure 11.17: Screenshot
of sphereInBox1.cpp.

11.3.1 Light Properties

Properties of light sources are set by statements of the form:

glLight*(light, parameter, value)

where light is the label of the light (viz., GL LIGHT0, GL LIGHT1, . . .) and its
particular parameter set to value.

The properties of the single light source of sphereInBox1.cpp are
specified by the following statements in the setup() routine:

glLightfv(GL LIGHT0, GL AMBIENT, lightAmb);

glLightfv(GL LIGHT0, GL DIFFUSE, lightDifAndSpec);

glLightfv(GL LIGHT0, GL SPECULAR, lightDifAndSpec);

glLightfv(GL LIGHT0, GL POSITION, lightPos);

Typically, the diffuse and specular color vectors, i.e., the values of the
GL DIFFUSE and GL SPECULAR parameters, respectively, are set identically
to values perceived as the actual color of the light source. So, that of
sphereInBox1.cpp is a bright white.

It’s simplifying, as well, to consolidate all light source ambients – their
GL AMBIENT values – into the global ambient; in other words, set light source
ambient colors all to 0.0 and adjust the one global ambient light vector.
We follow this approach in sphereInBox1.cpp, as in all our lit programs.
The fourth component, the alpha value, of each of the three color vectors –
ambient, diffuse and specular – should always be 1.0 for a light source.

The value {x, y, z, w} of GL POSITION specifies the location [x y z w]T of
the light source in homogeneous coordinates. If w 6= 0 then the light source
is said to be positional and is located at world coordinates

[x/w y/w z/w]T

The single positional light source of sphereInBox1.cpp is at [0.0 1.5 3.0]T ,
which is just above and some ways in front of the box. We’ll discuss what
happens if w = 0 in Section 11.5 when we discuss directional light sources.

Note that no visible object is created by OpenGL at the location of a
light source! This location is simply a point used for the purpose of lighting
calculation. If you want the light to appear to be from a lamp or car headlight
or such object you’ll have to model the object and position it yourself.

Global ambient light in sphereInBox1.cpp is set with the statement

glLightModelfv(GL LIGHT MODEL AMBIENT, globAmb);426
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in the setup() routine, where the second parameter points to the global
ambient vector. Don’t forget that lighting calculation is enabled with
the call glEnable(GL LIGHTING) and individual lights with calls to gl-

Enable(GL LIGHTi).

Exercise 11.6. Show that nothing, in fact, is lost according to the first
lighting equation (11.10) by setting all light source ambient colors to 0.0. In
particular, prove that, however the light source ambients are initially set,
they can all be reset to 0.0 and the global ambient adjusted accordingly so
that the color computed at each vertex by (11.10) remains unchanged.

11.3.2 Material Properties

Material properties at a vertex are set by statements of the form:

glMaterial*(face, parameter, value)

where the parameter of face is set to value. The value of face can be GL FRONT,
GL BACK or GL FRONT AND BACK for both faces.

Material properties of (each vertex of) the box of sphereInBox1.cpp are
specified by the following statements in the drawScene() routine:

glMaterialfv(GL FRONT AND BACK, GL AMBIENT AND DIFFUSE, matAmbAndDif1);

glMaterialfv(GL_FRONT AND BACK, GL SPECULAR, matSpec);

glMaterialfv(GL FRONT AND BACK, GL SHININESS, matShine);

Typically, the ambient and diffuse color vectors are set identically to
values perceived as an object’s native color. OpenGL makes it convenient
to do so via the GL AMBIENT AND DIFFUSE parameter; however, they can be
set separately as well using GL AMBIENT and GL DIFFUSE. As specular light
is obtained from reflection from the light source, it’s reasonable to set an
object’s GL SPECULAR value either to white {1.0, 1.0, 1.0, 1.0}, fully reflecting
the incident specular light, or a shade of gray {γ, γ, γ, 1.0}, equally scaling
each color component. Ignore, for now, the fourth, or alpha, component of
the material color vectors, all currently set to 1 – the alpha value pertains
to blending, which is discussed in a later chapter.

The value of GL SHININESS is, of course, the shininess exponent f of the
first lighting equation (11.10). Its value must be in the range [0.0, 128.0]. The
default is 0.0, which causes no angular attenuation of specular reflectance.

The emissive color at a vertex can be set using the GL EMISSION

parameter, but we choose to go with the default of {0.0, 0.0, 0.0, 1.0}, in
other words, no emission, for each vertex in sphereInBox1.cpp.

Exercise 11.7. (Programming) What are the material specular values
and the shininess exponent of the sphere of sphereInBox1.cpp? 427
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11.3.3 Experimenting with Properties

The two programs lightAndMaterial1.cpp and lightAndMaterial2.cpp

allow the user to experiment with various material and light properties. Both
show a blue ball lit by two lights, one white and one green, whose positions
are indicated by small wire spheres. Figure 11.18 shows screenshots of both
the programs.

(a) (b)

Figure 11.18: Screenshots of (a) lightAndMaterial1.cpp (b) lightAndMaterial2.cpp.

Using the first program one can change material properties of the blue ball,
as well as move it. The second program, on the other hand, allows properties
of the white light to be controlled, as also of the global ambient, and enables
the user to rotate the white light. Text messages show property values. Let’s
take a quick tour of the two before experimenting with properties.

Experiment 11.2. Run lightAndMaterial1.cpp.
The ball’s current ambient and diffuse reflectances are identically set to

a maximum blue of {0.0, 0.0, 1.0, 1.0}, its specular reflectance to the highest
gray level {1.0, 1.0, 1.0, 1.0} (i.e., white), shininess to 50.0 and emission to
zero {0.0, 0.0, 0.0, 1.0}.

Press ‘a/A’ to decrease/increase the ball’s blue Ambient and diffuse
reflectance. Pressing ‘s/S’ decreases/increases the gray level of its Specular
reflectance. Pressing ‘h/H’ decreases/increases its sHininess, while pressing
‘e/E’ decreases/increases the blue component of the ball’s Emission.

The program has further functionalities which we’ll explain as they
become relevant. End

Experiment 11.3. Run lightAndMaterial2.cpp.
The white light’s current diffuse and specular are identically set to a

maximum of {1.0, 1.0, 1.0, 1.0} and it gives off zero ambient light. The
green light’s attributes are fixed at a maximum diffuse and specular of
{0.0, 1.0, 0.0, 1.0}, again with zero ambient. The global ambient is a low
intensity gray at {0.2, 0.2, 0.2, 1.0}.428
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Press ‘w’ or ‘W’ to toggle the White light off and on. Pressing ‘g’ or
‘G’ toggles the Green light off and on. Press ‘d/D’ to decrease/increase the
gray level of the white light’s Diffuse and specular intensity (the ambient
intensity never changes from zero). Pressing ‘m/M’ decreases/increases the
gray intensity of the global aMbient. Rotate the white light about the ball
by pressing the arrow keys.

The program has more functionality too which we’ll need later. End

Experiment 11.4. Run lightAndMaterial1.cpp.
Reduce the specular reflectance of the ball. Both the white and green

highlights begin to disappear, as it’s the specular components of the reflected
lights which appear as specular highlights. End

Exercise 11.8. (Programming) The specular highlight is sharpened
or blunted, respectively, by increasing or decreasing the shininess exponent.
Why?
Hint : The higher the shininess exponent the more rapidly the specular light
diminishes as the vertex normals turn away from the eye direction (recall
the definition of the angular attenuation factor in Section 11.2.3).

Experiment 11.5. Restore the original values of lightAndMaterial1.cpp.
Reduce the diffuse reflectance gradually to zero. The ball starts to lose its

roundness until it looks flat as a disc. The reason for this is that the ambient
intensity, which does not depend on eye or light direction, is uniform across
vertices of the ball and cannot, therefore, provide the sense of depth that
obtains from a contrast in color values across the surface. Diffuse light, on
the other hand, which varies across the surface depending on light direction,
can provide an illusion of depth.

Even though there is a specular highlight, sensitive to both eye and light
direction, it’s too localized to provide much contrast. Reducing the shininess
spreads the highlight but the effect is not a realistic perception of depth.
Moral : Diffusive reflectance lends three-dimensionality. End

Experiment 11.6. Restore the original values of lightAndMaterial1.cpp.
Now reduce the ambient reflectance gradually to zero. The ball seems

to shrink! This is because the vertex normals turn away from the viewer at
the now hidden ends of the ball, scaling down the diffuse reflectance there
(recall the cos θ term in the diffusive reflectance equation (11.7)). The result
is that, with no ambient reflectance to offset the reduction in diffuse, the
ends of the ball are dark.
Moral : Ambient reflectance provides a level of uniform lighting over a surface.

End

Experiment 11.7. Restore the original values of lightAndMaterial1.cpp.
Reduce both the ambient and diffuse reflectances to nearly zero. It’s

like the cat disappearing, leaving only its grin! Specular light is clearly for
highlights and not much else. End 429
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Exercise 11.9. (Programming) Restore the original values of light-
AndMaterial1.cpp.

Reduce all three of the ball’s diffuse, ambient and specular reflectances
and raise its emissive light intensity. It does appear to glow but also appears
flat. Why?

Experiment 11.8. Run lightAndMaterial1.cpp with its original values.
With it’s current high ambient, diffuse and specular reflectances the ball

looks a shiny plastic. Reducing the ambient and diffuse reflectances makes
for a heavier and less plastic appearance. Restoring the ambient and diffuse
to higher values, but reducing the specular reflectance makes it a less shiny
plastic. Low values for all three of ambient, diffuse and specular reflectances
give the ball a somewhat wooden appearance. End

Experiment 11.9. Run lightAndMaterial2.cpp.
Reduce the white light’s diffuse and specular intensity to 0. The ball

becomes a flat dull blue disc with a green highlight. This is because the
ball’s ambient (and diffuse) is blue and cannot reflect the green light’s diffuse
component, losing thereby three-dimensionality.

Raising the white global ambient brightens the ball, but it still looks flat
in the absence of diffusive light. End

Exercise 11.10. (Programming) When the white light is switched off
in lightAndMaterial2.cpp, the only evidence of green on the ball is the
specular highlight; moreover, if the ambient is tamped down as well then
the ball begins to disappear altogether.

However, this is not so in the opposite situation, when the white light
is switched on and the green off – a sector of the ball is clearly visible no
matter how low the ambient. Why?

Experiment 11.10. Nate Robins has a bunch of great tutorial programs
at the site [96]. This is a good time to run his lightmaterial tutorial, which
allows the user to control a set of parameters as well. End

11.3.4 Color Material Mode

Remember glColor*() which we used to set color in the dark days before
there were light sources? Now that we have light and glMaterial*() allows
us to set all sorts of material properties, it seems there’s no use any more for
glColor*(). Well, it turns out that the good folk who designed OpenGL
found a way to keep it on the payroll.

Here’s how. Suppose you’re in the not uncommon situation coloring a
scene where only a particular color attribute, say the ambient and diffuse
reflectances of the front faces, changes from one object to the next, other
attributes remaining constant. What you can do in this case, instead
of repeatedly calling glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE,

value), is to:430
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1. Enable the so-called color material mode with a call to glEnable(GL -

COLOR MATERIAL).

2. Call glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE), which
tells OpenGL to use the current color, set by glColor*(), to determine
the front-face ambient and diffuse color values.

Generally, the glColorMaterial() call can be of the form glColor-

Material(face, parameter) where face can be GL FRONT, GL BACK or
GL FRONT AND BACK, and parameter one of GL AMBIENT, GL DIFFUSE,
GL AMBIENT AND DIFFUSE, GL SPECULAR or GL EMISSION.

3. Make a call to glColor*() to set the front-face ambient and diffuse
color from one object to the next.

This method may, in fact, be more efficient with certain implementations
of OpenGL, not to mention the convenience of not having to change a
programming habit if one is used to coloring with glColor*().

Figure 11.19: Screenshot
of spotLight.cpp.

Experiment 11.11. Run spotlight.cpp. The program is primarily to
demonstrate spotlighting, the topic of a forthcoming section. Nevertheless,
press the page-up key to see a multi-colored array of spheres. Figure 11.19
is a screenshot.

Currently, the point of interest in the program is the invocation of color
material mode for the front-face ambient and diffuse reflectances by means
of the last two statements in the initialization routine, viz.,

glEnable(GL COLOR MATERIAL);

glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE);

and subsequent coloring of the spheres in the drawing routine by glColor4f()

statements. End

11.4 OpenGL Lighting Model

The so-called OpenGL lighting model sets certain environmental parameters.
The terminology, even though used in the red book, is somewhat unfortunate
as it may suggest laws of interaction between light and objects, or a relation
with Phong’s model – neither of which is true. The four parameters the
OpenGL lighting model sets are the following:

1. The global ambient light with the statement

glLightModel*(GL LIGHT MODEL AMBIENT, globAmb)

where globAmb is the global ambient light vector. This we’ve seen
already. 431
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2. Whether to use a local or infinite viewpoint for lighting calculation.

See again the lighting equation (11.10). The halfway vector si at a
vertex, one for each light source, is the unit vector bisecting the angle
between the direction vector li to the light source Li and the direction
vector e to the eye.

The OpenGL eye being fixed at the origin [0 0 0]T , evidently e =
−V , where V is the vertex’s position vector, which changes from one
to another. However, it simplifies lighting computation to keep e
constant, particularly e = [0 0 1]T , equivalent to assuming an eye that
is infinitely far up the z-axis and so, effectively, in the same direction
from every vertex. See Figure 11.20. This simplification, often, still
gives adequately authentic lighting.

infinitely
far
eye local eye

x

y

O
z

[0 0 1]T

[0 0 1]T V1

-V1

V0

-V0

Figure 11.20: Local versus infinite viewpoint: the direction vector from each vertex
toward the infinite viewpoint is black, while that toward the local viewpoint – i.e., the
eye vector – is blue.

Remark 11.6. The direction vector li to the light source, too, changes
from vertex to vertex if the source is a positional one, i.e., if w 6= 0 in
the value [x y z w]T of the source’s GL POSITION parameter. Moreover,
a simplification exactly similar to that of assuming an infinite viewpoint
can be achieved, not by tweaking the OpenGL lighting model, but by
making the light directional by setting w = 0. We’ll discuss this in the
next section.

The OpenGL default viewpoint, in fact, is infinite. For lighting
calculation to be done using a local viewpoint instead – with the
eye at the origin, that is – call

glLightModel*(GL LIGHT MODEL LOCAL VIEWER, GL TRUE)

which is what we do in the setup() routines of both sphereIn-

Box1.cpp and lightAndMaterial1.cpp, while lightAndMaterial2.cpp
provides an option. The local viewpoint is more realistic at the expense
of greater computation.432
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Remark 11.7. The chosen light model viewpoint is used only for
lighting calculations. The viewing frustum or box stays unchanged –
therefore, in the case of a frustum, for example, we still see the scene
from the eye at the origin.

Exercise 11.11. (Programming) Press ‘l’ or ‘L’ to toggle between
the Local and the infinite viewpoint in lightAndMaterial2.cpp. The
change seems to be only in the highlights, in other words, only the
specular reflectances. Why?

3. Whether to enable two-sided lighting.

The OpenGL default is to perform lighting calculations for each polygon
based on its specified GL FRONT face parameter values and its specified
vertex normals, regardless of if it is front or back facing. As the user
likely sets material properties and normal values with the front faces of
polygons in mind, results tend to be unrealistic for those whose back
faces happen to be visible. So, when back faces might be visible, the
command to use is

glLightModel*(GL LIGHT MODEL TWO SIDE, GL TRUE)

which causes OpenGL to

(a) use the GL BACK (or GL FRONT AND BACK) parameter values to
color back-facing polygons, and

(b) reverse the specified vertex normal for back-facing polygons.

Experiment 11.12. Run litTriangle.cpp, which draws a single
triangle, whose front is coded red and back blue, initially front-facing
and lit two-sided. Press the left and right arrow keys to turn the triangle
and space to toggle two-sided lighting on and off. See Figure 11.21 for
screenshots.

Notice how the back face is dark when two-sided lighting is disabled
– this is because the normals are pointing oppositely of the way they
should be. End 433
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(a) (b)

Figure 11.21: Screenshots of litTriangle.cpp showing the back face with
(a) two-sided lighting on (b) two-sided lighting off.

4. Whether to apply specular light before or after texturing.

The following remarks will be more meaningful after the discussion of
textures in the next chapter .

The OpenGL default is to apply textures after all lighting calculations,
which can cause specular highlights to be smothered. However, the
command

glLightModel*(GL LIGHT MODEL COLOR CONTROL,

GL SEPARATE SPECULAR COLOR)

makes OpenGL

(a) separately produce two colors at each vertex: a primary color
calculated from all incoming non-specular components and a
secondary color from all incoming specular components,

(b) combine only the primary color with texture color at the time of
texture mapping and, finally,

(c) add in the secondary color to the result of the previous step,
which assures the specular highlights.

11.5 Directional Lights, Positional Lights
and Attenuation of Intensity

Directional and Positional Light Sources

We know that the value of the GL POSITION parameter of a light source L
specifies its location [x y z w]T in homogeneous coordinates.434
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If w 6= 0, then the light source is called positional , or local , and located
at world coordinates [x/w y/w z/w]T . This is the kind of source we have
used so far. If w = 0, then the light source is directional and assumed
located at an infinite distance in the direction of [x y z]T from the origin.
See Figure 11.22.

(x, y, z)

(x/w, y/w, z/w) = position of light specified
to be at (x, y, z, w)

O

V1

V0

infinitely
far
light source

Figure 11.22: Directional versus positional light: the direction vector from each vertex
toward the directional light is black and parallel to the direction of the directional light,
while that toward the positional light is blue.

A positional light is located within the environment, e.g., a car headlight,
while a directional light is far removed, e.g., the sun. From the point of view
of lighting calculation, the difference is that the light direction vector l from
a vertex V to the light source L depends on the coordinates of V if L is
positional, while it is constant for all vertices if L is directional. Evidently,
lighting calculation is cheaper for directional sources.

The default value for GL POSITION is [0 0 1 0]T , which defines a directional
light shining down from high up the z-axis.

Experiment 11.13. Press ‘p’ or ‘P’ to toggle between Positional and
directional light in lightAndMaterial2.cpp.

The white wire sphere indicates the positional light, while the white
arrow the incoming directional light. End

Attenuation of Light

In the real world, the intensity of light from a source diminishes with distance
from the source following an inverse square law. This phenomenon, called
distance attenuation, can be modeled in OpenGL as well by a multiplicative
distance attenuation factor

1

kc + kld+ kqd2 435
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where d is the distance from the light source and kc, kl and kd are the values of
the light parameters GL CONSTANT ATTENUATION, GL LINEAR ATTENUATION

and GL QUADRATIC ATTENUATION, respectively. These values are set by
statements of the form

glLightf(GL LIGHTi, GL CONSTANT ATTENUATION, kc);
glLightf(GL LIGHTi, GL LINEAR ATTENUATION, kl);
glLightf(GL LIGHTi, GL QUADRATIC ATTENUATION, kq);

The default values are kc = 1 and kl = kq = 0, which imply no attenuation
over distance at all. Attenuating the intensity of a directional light over
distance is not meaningful as it’s already infinitely far from every vertex;
therefore, default values for the attenuation parameters cannot be changed
for such a source.

Experiment 11.14. Run lightAndMaterial1.cpp. The current values
of the constant, linear and quadratic attenuation parameters are 1, 0 and 0,
respectively, so there’s no attenuation. Press ‘t/T’ to decrease/increase the
quadratic aTtenuation parameter. Move the ball by pressing the up/down
arrow keys to observe the effect of attenuation. End

11.6 Spotlights

The default for a light source is that it’s regular , emitting light in all
directions. This can be altered by turning it into a spotlight , in which case
the emitted light is in the shape of a cone. Figures 11.23(a) and (b) show,
respectively, plane sections of the light from both a regular and a spotlight.

spotlight L 

l

-l
α

regular light source

light cone
light ball

(a) (b)

V

spotDirection

spotAngle

Figure 11.23: Sections of (a) Regular light (b) Spotlight. Shown for the spotlight are
the light direction vector l from vertex V toward light source L, the inverse vector −l
from the light source toward the vertex, the direction vector spotDirection of the cone’s
axis and the half-angle spotAngle at its apex.

436
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Experiment 11.15. Run spotlight.cpp, which shows a bright white
spotlight illuminating a multi-colored array of spheres. A screenshot was
shown earlier in Figure 11.19.

Press the page up/down arrows to increase/decrease the angle of the
light cone. Press the arrow keys to move the spotlight. A white wire mesh
is drawn along the light cone boundary. End

All statements pertaining to the spotlight properties of the single light
source of spotlight.cpp are located in the drawScene() routine. The first
step to turning a light source L into a spotlight is to specify the half-angle
at the apex of the light cone, called the cone angle, with the command

glLightf(GL LIGHT0, GL SPOT CUTOFF, spotAngle)

which, in fact, sets the cone angle to the value spotAngle. This should be
between 0.0 and 90.0. The default is the special value of 180.0, meaning
that L is not a spotlight, but a regular source emitting in all directions.

The next step is to specify the direction of the spotlight or, more
specifically, that of the axis of its cone with a command

glLightfv(GL LIGHT0, GL SPOT DIRECTION, spotDirection)

which sets the axis in a direction parallel to the vector

spotDirection = [x y z]T

The default value of GL SPOT DIRECTION is [0 0 − 1]T , aiming the spotlight
down the negative z-axis.

A final spotlight parameter is GL SPOT EXPONENT, whose value is called the
spotlight attenuation factor and which controls the distribution of intensity
through the light cone. If the value of GL SPOT EXPONENT is h and the
angle between the axis of the light cone and the direction from source L
toward vertex V is α, then the intensity of light at V is attenuated by the
multiplicative factor cosh α. This, of course, presumes that V lies within the
light cone in the first place; if not, no light reaches V from L at all. Note
that, as depicted in Figure 11.23, a vector from L toward V is, simply, −l,
the negative of a light direction vector.

The motivation behind the spotlight attenuation factor is similar to that
for the angular attenuation factor in the calculation of specular reflection in
Equation (11.8) – so that the greater the value of h, the more rapidly the
intensity of the spotlight attenuates away from the cone’s axis. Equivalently,
the greater h the more “concentrated” the spotlight. The default value of
GL SPOT EXPONENT is 0, implying no attenuation at all.

Experiment 11.16. Run again spotlight.cpp. The current value of the
spotlight’s aTtenuation is 2.0, which can be decreased/increased by pressing
‘t/T’. Note the change in visibility of the balls near the cone boundary as
the attenuation changes. End 437
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Exercise 11.12. A spotlight should always be positional. Why?

For use in the upcoming final OpenGL light equation, let’s write a single
complete formula for a spotlight attenuation factor or, briefly, saf , at a vertex
V , for a given light source L. Denote the unit vector along the spotlight
axis – the normalized value of GL SPOT DIRECTION – by d and assume that
l, the light direction vector from V , is normalized as well (see Figure 11.23).
Then:

saf =

 1 , if spotAngle = 180◦

0 , if − l · d < cos(spotAngle)
(−l · d)h , otherwise

(11.11)

Here’s how to parse the formula.
The first line is the case when L is not a spotlight, so there’s no

attenuation.
For the second line, recall that −l is the unit vector from L toward V .

Therefore, −l · d = cosα, where α is the angle between the axis of the light
cone and the direction of V from L. Now, if cosα < cos(spotAngle), then
α > spotAngle, which means that V lies outside the light cone and gets zero
light. This explains the second line.

The third line, of course, gives the angular attenuation factor.

Exercise 11.13. Why isn’t it necessary to write (max{−l ·d , 0})h, instead
of (−l · d)h, in Equation (11.11) in a manner similar to the first lighting
equation (11.10)?

Exercise 11.14. (Programming) In addition to the spotlight atten-
uation, light from a spotlight source can be distance attenuated as well.
Additionally, allow distance attenuation to be controlled in spotlight.cpp.
Add vertical motion capability to the light source to in order to accentuate
the effect of distance attenuation. And while you’re at it, why not make the
light emerge from a well at the bottom of a flying saucer?!

11.7 OpenGL Lighting Equation

We now have the two additional pieces needed to enhance the first lighting
equation (11.10) to the form that is, in fact, used by OpenGL to calculate
RGB color intensities at a vertex V , namely, distance attenuation and
spotlight attenuation. The enhancement is straightforward.

All symbols from the first lighting equation retain the same meaning.
Additionally, di denotes the distance of V from the ith light source; kic, k

i
l

and kiq denote, respectively, the constant, linear and quadratic attenuation

parameters for the ith light source; and saf i is the spotlight attenuation
factor for the ith light source at the vertex V , as given by Equation (11.11).438
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So finally, here it is, the grand ole lighting equation of OpenGL:

VX = Vemit, X +

globAmbX ∗ Vamb, X +
n−1∑
i=0

1

kic + kild
i + kiq(d

i)2
∗ saf i ∗(

Liamb, X ∗ Vamb, X +

max{li ·n , 0} ∗ Lidif, X ∗ Vdif, X +

(max{si ·n , 0})f ∗ Lispec, X ∗ Vspec, X
)

(11.12)

where VX is the color intensity at V , X being any of RGB.
The additions to the first lighting equation (11.10) are exactly the two

multiplicative terms on the third line of the current equation, representing
distance attenuation and spotlight attenuation, respectively.

Remark 11.8. It’s really Phong’s lighting equation, but, given the context,
we’ll more often than not call it the OpenGL lighting equation.

Remark 11.9. We must revisit Exercise 11.6 at this time. Its implication
that all individual light source ambients can be consolidated into the global
ambient is not true any more if one uses Equation (11.12) instead of
Equation (11.10), because the same light source can contribute different
amounts of ambient light to different vertices owing to distance and spotlight
attenuation.

Nevertheless, the simplification of setting all individual light source
ambients to zero, and adjusting only the global, is probably still authentic
enough for most applications.

Exercise 11.15. If there is a single directional light source in an OpenGL
program, which is not distance attenuated, which of the three – ambient,
diffuse and specular – reflectance components at its vertices is changed by
translating an object?

Exercise 11.16. If there is a single positional light source in an OpenGL
program, which is not a spotlight and not distance attenuated, which of the
three – ambient, diffuse and specular – reflectance components at an object’s
vertex can change by moving the light source? By translating the object?

11.8 OpenGL Shading Models

A shading model is a method to shade, or color, the interiors of primitives.
Keep in mind that Phong’s lighting model, as implemented through the
OpenGL lighting equation, determines colors only at the vertices of primitives,
but says nothing about how to spread them inside. OpenGL’s default shading 439



i
i

i
i

i
i

i
i

Chapter 11

Color and Light

model, called smooth shading or Gouraud shading, is to interpolate color
values computed at its vertices through a primitive’s interior. We discussed
in Section 7.2 the mechanics of interpolation by computing barycentric
coordinates of interior points.

An alternate shading model, called flat shading , is available, as well, in
OpenGL. It is specified by a call to

glShadeModel(GL FLAT)

The default of smooth shading is restored by calling

glShadeModel(GL SMOOTH)

When flat shading, even if the color values differ across the vertices of a
primitive, OpenGL chooses one of them and applies its color to the entire
primitive. For example, the first vertex (according to the order in the code)
of a polygon is used. In a triangle strip, the i th triangle is painted with the
color of the i+ 2 th vertex. The reader is referred to the red book for a full
listing of which vertex it is whose color is used for a given primitive.

Flat shading can be a reasonable alternative in the absence of lighting.
Computationally it’s, of course, far less expensive than smooth shading. One
interesting application of flat shading is in applying “discrete” color schemes,
which, often, is difficult with smooth shading. The following experiment is
an illustration.

Experiment 11.17. Run checkeredFloor.cpp, which creates a checkered
floor drawn as an array of flat shaded triangle strips. See Figure 11.24. Flat
shading causes each triangle in the strip to be painted with the color of the
last of its three vertices, according to the order of the strip’s vertex list.

End

Figure 11.24: Screenshot
of checkeredFloor.cpp.

Exercise 11.17. (Programming) Try and replicate the checkered floor
of the preceding experiment using smooth shading instead of flat.

In Section 11.12 we’ll see yet another shading model – Phong’s
shading model – which is more sophisticated than smooth shading and
computationally more expensive as well. Phong’s shading model is not
available in first-generation OpenGL, i.e., OpenGL 1.x, but can be user-
coded in the second generation of the API.

11.9 Animating Light

There are three ways that a light source can be animated by changing spatial
properties:

1. By moving its position.

2. By changing its direction if it’s a spotlight.440
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3. By changing the light cone angle if it’s a spotlight.

We’ve already seen light animation in two programs in this chapter:
lightAndMaterial2.cpp and spotlight.cpp.

The things to keep in mind are:

(a) A light source’s position vector, specified by a glLightfv(light,
GL POSITION, lightPos) statement, is transformed by the value of
the current modelview matrix by multiplication from the left. (See
Section 4.2 if you need to review modelview matrices.)

Effectively, modelview transformations in the code prior to the
glLightfv(light, GL POSITION, lightPos) statement apply to a light’s
position, exactly as those prior to a glVertex3f() statement, defining
a vertex, apply to that vertex.

(b) Likewise, a spotlight source’s direction vector, specified by the
glLightfv(light, GL SPOT DIRECTION, spotDirection) statement is
transformed by the value of the current modelview matrix by
multiplication from the left.

For example, as the light source of sphereInBox1.cpp is positioned
by the glLightfv(GL LIGHT0, GL POSITION, lightPos) statement in
the initialization routine setup(), it is unaffected by any modelview
transformations in drawScene().

However, both lights of lightAndMaterial1.cpp are positioned in the
display routine following the viewing command gluLookAt(), so their
positions are, in fact, transformed by gluLookAt(), which effectively means
that the lights stay static relative to the scene, no matter if the viewpoint is
changed. The position of the lights in lightAndMaterial2.cpp is similarly
transformed by its own gluLookAt().

Note: The push-pop pairs surrounding the code to position the lights in
both programs are to isolate the transformations applied to the spheres that
depict the light sources.

The spotlight of spotlight.cpp is positioned in the display routine after
the viewing transformation and a user-specified translation; moreover, its
cone angle can be changed by the user too. We ask you next to look into
changing its direction.

Exercise 11.18. (Programming) Consider this an extension of Exer-
cise 11.14 – add capability to aim the spotlight of spotlight.cpp.

Remark 11.10. We’ve discussed only animating the spatial attributes of a
light source. Color values can easily be animated as well.

Exercise 11.19. (Programming) Cause the color of the balls of
spotlight.cpp to brighten, fade and change. 441
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Exercise 11.20. (Programming) Make the ball of ballAndTorus.cpp
carry a spotlight, which is aimed always at the torus, and whose cone angle
and color change as the ball travels. You may want to copy some light
and material properties from ballAndTorusShadowed.cpp, but ignore the
shadows.

11.10 Partial Derivatives, Tangent Planes
and Normal Vectors 101

This section is an introduction to the calculus sometimes required to calculate
normals to surfaces. It is not mandatory reading. We suggest you skip this
section initially and consult it later if need be.

Actually, if you know how to compute derivatives of a function of a single
variable, e.g., f(x) = x2 or f(x) = sinx, as we’ll assume you do, you already
know how to compute partial derivatives. Because. . .

Definition 11.1. Suppose that f is a function of more than one variable
x, y, . . . The partial derivative of f with respect to one of these variables, say
x, is the derivative of f as a function only of x, assuming the other variables
all fixed. The partial derivative of f with respect to x is denoted ∂f

∂x .

Example 11.6. Evaluate the partial derivatives of

f(x, y) = x2 + y2

at the point (1, 2).

Answer : We have

∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = 2y

Therefore,
∂f

∂x
(1, 2) = 2,

∂f

∂y
(1, 2) = 4

Remark 11.11. Often ∂f
∂x (x, y) is simply written ∂f

∂x , e.g., the first two
equations of the preceding answer could be written

∂f

∂x
= 2x,

∂f

∂y
= 2y

Example 11.7. Evaluate the partial derivatives of

f(x, y) = x2 sin y

at the point (1, π/2).442
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Answer : We have

∂f

∂x
= 2x sin y,

∂f

∂y
= x2 cos y

Therefore,
∂f

∂x
(1, π/2) = 2,

∂f

∂y
(1, π/2) = 0

Example 11.8. Evaluate the partial derivatives of

f(x, y, z) = xz + sinx cos y cos z + y

at the point (π/2, π, 0).

Answer : We have

∂f

∂x
= z+cosx cos y cos z,

∂f

∂y
= 1−sinx sin y cos z,

∂f

∂z
= x−sinx cos y sin z

Therefore,

∂f

∂x
(π/2, π, 0) = 0,

∂f

∂y
(π/2, π, 0) = 1,

∂f

∂y
(π/2, π, 0) = π/2

Exercise 11.21. Evaluate the partial derivatives of

f(x, y) = xy

at the point (2, 3).

Exercise 11.22. Evaluate the partial derivatives of

f(x, y, z) = x cos y + y cos z + z cosx

at the point (π/2, 0, π/2).

The reader may wonder that if the partial derivative ∂f
∂x , for example, is

obtained by differentiating f with respect to the single variable x, assuming
the others fixed, then why those other variables occasionally pop up again
in the expression for ∂f

∂x? Here’s the reason.
Consider the function f(x, y) = x2 sin y of Example 11.7 above. Fixing

y at, say, the value π/6 gives the function f(x, π/6) = x2/2, while fixing y
at π/2 gives the function f(x, π/2) = x2. Both f(x, π/6) and f(x, π/2) are
functions of the one variable x, but they are different functions because y’s
been fixed at two different values.

Moreover,
∂f

∂x
(x, π/6) =

d

dx
(x2/2) = x and 443
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∂f

∂x
(x, π/2) =

d

dx
(x2) = 2x

are different as well, as they are derivatives of different functions. This is
why ∂f

∂x depends on y, as well as on x.

So far so good. At least calculating partial derivatives is no different
from calculating ordinary derivatives. But what do partial derivatives mean?
For example, we understand the geometric meaning of ordinary derivatives
along curves specified both implicitly and parametrically:

(a) Implicit : Suppose a curve is given by the equation

y = f(x)

Then the value of
df

dx

at x = a is the gradient of the tangent line to the curve at the point
(a, f(a)).

For example, the gradient of the tangent line l at the point (1, 1) of
the parabola

y = x2

is 2 as
d

dx
(x2) = 2x

which equals 2 when x is 1. See Figure 11.25(a).

l

v

(a) (b)

(1, 1)

x

y y

(0, 1, π/2)

z

x

Figure 11.25: Tangents: (a) Tangent line l to the parabola y = x2 at (1, 1) (b) Tangent
vector v to the helix c(t) = (cos t, sin t, t) at (0, 1, π/2).

(b) Parametric: Suppose a curve is given by

c(t) = (f(t), g(t), h(t))444
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Then the value of the vector

c′(t) =

[
df

dt

dg

dt

dh

dt

]T
at t = a is a tangent vector (provided it’s non-zero) to the curve at
the point (f(a), g(a), h(a)).

For example, a tangent vector v to the helix

c(t) = (cos t, sin t, t)

at the point (0, 1, π/2), corresponding to t = π/2, is [−1 0 1]T , as[
d

dt
(cos t)

d

dt
(sin t)

d

dt
(t)

]T
= [− sin t cos t 1]T

which equals [−1 0 1]T when t = π/2. See Figure 11.25(b).

It turns out that, just as the computation of partial derivatives is based
on computing ordinary derivatives, their geometric significance obtains from
that of ordinary derivatives too. Here’s how:

x

z

yy

z

x

P P

s: z = f(x, y) s: z = f(x, y)

(a) (b)

plane 
y = b 

plane 
x = a 

l1 l2

z = f(x, b)

z = f(a, y)

Figure 11.26: Section of the graph s of z = f(x, y) by the (a) plane y = b, giving the
tangent line l1 at P = (a, b, f(a, b)), (b) plane x = a, giving the tangent line l2 at P .

(a) Implicit : Consider z = f(x, y), a function of two variables. It defines
a surface s, called the graph of f . See Figure 11.26(a).

Now, if we fix y at, say, the value b, then z = f(x, b) gives a curve s.
In fact, this curve is the section of s by the plane y = b. 445
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We know that the value of ∂f∂x at (a, b) is the value at a of the ordinary

derivative d
dxf(x, b). This helps find geometric meaning for the partial

derivative as follows.

The value of
∂f

∂x

at (a, b) is the gradient of the tangent line l1 to the sectional curve
z = f(x, b) at the point P = (a, b, f(a, b)).

Likewise, the value of
∂f

∂y

at (a, b) is the gradient of the tangent line l2, at the point P =
(a, b, f(a, b)), to the curve z = f(a, y), which is the section of s by
the plane x = a (Figure 11.26(b)).

(b) Parametric:

Consider next the surface s specified by the parametric equations

x = f(u, v), y = g(u, v), z = h(u, v), (u, v) ∈W

where W = [u1, u2]× [v1, v2] is a rectangle in uv parameter space. The
function (u, v) 7→ s(u, v) = (f(u, v), g(u, v), h(u, v)) maps W to the
surface s in 3-space. See Figure 11.27.

T

∂f       ∂h
∂v

T

y

z

x

(a, b)

c1(u) = s(u, b)

c2(v) = s(a, v)u
s

P = s(a, b)

v

v = b 

u 
= 

a

W

∂v∂v
∂g

∂u∂u∂u
∂f       ∂h∂g

p

s(u, v)(u, v)

Figure 11.27: The surface s is the image of a parameter rectangle W by the map
(u, v) 7→ s(u, v) = (f(u, v), g(u, v), h(u, v)). Tangents to the parameter curves on s at
the point P = s(a, b) span the tangent plane p at P .446
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Fix a point (a, b) ∈ W . The image of the line v = b by s is the
u-parameter curve c1 with equation

c1(u) = (f(u, b), g(u, b), h(u, b)), u ∈ [u1, u2]

The tangent vector to this curve is

c′1(u) =

[
d

du
f(u, b)

d

du
g(u, b)

d

du
h(u, b)

]T
=

[
∂f

∂u
(u, b)

∂g

∂u
(u, b)

∂h

∂u
(u, b)

]T
at u ∈ [u1, u2]. Therefore, the value of the vector[

∂f

∂u

∂g

∂u

∂h

∂u

]T
at the point (a, b) is a tangent vector (provided it’s non-zero) to the
u-parameter curve

c1(u) = s(u, b)

at the point s(a, b).

Likewise, the value of the vector[
∂f

∂v

∂g

∂v

∂h

∂v

]T
at the point (a, b) is a tangent vector (provided it’s non-zero) to the
v-parameter curve

c2(v) = s(a, v)

at the point s(a, b).

Definition 11.2. If the tangent vectors[
∂f

∂u

∂g

∂u

∂h

∂u

]T
and [

∂f

∂v

∂g

∂v

∂h

∂v

]T
to the two parameter curves through the point P = s(a, b) are linearly
independent – in other words, they are not collinear – then they span a
plane p, called the tangent plane to the surface s at P . This is the case in
Figure 11.27.

Any line l on p through P is said to be a tangent line to s at P and any
non-zero vector v lying on p is said to be a tangent vector to s at P (v is
usually drawn emanating from P ). See Figure 11.28. The line perpendicular
to p through P is said to be the normal line to s at P and any non-zero
vector lying on this line a normal vector to s at P . 447
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s 

P tangent
plane p

tangent line
tangent line

tangent vector
tangent vector

normal line

normal
vector

Figure 11.28: Two tangent lines and vectors on them, normal line and a normal vector
to the surface s at P .

A tangent plane to a surface is precisely the geometric analogue of a
tangent line to a curve. A thin straight stick pressed to a plane wire curve
aligns itself along the tangent line at the point of contact; similarly, a thin
flat board pressed to a surface in 3-space aligns itself along the tangent plane
at the point of contact.

Example 11.9. Determine the tangent plane and a normal vector to the
paraboloid

z = x2 + y2

at the point (1, 2, 5).

Answer : It’s easy first to write the given implicit equation in the parametric
form

x = u, y = v, z = u2 + v2 (11.13)

Differentiating, [
∂x

∂u

∂y

∂u

∂z

∂u

]T
= [1 0 2u]T[

∂x

∂v

∂y

∂v

∂z

∂v

]T
= [0 1 2v]T (11.14)

The point (1, 2, 5) corresponds to the parameter values u = 1 and v = 2
in (11.13). Therefore, two tangent vectors to the paraboloid at (1, 2, 5)
are obtained by substituting these particular parameter values into the
general expressions (11.14) above for tangent vectors at arbitrary points.
Particularly, these two vectors are [1 0 2]T and [0 1 4]T , which are evidently
linearly independent. Therefore, the tangent plane to the paraboloid at
(1, 2, 5) is spanned by [1 0 2]T and [0 1 4]T . See Figure 11.29.

A normal vector to the paraboloid at the point (1, 2, 5) is perpendicular
to its tangent plane there and, therefore, to both spanning vectors [1 0 2]T448
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tangent vector

x

y

z

(1, 2, 5)

[1 0 2]T

tangent vector
[0 1 4]T

normal vector

paraboloid

[-2 -4 1]T

z = x2 + y2

tangent

plane

Figure 11.29: Tangent vectors, tangent plane and normal vector at the point (1, 2, 5) to
the paraboloid z = x2 + y2.

and [0 1 4]T . It is obtained, then, as the cross-product of the latter (cross-
products of vectors were reviewed in Section 5.4.3), viz.,

[1 0 2]T × [0 1 4]T = [−2 − 4 1]T

Remark 11.12. Computing the tangent plane at a point of a surface and
computing a normal vector there are equivalent.

Exercise 11.23. Determine the tangent plane and a normal vector to the
circular cylinder

x = cosu, y = sinu, z = v

at the point corresponding to the parameter values (u, v) = (π/4, 3).

Exercise 11.24. Determine the tangent plane and a normal vector to the
saddle-shaped surface (hyperbolic paraboloid is the mathematical name)

z = xy

at the point (2, 3, 6).

Exercise 11.25. (Programming) Draw the paraboloid of Example 11.9
and its tangent plane at some point. The paraboloid should be wireframe
and the tangent plane a finely meshed rectangle. Allow the user to press the
arrow keys to slide the tangent plane over the paraboloid.

Normals from Function Gradients

Definition 11.2 of a tangent plane assumes a parametric representation of
the surface. There’s, however, a neat way to compute directly a normal
vector at a point of a surface given implicitly. 449
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If a surface s is specified implicitly by an equation of the form

F (x, y, z) = 0

then a normal vector to the surface at the point (a, b, c) is given by the value
of the so-called gradient of F , denoted grad(F ), at that point, provided this
value is not the zero vector. The gradient is defined by

grad(F ) =

[
∂F

∂x

∂F

∂y

∂F

∂z

]T
We’ll not try to prove that grad(F ) is indeed normal to the surface

F (x, y, z) = 0, but simply assume so for the purpose of computation. For
the actual proof and more about the gradient, as well as its related functions
divergence and curl , the reader is referred to books on vector calculus, e.g.,
Schey [118] and Spiegel [130].

Example 11.10. Determine a normal vector to the paraboloid

z = x2 + y2

at the point (1, 2, 5).

Answer : Write the implicit equation in the form

F (x, y, z) = z − x2 + y2 = 0

Then

grad(F ) =

[
∂F

∂x

∂F

∂y

∂F

∂z

]T
= [−2x − 2y 1]T

Therefore, a normal vector at the point (1, 2, 5) is [−2 − 4 1]T , which is
obtained from putting x = 1 and y = 2 in the preceding equation. This
result checks with Example 11.9.

Exercise 11.26. Verify your answer to Exercise 11.23 by finding a normal
vector to the cylinder using the grad function. You must write an implicit
equation for the cylinder first.

11.11 Computing Normals and Lighting
Surfaces

Look carefully at the OpenGL lighting equation (11.12) once more. Outside
of a bunch of user-specified color properties, the only data needed to compute
the color intensities at a vertex V of an object O consists of the position of
V , the positions of the light sources and the normal vector n at V .450
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The position of V is, of course, part of O’s design. As for the light
sources, they are usually few, and the user is free to locate them as he
pleases. Remaining is the normal vector n, which the user is free to set as
well. However, for authentic lighting it should actually be perpendicular to
the surface of O at V or at least nearly so. For example, the choice of the
normal vector n at the vertex V of the sphere in Figure 11.30 seems good,
though either of the other two vectors drawn there could conceivably have
been picked as well.

V

n

O

Figure 11.30: Three
vectors at a vertex on a
sphere, one of which has
been chosen as the normal.

We’ll discuss computing surface normals following the informal taxonomy
of 2D objects in Section 10.2 before moving on to Bézier and quadric surfaces
for which OpenGL provides automatic normals.

11.11.1 Polygons and Planar Surfaces

Polygons in particular, and planar surfaces in general, are the simplest. The
normal at each vertex is simply normal to the plane itself containing the
surface. In particular, unit vertex normals are all identical across a given
side of the surface.

So how does one determine the normal direction to a plane p? If two
non-collinear vectors u and v are known to lie on p, then the cross-product
u × v is normal to p (cross-products were reviewed in Section 5.4.3). For
example, any two adjacent edges of a polygon determine non-collinear vectors
u and v spanning the plane p containing the polygon; therefore, u × v is
normal to p. In Figure 11.31, n = (P1 − P0)× (P4 − P0) is normal to p.

n = 
u x v 

v
u
P1P0

P2

P3

P4

Figure 11.31: Vector n
is normal to the plane p.

Exercise 11.27. Determine a normal to the plane p of the triangle with
vertices at

P0 = [0 3 5]T , P1 = [1 − 2 0]T , P2 = [3 3 3]T

11.11.2 Meshes

Polygonal meshes are of interest next. Let’s work with real examples.

Experiment 11.18. Run again sphereInBox1.cpp. The normal vector
values at the eight box vertices of sphereInBox1.cpp, placed in the array
normals[], are

[±1/
√

3 ± 1/
√

3 ± 1/
√

3]T

each corresponding to one of the eight possible combinations of signs. End

The choice of the normals in sphereInBox1.cpp is easily motivated.
The box being situated symmetrically about the origin, the normal values
are chosen as unit vectors along the lines from the origin to each of the
eight vertices, which indeed give the values above. The box is depicted in
Figure 11.32(a), where only the normal vector at the lower-right vertex V 451
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(a) (b)

V
nnormal to f2 

normal 
to f3 

normal to f1 

x

y

z

O

f3

f2

f1

f3

f2

f1

Figure 11.32: (a) The box of sphereInBox1.cpp with the averaged normal vector n at
vertex V , together with the normals to the three faces that meet at V (f1 right face, f2
front face, f3 bottom face) (b) The unaveraged normals of sphereInBox2.cpp.

of the front face is shown: it is the arrow n drawn by extending OV a unit
distance from V .

In fact, probably a better rationale for this particular choice of normals –
which would still hold if the same box happened to be drawn not centered at
the origin, but elsewhere – is that the one at each vertex is the normalized
average of the unit outward normals to the three faces meeting at that
vertex. For example, in Figure 11.32(a) the unit outward normals to f1, f2
and f3 are [1 0 0]T , [0 0 1]T and [0 − 1 0]T , respectively, whose average is
[1/3 − 1/3 1/3]T , which normalizes to [1/

√
3 − 1/

√
3 1/

√
3]T , which

one can verify from the code is indeed the value of the normal at V in
sphereInBox1.cpp.

Although they possess the virtue of symmetry, it’s clear, nevertheless,
the box normals of sphereInBox1.cpp are not nearly actually perpendicular
to the surface of the box, in particular, not to any of its faces. This
consideration leads to another approach – to set the normal at each vertex
of a face as a normal to that face itself. This is implemented as an option in
sphereInBox2.cpp.

Experiment 11.19. Run sphereInBox2.cpp, which modifies sphereIn-

Box1.cpp. Press the arrow keys to open or close the box and space to toggle
between two methods of drawing normals.

The first method is that of sphereInBox1.cpp, specifying the normal
at each vertex as an average of incident face normals. The second creates
the box by first drawing one side as a square with the normal at each of
its four vertices specified to be the unit vector perpendicular to the square,
then placing that square in a display list and, finally, drawing it six times
appropriately rotated. Figure 11.32(b) shows the vertex normals to three
faces. Figure 11.33 shows screenshots of the box created with and without452
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averaged normals. End

(a) (b)

Figure 11.33: Screenshot of sphereInBox2.cpp: (a) Averaged box normals
(b) Unaveraged box normals.

The contrast in output between the two ways of defining box normals
in sphereInBox2.cpp is clear and the reason not hard to understand. The
first method softens the edges because the averaged normal at each vertex
is shared by all its three adjacent faces. Consequently, the interpolation of
color values in each face’s interior continues smoothly across its boundary.

The second method is significantly different. As each face is drawn
separately with the normals at all its four vertices equal and perpendicular
to the face itself, interpolation in the interior results in the entire face being
colorized as if with that one normal value throughout. Moreover, this normal
value turns abruptly by 90◦ from one face to the next. The upshot is that
there is a significant difference in color intensities, as well, from one face
to the next, throwing the edges between them into sharp relief. Which
approach to choose depends on the effect desired.

Remark 11.13. Using the second method, colors at pixels along an edge are
defined differently by its two adjacent faces, while pixel colors at a vertex
are defined, in fact, by its three adjacent faces. At these pixels, therefore,
code order determines which color prevails. This is not desirable, but it is
not a serious issue because such “ambiguous” pixels lie only along edges and
not in the interior of faces which constitute the bulk of the figure.

Versions of the averaging approach implemented sometimes to achieve
greater realism use a weighted average rather than a straight one. Two
possibilities are:

(a) Weight each adjacent face normal with the angle of that face at the
vertex. In Figure 11.34, five faces meet at the vertex V subtending
angles θ1, θ2, . . . , θ5, respectively. The angle-weighted average value of 453
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the normal at V is:

n =
θ1n1 + θ2n2 + θ3n3 + θ4n4 + θ5n5

θ1 + θ2 + θ3 + θ4 + θ5

n

V n5

n1

A1

θ1

θ3 θ4

θ5
θ2 A5

A3 A4

A2

n2

n3 n4

Figure 11.34: Weighted average of normals: θi are angles, Ai area, ni face normals and
n a weighted average normal at V .

(b) Weight each adjacent face normal with the area of that face. The
areas of the five faces in Figure 11.34 meeting at V are A1, A2, . . . , A5,
respectively. The area-weighted average value of the normal at V is
then:

n =
A1n1 +A2n2 +A3n3 +A4n4 +A5n5

A1 +A2 +A3 +A4 +A5

Important : Whatever approach you adopt to compute normals, make sure,
as a last step, to normalize each to unit length (easy enough – just divide
each by its length). The reason is that OpenGL uses the dot product to
compute the cosine of the angle between two vectors (see Equation (11.12)),
which is correct only if they are of unit length.

Example 11.11. For the trash can mesh whose vertices are given in
Figure 11.35, compute the unit normals to the three faces adjacent to the
vertex V . Then compute the (unweighted) average of these three normals
and normalize to unit length.

Answer : The three edge vectors emanating from V are:

u1 = [1 − 1 − 1]T − [1 − 1 1]T = −2k

u2 = [1.2 1 1.2]T − [1 − 1 1]T = 0.2i + 2j + 0.2k

u3 = [−1 − 1 1]T − [1 − 1 1]T = −2i454
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(-1, -1, 1)

(1, -1, -1)(-1, -1, -1)
(-1.2, 1, 1.2) (1.2, 1, 1.2)

(-1.2, 1, -1.2) (1.2, 1, -1.2)

V (1, -1, 1)

u2

u3

n

u1

n12

n31
n23

Figure 11.35: Trash can of five quadrilateral sides. The vectors n12, n23 and n31 from
V are normals to V ’s adjacent faces, while n is the averaged normal.

Therefore, the outward unit normal to the face with edges u1 and u2 is

n12 = (u1 × u2) / |u1 × u2| = (4i− 0.4j) /
√

42 + 0.42 ' 0.995i− 0.0995j

and that to the face with edges u2 and u3 is

n23 = (u2×u3) / |u2×u2| = (−0.4j+4k) /
√

42 + 0.42 ' −0.0995j+0.995k

while the outward unit normal to the face with edges u3 and u1, the bottom
face, is easily seen to be

n31 = −j

The normalize average of these normals is

n = (n12 + n23 + n31) / |n12 + n23 + n31|

' (0.995i− 1.199j + 0.995k) /
√

0.9952 + 1.1992 + 0.9952

' 0.538i− 0.649j + 0.538k

Exercise 11.28. (Programming) Use data from the preceding example
to replace the box of sphereInBox2.cpp with a trash can. Omit the sphere.
Let the user choose between averaged and unaveraged normals. Allow the
can to be rotated keeping the light source fixed.

11.11.3 General Surfaces

As a general surface is drawn by approximating it with a polygonal mesh,
the thought comes to mind to simply use the methods of the preceding
section to find normals. Precisely, (a) formulate a mesh approximation of
the surface and (b) specify the normal at each vertex as an average of those
of its adjacent faces (we really want to use an average here, especially if the 455
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original surface is smooth, to avoid color discontinuities between adjacent
mesh faces).

This approach is perfectly reasonable if the surface is known to the user
only by its mesh approximation. However, if one knows, say, a parametric
representation of the surface, why not get the normals from the “horse’s
mouth” – that being the parametrization itself? In other words, use the
parametrization to analytically compute the normals at the mesh vertices.
This makes for stable normals independent of the vagaries of the particular
mesh approximation, not to mention those of the averaging process (possibly,
angle-weighted or area-weighted). For example, working from the mesh
approximation of the surface s in Figure 11.36, normals to the six faces
adjacent to vertex V must be averaged to determine the normal n at V .
However, knowledge of s itself could enable a direct computation.

V

n

s

Figure 11.36: Normal
vector n to the surface s at
a vertex V of its mesh
approximation.

So let’s see how to compute normals analytically. We’re going to assume
in the following that you know that a tangent plane at the point s(u, v) to a
surface s given parametrically by the equations

x = f(u, v), y = g(u, v), z = h(u, v)

is spanned by the two vectors[
∂f

∂u

∂g

∂u

∂h

∂u

]T
and

[
∂f

∂v

∂g

∂v

∂h

∂v

]T
evaluated at (u, v) (provided they are not collinear). Moreover, a normal
vector to s at s(u, v) is the cross-product[

∂f

∂u

∂g

∂u

∂h

∂u

]T
×
[
∂f

∂v

∂g

∂v

∂h

∂v

]T
(11.15)

evaluated at (u, v). If you need to brush up, Section 11.10 has a review of
the needed calculus.

Denote the normalized value of the vector (11.15) – obtained by dividing
it by its magnitude – by

[fn(u, v) gn(u, v) hn(u, v)]T (11.16)

which, therefore, is a unit normal to s at s(u, v).
Finally, we’ll specify either [fn(u, v) gn(u, v) hn(u, v)]T or its reverse,

[−fn(u, v) − gn(u, v) −hn(u, v)]T , as the unit normal at s(u, v) depending
on which direction is appropriate for front-facing triangles. There’s not
much to worry about making a wrong choice, as it’ll be plenty clear from
the viewable output! Let’s get to work on a benign surface first.

Cylinder

Example 11.12. Consider the circular cylinder s(u, v) with parametric
equations

x = cosu, y = sinu, z = v, where (u, v) ∈ [−π, π]× [−1, 1]456
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We drew it using these equations in cylinder.cpp of Experiment 10.3.
To color and light, let’s do normal calculations. The vectors spanning the
tangent plane at s(u, v) are[

∂(cosu)

∂u

∂(sinu)

∂u

∂v

∂u

]T
= [− sinu cosu 0]T

and [
∂(cosu)

∂v

∂(sinu)

∂v

∂v

∂v

]T
= [0 0 1]T

so a normal vector is

[− sinu cosu 0 ]T × [ 0 0 1 ]T = [ cosu sinu 0]T

which happens to be normalized already. So, in the terminology of (11.16),
for the cylinder,

fn(u, v) = cosu, gn(u, v) = sinu, hn(u, v) = 0

We’ll add this normal data to cylinder.cpp next.

Experiment 11.20. Run litCylinder.cpp, which builds upon cyl-

inder.cpp using the normal data calculated above, together with color
and a single directional light source. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the cylinder. The functionality of being able to change the fineness of the
mesh approximation has been dropped. Figure 11.37 is a screenshot. End

Figure 11.37: Screenshot
of litCylinder.cpp.

Compare the two programs cylinder.cpp and litCylinder.cpp – it’s
not really a lot of code from the first to the second. Essentially, the additions
are (a) the fn(), gn() and hn() normal component functions as calculated
above, (b) the fillNormalArray() function to fill the array normals[], and
(c) a bunch of routine code specifying light and material properties, which
can be kept similar across most programs with lighting.

So the extra code arising from analytic normal computation is really
in (a) and (b), about 20 lines all told. Not too bad, huh? And it gets
better. As we used the template of cylinder.cpp to draw various surfaces,
simply swapping in new f(), g() and h() functions according to the
given parametrization, so we can use litCylinder.cpp for lit applications,
additionally swapping in new fn(), gn() and hn() functions.

Exercise 11.29. (Programming) Reverse the normals of litCylin-

der.cpp by changing their specification in the fillNormalArray() routine
as follows:

normals[k++] = -fn(i,j);

normals[k++] = -gn(i,j);

normals[k++] = -hn(i,j); 457
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Not good! As we remarked earlier, wrongly-oriented normals are easy to
spot. Can you fix the problem caused by the normal values above by a
minimal amount of code change only in the drawing routine?
Hint : Think orientation, in particular, reversing the orientation of the strip
triangles.

C
x

z

V
n

Figure 11.38: Normal n
to a cylinder.

Exercise 11.30. It’s a bit late now, but do we really need partial
derivatives, as in Example 11.12, to determine the normal to the cylinder at
the point V = (cosu, sinu, v)?

The outward normal to the cylinder at V evidently lies along a radius
of the circle C which is the section of the cylinder through V by a plane
perpendicular to its axis. See Figure 11.38. Use this to compute the
parametric equation for a unit normal vector to the cylinder without any
calculus.

Often, as in the preceding exercise, normals to a surface can be determined
by elementary geometric considerations. Unfortunately, this does not seem
to be the case with the doubly-curled cone of Experiment 10.8.

Doubly-curled Cone

Next, we light the doubly-curled cone of doublyCurledCone.cpp. Its
parametric equations are

x = t cos(A+ aθ) cos θ, y = t cos(A+ aθ) sin θ, z = t sin(A+ aθ),

where 0 ≤ t ≤ 1 and 0 ≤ θ ≤ 4π. A somewhat tedious calculation gives a
normal to the cone as[
∂x

∂θ

∂y

∂θ

∂z

∂θ

]T
×
[
∂x

∂t

∂y

∂t

∂z

∂t

]T
= [−at sin θ + t sin(A+ aθ) cos(A+ aθ) cos θ,

at cos θ + t sin(A+ aθ) cos(A+ aθ) sin θ,

− t cos2(A+ aθ)]T (11.17)

Moreover, the length of this normal is

t
√
a2 + cos2(A+ aθ) (11.18)

Dividing the normal (11.17) by its length (11.18) gives a unit normal to the
cone.

Figure 11.39: Screenshot
of litDoublyCurled-
Cone.cpp.

Experiment 11.21. The program litDoublyCurledCone.cpp, in fact,
applies the preceding equations for the normal and its length. Press ‘x/X’,
‘y/Y’, ‘z/Z’ to turn the cone. See Figure 11.39 for a screenshot.

As promised, litDoublyCurledCone.cpp is pretty much a copy of
litCylinder.cpp, except for the different f(), g(), h(), fn(), gn() and
hn() functions, as also the new normn() to compute the normal’s length.

End458
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Exercise 11.31. Verify Equations (11.17) and (11.18) for the normal and
its magnitude of the doubly-curled cone.

Exercise 11.32. (Programming) The doubly-curled cone would prob-
ably benefit from at least one more light source, particularly to brighten the
inside. Code this in.

Exercise 11.33. (Programming) Color and light the table of Experi-
ment 10.7. You don’t need any calculus in order to compute the normals to
the various component surfaces – which happen each to be either cylindrical
or flat. Make sure to choose normals so that edges appear sharp.

Exercise 11.34. (Programming) Color and light the helical pipe of
Experiment 10.4.

Exercise 11.35. (Programming) Color and light the pipe of Exer-
cise 10.46, which coils around a torus.

Exercise 11.36. (Programming) Color and light the single-sheeted
hyperboloid of Experiment 10.11.

Exercise 11.37. Which of the three components – ambient, diffuse and
specular – of light reflected from a vertex V are affected if the normal at V
is altered?

11.11.4 Bézier and Quadric Surfaces

Good news! All one has to do is type in the command glEnable(GL AUTO -

NORMAL) for OpenGL to automatically calculate unit normals at the vertices
of a Bézier surface which has been created using glMap2f(GL MAP2 VERTEX 3,

. . . ) and glEnable(GL MAP2 VERTEX 3).

Canoe

Figure 11.40: Screenshot
of litBezierCanoe.cpp.

Experiment 11.22. Run litBezierCanoe.cpp. Press ‘x/X’, ‘y/Y’, ‘z/Z’
to turn the canoe. You can see a screenshot in Figure 11.40.

This program illuminates the final shape of bezierCanoe.cpp of
Experiment 10.20 with a single directional light source. Other than the
expected command glEnable(GL AUTO NORMAL) in the initialization routine,
an important point to notice about litBezierCanoe.cpp is the reversal of
the sample grid along the u-direction. In particular, compare the statement

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0)

of litBezierCanoe.cpp with

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0) 459
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of bezierCanoe.cpp. This change reverses the directions of one of the
tangent vectors evaluated at each vertex by OpenGL and, correspondingly,
that of the normal (which is the cross-product of the two tangent vectors).

Modify litBezierCanoe.cpp by changing

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0);

back to bezierCanoe.cpp’s

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

Wrong normal directions! The change from bezierCanoe.cpp is necessary.
Another solution is to leave glMapGrid2f() as it is in bezierCanoe.cpp,
instead making a call to glFrontFace(GL CW). End

The lesson to take from this is that if you obtain normals automatically
from OpenGL, then you might have to subsequently alter their orientation
for authenticity, which is not unreasonable because OpenGL cannot know
which you intend to be the front face of a primitive.

Remark 11.14. If the user wishes to define her own normals for a Bézier
surface, she can do so with a glMap2f(GL MAP2 NORMAL, . . .) call. We’ll
not have occasion to use this call ourselves.

Quadrics are even simpler. The call

gluQuadricNormals(qobj, GLU SMOOTH)

automatically generates a normal at each vertex of the quadric pointed by
qobj.

The next program we’ll look at is a fairly substantial animation which
invokes both glEnable(GL AUTO NORMAL) for Bézier surface normals and
gluQuadricNormals(qobj, GLU SMOOTH) for quadric surfaces.

Movie with a Ship and Torpedo

Figure 11.41: Screenshot
of shipMovie.cpp.

Experiment 11.23. Run shipMovie.cpp. Pressing space start an
animation sequence which begins with a torpedo traveling toward a moving
ship and which ends on its own after a few seconds. Figure 11.41 is a
screenshot as the torpedo nears the ship.

There are a few different objects. The hull of the ship is obviously
inspired by the Bézier canoe of the previous experiment. The deck is a flat
Bézier surface – all its control point y-values are identical – which is designed
to fit the hull. Each of the ship’s three storeys is a cylindrical quadric, as is
its chimney.

The torpedo should be familiar from the program torpedo.cpp of
Experiment 10.21. Each of the four grayish boats in the background is
a couple of quads, while the sea itself is a solid blue cube.

The smoke from the chimney is a simple-minded particle system. In
particular, we render a sequence of quadric discs in point mode and hack for
it a coloring and animation scheme. End460
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Exercise 11.38. (Programming) The program shipMovie.cpp bears
a lot of improvement. Try at least the following:

(a) Add detail to the ship.

(b) Make the water more realistic, possibly by adding movement, variation
in color, etc.

(c) Put stars and a moon in the sky.

(d) Improve the smoke particle system.

(e) Make a particle system to simulate water spray from the torpedo’s
propeller.

Exercise 11.39. (Programming) Fill, paint and light the character of
animateMan*.cpp in surroundings less bland than a plane with a ball. Make
an animation sequence.

11.11.5 Transforming Normals

Normals are transformed by modelview transformations, but not as
straightforwardly as vertices are by multiplication from the left by the
transformation matrix. Let’s see how they are transformed by each of the
fundamental transformations – translation, rotation and scaling.

1. Translation:

A translation leaves a normal vector at a vertex unchanged because
the normal simply translates parallely (see Figure 11.42(a)).

n

translate
x

(a)

(b)

V

Figure 11.42: (a) Vertex normals translate parallely as the torus is translated (b) The
normal n at V is perpendicular to any vector x which lies on the tangent plane at V .

461
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2. Rotation and Scaling:

These cases are not as simple and require a bit of calculation.

A given rotation or non-degenerate scaling, say t, is a non-singular
linear transformation, with, therefore, a non-singular defining matrix,
say N . Suppose, as well, that n is a normal vector at a vertex V of an
object O. Therefore, n is perpendicular to an arbitrary vector, say x,
tangent to the surface of O at V (see Figure 11.42(b)).

Now, if we apply t, it will transform all the vertices of O, as well as
vectors tangent to O’s surface, by multiplication on the left by N .

Note: To convince yourself that tangent vectors are transformed
identically with vertices, think of a tangent vector as connecting two
vertices infinitesimally close together on the surface of O. Therefore,
these two vertices “carry” the tangent vector with them.

So x is transformed to Nx. We would, therefore, like to transform n
to a vector perpendicular to Nx. Since n is perpendicular to x, we
already have n ·x = 0, which is equivalent to nTx = 0, the latter being
a matrix equation. It follows that

nT (N−1N)x = nTx = 0

Therefore,

0 = nT (N−1N)x = (nTN−1)(Nx) = ((N−1)Tn)T (Nx)

(invoking rules of matrix algebra).

One sees that ((N−1)Tn) ·Nx = 0, so (N−1)Tn is indeed perpendicular
to Nx. The conclusion, then, is that the appropriate transformation
to apply to the normal vector n, under a rotation or non-degenerate
scaling corresponding to the matrix N , is left multiplication by (N−1)T ,
i.e., n 7→ (N−1)Tn.

OpenGL actually transforms normals as just described. If the current
modelview matrix is

M =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a24
a41 a42 a43 a44


then “erasing” the translational part, which, as we know, has no impact on
the normal, leaves the 3× 3 matrix

N =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


462
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and, in fact, the matrix (N−1)T to use to transform normals, called the
normal matrix, is stored in a state variable (which can be accessed by the
user via the Shading Language in OpenGL 2.0 and higher). It should be
noted that, correspondingly, the OpenGL normal is a 3-vector (recall that it
was only to accommodate translations into the matrix multiplication scheme
that real world 3-vectors were homogenized to length 4).

Exercise 11.40. We gave above a general formula for how a normal vector
is transformed by a rotation or non-degenerate scaling in terms of its defining
matrix. Ignoring the formula for a moment, can you deduce from elementary
considerations what should happen in the particular case of a rotation? Then
relate your answer to the formula.

11.11.6 Normalizing Normals

Normalizing a (non-zero) vector means dividing it by its magnitude to obtain
a vector with the same direction, but of unit length. We’ve already seen
that it’s important to specify normalized normals because OpenGL uses the
dot product to compute the cosine of the angle between two vectors, which
is correct only if they are both of unit length.

Here’s a simple modification of litTriangle.cpp to show what can
happen if one is careless.

Experiment 11.24. Run sizeNormal.cpp based on litTriangle.cpp.
The ambient and diffuse colors of the three triangle vertices are set to

red, green and blue, respectively. The normals are specified separately as
well, initially each of unit length perpendicular to the plane of the triangle.

However, pressing the up/down arrow keys changes (as you can see) the
size, but not the direction, of the normal at the red vertex. Observe the
corresponding change in color of the triangle. Figure 11.43 is a screenshot.

End

Figure 11.43: Screenshot
of sizeNormal.cpp.

There are, typically, two reasons why normals turn out not normalized:

(a) The user does not specify them of unit length in the first place.

(b) Even if they are specified of unit length, a subsequent application of a
scaling transformation changes the length.

If the user is not inclined to write code to ensure normals of unit length,
there’s a way to ask OpenGL’s help. Calling glEnable(GL NORMALIZE)

causes OpenGL to normalize all normal vectors before lighting calculation.
Beware, though, it’s not a particularly efficient call and should be avoided if
possible.

Experiment 11.25. Run sizeNormal.cpp after placing the statement
glEnable(GL NORMALIZE) at the end of the initialization routine. Press the
up/down arrow keys. The triangle no longer changes color (though the 463
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white arrow still changes in length, of course, because its size is that of the
program-specified normal). End

There’s a cheaper renormalization call, glEnable(GL RESCALE NORMAL),
which can be used if you originally did provide unit normals that were
subsequently all changed by the same scaling transformation.

11.12 Phong’s Shading Model

An alternate shading model first proposed by Phong, though computationally
far more intensive, significantly improves the realism of a rendered image.

Note: Phong’s shading model should not be confused with his lighting
model, which we know already that OpenGL implements.

Instead of computing light values only at primitives’ vertices and then
interpolating through its interior as in Gouraud shading – or smooth shading
as it’s also called, the OpenGL default – Phong suggested to (a) interpolate
the vertex normal values through the primitive, and then (b) compute light
values at each pixel using the interpolated normals.

V
n1

n0V0

V1V2

n2

n

t

Figure 11.44: Normals
n0, n1 and n2 at the
vertices of the triangle are
programmer-specified.
Shown also are (black)
normalized interpolated
normals at a few points
and a pixel centered at V .

Figure 11.44 illustrates the idea. Unit normals n0, n1 and n2 are specified
by the programmer at the vertices V0, V1 and V2, respectively, of triangle
t. These normals are then interpolated, and normalized, throughout t. For
example, if the barycentric coordinates of the point V are given by

V = c0V0 + c1V1 + c2V2

then the normal value n at V is computed to be

n = (c0n0 + c1n1 + c2n2) / |c0n0 + c1n1 + c2n2| (11.19)

(provided the denominator is not zero).
The color values of a pixel which happens to be centered at V are then

computed in Phong’s model using the lighting equation (11.12), where, now,
the normal value n applied is from (11.19) above, the color values V∗, X are
interpolated from the vertices as well, while the light direction and halfway
vectors li and si are determined from the coordinates of V itself.

OpenGL, as we know, offers only flat and Gouraud shading as options.
However, the OpenGL Shading Language, part of the version 2.0 specification,
allows individual pixels to be programmed, which means the programmer
herself can code in Phong shading. We’ll be doing precisely this as an
application, after learning the Shading Language ourselves in Chapter 20.

Remark 11.15. Phong lighting calculation at each vertex followed by
Gouraud shading, OpenGL’s default process, is often called per-vertex
lighting to contrast it with the per-pixel lighting of Phong’s shading model.
(More appropriate might have been per-vertex and per-pixel shading, but
the given usage is common.)464
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11.13 Summary, Notes and More Reading

In Chapters 4, 5 and 6 we learned to animate objects, in Chapter 10 to
draw them, and now we have begun to “dress them up” with color and
light. In this chapter we learned the underlying color and lighting models
which OpenGL implements, the related syntax, and how to use them to
specify light sources and material properties, as well as related environmental
parameters. The technical issue of normal computation was an important
part of our program too. We’ll continue this theme in the next chapter when
we learn of yet another technique to decorate an object, texturing.

For a further reference on coloring models, the somewhat encyclopedic
Wyszecki and Stiles [147] is frequently called the bible of color science. The
books by Berns [11] and Jackson et al. [71] are probably easier to read
though.

Since the publication of Phong’s model in 1975 [105] several other lighting
models, both local and global, have been proposed. Local models like Phong’s
do not consider object-object light interaction, while global ones do, thereby
displaying secondary effects such as shadows and reflections. Lighting models
are often used in an application-specific manner, certain models being more
realistic in rendering particular material properties and finishes.

A few of the local models which appeared after Phong’s are Blinn [14],
Cook-Torrance [28], He et al. [63, 64], Nayar-Oren [97], Poulin-Fournier [108]
and Schlick [120]. However, the only local model that we discuss or use in
this book is Phong’s.

The two most commonly implemented global models are ray tracing
[4, 143] and radiosity [54], which as a matter of fact complement each other.
Global models, though much more realistic than local ones, are notoriously
computation-intensive, so rarely apt for interactive applications. However,
they are often used when frames can be created off-line, as in movies. We
discuss both ray tracing and radiosity in Chapter 19.

The theory of lighting models necessarily involves a fair amount of physics
and mathematics. The reader interested in learning more is best advised
to start with advanced books such as those by Akenine-Möller, Haines &
Hoffman [1], Buss [21] and Watt [142] and then proceed to original research
papers, as the area is particularly active. The canonical source for the latest
in CG research in general is the annual ACM SIGGRAPH conference [125].
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