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A Simplified Graphics Pipeline
Application

Vertex batching & assembly

Triangle assembly

Triangle clipping

Triangle rasterization

Fragment shading

Depth testing

Color update

Application-

OpenGL API boundary 

Framebuffer

NDC to window space

Depth buffer

several
operations

left out
for simplicity
in explaining

the simple_triangle
example
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A few more steps expanded
Application

Vertex batching & assembly

Lighting

View frustum clipping

Triangle rasterization

Fragment shading

Depth testing

Color update

Application-

OpenGL API boundary 

Framebuffer

NDC to window space

Depth buffer

Vertex transformation

User defined clipping

Back face culling

Perspective divide

Triangle assemblyTexture coordinate generation

was just “triangle clipping”
before
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Conceptual Vertex Transformation

glVertex*
API

commands

Modelview
matrix

User-defined
clip planes

View-frustum
clip planes

to primitive
rasterization

object-space coordinates 

(xo,yo,zo,wo) 
eye-space coordinates 

(xe,ye,ze,we)

clipped eye-space coordinates 

clipped clip-space
coordinates Perspective

division
Projection

matrix

Viewport + Depth Range
transformation

(xc,yc,zc,wc)

window-space
coordinates 

(xw,yw,zw,1/wc)

normalized device coordinates (NDC)

(xn,yn,zn,1/wc)

clip-space
coordinates 

(xc,yc,zc,wc)

(xe,ye,ze,we)

(xe,ye,ze,we)
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View Frustum Clipping 
Generalizes Cleanly

� Recall moving left vertex so it’s X = -1.8
� Result is a clipped triangle

(-1.8,  0.8, 0.3, 1)

(-0.8,  0.8, -0.2,1)

(0, -0.8, -0.2, 1)

origin at (0,0,0,1)
�




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Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped
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Break Clipped Triangle into
Two Triangles

But how do we find these “new” vertices?
The edge clipping the triangle is the line at X = -1
so we know X = -1 at these points—but what about Y?
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Use Ratios to Interpolate Clipped Positions

(-1.8,  0.8, 0.3, 1)

(-0.8,  0.8, -0.2,1)

(0, -0.8, -0.2)

origin at (0,0,0,1)

X = -1
Y = (1.8/2.6)×0.8 + (0.8/2.6)×0.8

= 0.8
Z = (1.8/2.6)×0.3 + (0.8/2.6)×-0.2

= 0.1461538
W = (1.8/2.6)×1 + (0.8/2.6)×1 = 1

-1-(-1.8)=0.8

0.8-(-1)=1.8

0.8-(-1.8)=2.6
(-1,0.8,0.146153,1)

Straightforward because
all the edges are orthogonal

Weights:
1.8/2.6
0.8/2.6, sum to 1
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Use Ratios to Interpolate Clipped Positions

(-1.8,  0.8, 0.3)

(-0.8,  0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

0-(-1.8) = 1.8

0-(-1) = 1

X = -1
Y = (1/1.8)×0.8 + (0.8/1.8)×-0.8

= 0.08888…
Z = (1/1.8)×0.3 + (0.8/1.8)×-0.2

= 0.07777…

(-1,0.0888,0.0777)

-1-(-1.8) = 0.8

Weights:
1/1.8 
0.8/1.8, sum to 1
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Generalize to Non-1 W

� Affine clipping plane in example
� -1 ≤ xc

� Generalizes to
� 1 xc + 0 yc + 0zc + 1 wc ≥ 0

� Looks like a plane equation
� A xc + B yc + C zc + D wc ≥ 0
� with coefficients A, B, C, and D
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View Frustum Plane Equations

� All six view frustum planes can be described by 
simple projective plane equations

-1 zc + 1wc ≥ 01-100Top

1 zc + 1wc ≥ 01100Near

-1 yc + 1wc ≥ 010-10Top

1 yc + 1wc ≥ 01010Bottom

-1 xc + 1wc ≥ 0100-1Right

1 xc + 1wc ≥ 01001Left

Plane equationDCBAName
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Projective Clipping

� Each vertex computes its clip distance w.r.t. a plane
� Plug vertex’s (x,y,z,w) into Ax+By+Cz+Dw≥0 plane equation…

provides a clip distance
� For two vertexes forming a triangle edge

� Both negative?  Discard the edge
� Both positive?  Accept the edge (no clipping)
� One negative, one positive

� Clipping is needed
� Compute t as s / (s + p) where s and p are clip distances

� s is the “inside” distance; p is the “outside” distance
� Weight all per-vertex attributes based on t
� Makes new “clipped” vertex on the clip plane
� Generate 1 triangle if 1 of 3 vertices is inside;

if 2 inside, generate 2 triangles

� Repeat process (recursively) for all clip planes
� Only slightly more complicated than prior clipping algorithm
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Readily Extends to
User-defined Clip Planes

� In addition to the six view frustum planes of clip 
space…
� OpenGL supports user-defined clip planes
� Allows slicing into geometry

� Operate in eye space instead of clip space
� Enabled with glEnable(GL_CLIP_PLANE0+num)
� Plane equation set by glClipPlane

� Clip planes are transformed current modelview projection 
matrix

� Plane equation is Axe+Bye+Cze+Wze≥0
� Instead of using (xc, yc, zc, wc) as view frustum planes do
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(Clip) Plane Transformation
� Vertex positions (and direction vectors) are 

transformed like column vectors

� Plane equations are transformed like row vectors
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Conceptual Vertex Transformation

glVertex*
API

commands

Modelview
matrix

User-defined
clip planes

View-frustum
clip planes

to primitive
rasterization

object-space coordinates 

(xo,yo,zo,wo) 
eye-space coordinates 

(xe,ye,ze,we)

clipped eye-space coordinates 

clipped clip-space
coordinates Perspective

division
Projection

matrix

Viewport + Depth Range
transformation

(xc,yc,zc,wc)

window-space
coordinates 

(xw,yw,zw,ww)

normalized device coordinates (NDC)

(xn,yn,zn,wn)

clip-space
coordinates 

(xc,yc,zc,wc)

(xe,ye,ze,we)

(xe,ye,ze,we)


