bl .

e 22=3 The OpenGL Shading Language |

ages GLSL is a C-like language designed to directly support the development of
ided shaders. It has a wide variety of data types for representing typical shading data

1the items such as vectors, colors, and matrices, along with a collection of built-in
' operators that simplify manipulation of those data items.
The designers of GLSL attempted to create a shading language that met a
number of fairly ambitious goals. They wanted a high-level, easy-to-use pro-

gramming language that would work well with OpenGL. It needed to be as

Cessy hardware-independent as possible, to allow the same shaders to be used with
hne, graphics hardware from different manufacturers. In addition, because graphics
0 the hardware continues to evolve, the language should not be tied to a particular type
ceby or generation of hardware; rather, it should be powerful enough to take advantage
used of the capabilities of the underlying hardware and flexible enough in its design
linto fhat it can accomodate the rapid evolution of that hardware.

Although the language looks very much like C or C++, it's important to
COI(,)_]; remember that GLSL really isn’t either one of them. There are several differences
Sﬁﬁ" in the way that function parameters are handled, and the language is much stricter
iecfa ,ei with respect to type checking issues. In addition, many familiar C and C++ data
s fho types and language constructs (such as pointer variables and widespread implicit
Liés ‘ conversion between data types) were 1ntent10nally not included in GLSL.

o Like OpenGL, GLSL has evolved since it was first introduced. New features
have been added, and existing features have been deprecated {that is, marked
for future removal from the language) in favor of new features. Depending on

in the which version of GLSL your implementation supports, some features may not be
ages. available. The following code can be used to determine your versions of OpenGL
pixel and GLSL:

: each

‘be?f‘ printf ("OpenGL version: %s\n",

rertex (char *) glGetString (GL_VERSION)};

;merié printf ("GLSL vergion: %s\n",

s ate - (char *) glGetString (GL_SHADING_LANGUAGE_VERSION));
bump ..

o - The first statement prints out a string containing version information for your

) OpenGL implementation, and the second prints out the corresponding GLSL
version information.
: E We also note that our discussion of GLSL will, necessarily, be incomplete. The
mitive language has far too many features to allow us to explore them completely in
reach a single chapter. Instead, we will discuss enough details of shader creation and
h that . use that you may begin to experiment with your own shaders. For more in-depth
ader is study of GLSL, any of the GLSL references described at the end of this chapter
i should suffice.

stually

'~ Shader Structure

Most GLSL programs will contain both a vertex shader and a fragment shader.
Each shader contains a main routine which, in fact, is a function named main.
i’ Shaders may also contain supporting functions, as well as global variables to
¢ facilitate communication between the vertex and fragment shaders.

4 A shader’s main routine will vary depending on what functionality is
i required, but certain operations must be performed. As mentioned eatlier, a ver-
| tex shader will be executed on every vertex that passes through the pipeline;

ontrol

ype of
ibutes,
oming
output’

22-3 The OpenGL Shading Language 673

674 Chapter 22 Programmable Shaders

'_i e fragmer
tepending
belongs to.

even if it does nothing else, it must transform the vertex into clip space. Thig i
accomplished by multiplying the vertex by the modelview matrix, and then mulx
tiplying that result by the projection matrix. Each of these values is available tq
the vertex shader as a built-in global variable. These built-in global variable: all
have names beginning with the character sequence gl _; to transform the Verteﬂ
into clip space, the vertex shader must use the vertex position (g1_Vert ex)_a}{"
the contents of the modelview and projection matrices (g1 ModelViewMatr i;‘é}
gl ProjectionMatrix). The transformed vertex must be placed in thefg'lphﬁ
variable g1_Position so that the next stage in the OpenGL pipeline can use]1t
Here is an example of a minimal vertex shader: "

)sing Shag
inlike Ope
instead, the
The process
both a vertg

void main () : 1. Create

{ " -2, Attach

gldPosit:i.onJﬂ= gl ProjectionMatrix * k3. Conq)

(gl_ModelViewMatrix * gl Vertex); ‘A, Create

/ : 5. Attach

 There are other ways to perform this transformation. An additional globéi_yq_—qi, 6. Link t]
able named gl_ModelViewProjectionMatrix contains the product of *t'_h

projection and modelview matrices and can be used to reduce the transformatio The sha

to one multiplication. Because this operation is standard, a built-in function 3 Of charactes

also available to perform it: p thader sou

gl_Postion = ftransform (}; . B i
¢ determines
. .) o the file into

Another common operation performed in vertex shaders is the assignmerit of
a color to the vertex. This is accomplished by assigning a color value to the_gl,qﬁ)

variable g1_FrontColor, as follows:

void main ()

{
gl_Position = gl _ProjectionMatrix * H
] (gl ModelViewMatrix * gl Vertex):
I .
| gl_FrontColor = gl _Color;
)

P2vs

! The gl_Color variable contains whatever color the OpenGL application giléég
ciated with the vertex by calling g1Color. As you might expect, there is also g
gl_BackColor global variable, which can be used when two-sided lighting IZ§
being used in the OpenGL program (see Section 17-11 for a discussion of two-sidi
lighting). : o S
Fragment shaders are responsible for computing the color associated wit
fragment. At minimum a fragment shader must assign that color to the global vat
able g1_FragColor. The shader can compute the color, or can retrieve whateve
color was assigned by the vertex shader, as in this example:

void main ()}
{
gl_FragColor = gl_Color;

It is important to note that although it appears that this fragment shader is accesid
ing the same global variable used by the vertex shader, the contents of gl _Colod
are modified by the OpenGL pipeline between the execution of the two shade

22-3 The OpenGL Shading Langunge 675

The fragment shader will see either the g1 _FrontColororthegl_BackColor,
depending upon which side of the primitive the fragment being processed
belongs to.

Using Shaders in OpenGL

Unlike OpenGL programs themselves, shader programs are not precompiled.
Instead, they are compiled during the execution of the OpenGL program itself.
The process involves a series of steps; for example, assuming that we are using
both a vertex and a fragment shader, we would do the following:

. Create two shader objects.

. Attach the source for each shader to its shader object.
. Compile the shaders.

. Create a program object.

. Attach the shader objects to the program object.

(=TT L B S N

. Link the program.

The shader source code must be a null-terminated C-style string (a sequence .
of characters, followed by a trailing byte containing the value 0). Commonly, the i
shader source code is put into a text file, from which it is read into the OpenGL i
program as a single string. Here is an example function that reads the contents of
a file into a dynamically allocated string buffer. The function opens the file and
determines how many characters are in it. It then allocates a string buffer, reads
the file into that as a single string, and returns the pointer to the string buffer.

676

Chapter 22 Programmable Shaders

To create our shader program, we must first create two shader objects:

GLuint vertShader, fragShader;

vertShader = glCreateS8hader (GL_VERTEX_SHADER);
' fragShader ‘glCreateShader (GL_FRAGMENT_SHADER) ;

Each call to glCreateShiader returns a handle that is associated with a shader
object. We use this handle whenever we need to refer to the shader object, such
as when we want to attach soutce code to it. '

Next, we read in the source for each shader. There is no restriction on
the names of shader source files; assuming that our vertex shader is in a
file named simpleShader.vert and our fragment shader is in a file named
gimplShader.frag, we can read them into our program as follows:

GLchar *vertSource, *fragSource;

&

vertSource = readTextFile ("simpleShader.vert"};

if (vertSource == NULL) {
fputs ("Failed to read vertex shader\n", stderr);
exit (EXIT_FAILURE):

fragSource = readTextFile ("gimpleShader.frag");

if (fragSource == NULL) {
fpute ("Failed to read fragment shader\n", stderr);
exit (EXIT _FAILURE): 1,

Now that we have the source strings, we must attach them to the shaders:

glshaderSource (vertShader, 1,
(const CGLchar **) &vertSource, NULL);:

glShaderSource {(fragShader, 1,

(congt Glchar **) &fragSource, NULL);
free (vertSource);
free (fragSource);

This fu
object.
is the 1
pointey
the strj
of the §
objects

Th

gl
gl
Itisag
pilatios
the staf

GL

gl
if

gl
if

gl
gl

gl

The gl
dleto1

gl
if]

9]l
error g

22-3 The OpenGL Shading Language 677

This function allows us to attach several shader source strings to the same shader
object. The first parameter is the shader object to be used. The second parameter Ll
is the number of source strings to be attached; the third parameter is an array of
pointers to the strings. Finally, the fourth parameter tells glShaderSource that
the strings are terminated by null characters. glShaderSource makes a copy
of the string contents, so once we have attached the source sfrings to the shader
objects, we can deallocate the strings to reduce our memory use.
The next step is to compile the shaders:

glCompileShader (vertShader);
glCompileShader (fragShader);

Itis a good idea to verify that the compilation succeeded. We can retrieve the com-
pilation status with the glGetShaderiv function. If the compilation succeeded, |
the status will be GI._ TRUE: '

GLint status:

glGetShaderiv (vertShader, GL_COMPILE_STATUS, &status);
if (etatus != GL_TRUE)} {
fputs ("Error in vertex shader compilation\n", stderr); :
exit (EXIT_FATLURE); :

glGetShaderiv (fragShader, GL_COMPILE STATUS, &status};

if (status != GL_TRUE) { .
fputs ("Error in fragment shader compilationin", stderr};
exit (EXIT_FAILURE);

Once we have compiled them, we create our program object, attach the
shaders to it, and link the program:

GLuint program;
program = glCreateProgram {(};

glAttachShader (program, vertShader);
glattachShader (program, fragShader);

glLinkProgram (program) ; .
The glCreateProgram function allocates a program object and returns its han-
dle to us. Again, it is a good idea to verify that the link operation succeeded:

glGetProgramiv (vertShader, GL_LINK_STATUS, &status);

if {status != GL_TRUE)} {
fputs("Error when linking shader program\n", stderr):
exit (EXIT FAILURE);

}

QOur error checking here is very rudimentary—all it reveals is whether an
error occurred, not what the error was. We can get more information about what

678

Chapter 22 Programmiable Shaders -

happened by retrieving the shader or program information log. To do this, we first
-ask for the length of the log, and then retrieve the log into a string buffer, which
we can then print out. Here is an example, using dynamically allocated buffers:

GLint length:
-GLgizei num;
char *log;

glGetShaderiv (vertShader, GL_INFO_LOG_LENGTH, &length);

if(length > 0) (
log = {char *) malloc (sizeof{char) * length);
glGetShaderInfolog (vertShader, length, &num, log);
fprintf (stderr, "%s\n", log);

}

glGetProgramiv (program, GL_INFO_LOG_LENGTH, &length);

if(length > 0) {)
log = (char *) malloc (sizeof(char) * length):
glGetProgramlnfolog (program, length, &num, log);
fprintf (stderr, "%s\n", log):

]

The information log functions have the same parameter list. The first parameter is
the object whose log we want to refrieve. The fourth parameter is the buffer into
which the log will be placed, expressed as a null-terminated string; the second
parameter is the size of that buffer (so that the function will not overrun the
buffer). The function will place the number of bytes written into the ‘buffer (not
including the trailing null) into the third parameter.

We can have any number of shader program objects in our OpenGL program,
which allows us to apply different shaders to each object in our scene. To use a
shader program, we make it the active shader before drawing the object to which
it will be applied: %

glUseProgram (program);

Once we activate a shader, it will be applied to every object that we draw until we
activate a different shader. If we have activated a shader for one or more objects
and then want to “deactivate” it, we call glUseProgramagain but give it a value
of 0 as the program object:

glUgeProgram (0);

Finally, during execution, we may want to delete shader objects or pro-
gram objects when we are done with them. The functions glDeleteShader
and glDeleteProgram are used to do this. Each takes an object handle for the
appropriate type of object (shader or program) as its only parameter. The memory
associated with the object will be deallocated, and the object handle is marked
as unused. Deleting a program object detaches the shaders associated with it but
does not delete them; they are still usable, and they can be attached to another pro-
gram object. We can explicitly detach a shader object from a program object with
the function g1DetachShader, which takes the program object given as its first
parameter and detaches the shader object given as the second parameter from it.

If we delete a shader object before the program object it is attached to
is deleted, the actual deletion is deferred until the program object is deleted.

Similar
the deld

Basic [

The set
C-famil
either d
categor]
groupeq

Ing
and may
can be i
dependy

Scall
{bool),
values,
range of
are avail

Vectors

Vectors (
four cony
values; g
ivec2, 1
for examn
value, o1
is done
four elen

vecd

GLSI
ables can
second h)
vector el
named p
tion.y,
point in s
names r,
a texture
that the
posgitio

Itis 3
called st}
instead o
examples

vech

< 0w 4 4 <2
2]
o
Y

22-3 The OpenGL Shading Language 679

Similarly, if we delete a program object while it is still the active shader program,
the deletion will be deferred until the shader program is no longer active.

Basic Data Types

The set of data types provided by GLSLis significantly larger than whatis found in
C-family languages. At the same time, some familiar types from those languages
either don't exist in GLSL, or exist in modified form. GLSL data types can be
categorized as scalar types, vectors, matrices, and samplers. Any of these can be
grouped using structure and array capabilities.

In general, variable declarations have the same form as those in C and C++, |
and may occur anywhere wherever needed within shader source code. Variables
can be initialized at declaration time; however, the syntax for initialization varies !
depending on the type of variable being initialized. |

Scalar types are limited to integer (int), unsigned integer (uint), Boolean
(bool), and floating-point (float). Boolean variables have only two possible
values, true and falge. Integer and floating-point variables have the usual
range of values possible in most programming languages, and most C operators
are available, with the exception of bitwise operators.

Vectors

Vectors of each of the four scalar types are available, and can have two, three, or
four components. Declarations of vec2, vec3, and vec4 contain floating-point
values; a one-character prefix is added for the other scalar types (for example,
ivec2, uvec2, and bvec2). The vector types can be used for any kind of data—
for example, a vec4 could contain a red, green, blue, and alpha (RGBA) color
value, or the x, y, z, and w components of a point, and so on. Vector initialization
is done using the constructor syntax of C++; for example, we could initialize the
four elements of a vec4 to the values 1.0, 2.0, 3.0, and 4.0 as follows:

vech a = vec4d (1.0, 2.0, 3.0, 4.0):

GLSL provides several mechanisms for manipulating vectors. Vector vari-
ables can be subscripted like arrays, with the first element having subscript 0, the
second having subscript 1, and so on. In addition, structure-like referencing of
vector elements is possible. For example, the four elements of a vec4 variable
named position can be accessed with the expressions position.x, posgi-
tion.y, position.z and position.w, respectively, treating the variable as a
point in space. However, the same four elements can also be accessed with the
names r, g, b, and a, treating it as an RGBA color, oras s, ¢, p,and g, treating it as
a texture coordinate. The only compile-time type checking done here is verifying
that the vector is large enough to contain the requested element; pogition.y,
position.b, and posgition. p all access the third element of the vector.

It is also possible to access collections of vector elements using a technique
called swizzling. Swizzling is a generalization of the structure-access mechanism;
instead of a single element name, multiple names can be used. Here are several

examples:
veck v;
v.xyzw [/ a veci4 identical to v
V.XYZ // a vee3 containing the first three elements of v
v.rgb // a vee3 containing the first three elements
v.y // a float containing the gecond element
V.8D // a vec? containing the first and third elements

680

Chapter 22 Programmable Shaders

Element names can also be listed in order or out of order, or they can be
duplicated—the only restriction is that they must be from the same name set
{xyzw, rgba, or stpq):

vecd a = vec4(1.0, 2.0, 3.0, 4.0);
vecd b = v.yzx; // (2.0, 3.0, 1,0)
v.rebb; // (1.0, 1.0, 3.0, 3.0)

vec4d c

Arithmetic operators are overloaded to allow multiplication between vectors
and matrices.

Matrices

Matrices of floating-point values can be declared. Square matrices (that is, n x
7 elements} can be declared as mat2, mat3, and mat4 variables. Non-square
matrices can be declared as matmzn, where m is the number of columns and #n
the number of rows. Elements of matrices can be accessed using array notation.
It is possible to access an entire column at once by using a single subscript, or
a single element by using two subscripts. As in OpenGL, matrices are stored in
column-major order, so the first subscript is the column number and the second is
the row number. For example, assuming the declaration mat4 m, m([2] isavec4
containing the third column, and m{1] [3] is a £loat containing the second
element of the fourth row. Initialization is done using constructor syntax, listing
the elements in column-major order: :

matZ m = mat2(1.0, 2.0, 3.0, 4.0):

A r

creates the matrix

1.0 3.0 '
m = [2.0 4.0} (22-2)

Arithmetic operators are overfoaded to allow matrix manipulation.

Structures and Arrays

Structures and arrays are similar to their C counterparts. Arrays can be created
from any type, including vectors, matrices, structures, and scalars. Structure mem-
bers can be of any type known to the shader compiler at the time of declara-
tion, including other structures and arrays. A structure declaration is considered
automatically to be a type declaration; variables of the structure type are declared
simply by using the structure name tag. For example:

struct lightsource (
vec3 color;
vec3 position;

};

light desklamp;
light spotlights[4];

As mentioned earlier, GLSL is a much stricter language with respect to data
types than either C or C++. Because there is a Boolean type, conditional expres-
sions must always be Boolean, unlike C and C++ (which allow the use of any

expressig
expressig
Or unsig
versions
requeste

Control

GLSL pr
for,whi
breakai
version g
else co
statemen
declared)

As 1
conversi
nectives
results, 4

A sp
purpose
buffer, W
to be dis
operatioy

GLSL Fu

Function
differenc
return ty|
Return ty
be recurs
function
function:

Nam
tiple dec
laration

Para
match ex
must hay
not gene:
paramets

Fund
times kn
paramets
formal p,
paramet
paramets
call is igf
tial conte
inout p
executior

22-3 The OpenGL Shading Langunge

expression whose value can be implicitly converted to integer as conditional
expressions). Implicit type conversions are limited to conversions from integer
or unsigned integer to float, either as scalars or as vectors. All other type con-
versions must be explicit; rather than using C-style type casting, conversion is
requested using C++ constructor syntax.

Control Structures

GLSL provides most of the usual C control structures. Looping constructs include
for,while,and do-while loops. Variable can be declared within loops, and the
breakand continue statements perform the expected operations. In the original
version of GLSL, selection statements were limited to if-then and if-then-
else constructs., GLSL version 1.30 introduced switch statements, but goto
statements and labels are not available, Unlike C and C++, variables cannot be
declared inside if statements.

As mentioned earlier, conditional expressions must be Booleans; no implicit
conversion from numeric types to Boolean types is provided. The Boolean con-
nectives (&& and | |) are shori-circuited, as in C and C++, and produce Boolean
resuldts, as do the relational operators.

A special statement, discard, is available for use in fragment shaders. Its
purpose is to prevent the fragment shader from making any change to the frame
buffer. When a discard is executed, the fragment being processed is marked
to be discarded. The shader may or may not continue to execute, but whatever
operations it performs will have no effect on the frame buffer.

GLSL Functions

Function declarations and calls are much like C++ function calls, with a few
differences. Every function must be declared with an explicit return type; the
return type void is allowed, indicating that the function does not return a value.
Return types can be any type, including arrays and structures. Functions cannot
be recursive in any form, including indirect recursion (that is, it is illegal for a
function to call itself, or for it to call another function that then calls the first
function again).

Names of functions can be overloaded based on parameter type; that is, mul-
tiple declarations of a function are allowed within a shader, so long as each dec-
laration has the same return type and the parameter lists are all clearly distinct.

Parameter type checking is always performed. All actual parameters must
match exactly the type of the corresponding formal parameter. Array parameters
must have explicit sizes. A function declaration with an empty parameter list is
not generic, as in C, but rather indicates that the function must be called without
parameters. '

Function parameters in GLSL are passed using call by value-return (some-
times known as call by value-result). Parameters are gualified as in, out, or inout
parameters; in parameters can be qualified further as const, indicating that the
formal parameter cannot be modified within the function. For in and inout
parameters, the actual parameter supplied in the call is copied into the formal
parameter; in the case of out parameters, the actual parameter supplied in the
call is ignored (although the formal parameter is readable in the shader, ifs ini-
tial contents are undefined). If no qualifier is used, in is assumed. For out and
inout parameters, the last value assigned fo the formal parameter during the
execution of the function is copied back to the original actual parameter when the

681

682

Chapter 22 Programmable Shaders

function returns. (These types of actual parameters must not be literals, but must,
for obvious reasons, be actual variables.)

Arrays and structures can be passed as parameters to the functions. However,
arrays are not passed by reference—instead, the contents of the array is copied
into the formal parameter, as with all other parameter types.

As might be expected, a large number of built-in functions are available in
GLSL. These range from angle conversions (degrees and radians), trigonomet-
ric operations, exponentiation and logarithm functions, and vector and matrix
geometric operations.

Communicating with OpenGL

Because the main routine of a shader takes no parameters, communication with
the rest of the OpenGL program is achieved by way of global variables. As with
function parameters, global variables are typically qualified based on how they are
used to convey information to the shader from the OpenGL program or between
the vertex and fragment shaders. In the latter case, the same global variable will
be declared in both shader sources but may have different qualifiers in the two
shaders. Global variable qualifiers are similar to those for function parameters,
with a few differences.

The OpenGL program uses uniform global variables to communicate data
into all types of shaders. Generally, they contain data that does not change fre-
quently. Shaders can read uniform variables, but cannot write to them.

The in qualifier is used in all types of shaders to indicate data that is being
given to the shader from previous stages in the pipeline. In a vertex shader, the
source is typically the OpenGL program, and the type of the variablé is limited
to a numeric scalar or vector (Booleans are not allowed) or a matrix, |

In a fragment shader, the source of data read from an in global variable can
be the OpenGL program or the vertex shader; in the latter case, the variable must
exactly match an out-qualified variable in the vertex shader. Commonly, this
data is interpolated—for example, there may be several fragments generated by
the pipeline from a set of vertices, and each fragment will be sent through the
fragment shader separately, so the contents of the in variable may Vary between
executions of the shader.

Values being produced by any type of shader for use in later stages in the
pipeline are defined with the out qualifier. Other than the built-in global variables
discussed earlier, out variables are the only way that results can be sent from the
vertex shader to the fragment shader. The same variable must be declared with
the same size and type as an in variable in the fragment shader.

In GLSL versions prior to 1.30, the in and out qualifiers did not exist. Global
variables holding per-vertex data coming from OpenGL into a vertex shader was
marked with the qualifier attribute, and output global variables had the qual-
ifier varying. In fragment shaders, global variables of any type (coming in from
the vertex shader, or going out to later stages in the pipeline) were tagged as
varying. While attribute and varying qualifiers are still recognized in ver-
sion 4.10.6 of GLSL (the current release as this book was written), their use should
be limited, as they may be removed from future versions.

Communicating information from an OpenGL program to vertex and frag-
ment shaders through global variables is not quite as simple as we might like.
Because these variables are defined in the shader source code, they aren’t known
when the OpenGL program is compiled, and thus the program cannot access
them directly. Instead, the OpenGL program must first request the location of the
variable in the current shader program object, and only then can it write data into
the global for use by the shader. We request the location of a uniform variable in

this m
Gl
1qg

where)
contai
we ha
follow

gll
gl
&l
gl

There
¢Ij
gl
gl

g1
g1

Simila;
ger va
the fu)
tribl

Th
means
object

p N
Now t

shadet
tively

1st,

rer,
ied

in
wet-
Tix

ith
ith
are
En
vill

IS,

this manner:

GLint location;

location = glGetUniformLocation (program, "variable™):

where program is a program object handle, and varinble is a null-terminated string
containing the name of the uniform global variable that we want to access. Once
we have the location, we can retrieve the contents of the variable with one of the
following functions:

GLint i;
GLfloat f;

glGetUniformiv (program, location, &i);
glGetUniformfv (program, location, &f)

If we have the location of a uniform variable in a program object, we can
modify its contents. To do this, we must know not only its location, but also its
type and the number of elements that it contains:

GLfloat vl, v2, v3, v&;

glUniformlf (location, vl1);

glUniform2f (location, vl, v2);
gliiniform3f {location, vl, v2, v3)};
glUniform4f (location, vl, vZ, v3, v4);

There are also array versions of these routines:

GLfloat val4]:

glUniformlfv (location, 1, va);

glUniform2fv {(location, 2, va):

glUniform3fv {(location, 3, va);
4

glUniformafv (location, 4, va);

Similarly, we use glUniform*i and glUniform*iv to write to uniform inte-
ger variables. Modification of attribute variables is handled similarly, with
the functions glGetAttribLocation, glVertexAttriblf, gliertexAt-
triblfv, and sc on.

The glUniform functions do not take a program object parametér, This
means that they can only write to shader variables found in the active program
object (that is, the one selected by the most recent call to glUseProgram).

224 Shader Effects

Now that we have some understanding of the structure and capabilities of GLSL
shaders, it is time to see some examples. Again, note that these examples are rela-
tively simple; showing the full power of shaders is beyond the scope of this text.

22-4 Shader Effects

683

684

Chapter 22 Programmable Shaders

A Phong Shader

Recall the Phong illumination model described in Equation 22-1. This can be im-
plemented quite easily in GLSL. For simplicity, we will assume that GL_LTGHTO
has been enabled as a directional light source in the scene, and that each object
has been defined with appropriate material properties.

To implement Phong shading, we need to know where our light source is.
Information about active OpenGL lights is available in a built-in global vari-
able named gl_LightSource, which is a uniformarray with one element per
OpenGL light source. Each element of the array is a structure containing a number
of fields that describe the light. For our purposes, the most important of these are
ambient, diffuse, specular, and position. These are all vec4 fields; the
first three contain the ambient, diffuse, and specular characteristics of the light
source, and the fourth contains the light's position. The expression

gl_LightSource[0].diffuse

gives us the diffuse light emitted by GL_LIGHTO.

We also need to know what the material properties are for the ob-
ject being shaded. These are available through a global variable named
gl FrontMaterial. This variableis also a structure, with ambient, diffuse,
and specular fields containing these characteristics for the object. To compute
the interaction of the diffuse light and the surface, we multiply these two fields:

gl_FrontMaterial.diffuse * gl_LightSource fo] . diffuse
There is also a g1_BackMaterial global variable which we can use for two-
sided lighting.

Our Phong implementation will be a relatively simple pair of shaders. All
calculations will be done in the vertex shader, and the fragment shader will only
copy the computed colorintothe gl _FragColor variable. We startby computing
the ambient light contribution as the product of the object’s ambicht reflective
characteristics and the ambient illumination from the light source:

vecd color;
color = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;

To compute the diffuse contribution, we will need to know the surface normal,
the direction to the light, and the view direction. To use the dot-product method,
all three of these vectors must normalized. The surface normal is available in the
global variable g1_Normal; however, like g1_Vertex, itis in object coordinates,
50 we must transform it before we use it. We do this by multiplying it by the
global variable g1 _NormalMatrix, and we normalize the result with the built-
in hormalize function:

vec3 normal;
normal = normalize(gl NormalMatrix * gl Normal)

We next need to normalize the direction to the light. Our light is directional,
which means that its position in OpenGL is actually the direction the light is

shining,
malize {

vec

ligh

If the li
betweern

Con
are nori
clamp th

flo

Ndo

We
add it tg

col

If th
This req
vector.]
eye pos
50 we (
vertex t
the refle
pointin
have th
specula

if(
{

e im-
GHTQ
object

ree is.
| vari-
nt per
imber
'se are
Is; the
> light

e ob-
1amed
"fuse,
mpute
fields:

T two-

s, All
11 only
puting
lective

.ent; - -

ormal,
rethod,
> in the
linates,
by the
e buili-

shining, We can take the position, convert it to a three-element vector, and nor-
malize the result:

vec3 lightdir;

lightdir = normalize(vec3(gl _LightSource[0}.position));

If the light was positional, we could compute its direction as the difference
between the vertex position and the light position.

Computing the cosine of the angle between these vectors is easy because they
are normalized vectors. To ensure that we don't get a negative cosine, we will
clamp the result to 0.0:

float NdotL;

NdotL = max(dot{normal, lightdir), 0.0);

We now have enough information to compute the diffuse contribution and
add it to the final color:

coleor += NdotLl *
{(glFrontMaterial.diffuse * gl _LightSource[0].diffuse);

If the cosine value is positive, we also want to include the specular highlight.
This requires that we compute the view vector and the reflection of the light
vector. In eye coordinates, the view vector can be computed by subtracting the
eye position from the vertex position. However, the eye position is the origin,
so we can just use the vertex position and negate it to get the vector from the
vertex to the eye position. We can use the built-in reflect function to compute
the reflection of the light vector around the surface normal; our light vector is
pointing from the light to the vertex, though, so we must negate it. Once we
have those, we can compute their dot-product (clamping it to 0.0), calculate the
specular contribution, and add it to the computed color:

if{ NdotL > 0.0)

{
vec3 view, reflection;
float RdotV;
view = vec3{ -normalize(gl_ModelViewMatrix * gl _Vertex));
reflection = normalize(reflect(-lightdir, normal));
RdotV = max(dot(reflection, view), 0.0);

color += gl FrontMaterial.specular *
gl_LightSource([0}.specular * .
pow(RdotV, gl FrontMaterial.shininess);

22-4 Shader Effects

685

686 Chapter 22 Programmable Shaders

Finally, we must assign the computed color to the global gl_FragColor
variable and transform the vertex. Here is the complete vertex shader:

directi
to aceq
to the

Textu

Textuy
shadeq
of an
showr
the ob
Wi
Chapt
with
glTes
use th
must 1
access
In|
that wi
was, i
actuall
tothe
of text]
the O

Gl

gl

W
parary
sele_cte

gl
Because we performed all the color calculations in the vertex shader, the

fragment shader is very simple: This s

unit, s
and W

A
which
variali
access
samp]
to the
passe(

Color Plate 32 shows a scene containing three gluSpheres, illuminated by
a single directional light, drawn using this shader pair.

All the computation in our example was done in the vertex shader, and the
fragment shader simply used that result, We could have done the color calcu-
lations in the fragment shader, but we would still need to do the normal, light
direction, and view vector calculations in the vertex shader because of the need
to access the per-vertex variables. The resulting vectors would be communicated
to the fragment shader through global variables.

Texture Mapping

Texture mapping is another operation that is relatively easy to implement using
shaders. It can be implemented by directly mapping each location on the surface
of an object to a point within the texture, or by modifying the Phong shader
shown earlier to take color information from the texture image rather than from
the object’s material properties.

We first set up the texture within our OpenGL program as discussed in
Chapter 18, by creating a texture object with glGenTextures, binding it
with glBindTexture, setting our desired texture parameters with calls fo
glTexParameter, and then defining the texture itself with glTexImage. To
use the texture within a shader, however, two additional steps are required. We
must tell the shader where to find the texture, and the shader itself must gain
access to the texture data.

In Chapter 18, our discussion of surface texture mapping in OpenGL assumed
that we could apply only a single texture at a time to the surface of an object. This
was, in fact, a simplification of OpenGL's texture-mapping capabilities. OpenGL
actually supports multitexturing—thatis, the ability to apply more than one texture
to the surface of an object. It does this through the use of texture units. The number
of texture units is implementation-dependent; the following example code queries
the OpenGlL state to determine the number of texture units in thisimplementation:

GLint uniteg;

glGetIntegerv (GL_MAX TEXTURE_UNITS, &units);

When we define a texture, it is defined within the active texture unit. All texture
parameter settings and image data are assigned to that unit. The active unit is
selected with a call to glActiveTexture, as follows:

. glActiveTexture (GL_TEXTUREQ) ;
, the
This selects texture unit 0 as the active unit. (This is actually the default texture
unit, so this function call is unnecessary unless we have selected a different unit
and want to switch back to unit 0.)

After we bind our texture object to the texture unit, we must tell our shader
which texture unit we are using. We do this by writing into a global santpler
variable in the shader. Samplers are special types of data items in GLSL that have
access to all the texture information in a texture unit. The shader code uses a
sampler to identify the texture unit to be accessed, but the sampler itself is opaque
to the shader. It cannot be directly read or written by GLSL code—it can only be
passed as a parameter to a texture access function within our shader.

Samplers come in many forms. We create samplers for one-, two-, and three-
dimensional floating-point textures with the types sampler1D, sampler2D, and
sampler3D. Samplers can also be created for integer or unsigned integer tex-
tures, cube-map textures, shadow map textures, and other variations. To create a

22-4 Shader Effects 687

688 Chapter 22 Progratnmable Shaders
sampler for a basic two-dimensional texture, for example, we would use a decla- T
-ration like this one in our fragment shader: face g
it to
uniform sampler2D texturelD; Plate
spher
In the OpenGL program, we assign the texture unit sequence number to the T}
sampler. If our active shader program is texShader and we want to use texture the e
unit(, we find the location of the sampler variable and assign the sequence number result
toit: color {
object
GLint texloc;
“texloe = glGetUniformLocation (texShader, "textureID"); Bump
glUniformli (texloc, 0):
_ Anoth
Note that we assign the texture unit sequence number (0), not the OpenGL sym- an objg
botic constant (GL__TEXTURED), to the sampler variable. a funcf
A shader program that maps a two-dimensional texture directly to the sur- then aj
face of an object is very straightforward. Generally, the vertex shader takes care mappi
of setting up all necessary texture coordinates, and the fragment shader accesses b‘f‘t 15 4
the texture and uses it to determine the color of the fragment. The texture coordi- pipelin
nates for texture unit 0 that correspond to the current vertex are available to the To)
vertex shader in a global variable named gl _MultiTexCoord0. These coordi- mal at
nates must be communicated to the rest of the pipeline for interpolation; this is each fi
achieved by assigning them to the first slot in a global array of vectors named and hf’
gl _TexCoord. ° ' applyit
Here is a simple vertex shader that copies the existing texture coordinates for f ace, ay
interpolation: the img
Onl
differer
suiface)
we mus
this iss
the par
vector
third vq
perforn
The fragment shader must use the interpolated coordinates to access the tex- The
ture image and determine the fragment color accordingly. Because the sampler the tang
variable is opaque, the shader must use built-in functions fo access the texture compoﬁ
data. The built-in function texture2D takes a sampler variable and a coordinate
position as its parameters, and returis the texture data as a vec4 value. Hereis a
simple fragment shader that uses the texture data directly as the fragment celor:
where
(Ni' ;M 11
matrix t
tem arof
change f
Our
reliefm

The result of using this shader pair to map a texture image of the sur-
face of the Earth fo a square polygon is shown in Color Plate 33. We can use
it to texture-map any object for which texture coordinates are defined. Color
Plate 34 shows an application of the same texture image to a GLU quadric
sphere.

This example texture-mapping shader is very simplistic because it uses
the texture color information directly as the fragment color. A more realistic
result could be obtained, for instance, by modifying a Phong shader to use
color information from a texture image instead of the material properties of the
object.

Bump Mapping

Another application of texture mapping is the simulation of surface roughness on
an object. The technique known as bump mapping (discussed in Chapter 18} uses
a function to perturb the normal vector at a point on the surface of an object, and
then applies a standard illumination model to calculate color at that point. Bump
mapping is relatively easy to implement in an interactive program using shaders,
but is significantly more difficult to implement using the original fixed-function
pipeline.

To bump-map an image, we must decide how far to perturb the surface nor-
mal at each point on the object. We can do this computationally as we process
each fragment, or we can precompute the changes to be applied at each point
and hold them in a special type of texture cailed a normal map. If we are also
applying a texture to the surface of the object as well as bump-mapping the sur-
face, an obvious source of bump-map information is the color variation within
the image.

One complication in bump mapping is the fact that we must work with several
different coordinate spaces. The incoming information that we use to compute
surface colors is typically in either object coordinates or eye coordinates; however,
we must do our displacement calculations in texture space. Typically, we resolve
this issue by converting everything into texture space. To do this, we compute
the partial derivative vector P}, discussed in Section 18-3. We then normalize this
vector and the surface normal and take their cross-product, which produces a
third vector that is orthogonal to the first two. These three vectors are used to
perform the transformation.

The normalized P), vector is called the tangent vector. The cross-product of
the tangent vector and the surface normal is called the binormal vector. From the
components of these vectors, we build the transformation matrix

T T, T
M= |B, B, B (22-3)
Ne Ny N

where (1;,T,,T,) is the tangent vector, (By,By,B;) is the binormal vector, and
(Ny,Ny,N;) is the normal vector. Multiplying an object-space vector by this
matrix transforms it into tangent space. Tangent space is a local coordinate sys-
tem around the point being shaded, and the tangent and binormal vectors may
change from point to point across the surface.

Our bump-mapping shader will be a simplified form of a technique known as
relief mapping. We will use the texture image to determine the surface color at the

22-4 Shader Effects

689

690 Chapter 22 Programmable Shaders

shading point, as in our earlier texture-mapping example. However, we will also
use it to calculate the displacements to be applied to our surface normals—that is,
the apparent roughness of the surface will be determined by the color variations
in pur texture image.

To implement bump mapping as a shader pair, we must divide the work
between the vertex and fragment shaders. In addition to the transformations
we have seen in earlier examples, the vertex shader will compute the light
and view vectors and will transform them into tangent space for use by the
fragment shader. The fragment shader, in turn, will use the color information
from the texture image to calculate the height variation for this fragment, and
it also will perform a simple diffuse shading calculation using the texture color
information.

To compute the transformation matrix in our vertex shader, we need the
tangent and binormal vectors in addition to the surface normal. We are given the
surface normal; we can either compute a tangent vector from it or use one supplied
by the OpenGL program. We can calculate the tangent vector fairly easily by
computing the cross-products between the surface normal and the y and z axes,
and then selecting the longer of the two cross-products and normalizing it.

If we choose to have the OpenGL program supply the tangent vector, it must
be written into a global attribute variable used by the vertex shader. We
obtain its location using glGetAttribLocation and write three values into
it as follows:

GLfloat tangVector[3];
GLint tangentLoc;

tangentLoe = glGetAttribLocation (bumﬁshader, "tangent™};
glVertexAttrib3fv (tangentLoe, tangent):

In the vertex shader, tangent is declared globally as an att#ibute vari-
able. We must also declare the view and light vector variables as varying
variables:

attribute vec3 tangent:
varying vec3 light, view;

fl
In the vertex shader, we transform the surface normal, and compute the {
binormal vector: Once we have these three vectors, we can compute the view
and light vectors, and transforim them into tangent space. A fast way to perform
the transformation is to take advantage of the fact that we can compute the three)
result values from multiplying the transformation matrix by a vector using the Cre
built-in dot product function. For example, given the transformed light vector by first
and the three tangent-space vectors, we can transform the light vector into tan- positio]
gent space as follows: coordin
centere
consisti
vec3 tmp; vertex.
tmp.x = dot{ light, tangent); the cros
tmp.y = dot{ light, binorm); vectors
tmp.z = dot{ light, normal): The
light = tmp; normal

ri-
ng

We complete the vertex shader by performing the usual copying of the texture
location and transformation of the vertex position into clip space. Here is the
completed vertex shader:

The bump-mapping fragment shader is more complicated than our previous
fragment shaders. Globally, we need to define the light and view vector variables,
along with our texture sampler variable.

To compute the height offset from a color value, we will compute the average
of the red and green components and then smooth out variations from point to
point by taking 1.5 percent of the color average and adding that to 98.5 percent
of a 50 percent gray value. We compute the blended value using the built-in mix
function:

float height(vee3 color)

0 ‘
float avg = {(color.r + color.g) / 2.0;
return mix(avg, 0.5, 0.985);

}

Creating the perturbed surface normal at a point on the texture is achieved
by first creating a small triangle around the point on the surface. We calculate the
positions of the triangle’s vertices by adding three different offsets to the texture
coordinate to locate three points at 0°, 120°, and 240° around an imaginary circle
centered on the coordinate peint. For each of these vertices, we create a vector
consisting of the s and f offsets and a height offset calculated from the color at the
vertex. We then create the normal vector from these three vectors by computing
the cross-product of vectors formed by taking the difference between pairs of the
vectors.

The rest of our fragment shader is straightforward. We compute the modified
normal vector for the texture coordinate, and then compute ambient and diffuse

22-4 Shader Effects

621

692

Chapter 22 Programmable Shaders

color contributions based on the texture color and the modified normal. Here is
the completed fragment shader:

Color Plate 35 shows the results of using this shader pair to apply the Earth
surface texture image used in previous examples to a square polygon. Compare

this to
Plate 3

22

Comp
graphi
work d
graphig
of grap
origing
As]
becamg
capabil
oped, W
of diffej
ing lang
Operatiq
The

ing prog
progran
tionofv
through|
perform
using a
used to {

glCreaf
¢lShade
glCompi
glGetShe
glGetSh
glCreatg

glAttach
glGetPfc
glGetPrag
glUsePrd
glGetUni
glGetUni
glUnifor
glGetAtt
glGetAtt]
glVertex

this to the direct application of the texture image to the polygon shown in Color
Plate 33 to see the effect of the bump mapping calculation.

225 Summary

Computer graphics libraries have evolved over time to match the capabilities of
graphics hardware. In the beginning, graphics programmers were required to
work directly with the hardware available to them. Libraries of commonly used
graphics routines were developed in an attempt to standardize the development
of graphics programs, culminating in APIs such as the OpenGL library and its
original fixed-function internal pipeline.

As graphics hardware continued to evolve, the fixed-function pipeline
became more limiting because it could not take advantage of improved hardware
capabilites. To solve this problem, a programmable pipeline model was devel-
oped, which allowed graphics programmers more control over the functionality
of different stages in the pipeline through the use of programmable shaders. Shad-
ing languages were created to simplify the task of performing common shading
operations.

The OpenGL Shading Language (GLSL) was developed as a way of integrat-
ing programmable shading operations into the OpenGL pipeline. GLSL provides
programmable “hooks” into the pipeline at critical stages, allowing the manipula-
tion of vertices, object geometries, surface tessellation, and fragment manipulation
through the use of shader programs. Given the flexibility of GLSL, it is possible to
perform easily shading tasks that would be difficult or impossible to accomplish
using a fixed-function graphics pipeline. Table 22-1 lists the OpenGL functions
used to create and communicate with GLSL shader programs.

Summary of OpenGL GLSL-Related Functions

Function Description
glCreateShader Creates a shader object.
glShaderSource Attaches shader source code to a shader object.
glCompileShader Compiles shader source code.
glGetShaderiv Queries shader object state.
glGetShaderInfoLog Retrieves shader object messages.
glCreateProgram Creates a shader program object. :
glAttachShader Attaches a shader object to a shader program dbject.
glGetProgramiv Queries shader program object state.
glGetPrograminfoLog Retrieves shader program messages.
glUseProgram Activates a shader program.

glGetUniformLocation

Obtains the location of a global shader uniform variable.

glGetUniform* Reads the contents of a global shader uniform variable.
glUniform* Writes the contents of a global shader uniform variable.
glGetAttribLocation Obtains the location of a vertex shader attribute variable.
glGetAttrib* Reads the contents of a vertex shader attribute variable.

glVertexAttrib*

Writes the contents of a vertex shader attribute variable.

22-5

Swmmary

693

694 Chapter 22 Programmable Shaders

REFERENCES

Shade trees are discussed in Cook (1984}, Ken Perlin’s
PSE is described in Perlin (1985), and his original
noise implementation can be found on his web-
site, at hitp://cs.nyuedu/~perlin/. RenderMan is
presented in Upstill (1989) and Apodaca and Gritz
(2000). The official RISpec can be found online at
https:/ /renderman.pixar.com/products/rispec/index
htm, and a number of RenderMan implementations
{both commercial and open-source) can be found on the
Internet. Relief texture mapping is discussed in Oliveira,
Bishop and McAllister (2000) and in Policarpo, Oliveira,
and Comba (2005).

Official specifications for GLSL can be found at
http:/ /www.opengl.org/, along with sample programs
and tutorial guides. GLSL is also discussed in Shreiner
(2010). Fmally, more complete treatments of GLSL can be
found in Rost and Licea-Kane (2010} and in Bailey and
Cunningham (2009).

EXERCISES

221 Determine whether or not your OpenGL instal-
lation supports GLSL. If it does, determine the
version of GLSL it supports. _

22-2 Write a function which fakes two null-terminated
slringg as its parameters and refurns the GLuint
identifier for a shader program object. The param-
eters contain the names of vertex and fragment
shader source files,

22-3 Write a program using the functions in the previ-
ous exercise to draw a square in the center of the
display window and use the vertex shader pro-
gram to color the square red.

22-4 The example Phong shader performs its color cal-
culations at each vertex. Convert it into a shader
that does the color calculations in the fragment
shader. Remember that some critical values must
be computed in the vertex shader.

22-5 Write a program to display an origin-centered
tetrahedron on a black background using the
shader you wrote in the previous exercise to shade
the object. Add the ability to rotate the object
around the y-axis using keyboard input. .

22-6 Modify the example Phong shader to use a light
source specified through a global shader variable
rather than just using light source 0.

227 Modify the example Phong shader to work with
multiple light sources. Use a global shader vari-
able to tell the shader how many light sources are
active,

22-8 Modify the program in Exercise 22-5 to add two
more light sources to the scene. Use the shader
you developed in the previous exercise to shade

the objecf in the scene. The positions and orienta-
tions of the light sources should be taken as input
parameters to the program.

22-9 Modify the simple texture mapping shader so
that it performs Phong calculations using color
information from the texture image instead of the
material properties of the object being shaded.

22-10 Write program to display an origin-centered cube
onablackbackground using the shader you wrote
in the previous exercise to shade the object with
a textured image on each of the faces of the cube.
Provide the ability to rotate the cube about the
y and z axes using keyboard input.

22411 Modify the program and shader used in the pre-

vious exercise to add two more light sources to
the scene and have the shader texture the object
using lighting information from all three lights.
The positions and orientations of the light sources
should be taken as input parameters to the pro-
‘gram. '

IN MORE DEPTH

22-1 By modifying the examples in the chapter, write a
- shader program to apply the texture patterns you
developed in Chapter 18 to the objects in your
scene. If you wrote a bump map fot any of those
objects, modify the example in the chapter to pro-
duce a shader program for that as well. Replace
the existing texture and bump maps with the
shader programs and note the visual differences
between the two approaches to texture mapping,

if any.

222 Consider the pattern created by four ceramic tiles
arranged in a 2 x 2 pattern on a floor or wall.
Each tile has a width and height, and the grout
line between adjacent tiles also has a width. The
total width of this pattern is 2 x tileWidth +
2 x groutWidth, and similarly the total height is
2 x tileHeight + 2 % groutWidth. We can apply
this pattern to a surface as a procedural texture
map without using an actual texture image fairly
easily. The s téxture coordinate specifies a posi-
tion between the left edge (s = 0} and the right

" edge (s = 1); similarly, the ¢ coordinate specifies a
position between the bottom edge (I = 0) and the
~top edge (f = 1). Because we know the width and
height of each tile and the width of the grout line,
we can use the s and f coordinates to determine
whether this point on the “texture” is covered by
tile or grout. Create a shader that applies this'type
of procedural texture fo an object. Communicate
the width, height, and color of a tile and the width
and color of the grout line to your shader through
global uniform variables.

