]CHAPTER 20

Programmable Pipelines

over the engine room!

"'he OpenGL Shading Language (abbreviated as GLSL, also called
GLslang) was developed originally by the OpenGL ARB (Architecture
Review Board) to give programmers direct control over parts of the graphics
processing pipeline. Included in the core of OpenGL 2.0, rcleased in 2004,
it represented the first major upgrade of OpenGL since its creation in
1992, The way the GLSL operates is to allow the programmer to write
programs, called shaders, to supplant parts of the graphics pipeline formerly
of fixed-functionality.

Historically, the GLSL evolved as a response to the increasing capabilities
of graphics cards {also called graphics processing units, or GPUs) and the
need to expose these capabilities to the application programmer. Before the
standardization of the GLSL, a programmer had to write code in hardware-
specific assembly language to access individual GPU features — a difficult
and inefficient task at best. Just as high-level programming languages like
C evolved from assembly in order to hide low-level and hardware-specific
calls from the developer and give her a structured and stable environment,
so did the GLSL.

As a language, the GLSL itself is based on C, so coding will not be a
problem for us. In addition to most of C’s functionality, the GLSL necessarily
has dedicated functions and variables for the shaders to interact with each
other, as well as with the main OpenGL program to which they are attached
(and, thereby, with the rest of the pipeline).

The goal of this chapter is not an extensive coverage of the GLSL, but
a thorough introduction. We begin in Section 20.1 with an overview of
the programmable pipeline, learn how to attach shaders to an OpenGL
program and run over the data types of the GLSL. Section 20.2 describes

P rogrammers mutiny! We're going to throw off our shackles and take

G

723

Chapter 20

PROGRAMMABLE

724

PIPELINES

how & program communicates with its shaders, shipping them data from the
fixed-functionality parts of the pipeline, and how the shaders communicate
between themselves. The communication interface between these entitics is
implemented by means of specially qualified variables. It is precisely because
shaders are programmable and at the same time have access to almost all
hitherto opaque data in the pipeline that the GLSL is so powerful.
Per-pixel lighting — versus the per-vertex lighting of the first-generation
fixed pipeline — is a popular practical application of the GLSL that we'll
see in Section 20.3. In Section 20.4 we learn how to import and manipulate
textures in the programmable pipeline. We conclude in Section 20.5.

20.1 GLSL Basics

Shaders are the programs written by the user to replace fixed-functionality.
One each of two kinds of shaders can be attached to an OpenGL program —
vertex shaders and fragment shaders. Both kinds are written in the same
C-like GLSL but target different parts of the graphics pipeline. The vertex
shader operates on incoming vertex data (including coordinates, normal
values, colors, etc.) before handing over its output for clipping and then
rasterization. The fragment shader, on the other hand, operates on fragments
in the raster before passing them on to the bottom stage of the classical
pipeline, which remains intact, to perform its own per-fragment operations
such as the scissor, alpha, stencil and depth tests, as well as blending.
Figure 20.1 is a simplified diagram. Observe that texturing is within the
purview of the fragment shader, which is justified technically as it is a process
of combining texels with fragments in the raster.

Vertex shader

T y er-
Clipping |-~| Rasterl tagment
zation perations

AT

[Textures | [Vertex Datal

Figure 20.1: GLSL pipeline simplified: shaded regions indicate parts of the classical
pipeline now programmable. .

A vertex shader operates on each vertex coming down the pipeline, while
a fragment shader on each fragment in the raster. Once attached, shaders do
have minimum responsibilities that they have to discharge and that cannot
be left to fixed parts of the pipeline. The vertex shader, for example, must

output at le
t0 operate ¢
to fixed-fun
functionalit
Likewise, th
decide to di

20.1.1]

Time now t
code. Qur ¢
square.cpp

Experime
Square.

Note: TFor.
Appendix B
the GLSL su
sure, when i
two shader

Now, re
amount of
passThroug]
a red squard

D seasquureicpp

Figy

Before wi
program itsq
new lines of

g from the
nmunicate
entities is
ly because
almost all
ul.
generation
that we'll
nahipulate
20.5.

nctionality.
. program —
n the same
The vertex
s, normal
g and then
n fragments
he classical
operations

s blending,

within the
is a process

the classical

peline, while
1, shaders do

that cannot
ample, must

output at least the vertex’s coordinates in world space. It cannot, say, choose
to operate only on a vertex’s.normal values, leaving coordinate computation
to fixed-functionality (though, of course, it is free to just mimic the fixed-
functionality computation of vertex coordinates and not do anything more)
Likewise, the fragment shader must at least assign each fragment a color or
decide to discard it from the pipeline altogether.

20.1.1 Attaching Shaders

Time now to go see what we have been talking about. In other words, let's

code. Owr guinea pig will be our trusty workhorse from way back when —
square.cpp.

Experiment 20.1. Fire up redSquare.cpp in the folder Code/GLSL/Red-
Square.

Note: For how to set up the environment to run GLSL programs see
Appendix B. Each of our GLSL programs is in a similarly named folder in
the GLSL subdirectory of Cods, with two accompanying shader files. Make
sure, when running a GLSL program, to keep it in the same directory as its
two shader files.

Now, redSquare.cpp is ezactly square.cpp with the barest minimum
amount of code added to be able to attach a vertex shader, called
passThrough.vs, and a fragment shader, chlled red.fs, The output is
a red square in the OpenGL window, as in Figure 20.2(a). End

3 ccdsquarecap

(=))

Figure 20.2: Screenshots: (a) redSquare,cpp (b) Experiment 20.2.

Before we get to the shaders, let’s see what, in fact, has been added to the

program itself to “GLSLify” it. Comments starting with “NEW?" indicate
new lines of code.

Section 20.1
GLSL Basics

725

Chapter 20

PROGRAMMABLE

726

PIPELINES

Linking in the OpenGL Extension Wrangler Library (GLEW), as we
have done with directives at the top of the program, is advisable for the
yun-time support of OpenGL extensions that GLEW provides.

The integer globals programHandle, vertexShaderHandle and fragment-
ShaderHandle are to store references to program, vertex shader and fragment
shader objects, respectively. The routine readShader() is a generic routine
to read external text files, and not GLSL-specific.

The setShaders() routine is the critical one that initializes the two
shaders. Let’s go through it line by line. The commands

char* vartexShader = readShader (vertexShaderFile) ;
char* fragmentShader = readShader (fragmentShaderFila);

read the two shader source files, which are simply text files, and store them
internally as character strings. Next,

programHandle = glCreateProgram(); :
vertexShaderhandle = glCreateShader(GL_VERTEX_SHADER);
fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER);

create an empty program object and two empty shader objects, returning
references to them. The pair of statements

glShaderSource (vertexShaderHandle, 1,
. (const char+#) &vertexShader, NULL);
glShaderSource (fragmentShaderHandle, 1,
' (const char**) &fragmentShader, NULL);

attaches the vertex and fragment shader sources to the respective shader
objects. The two statement pairs

glCompileShader (vertexShaderHandle) ;
glCompileShader (£ ragmentShaderHandle) ; <

glittachShader (prograntandle, vertexShaderHandle);
glittachShader {programHandle, fragmentShaderHandle) ;

compile the vertex and fragment shader source code strings and attach the
resulting shader objects to the program object. Finally,

glLinkProgram(progranHandle) ;
glUseProgra.m(programHandle) R

links the program and creates an executable which is installed into the
current rendering state.

The main() routine actually sets the programmable pipeline into motion
by initializing GLEW and invoking the shaders. That’s it. That is all the
additional overhead to attaching shaders — essentially, the getShaders ()
routine, which is the same across all our GLSL programs.

Minimal Shader

Now let’s see wi
Apparently not my

Note: Our vertex g
the extension .fs)
as text files by the

The only opers
gl_Position =

in passThrough.y
pipelite, its coordi
matrices and the 1
the fixed pipeling
called a pass-throt
Note: The nami]
program state se
glVertex*(}).

As indicated
gl ModelViewPrg

gl Projection]

and can replace |
multiply a vertex
is to use the sped

gl_Position 9

which guarantees
The fragmen
fragment colors {

gl_FragColor

20.1.2 Dat

Tt seems, even fi
attached to reds
(e.g., vecd) to 1
gl Projection}

To begin wif}

floatly

to declare a sing
In addition, the
vectors, respect

), as we
3 for the

ragment—
fragment

¢ routine

the two

.ore them

returning

LL) ;
LL);

lve shader

attach the

i into the

nto motion
i is all the
.Shaders ()

Minimal Shaders

Now let’s see what the shaders associated with redSquare.cpp do.

Apparently not much. The vertex shader is passThrough.vs.

Note: Our vertex shaders all have the extension .vs, while fragment shaders
the extension .fs, but this is not a standard, and they are ireated simply
as text files by the programming environment,

The only operational statement
gl_Position = gl,ProjeétionMatrix * gl_ModelViewMatrix % gl_Vertex

in passThrough.vs is fairly intuitive. As each vertex comes down the
pipeline, its coordinate vector is multiplied by the modelview and projection
matrices and the result refurned in a position vector. This is precisely what
the fixed pipeline does and, as this particular shader does no more, it is
called a pass-through vertex shader.

Note: The naming convention is gl.state for a variable containing the
program state set by glstate, e.g., gl Vertex for the variable set by
glVertex*().

As indicated by comments in passThrough.vs, the derived matrix
gl ModelViewProjectionMatrix is equal to the product

gl ProjectionMatrix * gl _ModelViewMatrix

and can replace it. An even more optimized option, if it is desired only to
multiply a vertex’s coordinates by the projection and modelview matrices,
is to use the specia! command

gl_Position = ftransform()

which guarantees the same result as fixed-functionality.
The fragment shader red.fs is equally simple-minded, setting all
fragment colors to red with the single statement

gl_FragColor = vec4(1.0, 6.0, 0.0, 1.0)

20.1.2 Data Types

It seemns, even from the very concise shaders passThrough.vs and red.fs
attached to redSquare. cpp, that the GLSI: has vector and matrix data types
(e.g., vecd) to manipulate state variables such gl Vertex, gl Position,
gl_ProjectionMatrix and such. This ig correct.

To begin with, the GLST hag the classical C types

float int bool

to declare a single floating point, integer and Boolean quantity, respectively.
In addition, the GLSL can declare 2-, 3- and 4-component floating point
vectors, respectively, with

Section 20.1
GLSL Basics

727

Chapter 20

PRROGRAMMABLE

728

PIPREINES

vec2 vecd vecd
Likewise, integer vectors are declared with

ivec2 ivec3 ivecd

and Boolean vectors with

bvec?2 bvecd bvecd

Matrices, which are always floating point and square, of sizes 2x 2,3 x3
or 4 x 4 are declared, respectively, with

mat?2 mat3 matd

The final set of special non-C data types, called samyplers, are handles to
access textures:

samplerlD sampler2D sampler3D
samplerCube sampler 1DShadow sampler2DShadow

The first three declare handles to 1D, 2D and 3D textures, respectively; the
fourth a handle to a cube-mapped texture; the ffth and sixth handles to 1D
and 2D depth textures, vespectively, with comparison.

Finally, the complex data types structures (struct) and arrays (rn,
functioning just as in G, are available as well.

3

20.1.3 Swizzling

Components of a vector can be selected and even rearranged and duplicated
using the swizzle operator « " Vector components are accessed using the
following three sets of names:

5

X, ¥y Z» W r, g, b, 2 s, t, pr» 4

Tor example, x, r and s each denotes the first component; y, & and t
each the second component; and so on. The sets cannot be mixed though.
The following snippet illustrates how the swizzle operator behaves on the
right-hand side — read the comments:

vecd posl = vecd(1.0, 2.0, 3.0, 4.0);

vecd pos2 = posl.yxzw; // Rearrangement: pos2 = (2.0, 1.0, 3.0, 4.00
vecd posd = posl.rrba; // Duplication: pos3 = (.0, 1.0, 3.0, 4.0)

vecd poséd = vec4(posl.xyz, 5.0); // posa = (1.0, 2.0, 3.0, 5.0).

vec2 posb = posl.xy; // posb = (1.0, 2.0). _
vecd pos6 = posl.xgga; // Illegal: mixing names from different sets. -

On the lefi-hand side, though, the swizzle operator does not accept
repeated components:

'x2,3%3

handles to
iD
:DShadow

ctively; the
1dles to 1D

rays ([1),

. duplicated
d using the

by g

y, g and t
xed though.
aves on the

fforent sets.

s not accept

vecd posi = vec4(l1.0, 2.0, 3.0, 4.0);

posl.xy = vec2(5.0, 6.0); // posl = (5.0, 6.0, 3.0, 4.0).
posl.yx = vec2(5.0, 6.0); // posl = (6.0, 5.0, 3.0, 4.0).
posl.xx = vec2(5.0, 6.0); // Illegal - x is repeated.

Here's a simple application of swizzling in a vertex shader.

Experiment 20.2. Replace the vertex shader code for redSquare. cpp
with '

void main{)

{
vecd scaledPos = vecd (0.5 * gl_Vertex.xy, 0.0, 1.0);
gl _Position = gl _ModelViewProjectionMatrix * scaledPos;
}
As expected, the zy-values of the square’s vertices are both halved. See
Figure 20.2(b) for a screenshot. Ena

Exercise 20.1. (Programming) In the preceding experiment, if the
first line of the new shader is simply

vecd scaledPos = 0.5 % gl _Vertex;

instead of

vec4 scaledPos = vecd(0.5 * gl _Vertex.xy, 0.0, 1.0);

what happens? Why?

20.2 Communication

Even the simple shaders attached to redSquare.cpp are evidently doing
some amount of rudimentary communication with the program. The
vertex shader passThrough.vs accesses the program’s state — particularly,
the current modelview and projection matrices through the variables
gl ModelViewMatrix and gl ProjectionMatrix, respectively — in addition,
of course, to the incoming vertex’s coordinates contained in the variable
gl Vertex. It outputs the vertex’s transformed coordinates into the variable
gl Position. The fragment shader red.fs, too, outputs to a variable
gl_FragColor defining the current fragment’s color.

20.2.1 Overview

A very simple overview of the GLSL’s communication scheme is as follows.

The program has so-called built-in variables — all prefixed with “gl_"
— that the shaders can access. Built-in variables are of two kinds: read-
only (like gl_Vertex, gl ModelViewMatrix, etc.) for the shaders to access
incoming data and the program’s state, and writable (like gl.Position,

Section 20.2
COMMUNICATION

729

730

Chapter 20
PROCRAMMADLE
PIPELINES

gl _FragColor, etc.) for the shaders to output the result of their computation
for use by the program (in other words, back to the pipeline).

Shaders, teo, have built-in variables for communication between one
another. In addition to the built-in variables, the programmer can
define variables herself, called user-defined obviously, for the program to
communicate with the shaders, as well as for inter-shader communication.

Before we write programs with our own user-defined variables, here’s

another with only built-in variables, but with somewhat more going on than
redSquare.cpp.

EFrmulik otaedSquared cpp

(a) (b}

Figure 20.3: Screenshots of multviColoredSquarel.cpp: (a) Front (b) Baclk.

3

Experiment 20.3. Run multiColoredSquarel.cpp. The program itself
is a copy of redSquare.cpp, except for a different color at each square
vertex and enabling of two-sided coloring with a call to glEnable{(GL_-
VERTEX PROGRAM_TWO_SIDE) in the setup routine. The output initially i is &
multi-colored square (Figure 20.3(a}).

The vertex shader simpleColorizer.vs writes out both a front and

a back color to the built-in variables gl FrontColox and gl BackColor,
respectively:

gl_FrontColor = gl _Color;
gl_BackColor = vecd4(1.0, 0.0, 0.0, 1.0);

It reads the front color from the user-defined colors, which it accesses through
the built-in state variable gl_Color, while the back color is a fixed red.
The fragment shader passThrough.fs, on the other hand, simply sets

gl_FragColor = gl_Color;
Now, the way the GLSL works, the fragment shader does nof receive its

gl _Color values from the program; rather they are compuied by inierpolation
from either the gl FrontColor or gl BackColor values specified in the

vertex shader, depen
gl _Color to represen
vertex shader using 4
shader to access its §
keep the context in m
shader does no more
it is called a pass-thr

As the square its
facing, the fragment
from gl-FrontColor
in the program. Con

A fun way to revel
Accordingly, replace

void main(}

{

gl_FrontColor =
gl_BackColor = V

vecd transposePd
// coordinate vg

gl_Position = gl

}

to see now & back-fd

20.2.2 Specif]

We see next how v
two shaders, as well
Particularly, these
Section 20.1.2, but

attribul

attribute gqualifie
simply, attributes)
to the vertex shad
incoming vertex; t}
as well. Built-in
among others.

Vertex shaderg
cannot be accesse

Tor efficiency o
point scalars, vec

nputation

ween one
1mer can
ogram to
mication.
les, here’s
1g on than

==

) Back,

igram itself
ach square
nable (GL_-
nitially is a

y front and
BackColor,

sses through
xed red.
simply sets

t receive its
nterpolation
-ified in the

vertex shader, depending on the visible face. The use of the same name
gl.Color to represent actually different variables in the two shaders — the
vertex shader using gl _Color to access the program, while the fragment
shader to access its sibling — can be a source of confusion. One needs to
keep the context in mind when using this variable. As the current fragment
shader does no more than assign colors interpolated from the vertex shader,
it is called a pass-through fragment shader.

As the square itself is oriented counter-clockwise and, therefore, front-
facing, the fragment shader computes its gl.Color values by interpolation
from gl FrontColor, which in turn tracks the vertex color values as specified
in the program. Consequently, a multi-colored square is drawn.

A fun way to reverse the square’s orientation next is with a bit of swizzling.
Accordingly, replace the vertex shader code with

void main()

{

gl_FrontColor = gl_Color;
gl_BackCclor = vecd4(1.0, 0.0, 0.0, 1.0);

vecd transposePos = gl _Vertex.yxzw; // Interchanges x and y
// coordinate values, reversing the order of the vertices,

gl _Position = gl _ModelViewProjectionMatrix * transposePos;

1
to see now a back-facing red square (Figure 20.3(b}). End

20.2.2 Specifying Interface Variables with Qualifiers

We gee next how variables at the interfaces between the program and the
two shaders, as well as at that between the shaders themselves, are specified.
Particularly, these variables will be of the GLSL types described earlier in
Section 20.1.2, but each with an additional qualifier from the following:

attribute ' uniform varying

attribute quelifier: Attribute-qualified variables (or attribute variables or,
simply, attributes) are used by the program to communicate per-vertex data
to the vertex shader. An attribute is read by the vertex shader with each
incoming vertex; therefore, it can be updated by the program for each vertex
as well. Built-in attributes include gl Vertex, gl Color and gl _Normal,
among others. --\‘ '

Vertex shaders can only read attributes, not write them. Attributes
cannot be accessed by a fragment shader at all.

For efficiency of implementation, attribute types are restricted to floating
point scalars, vectors and matrices.

Section 20.2
COMMUNICATION

731

Chapter 20
PROGRAMMABLE
PIPELINES

732

uniform gualifier: Uniform-qualified variables (or uniform variables
or, simply, uniforms) are used by the program to communicate per-
primitive data to either shader or to both together. A uniform is not
read and cannot be updated within a gl Begin(primitive)-glEnd() pair
in the program, only outside. Therefore, its value remains constant
through a primitive and it cannot be used to send per-vertex values,
Built-in uniforms include gl ModelViewMatrix, gl ProjectionMatrix and
gl ModelViewProjectionMatrix, among others.
Shaders can enly read uniforms, not write them.

varying qualifier: Varying-qualified variables (or varying variables or,
simply, varyings) are used by the vertex shader to communicate data to
the fragment shader. There is, however, an important particularity of
varyings: the vertex shader writes them per-vertex; subsequently, however,
this data is interpolated in a perspectively-correct manner across each
primitive’s fragments beforc being read by the fragment shader. For this
reason varyings are often called interpolators, which actually is a more
appropriate term. Built-in varyings include g1 Color, gl FrontColor and
gl.BackColor, among others.
Fragment shaders can only read varyings, not write them.

Hemart 20.1. As we learned from Experiment 20.3, the vertex shader
writes to the built-in varyings gl _FrontColor and gl BackColor, while the
fragment shader reads the built-in varying gl Color, which is interpolated
from one of the first two, depending on the primitive’s visible face. Maoreover,
gl_Color is the name of an attribute as well, which is accessed by the vertex
shader to read the program’s color state.

Built-in atiributes:
attribute vecd gl_Vertex
attribute vec4 gl_Color
attribute vec3 gl_Normal
etec.

o Built-in output

utput | variables:
vecd gl_Position

etc. .

Attributes, Uniforms, Texture Maps

Built-in varyings:
varying vecd gl FrontColor
varying vecd gl_BackColor
varying vecd gl_Color

Built-in uniforms:
uniform matd gl_ModelViewMatrix
uniform matd gl _ProjectionMatrix

Varyings

etc.
etc.
Uniforms, Texture Maps hf 1| Oﬁtput Eg;g;g&gutp ut
: vecd gl_FragColo
etc.

Figure 20.4: GLSL’s communication scheme and a few popular built-in variables.

Figure 2
tion scheme
Texture may)
we'll see thej
]{(’.m.a‘,"k 20.1
type qualifier
in, out and

Let’s get
apply to a ug

Experimenl
as redSquarg
because of thy

What we |
color the squ{
the position d
RGB’s within
color (0.8,0.2,
the color (0.2,

Since the fi
a varying ig
PositionToCo

varying veq
in both shader:
vertexColor|

in the vertex sh
zyz-values, whi

gl_FragColo]

in the fragment
t&CkiI]g alonfl
Let’s code &

Experiment y
cylinder. cpp,
control the num]
Press the up/do
keys to change
shows the cylind]

The waviness
cylinder. cpp vi

variables
cate per-
‘m is not
mnd() pair
constant,
ox values,
1trix and

riables or,
te data to
wularity of
7, however,
sross each
r. For this
is a more
Color and

tex shader
-, while the
erpolated
. Moreover,
7 the vertex

-in output
bles:
gl_Position

s
I FrontColor
I BackColor
i Color

~in output
bles:
gl FragColox

in variables.

Figure 20.4 illustrates the qualifier definitions in the GLSL’s communica- Section 20.2
tion scheme and shows a few of the most commonly used built-in variables. COMMUNICATION
Texture maps are communicated by the program to the shaders as well and
we'll see their use soon.

Remasn 20.2. n addition to the three above, the GLSL defines four other
type qualifiers: const (just like its C namesake for compile-time constants),
in, out and inout (the latter three qualify formal function parameters).

Let’s get our feet wet with the easiest of the three interface qualifiers to
apply to a user-defined variable: varying.

Experiment 20.4. Run multiColoredSquare2.cpp. The code is exactly
as redSquare.cpp, except this time the output is a multi-colored square
because of the new shaders. Figure 20.5 is a screenshot. End

What we have done in multiColoredSquare2. cpp is use the shaders to
color the square’s vertices in a somewhat offbeat manner: by converting
the position of each into a color by dividing its xyz-values by 100 to get
RGB’s within 0 to 1. For example, the vertex at (80.0,20.0,0.0) gets the

color (0.8,0.2,0.0), a reddish hue; likewise, the vertex at {20.0,80.0,0.0) gets

the color (0.2,0.8,0.0), which is more green. Figure 20.5: Screenshot
Since the fragment, shader positionToColor.fs cannot read gl Vertex, g;f:::; f:(?;;red—

a varying is used to pass the needed data to it from the vertex shader .

positionToColor.vs. In particular, the global declaration ’

varying vec3 vertexColor;
in both shaders links them through the varying vertexColor. Next

vertexColor = 0.01 * gl _Vertex.xyz;

in the vertex shader writes vertexColor with one-hundredth of the vertex
zyz-values, while b

gl FragColor = vecé4(vertexColor, 1.0);

in the fragment shader turns vertexColor into a legitimate color vector by
tacking a 1 on for the alpha value.
Let’s code a couple of uniforms next.

Experiment 20.5. Run wavyCylinderl.cpp. This program, based on
cylinder.cpp, draws a cylinder with a wavy surlace, allowing the user to
control the number of waves, as well as change its color from red to green.

Press the up/down arvow keys to change the waviness, the left /right arrow
keys to change the color and ‘x’-‘Z’ keys to turn the cylinder. Figure 20.6 Flgure 20.6: Screenshot
shows the cylinder initially. End of wavyCylindert.cpp.

The waviness and color capabilities of wavyCylinderl. cpp are added into
cylinder.cpp via the vertex and fragment shaders, respectively. The vertex 733

Chapter 20

PROGRAMMABLE

734

PIPELINES

shader receives a parameter value from the program through the uniform
waveParamShader to control the number of waves, while the fragment
shader receives a parameter value from the program through the uniform
colorParamShader to determine the cylinder’s color. Let’s understand the
shaders themselves before deciphering how the uniforms are linked to the
program.

The vertex shader waves1.vs first reads the cylinder’s vertex coordinates
gl _Vertex into the local vector variable v. Subsequently, the statements

v.x *= 1 + 0,1 % sin(waveParamShader * PI * v.z);
v.y #= 1 + 0.1 * sin(waveParamBhader * PI * v.%);

scale the cross-section of the cylinder, which is parallel to the zy-plane, by

the factor
1 + 0.1 sin(waveParamShader # 7 v.z)

This scaling factor follows a sine function along the z-axis, which is the
axis of the cylinder. The greater the parameter waveParamShader, the more
rapidly does the scaling factor vary with z-value v.z. Finally,

gl_Position = gl_ModelViewProjectionMatrix * v;

outputs the position of the cylinder vertex.
The fragment shader colorInterpolate.fs is simple. The statement

gl;FragColor = vec4(1.0 - ¢olorParamShader, colorParamShader,
0.0, 1.0);

v

uses the parameter colorParamShader to interpolate the fragment color
between red and green.

Let’s see now how the uniforms are actually linked to the program. The
global declaration

uniform float waveParamShader = 2.0; ,

in the vertex shader declares the uniform waveParamShader. It will be
linked to a counterpart variable waveParamProgram, which has been declared
globally in the program. The two statements

parameterLocation = glGetUniformLocation(programiandise,
"waveParamShader");

glUniformif {parameterLocation, waveParamProgram);

in the specialKeyInput () routine — where waveParamProgram is manip-
ulated — complete the linking: the first statement obtains the location of
the uniform waveParamShader, while the second binds it to the program
variable waveParamProgram.

Likewise, the fragment shader uniform colorParamShader is linked to
its program counterpart colorParamProgram.

Coding an attribute is next.

Experir
are exact
in the md
we discus

The s
same as jj
waveParal
to its vert
in the veri
inside the

foxr(j
{
glB
for]

{

In

g

}

g1En
}

in the dr4
Program p
which yielg
shader vav

The me
counterpart
from that d

glBindAf

just before
attribute s
value 1), Sy

glVertex

in the triang
associated
Program.

uniform
Tagment
uniform
tand the
:d to the

ordinates
aments

plane, by

ich is the
the more

atement

der,

aent color

rram. The

1t will he
i declared

Y

1 is manip-
location of
& program

s linked to

Experiment 20.6. Run wavyCylinder2.cpp. The output and controls
are exactly as for wavyCylinderl.cpp. The difference between the two is

in the mechanism by which the cross-section of the eylinder is scaled, which
we discuss next. End

‘The scaling factor applied to the cylinder in wavyCylinder2.cpp, the
same as in wavyCylinderl.cpp and parametrized by the program variable
waveParamProgram as well, is computed by the program itself and shipped
to its vertex shader waves2.vs via an attribute, rather than being computed
in the vertex shader as for wavyCylinder1.cpp. The triangle strip definition
inside the for loop

for(j = 0; j < q; j++)

{ glBegin(GL_TRIANGLE_STRIP);
for(i = 0; i <= p; i++)
{
scaleFactorProgram = 1 + 0.1 * sin(waveParamProgram * PI *
h(i,j+1));
glVertexAttriblf (attributeIndex, scaleFactorProgram);
glArrayElement ((j+1)*(p+i) + i);
scaleFactorProgram = 1 + 0.1 * sin(waveParamProgram * PI #
h{i,j));
glVertexAttribif (attributelndex, scaleFactorProgram);
glArrayElement(j*(p+l1) + i);
}
glEnd();
}

in the drawScens(} routine computes the scaling factor scaleFactor-
Program per vertex, using a formula parametrized by wvaveParamProgram,
which yields the same value as the corresponding formula in the vertex
shader wavesl,vs of wavyCylinderl.cpp.

The method of linking the program variable scaleFactorProgram to its
counterpart vertex shader attribute scaleFactorShader is a little different
from that of linking to a uniform. The command

glBindAttribLocation(programHandle, attributeIndex,
"scaleFactorShader");

just before the for loop in drawScene(), associates the vertex shader
attribute scaleFactorShader with the index attrlbuteIndex (current
value 1). Subsequently, each command

glVertexAttriblf (attributeIndex, scaleFactorProgram);

in the triangle strip definition sets the value of scaleFactorShader, already

assoclated with attributeIndex, to the current value of scaleFactor-
Program.

Section 20,2

COMMUNICATION

735

736

Chapter 20

PROGRAMMABLE

PIPELINES

The fragment shader colorInterpolate.fs of wavyCylinder2.cpp is
copied over from wavyCylinderl.cpp.

Exercise 20.2. (Programming) Rewrite throwBall. cpp with the help
of shaders —in parti_cula,r, replace the call to translate the ball in the program
with statements to change its coordinates in the vertex shader.

20.3 Per-Pixel Lighting

We come now to an application which definitively takes the GLSL beyond
firat-generation OpenGL: per-pizel lighting, The context is bump mapping,
which we first encountered as a special effect in Section 13.7. The idea of
bump mapping is to give an illusion of detail on a surface by perturbing
its normals so that light reflects off it ag though it were actually detailed.
We applied this idea in Experiment 13.12 of Section 13.7 to make a plane
appear corrugated in the program bumpMapping.cpp. We remarked then
that bump mapping is particularly effective with the per-pixel lighting
of Phong’s shading model, where normal values are interpolated across
primitives, rather than being fixed at vertices. We'll demonstrate now that
indeed this is the case.

First, though, we'll warm up by replicating, via a vertex shader, per-
vertex lighting — which consists of Phong lighting at each vertex, followed by
Gouraud shading to interpolate colors through the primitives. Per-vertex
lighting is implemented in the traditional fixed OpenGL pipeline and is what
we have seen in all our lit programs to date. :

Experiment 20.7. Run bumpMappingPerVertexLighting. cpp, which is
code-wise almost exactly bumpMapping.cpp, but with a couple of shaders
attached. Interaction is the same as well: press space to toggle between
bump mapping on and off. Figures 20.7 {a) and (b) are screenghots of
bumpMapping . cpp and bumpMappingPerVertexLighting. cpp, respectively,
doing bump mapping. Yes, they are exactly the same and we’ll see
momentarily why! Ena

The big difference between bumpMapping.cpp and bumpMappingPer-—
VertexLighting.cpp is that is all the lighting calculations for the latter
happen in its vertex shader perVertexLightingSimple.vs. These calcu-
lations, however, replicate exactly those of the first-generation pipeline by
implementing Phong’s lighting model to determine the color intensities
at each vertex, and, moreover, with environment parameters set as for
bumpMapping.cpp. Subsequently, the fragment shader passThrough.fs
applies Gourand shading by interpolating the vertex intensities through each
triangle, again as in the first-generation pipeline. This is the reason, then,
for the identical output from the two programs. We'll soon examine the
vertex shader perVertexLightingSimple.vs in detail.

Figure 2
Lighting

Befo
where a
in unifor
for matd

A Few

Below is
lighting
will find|

// Mg

unifyq

7/ W

stru

{

r2.Cpp I8

1 the help
} Program

L beyond
mapping,
e idea of
erturbing
r detailed.
e a plane
rked then
1 lighting
ed across
' now that

ader, per-
sllowed by
Zer-vertex
nd is what

», which is
of shaders
e between
anshots of
igpectively,
- we'll see

End

ppingPer-
the latter
hese calcu-
sipeline by
intensities
set as for
hrough.fs
rough each
ason, then,
camine the

Section 20.3
Prr-PIXEL LICHTING

(a) (b) (c)

Figure 20.7: Screenshots of (a) bumpMapping. cpp (b} bumpMappingPerVertax-
Lighting.cpp (c) bumpMappingPerPixelLighting. cpp.

Before examining the vertex shader perVertexLightingSimple.vs,
where all the action is, let’s first see a general definition. of those built-

in uniforms through which it accesses the current OpenGL state, particularly
for material and lighting properties.

A Few of GLSL’s Built-in Uniforms

Below is a code-like listing of those built-in uniforms that come in handy in
lighting applications. It is extracted from the orange book [115], where you
will find a listing of all GLSL built-ins.

// Matrix State :
uniform mat3 gl _NormalMatrix; // Derived

// Material State
struct gl_MaterialParameters

{
vecd emission; // Ecm i
vecd ambient; // Lem
vecd diffuse; // Decm
vec4 specular; // Bcm
float shininess; // Srm
|5

uniform gl _MaterialParameters gl FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

// Light State
struct gl _LightSourceParameters

{
vecd ambient; // Acli
vacd diffuse; // Dcli
vecd specular; // 8cli -
vacd position; // Ppli 737

Chapter 20

PROGRAMMABLE

738

PIPELINES

vecd halfVector; // Derived: Hi
vec3 apotDirection; // 8dli
float spotExponent; // 8rli
float spotCutoff; // Crli
// (range: [0.0, 90.0]}, 180.0)

float spotCosCutoff; // Derived: cos(Crli)

‘ // (range: [1.0, 0.0], -1.0)
float constantAttenuation; // KO
float linearAttenuation; // K1
float quadraticAttenuation; /f K2

}
uniform gl_LightBourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters

{

vecd ambient; // Acs

¥

uniform gl_LightModelParameters gl_LightModel;

Now let’s get to the vertex shader perVertexLightingSimple.vs. The first
statement

normal = normalize(gl_NormalMatrix * gl_Normal)

multiplies the current normal, stored in the attribute gl Normal, by the
uniform gl _NormalMatrix, which is derived from the modelview matrix as
the correct transformation for normals (see Section 11.11.5 for the derivation
of the normal matrix from the modelview). Then it normalizes the result
with the help of the built-in function normalize().

Next

lightDirection = normalize{gl_LightSource[0].position.xyz)

extracts the normalized light direction as a 3-vector from the light’s position
vector. The position’s w value, which is 0 because the given light source is
directional, is ignored. Keep in mind, as well, that the light direction is the
same Tor all vertices, again because the light source is directional.

The statement

halfVector = normalize(gl_LightSource[0].halfVector.xyz);

returns the normalized halfway vector between light. and eye directions. The
halfVector field of gl_LightSource (0] is a derived one storing the bisector
between gl _LightSource [0] .position and the vector [0,0,1,0]. Therefore,
it is correct to use the value of the preceding equation as the halfway vector
only if the viewpoint is infinite (an infinite viewpoint is where the eye is
assumed in the positive z-direction — see Section 11.4 for a discussion of

local ver
viewpoin
The
emiss
globa
ambig
diffu

specu

gl_Frq

need litt]
Section 1]
{assuming
a spotlig
the first ¢
equation |

The p
the interi
there is n

ExpeI‘irr
fixed-fund
Lighting
output fro
in that sh

gl_Frol

Figure 20,
shader tha

With a
upgrade ny

ExpeI’im
gram itsel
difference
pixel light
mapping.o

Let’s fi
bumpMappi

normal
lightDi
halfVec

180.0)

1.0}

ts];

The first

1, by the
matrix as
derivation
the result

)

's position
t source is
tion 1s the
L.

ions. The
he bisector

Therefore,
‘way vector
. the eye I8
scussion of

local versus infinite viewpoints). The program, in fact, asserts an infinite
viewpoint.
The next few statements

emission = gl_FrontMaterial.emission;
globalAmbient = gl_LightModel.ambient * gl _FrontMaterial.ambient;
ambient = gl _LightSource[0].ambient * gl_FrontMaterial.ambient;
diffuse = max(dot(normal, lightDirection), 0.0)

* (gl_LightSource[0].diffuse * gl_FrontMaterial.diffuse);
specular = pow{ max{dot(normal, halfVector), 0.0),

gl_FrontMaterial.shininess)

* (gl_LightSource[0].specular * gl FrontMaterial.specular);

gl_FrontColor = emission + globalAmbient + ambient + diffuse +
specular;

need little narration. If you refer to the first lighting equation (11.10) in
Section 11.2.4, then the statements above are a word for word implementation
(agsuming only one light source, of course). Note that, as thére is neither
a gpotlight nor distance attenuation to take into account, implementing
the first equation {11.10) effectively implements the full OpenGL lighting
equation (11.12). \

The pass-through fragment shader completes the job of Gouraud shading
the interiors of primitives by applying interpolated color values. Note that
there ig no user-defined communication — it’s all through built-in variables.

E‘xpeI‘iment 20.8. If you are skeptical that we have actually replicated
fixed-functionality lighting caleulations in the vertex shader perVertex-
LightingSimple.vs and wondering if we are still somehow sneaking the
output from fixed-functionality, then replace the gl FrontColor specification
in that shader with

gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);

Figure 20.8 is a screenshot. There is no doubt, is there, that it’s the vertexw
shader that’s in charge of color calculation?! Ena

- With an understanding of how to code per-vertex lighting in shaders, the
upgrade next to per-pixel is not hard.

Experiment 20.9. Run bumpMappingPerPixelLighting.cpp. The pro-
gram itself is identical to bumpMappingPerVertexLighting.cpp — the
difference is in the shaders, which now implement Phong shading, or per-
pixel lighting as it is called. Again, press space to toggle between bump
mapping on and off. Figure 20.7(c) is a screenshot. End

Let’s first look at the vertex shader perPixelLightlingSimple.vs of
bumpMappingPerPixelLighting.cpp. The statements

" normal = normalize(gl_NormalMatrix * gl_Normal);
lightDirection = normalize(gl_LightSource [0] .position.xyz);
halfVector = normalizae(gl_LightSource([{].halfVector.xyz);

Section 20.3
PER-PIXEL LIGHTING

Figure 20.8: Screenshot
of Experiment 20.8.

739

Chapter 20
PROGRAMMARBLE
PIPELINES

740

are copied over from the per-vertex shader perPixelLightingSimple.vs,
but now the left-side variables are all three global varyings, rather than
local variables, in order to transmit their values to the fragment shader for
interpolation across triangles.

The variables emission, globalAmbient and ambient, as well, are
transmitied as varyings to the fragment shader after their values have
been set by the statements

emission = gl_FrontMaterial.emission;
globalimbient = gl_LightModel.ambient * gl _FrontMaterial.ambient;
ambient = gl_LightSource[0].ambient * gl_FrontMaterial.ambient;

These three light components will then simply be interpolated across interior
pixels. Nothing further need be done, as these components are the same as
in the case of per-vertex lighting, even in the interior of triangles.

The two statements next pass the light’s diffuse and specular color
intensities, respectively scaled by the material’s corresponding color values,
as varyings to the fragment shader for interpolation, and further attenuation
per pizel, as we shall see: !

diffuse = gl_LightSource[0].diffuse * gl_FrontMaterial.diffuse;
gpecular = gl_LightSource[0].specular * gl_FrontMaterial.specular;

Next let’s see what the fragment shader perPixelLightingSimple.fs does.
First, '

normalPerPixel = normalize{normal);

normalizes the received interpolated normal values. There is no need to.

do likewise for the received interpolated light direction and halfway vector
values because the two are constant over all vertices, given that the program
has a single directional light source and an infinite viewpoint; therefore, their
interpolated values are constant, as well, and of unit length already.

The next two statements, respectively, attenuate the interpolated diffuse
and specular values received from the vertex shader with a factor computed
exactly as in the case of per-vertex lighting, except now the interpolated
normal value is used at each pixel:

diffusePerPixel = max{dot{normalPerPixel, lightDirection), 0.0) *
diffuse;
specularPerPixel = pow(max{dot{normalPerPixel, halfVector), 0.0},
gl_FrontMaterial.shininess) * specular;

Finally,
gl_FragColor = emission + globalAmbient + ambient +
diffusePerPixel + specularPerPixel;
accumulates all the color components and applies them per fragment.
The superiority of per-pixel lighting is apparent upon comparing
Figures 20.7(a) and (b) with Figure 20.7(c): the corrugations are far more
sharply defined in the latter.

Exercise 20|
GLSL to mov
front and hacl
per-pixel lit v

Exercise 21
lightAndMatel
attenuation az

204 Te

Textures can n
difficulty, but n
next in a progi

Expel"iment
user to interpd
a square. Figy
configurations.

(a)

Figure 20.9: Scy

The progra]
texture coordi]
links to the sh
Specifically, thd

glActiveTex
glBindTextu’
parameterLo
glUniformii’

links the sampld
textureInterp

ple.vs,
er than
ader for

ell, are
es have

mbient ;

ent;
interior

same as

ar color
r values,
=nuation

use;
acular;

fs does.

need to
y vector
DrOgram
re, their

,

1 diffuse
ymputed
‘polated

0.0) *

, 0.0),

ular;

nt.
mparing
ar more

Exercise 20.3. (Programming) Rewrite 1itCylinder.cpp, using the gection 20.4
GLSL to move lighting calculation over to the shaders. Mind that both Tgxryures
front and back faces of the cylinder are visible. Write both per-vertex and

per-pixel lit versions.

Exercise 20.4. (Programming) Write a per-pixel lit version of
lightAndMateriall.cpp. Make sure to take into account distance
attenuation and that both lights are positional.

20.4 Textures

Textures can not only be imported into the programmable pipeline without
difficulty, but manipulated in there to-great effect. We'll see a simple example
next in a program which interpolates between two textures.

Experiment 20.10. Run interpolateTextures.cpp, which allows the
user to interpolate between (or, blend, if you like) two textures painted on
a square. Figure 20.9 shows screenshots of the start, a part way and end
configurations. Enad

(a) ® (©

Figure 20.9: Screenshots of interpolateTextures.cpp: (a) Start (b) Part way (c) End.

The program itself simply loads and activates two textures, assigns
texture coordinates to the vertices of the square and, most importantly,
links to the shaders, passing to them the texture maps and coordinates.
Specifically, the statements

glictiveTexture (GL_TEXTUREQ);

glBindTexture (GL_TEXTURE_2D, texture[0]);

parameterLocation = glGetUniformLocation(programHandle, "skyTexture");
glUniformii(parameterLocation, 0);

links the sampler skyTexture, declared as a uniform in the fragment shader
texturelnterpolator.fs, with the sky image. A similar set of statements 741

Chapter 20
PROGRAMMARLE
PIPELINES

742

links the sampler nightskyTexturs, also declared in the fragment shader,
with the night sky image.
The assignments

gl_MultiTexCoordQ;
gl _MultiTexCoord(;

gl _TexCoord[0]
gl_TexCoord[1]

in the vertex shader textureSimple.vs simply access the texture coordinates
to use with the two textures — which happen to be the same in this case
— and place them in the built-in varyings on the left for interpolation and
transmission to the fragment shader. Finally, the equation

gl_FragColor = (1.0 - paramShader) * texture2D{skyTexture,
gl_TexCoord[0] .st) +
paramShader * texture2D(nightSkyTexture,
gl _TexCoord[1].st);

in the fragment shader, parametrized by the uniform paramShader,
interpolates between the two textures.

Exercise 20.5. (Programming) Rewrite 1itTexturedCylinder.cpp
with the help of shaders. In particular, you will have to implement the
GL_MODULATE option to combine light with texture.

20.5 Summary, Notes and More Reading 3

This chapter gave'an introduction to the programmable pipeline and,
particularly, OpenGL’s Shading Language, the GLSL, which is used to
do the programming. The canonical source for all things OpenGL, including
the GLSL is, of course, the OpenGL site [99]. The standard text reference
for the GLSL is by Rost & Licea-Kane [115], known as the orange book.

Particularly exciting is that, with OpenGL ES 2.0, shaders havesgone
mobile with a vengeance: anything that can be done in a shader has been
removed from fixed-functionality and has to be done in a shader! QOpenGL
ES 2.0 is a “lean, mean, shadin’ machine” as the OpenGL site calls it. The
mobile shading language, GLSL ES, itself is very similar to the desktop
version of this chapter, so the reader should be able to begin coding shaders
for small devices without trouble.

Another popular high-level shading language is Cg (or, C for Graphics)
developed by Nvidia and Microsoft, which, in fact, is nearly identical
to Microsoft’s own proprietary HLSL (High Level Shading Language).
The particular advantage of Cg for Windows developers is that it allows
simultaneous development of shaders for DirectX and OpenGL. However,
the GLSL, being part of OpenGL 2.0, enjoys wider vendor and platform
support.

APPE

Proj
Tran

I
P:
1
animation|
most naty
so-called 1
that repre
computati
of in its d
- “ghootin
projective
In faci
the math
as Open(
projective)
importanc
There
Coxeter [3
mind — fro
[6] and K4
these bool
There seen]
certainly 4
for me??
This aj

