
CS 354
Transformation,
Clipping, and Culling
Mark Kilgard
University of Texas
January 31, 2012

CS 354 9

A Simplified Graphics Pipeline
Application

Vertex batching & assembly

Triangle assembly

Triangle clipping

Triangle rasterization

Fragment shading

Depth testing

Color update

Application-

OpenGL API boundary

Framebuffer

NDC to window space

Depth buffer

several
operations

left out
for simplicity
in explaining

the simple_triangle
example

CS 354 10

A few more steps expanded
Application

Vertex batching & assembly

Lighting

View frustum clipping

Triangle rasterization

Fragment shading

Depth testing

Color update

Application-

OpenGL API boundary

Framebuffer

NDC to window space

Depth buffer

Vertex transformation

User defined clipping

Back face culling

Perspective divide

Triangle assemblyTexture coordinate generation

was just “triangle clipping”
before

CS 354 11

Conceptual Vertex Transformation

glVertex*
API

commands

Modelview
matrix

User-defined
clip planes

View-frustum
clip planes

to primitive
rasterization

object-space coordinates

(xo,yo,zo,wo)
eye-space coordinates

(xe,ye,ze,we)

clipped eye-space coordinates

clipped clip-space
coordinates Perspective

division
Projection

matrix

Viewport + Depth Range
transformation

(xc,yc,zc,wc)

window-space
coordinates

(xw,yw,zw,1/wc)

normalized device coordinates (NDC)

(xn,yn,zn,1/wc)

clip-space
coordinates

(xc,yc,zc,wc)

(xe,ye,ze,we)

(xe,ye,ze,we)

CS 354 39

View Frustum Clipping
Generalizes Cleanly

� Recall moving left vertex so it’s X = -1.8
� Result is a clipped triangle

(-1.8, 0.8, 0.3, 1)

(-0.8, 0.8, -0.2,1)

(0, -0.8, -0.2, 1)

origin at (0,0,0,1)
�





CS 354 40

Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped

CS 354 41

Break Clipped Triangle into
Two Triangles

But how do we find these “new” vertices?
The edge clipping the triangle is the line at X = -1
so we know X = -1 at these points—but what about Y?

CS 354 42

Use Ratios to Interpolate Clipped Positions

(-1.8, 0.8, 0.3, 1)

(-0.8, 0.8, -0.2,1)

(0, -0.8, -0.2)

origin at (0,0,0,1)

X = -1
Y = (1.8/2.6)×0.8 + (0.8/2.6)×0.8

= 0.8
Z = (1.8/2.6)×0.3 + (0.8/2.6)×-0.2

= 0.1461538
W = (1.8/2.6)×1 + (0.8/2.6)×1 = 1

-1-(-1.8)=0.8

0.8-(-1)=1.8

0.8-(-1.8)=2.6
(-1,0.8,0.146153,1)

Straightforward because
all the edges are orthogonal

Weights:
1.8/2.6
0.8/2.6, sum to 1

CS 354 43

Use Ratios to Interpolate Clipped Positions

(-1.8, 0.8, 0.3)

(-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

0-(-1.8) = 1.8

0-(-1) = 1

X = -1
Y = (1/1.8)×0.8 + (0.8/1.8)×-0.8

= 0.08888…
Z = (1/1.8)×0.3 + (0.8/1.8)×-0.2

= 0.07777…

(-1,0.0888,0.0777)

-1-(-1.8) = 0.8

Weights:
1/1.8
0.8/1.8, sum to 1

CS 354 44

Generalize to Non-1 W

� Affine clipping plane in example
� -1 ≤ xc

� Generalizes to
� 1 xc + 0 yc + 0zc + 1 wc ≥ 0

� Looks like a plane equation
� A xc + B yc + C zc + D wc ≥ 0
� with coefficients A, B, C, and D

CS 354 45

View Frustum Plane Equations

� All six view frustum planes can be described by
simple projective plane equations

-1 zc + 1wc ≥ 01-100Top

1 zc + 1wc ≥ 01100Near

-1 yc + 1wc ≥ 010-10Top

1 yc + 1wc ≥ 01010Bottom

-1 xc + 1wc ≥ 0100-1Right

1 xc + 1wc ≥ 01001Left

Plane equationDCBAName

CS 354 46

Projective Clipping

� Each vertex computes its clip distance w.r.t. a plane
� Plug vertex’s (x,y,z,w) into Ax+By+Cz+Dw≥0 plane equation…

provides a clip distance
� For two vertexes forming a triangle edge

� Both negative? Discard the edge
� Both positive? Accept the edge (no clipping)
� One negative, one positive

� Clipping is needed
� Compute t as s / (s + p) where s and p are clip distances

� s is the “inside” distance; p is the “outside” distance
� Weight all per-vertex attributes based on t
� Makes new “clipped” vertex on the clip plane
� Generate 1 triangle if 1 of 3 vertices is inside;

if 2 inside, generate 2 triangles

� Repeat process (recursively) for all clip planes
� Only slightly more complicated than prior clipping algorithm

CS 354 47

Readily Extends to
User-defined Clip Planes

� In addition to the six view frustum planes of clip
space…
� OpenGL supports user-defined clip planes
� Allows slicing into geometry

� Operate in eye space instead of clip space
� Enabled with glEnable(GL_CLIP_PLANE0+num)
� Plane equation set by glClipPlane

� Clip planes are transformed current modelview projection
matrix

� Plane equation is Axe+Bye+Cze+Wze≥0
� Instead of using (xc, yc, zc, wc) as view frustum planes do

CS 354 48

(Clip) Plane Transformation
� Vertex positions (and direction vectors) are

transformed like column vectors

� Plane equations are transformed like row vectors





































=



















o

o

o

o

e

e

e

e

w

z

y

x

MVMVMVMV

MVMVMVMV

MVMVMVMV

MVMVMVMV

w

z

y

x

151173

141062

13951

12840

[]



















=



















151173

141062

13951

12840

MVMVMVMV

MVMVMVMV

MVMVMVMV

MVMVMVMVwzyx

w

z

y

x clipclipclipclip

e

e

e

e

glClipPlane parameters

glVertex4f
parameters

CS 354 49

Conceptual Vertex Transformation

glVertex*
API

commands

Modelview
matrix

User-defined
clip planes

View-frustum
clip planes

to primitive
rasterization

object-space coordinates

(xo,yo,zo,wo)
eye-space coordinates

(xe,ye,ze,we)

clipped eye-space coordinates

clipped clip-space
coordinates Perspective

division
Projection

matrix

Viewport + Depth Range
transformation

(xc,yc,zc,wc)

window-space
coordinates

(xw,yw,zw,ww)

normalized device coordinates (NDC)

(xn,yn,zn,wn)

clip-space
coordinates

(xc,yc,zc,wc)

(xe,ye,ze,we)

(xe,ye,ze,we)

