
Computer Graphics Through
OpenGL: From Theory to
Experiments

by Sumanta Guha

Chapman & Hall/CRC

v



CHAPTER 20
Programmable Pipelines

Click for redSquare.cpp Program Windows Project

Experiment 20.1. Fire up redSquare.cpp in the folder Code/GLSL/Red-
Square.

Note: For how to set up the environment to run GLSL programs see
Appendix B. Each of our GLSL programs is in a similarly named folder in
the GLSL subdirectory of Code, with two accompanying shader files. Make
sure, when running a GLSL program, to keep it in the same directory as its
two shader files.

Now, redSquare.cpp is exactly square.cpp with the barest minimum
amount of code added to be able to attach a vertex shader, called
passThrough.vs, and a fragment shader, called red.fs. The output is
a red square in the OpenGL window, as in Figure 20.2(a). End

Click for redSquare.cpp – vertex shader modified
Program Windows Project

Experiment 20.2. Replace the vertex shader code for redSquare.cpp
with

void main()

{
vec4 scaledPos = vec4(0.5 * gl_Vertex.xy, 0.0, 1.0);

gl_Position = gl_ModelViewProjectionMatrix * scaledPos;

}

As expected, the xy-values of the square’s vertices are both halved. See
Figure 20.2(b) for a screenshot. End 123



Chapter 20

Programmable

Pipelines

Click for multiColoredSquare1.cpp Program Windows Project

Experiment 20.3. Run multiColoredSquare1.cpp. The program itself
is a copy of redSquare.cpp, except for a different color at each square
vertex and enabling of two-sided coloring with a call to glEnable(GL -
VERTEX PROGRAM TWO SIDE) in the setup routine. The output initially is a
multi-colored square (Figure 20.3(a)).

The vertex shader simpleColorizer.vs writes out both a front and
a back color to the built-in variables gl FrontColor and gl BackColor,
respectively:

gl_FrontColor = gl_Color;

gl_BackColor = vec4(1.0, 0.0, 0.0, 1.0);

It reads the front color from the user-defined colors, which it accesses through
the built-in state variable gl Color, while the back color is a fixed red.

The fragment shader passThrough.fs, on the other hand, simply sets

gl_FragColor = gl_Color;

Now, the way the GLSL works, the fragment shader does not receive its
gl Color values from the program; rather they are computed by interpolation
from either the gl FrontColor or gl BackColor values specified in the
vertex shader, depending on the visible face. The use of the same name
gl Color to represent actually different variables in the two shaders – the
vertex shader using gl Color to access the program, while the fragment
shader to access its sibling – can be a source of confusion. One needs to
keep the context in mind when using this variable. As the current fragment
shader does no more than assign colors interpolated from the vertex shader,
it is called a pass-through fragment shader.

As the square itself is oriented counter-clockwise and, therefore, front-
facing, the fragment shader computes its gl Color values by interpolation
from gl FrontColor, which in turn tracks the vertex color values as specified
in the program. Consequently, a multi-colored square is drawn.

A fun way to reverse the square’s orientation next is with a bit of swizzling.
Accordingly, replace the vertex shader code with

void main()

{
gl_FrontColor = gl_Color;

gl_BackColor = vec4(1.0, 0.0, 0.0, 1.0);

vec4 transposePos = gl_Vertex.yxzw; // Interchanges x and y

// coordinate values, reversing the order of the vertices.

gl_Position = gl_ModelViewProjectionMatrix * transposePos;

}

to see now a back-facing red square (Figure 20.3(b)). End124



Click for multiColoredSquare2.cpp Program Windows Project

Experiment 20.4. Run multiColoredSquare2.cpp. The code is exactly
as redSquare.cpp, except this time the output is a multi-colored square
because of the new shaders. Figure 20.5 is a screenshot. End

Click for wavyCylinder1.cpp Program Windows Project

Experiment 20.5. Run wavyCylinder1.cpp. This program, based on
cylinder.cpp, draws a cylinder with a wavy surface, allowing the user to
control the number of waves, as well as change its color from red to green.
Press the up/down arrow keys to change the waviness, the left/right arrow
keys to change the color and ‘x’-‘Z’ keys to turn the cylinder. Figure 20.6
shows the cylinder initially. End

Click for wavyCylinder2.cpp Program Windows Project

Experiment 20.6. Run wavyCylinder2.cpp. The output and controls
are exactly as for wavyCylinder1.cpp. The difference between the two is
in the mechanism by which the cross-section of the cylinder is scaled, which
we discuss next. End

Click for bumpMappingPerVertexLighting.cpp Program Windows
Project

Experiment 20.7. Run bumpMappingPerVertexLighting.cpp, which is
code-wise almost exactly bumpMapping.cpp, but with a couple of shaders
attached. Interaction is the same as well: press space to toggle between
bump mapping on and off. Figures 20.7(a) and (b) are screenshots of
bumpMapping.cpp and bumpMappingPerVertexLighting.cpp, respectively,
doing bump mapping. Yes, they are exactly the same and we’ll see
momentarily why! End

Click for bumpMappingPerVertexLighting.cpp – vertex shader modified
Program Windows Project

Experiment 20.8. If you are skeptical that we have actually replicated
fixed-functionality lighting calculations in the vertex shader perVertex-
LightingSimple.vs and wondering if we are still somehow sneaking the
output from fixed-functionality, then replace the gl FrontColor specification
in that shader with 125



Chapter 20

Programmable

Pipelines

gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);

Figure 20.8 is a screenshot. There is no doubt, is there, that it’s the vertex
shader that’s in charge of color calculation?! End

Click for bumpMappingPerPixelLighting.cpp Program Windows
Project

Experiment 20.9. Run bumpMappingPerPixelLighting.cpp. The pro-
gram itself is identical to bumpMappingPerVertexLighting.cpp – the
difference is in the shaders, which now implement Phong shading, or per-
pixel lighting as it is called. Again, press space to toggle between bump
mapping on and off. Figure 20.7(c) is a screenshot. End

Click for interpolateTextures.cpp Program Windows Project

Experiment 20.10. Run interpolateTextures.cpp, which allows the
user to interpolate between (or, blend, if you like) two textures painted on
a square. Figure 20.9 shows screenshots of the start, a part way and end
configurations. End

126


