Using Graphics Hardware

Throughout most of this book; the focus has been on the fundamentals underlying
computer graphics. rather than on implementation details. This chapter takes a
slightly different route and blends the details of using graphics hardware with the
practical issues associated with programming that hardware,

ThlS chapter, however, is.not written to teach you OpenGL, ™ other graphms
APIs, or even the n1tty gritty specifics of graphlcs hardware programmmg The
purpose of this chapter is to introduce the basic concepts and thought processes
that are necessary when writing proglams that use graphics hardware

171 What is Graphics Hardware

Graphics hardware describes the hardware components necessary to quickly ren-
der 3D objects as pixels on your computer’s screen using specialized rasterization-
based hardware architectures. The use of this term is meant to’elicit a sense of
_ the physical components necessary for performing these computations. In other
words, we’re talking about the chipsets, transistors, buses, and processors found
on many current video catds. . As we will see in this chapter, current graphics
- hardware is very good at processing descriptions of 3D objects and transforming
- them into the colored pixels that fill your monitor.

One thing has been certain with graphics hardware: it changes very quickly
. with new extensions and features being added continually! One explanation for
the fast pace is the video game industry and its economic momentum. Essentially
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Real-Time Graphics: By
real-time  graphics, we
generally mean that the
graphics-related  compu-
tations are being carrled
out fast encugh that the
resuits can be viewed
immediately. Being able
to conduct operations at
60Hz is considered real
time. Once the time to
refrosh the display (frame
rate) drops below 15Hz,
the speed is considered
more interactive than it is
real-time, but this distine-
tion is not critical. Because
the computations need lo
be fast, the equations used
to render the graphics are
ofien approximations to
what could be done if more
time were available,
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2D screen
User primilives Geometry coordinates Pixel
Program Processing Processing
Figure 17.1. The basic graphics hardware pipeline consists of stages that transform 3D

data Into 2D screen objects ready for rasterizing and coloring by the pixel processing stages.

what this means is that each new graphics card provides better performance and
processing capabilities. As a result, graphics hardware is being used for tasks
that support a much richer use of 3D graphics. For instance, researchers are per-
forming computation on graphics hardware to perform ray-tracing (Purcell, Buck,
Mark, & Hanrahan, 2002) and even solve the Navier-Stokes equations to simulate
fluid flow (Harris, 2004).

Most graphics hardware has been built to perform a set of fixed operations
organized as a pipeline designed to push vertices and pixels through different
stages. The fixed functionality of the pipeline ensures that basic coloring, lighting;
and texturing can occur very quickly—often referred to as real-time graphics.

Figure 17.1 illustrates the real-time graphics pipeline. The important things
to note about the pipeline follow: . Co o

. 'Th=¢ user progr_a_fn, or application, supplies the data to the graphics hardware
in the form of pn’mitives; such as points, lines, or. polygons describing the
D ‘geonietry.l Images or bitmaps are also s'upp'lied‘for use in texturing
surfaces. :

e Geometric primitives are proces'sgd_ on a per-vertex basis and fire trans-
formed from 3D coordinates to 2D scieen triangles.

& Screen objects are passed to the pixel processors, rasterized, and then col-
. ored on a per-pixel basis before being output to the frame buffer, and even-
tually to-the, monitor, : : :

17.2  Describing Geometry for the Hardware

As a graphics programmer, you need to be concerned with how the data associ-
ated with your 3D objects is transferred onto'the memory cache of the graphics
hardware. Unfortunately (or maybe fortunately), as a programmer you don’t have
complete control over this process. There are a varicty of ways to place your

17.2. Describing Geomet

data on the graphics hard
discussed in this section.
- card will provide differenf
. ory. The examples that fg
. on the C function syntax
applicable to other graphil

Most graphics hardws
primitive types leverage
ics hardware.. Simpler py
the primitive types need
geometry from very simy
primitive types are limite

» Points: singlé vert

e Lines: pairs of y
highlighting;

» Polygons: (e.g., tr
gle strips, quadriia
ing triangle meshg
spheres, cones, culj

_ These three primilivg
b will define. (An examplg
{ primitives, you can build
" APIs and send the gquig

lgure 17.2. How your g
on. This wireframe depicti
1housands of triangles org
| rendered using the VTeriai




ics Hardware

Pixel

'rocessing

at transform 3D
cessing stages.

formance and
1sed- for 4tasks
‘chers are per-
Purcell, Buck,
ms to simulate

ted operations
ough different
sring, lighting,
e graphics.

iportant things

shics hardware
describing the
se in texturing

and are trans-

I, and then col-
affer, and even-

are

the data associ-
of the graphics
-you don’t have
s to place your

17.2. Describing Geometry for the Hardware 381

data on the graphics hardware, and each has its own advantages which will be
discussed in this section. Any of the APIs you might use to program your video
card will provide different methods to load data onto the graphics hardware mem-
ory. The examples that follow are presented in pseudocode that is based loosely
on the C function syntax of OpenGL,™ but semantically the examples should be
applicable to other graphics APIs. '

Most graphics hardware work with specific sets of geometric primitives, The
primitive types leverage primitive complexity for processing speed on the graph-
ics hardware.. Simpler primitives can be processed very fast. The caveat is that
the primitive types need to be general purpose so as to model a wide range of
geometry from very simple to very.complex. On typical graphics hardware, the
primitive types are limited to one or more of the following:

¢ Points; single vertices used to represent points or particle systems;

o Lines: pairs of vertices used to represent lines, silhouettes, or edge-
highlighting; '

e Polygons: (c.g., triangles, triangle strips, indexed triangles, indexed trian-
gle strips, quadrilaterals, general convex polygons, etc.), used for describ-
ing triangle meshes, geometric surfaces, and other solid bbjects, such as
spheres, cones, cubes, or cylinders.

These three primitives form the basic building blocks for most geometry you
Will define. (An example of a triangle mesh is shown in Figure 17.2.) Using theée
p11m1t1ves you can bulld descriptions of your geomeiry using one of the graph1cs
APIs and send the geomeny to the graphics bardware for rendering. For mstance

. R 4
I e . L

Figure 17. 2 How your geometry is.organized will affecl the perforrnance of your applica-
tian. This wireframe depiction of the Little Coltonwood Canyon terrain dataset shows tens of
thousands of friangles organized in a triangle mesh running at real-time rates. Tha fmage is
rendered using the Verrain Project terrain system courtesy of Ben Discoe. -

Primitlves:The three prim-
itves  (points, lines, and
polygons) ara the only prim~
itives available! Even when
creating spline-based sur-
faces, such "as NURBs,
the surfaces are tessellated
inte ‘triangt"e_ primitives by
the graphics hardware,

Point Renderlng “Polnt
and line primltwss may ini-
tially appear to be lim-
ited in use, but researchers
have used points to ren-
der very complex geome-
try {Rusinkiswicz & Levoy,
2000, Dachsbacher, Vo-
gelgsang, & Stamminger,
2003).
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B to transfer the description of a line to the graphics hardware, we might use the beginTrianglesStr)
| following: ‘ color( r0, 90,
vertex( x0, y0
beginLine () ; ..-‘: 3 color( rl, gl,
vertex{ x1, y1, zl }; | 3 vertex( x1, ¥yl

| vertex( x2, v2, 22 ); B COlzr( (rié gzrz
; R | vertex . Y7

endLine{); i ‘

: color( ¥3, g3,
g/ vertex({ x3, Y3
color{ r4, g4
vertex( x4,.:v4

i ) In this example, two things occur. First, one of the primitive types is declared and
' made active by the beginLine () function call, The line primitive is then made

3 v inactive by the endLine () function call. Second, all vertices declared b_etwégn b ;. endTr jangleStrif
these two functions are copied directly to the graphics card for processing with Tl I

» w0 the vertex function calls. e ete, the color and norms

“ Y 0 A second example creates a set of triangles grouped together in a strip (refer ° Meriex being defined. Bac

jé:.ction. The color fuy

to Figure 17.3); we could use the following code: Jrec . |
Mt normal direction statg

Figure 17.3. A trian-

gle strip composed of five beginTrianglestrip{) ; i lor and normal !fl_ih
vertices defining three tri- vertex|( x0, y0, z0 ); : dware. Any \}erticéét
angles. vertex{ x1, vl, =zl

th those state attribu_tt?él
B s is a good mom
ily elaborate set of sfa:t
ints are rendered. Sol
: i and texture coordin
il In this example, the primitive type, TriangleStrip, is made active and th ¢t (ATHE graphics state at any
of vertices that define the triangle strip are copied to the graphics card merr'l_'i y for AW e parameters. This a
processing. Note that ordering does matter when describing geometry. In the tﬁ " “write 3D appliéatiéf
angle strip example, connectivity between adjacent triangles is embedded w Hih |
the ordering of the vertices. Triangle ¢0 is constructed from vertices(v0,v1,9
triangle 1 from vertices (v1,v3,v2), and triangle £2 from vertices (v2, 03,

The key point to learn from these simple examples is that geometry is de
for rendering on the graphics hardware using a primitive type along with i Baly reduce state conl
vertices. The previous examples are simple and push the vertices direct , changes, especiall
the graphics hardware. However, in practice, you will need to make co . ering any geomd
decisions about how you will push your data to the graphics hardware. "Th
issues will be discussed shortly.

As geometry is passed to the graphics hardware, additional data can be $p
ified for each vertex. This extra data is useful for defining stafe attributes
might represent the color of the vertex, the normal direction at the vertex, téXl;,_
coordinates at the vertex, or other per-vertex data. For instance, to set th C%l
and normal state parameters at each vertex of a triangle strip, we might us g
following code: .

vertex( x2, y2, 22
: vertex( %3, y3, z3
. : vertex{ x4, v4, z4
w endTrianglestrip{);

— et

!

o e
ninimize graphics st
amming should b
you can, but itis

WWeribed in Chapter 1

lor{ ¥, G,
inormal { nx, X
jeginTriangls
¥ yertex (X0}
vertex (XL
vertex{ %2
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beginTriangleStrip () ;
color( r0, g0, b0 }); normal( n0x, ndy, n0z };
vertex({ x0, y0, =0 };
color( ril, gl, bl }; normal( nix, nly, nlz };
vertex( x1, vi, zl }; .
color{ r2, g2, b2 }); normal{ n2x, n2y, n2z );
vertex{ x2, v2, z2 );
color( r3, g3, b3 }; normal{ n3x, n3y, n3z );
vertex( x3, vy3, z3 ); ' h '
color{ r4, g4, b4 ); normal{ ndx, ndy, ndz );
vertex( x4, y4, z4 ); : :
endTriangleStrip();

Here, the color and normal dnec‘non at each vertex are specified ]ust prror to the
vertex belng defined. Each vertex 1n this example has a unique color and normal
direction, The color function sets the active color state using a RGB 3-tuple.
The normal direction state at each vertex is set by the norma 1 function. Both the
color and normal functlon affect the current 1ender1ng state on the graphics
hardware. Any vertices defined after these state attubutes are set w111 be bound
with those state attributes.

This is a good moment 0 mentmn that the graphlcs hardware malntams a
fan]y elaborate set of state parametels that determine how vertices and other com—
ponents are rendered Some state is bound to ver tlces such as color normal direc-
tion, and texture coordmates while another state may affect pixel. level 1endermg
The gmphlcs state at any part ticular moment descrrbes a large set of mternal hard-
ware parameters. “This’ aspect of graphlcs hardware is nnportant to consider when
you write 3D apphcattons 'As you might suspect making frequent changes to the
graphlcs state affects performance at least to some extent, However attemptmg
to minimize graphlcs state changes is only one of many areas where thoughtful
programming should be applied. You shouId attempt to minimize state changes
when you can, but it is unlikely that you can group all of your geomeiry to com-
pletely reduce state context switches. One data structure that can help minimize
state changes, especially on static scenes, is the scene graph data structure. Prior
to rendering any geometry, the scene graph can re-organize the geometry and as-
sociated graphics staté in an attempt to minimize state changes. Scene graphs are
descrrbed in Chapter 13.

color( r, 9. b ),-

normal ( nx, ny, nz };

beglnTrlangleStrlp(),
vertex( x0, vy0, z0 );
vertex( xt,;, yl, z1 );
vertex{ x2, y2, 22 );
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vertex( x3, v3, 23 );
vertex( =4, v4, z4 );
endTrianglestrip();

All vertices in this TriangleStrip have the same color and normal direction,
so these state parameters can be set prior to defining the vertices. This minimizes
both function call overhead and changes to the internal graphics state,

Many things can affect the performance of a graphics program, but one of the
potentially large contributors to performance {or lack thereof) is how your geome-
try is organized and whether it is stored in the memory cache of the graphics card.
In the pseudocode examples provided so far, geometry has been pushed onta the
graphics hardware in what is often called immediate mode rendermg As vertices
are defined, they are sent directly to the graphics hardware The prrmary disad-
vantage of immediate mode rendering is that the geometry is sent to the graphlcs
hardware each 1terat1on of your application. If your geometry is statlc (1 e.,
doesn’t change) then there is no real need to resend the data each time you re-
draw a frame. In these and other c1rcumstances it is more desrrable to store the
geometry in the graphics card’s memory.

The graphics hardware in your computer is connected to the rest of the system
via a data bus, such as the PCI, AGP, or PCI- Express buses When you send data
to the graphics hardware, it is sent by the CPU on your machme across one ‘of
these buses, eventual]y being stored in the memory on your graphlcs hardware If
you have very large trlangle meshes representmg complex geometry, passmg all
this data across the bus can end up ‘resulting in a large hit 1o performance. This
is espemally true if the geometry is bemg rendered in 1mmed1ate mode, as the
prev1ous examples have illustrated.

_ There are various ways to organize, geometry, some can help reduce the, over-
all bandw1dth needed for transmitting the geometry across the graphrcs bus. Some
possmle orgamzat1on approaches lnclude

o Triangles: triangles ate specified with three vertices. ‘A triangle mesh cre-
ated ini this manner requires that each triangle in the mesh be defined sep-
arately with many vertices potentially duplicated. For a triangle mesh con-

- taining m triangles, 3m vertices will be sent to the graphics hardware.

o Triangle strips: triangles are organized in strips; the first three vertices
specify the first triangle in the strip and each additionial vertex adds a tri-
angle. If you create a triangle mesh with m triangles organized as a single
triangle strip, you send three vertices tq the graphics hardware for the first
triangle followed by a single vertex for each additional triangle in the strip
for a total of m + 2 vertices. '
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o Indexed triangles: triangle vertices are arranged as an array of vertices
with a separate array defining the triangles using indices into the vertex
array. Vertex arrays are sent to the graphics card with very few function
calls.

o Indexed triangle strips: similar to indexed friangles, triangle vertices are
stored in a vertex array. However, triangles are organized in strips with
the index array defining the strip layout. This is the most compact of the
organizational structures for defining triangle meshes as it combines the
benefits of triangles strips with the compactness of vertex arrays.

Of the different organizational structures, the use of vertex arrays, either through
indexed triangles or indexed triangle strips, provides a good option for increasing
the performance of your application. The tight encapsulation of the organization
means that many fewer function calls need to be made as well. Once the vertices
and indices are stored in an array, only a few function calls need to be made to
transfer the data to the graphics hardware, whereas with the pseudocode examples
illustrated previously, a function is called for each vertex,

At this point, you may be wondering how the graphics state such as colors,
normals, or texture coordinates are defined when vertex arrays are used, In the
immediate-mode rendering examples earlier in the chapter, interleaving the graph-
ics state with the associated verticés is obvious based on the order of the function
calls. When vertex arrays are used, graphics state can either be interleaved in the
vertex array or specified in separate arrays that are passed to the graphics hard-
ware.

Even if the geometry is organized efficiently when it is sent to the graph1cs
hardware, you can achieve higher performance gains if you can store your geom-
etry in the graphics hardware’s memory for the duration of your application. A
somewhat unfortunate fact about current graphics hardware is that many of the
§.  specifications describing the layout of the graphics hardware memory and cache
b structure are often not widely. publicized. Fortunately though, there are ways us-
k' ing graphics APIs that allow programmers to place geometry into the graphlcs
hardware memory resulting in-applications that run faster. . :

" Two commonly vsed. methods to store geometry and graphics state in the

- graphies hardware cache involve creating display lists or vertex-buffer objects,
i~ Display lists compile a compact list representation of the gedmetry and the
" state associated with the geometry and store the list in the memory on the graphics
hardware. The benefits of display lists are that they are general purpose and good
at storing a static geometric representation plus associated graphics state on the
hardware.. They do not work well at all for continuously changing geometry and




B

Optimal Organization:
Much research effort has
gone into looking at ways
to optimize triangle meshes
for maximum performance
on graphics hardware. A
good place to start read-
ing if you want to delve fur-
ther into understanding how
triangle mesh organization
affects performance is the
SIGGRAPH 1999 paper on
the optimization of mesh lo-
cality (Hoppe, 1999).
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graphics state, since the display list must be recompiled and then stored again
in the graphics hardware memory for every iteration in which the display list
changes.

digplayID = createDisplaylist();
color( r, g, b );
normal { nx, ny, nz );
beginTriangleStrip();

vertex({ x0, y0, z0 };

vertex{ x1, y1, zl };

vertex( xN, yN, 2N );
endTrianglesStrip();
endDigplayList () ;

In the above example, a display list is created that contains the definition of a tri-
angle strip with its associated color and normal information. The commands be-
tween the createDigplayliist and endDi splayList function calls pro-
vide the elements that define the display list. Display lists are most often created
during an initialization phase of an application. After the display list is created, it
is stored in the memory of the graphics hardware and can be' referenced for later
use by the 1dent1ﬁe1 ass1gned to the list.

- // draw thc—; dlsplay liat created earller ]
‘ drawDisplaylist (displayID);

When it is titne to draw the contents of the display list, a single function call will
instruct the graphics hardware to access the memory indexed thlough the dlsplay
list identifier and:display the contents.’ : -

. A second method to store geometry on the. graphics hardware for the duration
of your application is through vertex buffer objects (YBOs). VBOs are specialized
buffers that reside in high-performance mémory on the graphics hardware: and
store vertex arrays and associated graphics state. They can also provide a mapping
from your application to the memory on the graphics hardware to allow for fast
access and updating to the contents of the VBO.' ‘ :

The chief advantage of VBOs is that they provide a mapping into the graphlcs
hardware memory. With VBOs; geometry can be modified during an application
with a-minimal loss of performance as compared with using itnmediate mode
rendering or display lists.. This is extremely useful if* portions of your geometry
change during each iteration of your apphcauon or.if the indices used to organize
your geometry change. : '

VBOs are created in much the same way 1ndexed friangles and indexed trian-
gle strips are built.: A buffer object is first created on the graphics card to make
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room for the vertex array containing the vertices of the triangle mesh. Next, the
vertex array and index array are copied over to the graphics hardware. When it
is:time to render the geometry, the vertex buffer object identifier can be used to
instruct the graphics hardware to draw your geometry, If you are already using
vertex arrays in your application, modlfymg your code to use VBOs should likely
requne a minimal change.

17.3 Processing Geometry into Pixels

After the geometry has been placed in the graphics hardware fnemory, each ver-
tex must be lit as wel] as transformed into screen coordinates during the geometry
processing stage, In the fixed-function graphics pipeline illustrated in Figore 17.1,
vertices are transformed from a model coordinate system to a screen coordinate
frame of reference. This process and the matrices involved are described in Chap-
ters 7 and 12. The modelview and projection matrices neecled for this transfor-
mation are defined vsing functions provided with the graphics API you decide to
use. _ ‘ :

Lighting is calculated on a per-vertex basis. Depending on the global shading
parameters, the triangle face will either have a flat-shaded look or the face color
will be diffusely shaded (Gouraud shading) by linearly interpolating the color at
each triangle vertex across the face of the triangle. The latter method produces
a much smoother appearance. The color at each vertex is computed based on
the assigned malterial properties, the lights in the scene, and various 'lighting
parameters.

The lighting model in the fixed-function graphics- plpehne is good for fast
lighting of vertices; we make a tradecff for increased speed over accurate illu-
mination. As a result, Phong shaded surfaces are not supported with this fixed-
function framework. e :

In particular, the diffuse shading algorithm built into the graphlcs hardware
often fails to compute the appropriate illumination since the lighting is only being
calculated at each vertex. For example, when the distance to the light source is
small, as compared with the size of the face being shaded, the illumination on
the face will be incorrect. Figure 17.4 illustrates this situation. The center of
the triangle will not be illuminated brightly despite being very close to the light
source, since the lighting on the vertices, which are far from the light source, are
used to interpolate the shading across the face.

- With the fixed-function pipeline, this issue can only be remedied by increasing
the tessellation of the geometry. This solution works but is of limited use in real-

Figure 17.4. The distance
to the light source ls small
relative to the size of the tri-
angle,




Definltion:  Fragment is
a term that describes the
information associated

with a pixel prior 10 being
processed by the graphics
;hardware.  This -definition
includes much of the data
‘that might be used to cal-
‘culate the color of the pixe!,
‘'such as the pixel's scene
Sdeplh, texture coordinqtes.
ior stencll information.

388 17. Using Graphics Hardware 17.3
time graphics as the added geometry required for more accurate illumination can you i
result in slower rendering. 2 §O(

.-However, with current hardware, the problem of obtammg better approxima- be al
tions for illumination can be solved without necessarily increasing the geometric some
complexity of the objects. The solution involves replacing the fixed-function rou- to’as

tines embedded within the graphics hardware with your own programs. These
small programs run on the graphics hardware and perform a part of the geometry

processing and pixel-processing stages of the graphics pipeline. 5 il
: the.ti

less 1

17.3.1 Programming the Pipeline H
o - advai

Fairly recent changes to the organization of consumer graphics hardware has gen!
‘erated a substantial biizz from game developers, graphics researchers, and many ;
others. It is quite’ likely that you have heaid about GPU programming, grapk
ies' hardware programming, or even shader programming. Thesé terms and’ ‘thé
changes in consnmer hardware that have spawned them primarity have to do w1th
how the graphics haidware rendering pipeline can now be programmed. b

Specifically, the changes have opened up two specific aspects of the graphlc.’; '
hardware pipeline. Piogrammers now have the ability to modlfy how the hard-
ware processes vertices and shades pixels by writing ver. tex shaders and frag
ment shaders (also’sometimes referred to as verfex programs or fragment pro-
grams). Vertex shaders are programs that perform the vertex and normal tianst
formations, texture coordinate géneration, and per-vertex lighting computatio
normally coniputed in the geometry processing stage. Fragment shaders are p ;
grams that perform the computations in the pixel processing stage of the grdphidh
pipeline’ and determine exactly how each pixel is shaded, how textures are ap:
plied, and if a pixel should be drawn or not. These small shader programs aré
sent to the graphics hardware from the user program (see Figure 17.5), but they
are executed on the graphics hardware. What this programmability ‘means: for

o _ 2D soresh
User - primitives Geometry coordinates Pixel - |
Program _ Processing __ . > Processing
- : . Y O A e i
| veriex program T
: ) N g - . pixel shader : i
Figure 17.5. The programmable graphics hardware pipeling. The user program suppl

primitives, vertex programs, and fragment programs to the hardware.
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you is that you essentially have a multi-processor machine. This turns out to be
a good way to think about your graphics hardware, since it means that you may
be able to use the graphics hardware processor to relieve the load on the CPU in
some of your applications. The graphics hardware processors are often-referred
to as GPUs, GPU stands for Graphics: Processing Unit and highlights the fact
that graphics hardware components now'contain a separate processor dedicated
to graphics-related computations. -

Interestingly, modern GPUs contain more transistors than modern CPUs. For
the time being, GPUs are utilizing most of these transistors for computations and
less for memory-or cache management operations, :

However, this will not always be the case as graphics hardware continues to
advance. - And just because the computations: are geared towards 3D graphics,
it:does not mean that you cannot perform computations unrelated to computer
graphics on the GPU. The manner in-which the GPU is programmed is differ-
ent from your general purpose CPU-and will require a slightly modified way of
thinking about how to solve problems and program the graphics hardware.

The GPU is a stream processor that excels at 3D vector operations such as vec-
tor multiplication, vector addition, dot-products, and other operations necessary
for basic lighting of surfaces and texture mapping. As stream processors, both the
vertex and:-fragment processing components include the ability to process multi-
ple primitives at the same time. -In this regard, the GPU acis as a SIMD (Single
Insti‘uction,'Multiple Data) processor, and in certain hardware: implementations
of the fragment processor, up to 16 pixels can be processed at:a time. When
you write programs for these processing components, it will be’ helpful,- at least
conceptually, to think of the computations being performed concurrently on your
data. In other words, the vertex shader program will run for all vertices .at the

same time. The vertex computations will then be followed by a stage in which

your fragment shader program will execute simultancously on all fragments. It
is important to note that while the computations on vertices or fragments. occur
concwrtently, the staging of the pipeline components still occur in the same order.

The manner in which vertex and fragment shaders work is simple. You write
a vetiex shader program and a fragment shader program and send it'to the graph-
ics hardware. These programs can be used on specific geometry, and when your
geometry is p‘ro'cesséd the vertex shader is used o transform and light the ver-
tices, while the fragment shader performs the final shading of the geometry o a
pér-pixel basis. Just as you can texture map differerit j images onto different pieces
of geometry, you can also write different shader programs to act upon différent
objects in your application.” Shader programs aré a' part of the graphics state so
you do néed to be concerned with how your shadel prograims mxght get swapped
in and out based on the geometry being rendered.”

(i

Historical: Programming
the pipeline is not entirsly
new. One of the first
introductions of a graphics
hardware architecture
designed for program-
ming fiexibility were the
PixelFlow architectures
and shading languages
from UNC (Molnar, Eyles,
& Poulton, 1992; Lastra,
Molnar, QOlano, & Wang,
1995; Olane & Lastra,
1998).  Additional efforts

. to provide custom shading

techniques have included
shade traes {Cook,
1984}, RenderMan (Pixar,
2000), accelerated multi-
pass  rendering  using
OpenGL™ (Peercy, Olano,
Airey, & Ungar, 2000), and
other real-time shading lan-
guages (Proudfoot, Mark,
Tzvetkov, & Hanrahan,
2001; McCool, Toit, Popa,
Chan, & Moule, 2004).
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“The details tend to be a bit more complicated, however, Vertex shaders usually
perform two basic actions: set the color at the vertex and transform the vertex into
screen coordinates by multiplying the vertex by the modelview and projection
matrices. The perspective divide and clipping steps are not petformed in a vertex
program. Vertex shaders are also often used to set the stage for 4 fragment shader.
In particular, you may have vertex attributes, such as texture coordinates or other
application- dependent data, that the vertex shader calculates or modifies and then
sends to the fragment processing stage for use in your fragment shader. It 'may
seem strange at first, but vertex shaders can be used to matipulate the positions
of the vertices. This is often useful for generating simulated ocean wave motion
entirely on the GPU.: . :

TIn a fragment shader, it is required that the program outputs the fragment color
This may involve looking up texture values and combining them in some manner
with values obtained by performing a lighting calculation at each pixel; or,. it

" may involve killing the fragment from being drawn entirely. Because operations

in the fragment shader operate at the fragment level, the real power of the pro-
grammable graphics hardware is in the fragment shader. This added processing
power represents one of the key differences between the fixed function pipeline
and the programmable pipeline. In the fixed pipeline, fragment processing used
iflumination values interpolated between the vertices of the triangle-to compute
the fragment color. With the programmable pipeline; the color at each fragment
can be computed independently. For instance, in the example situation posed in
Figure 17.4, Gouraud shading of a triangle face fails to produce a reasonable so-
lution because lighting only occurs at the vertices which are farther away from the
light than the center of the triangle. In a fragment shader, the lighting equation
can be evaluated at each fragment, rather than at each vertex, resulting in a more
accurate rendermg of the face. o o | i

17 3.2 Basic Executlon Model

When wrltmg vertex or fragment shaders, there are a few important things to un-
derstand in terms of how vertex and fragment programs execuie and access data
on the GPU. Because these programs run eniirely on the GPU, the first details
you will need to figure out-are which data your shaders will use and how .to get
that data to them. There are several characteristics associated with the data types
used in shader programs. The following terms, which come primarily from the
OpenGLTM Shading Language framework, are used to describe the conceptual
aspects of these data characteristics, The concepts are the same across different
shading langnage frameworks.. In the shaders you write, variables are character—
ized using one of the following terms;
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o attributes: Attribute variables represent data that changes frequently, often
on a per-veriex basis. Attribute variables are often tied to the changing
graphics state associated with each vertex. For instance, normal vectors or
texture coordinates are considered to be attribute data since they are part of
the graphics state associated with each vertex. '

¢ uniforms: Uniform variables represent data that cannot change during the
execution of a shader program. However, uniform variables can be mod-
ified by your application between executions of a shader, This provides
another Way for your application to communicate data to a shader. Uniform
data often represent the graphics state associated with an application. For
instance, the modelview and projection matrices can be accessed through
uniform variables. Information about light sources in your application can
- also be obtained through uniform variables. In these examples, the data
does not change while the shader is executing, but could {e.g., the light
could move) prior to the next iteration of the application,

¢ varying: Varying data is used to pass data between a vertex shader and

a fragment shader, The reason the data is considered varying is because

. it is written by vertex shaders on a per-vertex basis, but read by fragment

- shaders as value intexrpolated across the face of the primitive between neigh-
boring vertices. - .

Variables defined using one of these three characteris'tics can either be buili-in
variables or user-defined variables. In addition to accessing the built-in graphics

_state, attribute and uniform variables are one of the ways fo communicate user-

defined data to your vértex and fragment programs. Varying data is the only means
to pass data from a vertex shader to a fragment shader. Figure 17.6 illustrates the
basic execution of the vertex and fragment processors in terms of the inputs and

outputs used by the shaders.

Another way to pass data to vertex and fragment shaders is by using texture
maps as sources and sinks of data. This may come as a surprise if you have been

'thmkmg of texture maps solely as 1mages that are applied to the outside surface of

geometry The reason texture maps are important is because they give you access
to the memory on the graphics hardware. When you write applications that run
on the CPU, you control the memory your application requires and have direct
access to it when necessary. On graphics hardware, memory is not accessed in
the same manner. In fact, you are not directly able to allocate and deallocate gen-
eral purpose memory chunks, and this particular aspect usually requires a slight
change in thinking,

e =

I ——
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Note: The shader lan-
guage examples used in
this chapter are presented
using GLSL (OpenGL™
Shading Language). This
language was chosen since
it is being developed by
the OpenGuLTMI Architec-
ture Review Board and
will likely become a stan-
dard shading language for
OpenGL™ with the release
of OpenGLT""I 20, As
of this writing, GLSL can
be used on most mod-
ern graphics cards with up-
dated graphics hardware
drivers.
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Flgure 17.6. The execution model for shader programs. Input, such as per-vertex attributes,
graphics state-related uniform variables, varying data, and texture maps are provided to
vertex and fragment programs within the shader processor, Shaders output special variables
used in later parts of the graphics pipeline,

Texture maps on graphics hardware, however, can be created, deleted, and
controlled through the graphics API you use. In other words, for general data
used by your shader, you will create texture maps that contain that data and then
use texture access functions to look up the data in the texture map. Technically,
textures can be accessed by both vertex and fragment shaders. However, in prac-
tice, texture lookups from the vertex shader are not currently supported on all
graphics cards. An example that utilizes a texture map ‘as a data source is bump
mapping. Bump mapping uses a normal map which defines how the normal vec-
tors change across a triangle face. A bump mapping fragment shader would ook
up the normal vector in the normal map “texture data” and use it in the shading
calculations at that particular fragment,

You need to be concerned about the types of data you put into your tex-
ture maps. Not all numerical data types are well supported and only recently
has graphics hardware included floating point textures with 16-bit coffiponents.
Moreover, none of the computation being performed on your GPU is done with
double-precision math! If numerical precision is important for your application,
you will need to think through these issues very carefully to determine if using
the graphics hardware for comiputation is useful. '

So what do these shader programs look like? One way to'write vertex and
fragment shaders is through assembly language instructions. For instance, per-
forming a matrix multiplication in shader assembly langnage looks something
like this: ' '

pp4 plo0l.x, M{0l, v[0];
Dr4 plol.y, M[1), viol;
Dr4 pl0].z, M[2], v{0];
DP4 plol.w, M[3], v[0];

" tween the CPI
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In this example, the DP4 instruction is a 4-component dot product function. It
stores the result of the dot product.in the first register and performs the dot
product between the last two registers. In shader programming, registers hold
4-compenents corresponding to the x, y, z, and w components of a homogeneous
coordinate, or the r, g, b, and @ components of a RGBA tuple: So, in this example,
a simple matrix multiplication, :

p=Myv

is computed by four DP4 instructions. Each instruction computes one element of
the final result.

Fortunately though, you are not forced to program in assembly language. The
good news is that higher-level languages are available to write vertex and frag-
ment shaders, NVIDIA’s Cg, the OpenGL™ Shading Language (GLSL), and
Microsoft’s High Level Shading Language (HLSL) all provide similar interfaces
to the programmable aspects of graphics hardware. Using the notation of GLSL,
the same matrix mu1t1p11cat10n performed above looks like this:

p=M*v;

where p and v are vertex data types and M is a matrix data type. As ev1denced

here, one advantage of using a higher-level language over assembly language is

that various data types are available to the programmer. Tn all of these languages,
there are built-in data types for storing véctors and matrices, as well as arrays and
constructs. for creating structures. Many different functions are aiso built in to
these languages to help compute trigonometric values (sin, cos, efc...), minimum
and maximum values, exponential functions (log2, sart, pow, etc...), and other
math or geometric-based functions. '

17.3.3 Vertex Shader Example

Vertex shaders give you control over how your vertices are lit and transformed.
They are also used to set the stage for fragment shaders. An interesting aspect to
vertex shaders is that you still are able to use geometry-caching mechanisms, such
as display lists or VBOs, and thus, benefit from their performance gains while us-
ing vertex shaders to do computation on the GPU. For instance, if the vertices
represent particles and you can model the movement of the particles using a ver-
tex shader, you have nearly eliminated the CPU from these computations. Any
bottleneck in performance that may have occurred due to data being passed be-

" tween the CPU and the GPU will be minimized. Prior to the introduction of vertex

shaders, the computation of the particle movement would have been performed

[
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on the CPU and each vertex -would have been re-sent to the graphics hardware
on each iteration of your application. The ability to perform computations on the
vertices already stored in the graphics hardware memory is a big-performance
win, : - S .
-One of the simplest vertex shaders transforms a vertex into clip coordinates
and assigns the front-facing color to the color attribute associated with the vertex.

void main(void)

gl_Position = gl_ModelViewProjectionMatrix +
) gl _Vertex;
gl _FrontColor = gl_Color;

}.:- [P . ) o

In this example, gl.ModelViewProjectionMatrix is a built-in uniform
variable supplied by the GLSL run-time environment. The variables gl Vertex
and gl.Color are built-in vertex . attributes; the- special output ~variables,
gl_Position and gl_FrontColor are used by the vertex shader to set the
transformed position and the vertex-color.

A more interesting vertéx shader that implements the surface- shading edua-
tions developed in Chapter 9 illustrates the efféct of per-vertex shading using the
Phong shadi'ng,allgolrithm. ' o ' ' B o

void main(void)
. vecd v = gl ModelViewMatxix + gl_Vertex; L
normalize (gl _NormalMatrix » gl_Normal);

vecd n =

vec? 1 = normalize (gl LightSource[0].position - v);
vee3 h = normalize(l - normalize{v)j; - a
float p = 16}
_vec4 cr = gl FrontMaterial.diffuse;

vec4 ¢l = gl_LightSource (0] .diffuse;

vecd ca = vecd (0.2, 0.2, 0.2, 1.0);

veca color; -
"if (dot'(h,n) > 0)

- golor = ¢r + (ca + ¢l % max{0,dot{n,1))) +
G- ¢l « pow{dot(h,n), p};-
else o . N . . . .
Icolqr = cr « (ca + ¢l « max(0,dot{n,1))};

gl FrontColor = color;
gl Pogition:= ftransfoim();
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From the code presented in this shader, you should be able to gain a sense of
shader programming and how it resembles C-style programming, Several things
are happening with this shader. First, we create a set of variables to hold the
vectors necessary for computing Phong shading: v,n, 1, and h, Note that the
computation in the vertex shader is performed in eye-space, This is done for a va-
riety of reasons, but one reason is that the light-source positions accessible within
a shader have already been transformed into the eye coordinate frame. When you
create shaders, the coordinate system that you decide to use will likely depend
on the types of computations being performed; this is an important factor to con-
gider. Also, note the use of built-in functions and data structures-in the example.
In particular, there are several functions used in this shader: nérmalize, dot,
max, pow, and ftransform. These functions are provided with the shader
language. Additionally, the graphics state associated with materials and light-
ing can be accessed through built-in uniform’ variables: gl _FrontMaterial
and gl_LightSource [0]. The diffuse component of the matérial and light
is accessed through the diffuse member of these variables. The color at the
vertex is computed using Equation 9.8 and then stored in the special output vari-
able gl_FrontColor, The vertex position is transformed using the function

Flgure 17.7. Each sphere is rendered using only a vertex shader that computes Phong
shading. Because the computation is being performed on a per-vertex hasis, the Phong
highlight only begins to appear accurate after the amount of geometry used to model the

~ sphere Is increased drastically. (See also Plate VIIL)
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ftransform which is a convenience function that performs the multiplication
with the modelview and projection matrices. -Figure 17.7 shows the results from
running this vertex shader with differently tessellated spheres. Because the com-
putations are performed on a per-vertex basis, a large amount of geometry is re-
quired to produce a Phong highlight on the sphere that appears correct.

17.3.4 Fragment Shader Example

Fragment shaders ate! written in a manner very similar to v'er,tcx shaders, and to
emphasize this, Equation 9.8 from Chapter 9 will be implemented with a fragment
shader. In order to do this, we first will need to write a veriex shader to set the
stage for the fragment s shader
The vertex shader required for this example is falrly simple, but introduces the
use of varying variables to communicate data to the fragment shader.
vafyiﬁg vecd v;
© varying vec3 n;
void main{void)

{

v
n

gl ModelViewMatrix » gl_Vertex; .
nqrmalize(glﬁNormalMatrix * gl_NQrmal};

Sl

‘gl Position = ftransform():

Recall that varymg variables will be seton & per-vertex basis by a vertex shader,
but when:they are accessed in a fragment shader, the values will vary @.e., be
1nterp01ated) across the friangle, or geometric primitive. In this case, the vertex
position in eye-space v and the normal at the vertex n are calculated at each
vertex. The final computation performed by the vertex shader is to transform the
vertex into clip coordmates since the fragment shader will compute the lighting
at-each fragment It is not necessary to set the front-facing color in this vertex
shader, I

The fragment shader program computes the hghtmg at each fragment using
the Phong shadlng model.

varying vec4 v;
varying vec3d n;

voidfmainfvoid)

{
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}

vecd 1 = normalize{gl LightSource [0] .position - v);

vecd h = normalize(l - normalize{v));
float p = 16; _ _

vec4 cr = gl_FrontMaterial.diffuse;
vec4 ¢l = gl_LightSource[¢] .diffuse;
‘vecd ca =

vecd (0.2, 0.2, 0.2, 1.0);

vecd color;
if (dot(h,n) > 0}
color = ¢r # {ca + cl » max(0,dot(n,1))) +
cl » pow(dot'th,n),p};:
elase
color = ¢r + {(ca + ¢l » max(0,dot(n,1))};

gl_FragColor = color;

The first thing you should notice is thé_ _similéu‘i,ty between thé fragment shader
code in this example and the vertex shader code presented in Section 17.3.3. The

e

' . . i e

Figure 17.8. "The results of running the fragment shader from Section 17,3.4. Note that
the Phong highlight does appear on the laft-most model which-is represented by a single
polygon. In fact, because lighting is calculated at the fragment, rather than at each vertex,
the more coarsely tessellated sphere models also demonstrate appropriate Phong shading.
{See also Plate IX.) . . : ‘

[CER
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main difference is in the use of the varying variables, v and n. In the fragment
shader, the view vectors and normal values are interpolaied across the surface of
the model between neighboring vertices, The results are shown in Figure 17.8.
Immediately, you should notice the Phong highlight on the quadrilateral, which
only contains four vertices. Because the shading is being calculated at the frag-
ment level using the Phong equation with the interpolated (i.e., varying) data,
more consistent and accurate Phong shading is produced with far less geometry.

17.3.5 General Purpose Computing on the GPU

After studying the vertex and fragment shader examples, you may be wondeting
if you can write programs to perform other types of computations on the GPU.
Obviously, the answer is yes, as many problems can be coded to run on the GPU
given the various languages available for programming on the GPU, However, a
few facts are important to remember. Foremost, floating point math processing
on grapliics hardware is not currently double-precision. Secondly; you will likely
need to transform your problém into a‘form that fits within a graphics-related
framework. In other words, you will need to use the graphics APIs to set up the
problem, use texture maps as data rather than traditional memory, and write veftex
and fragment shaders to frame and solve your problem.

Having stated that, the GPU may stﬂl be an attractive platform for computa—
tion, since the ratjo of transistors that are ded1cated to performing computation is
much hlgher on the GPU than it is on the CPU. In many cases, algorithms running
on,GPUs run faster than on a CPU Furthermore, GPUs perform SIMD compu-
tation, which is especially true at the fragment-processing level. In fact, it can
often help to think about the computation occurring on the fragment processor as
a highly parallel version of a generic foreach construct, perfo1mmg simultane-
ous operations on a set of elements.

There has been a large amount of investigation to perform General Purpose
computation on GPUs, often referred to as GPGPU. Among other things, re-
searchers are using the GPU as a means to simulate the dynamics of clouds (Har-
ris, Baxter, Scheuermann, & Lastra, 2003), implement ray tracers (Purcell et al.,
2002; Carr, Hall, & Hart, 2002), compute radiosity (Coombe, Harris, & Lastra,
2004), perform 3D segmentation using level sets (A. E. Lefohn, Kniss, Hansen,
& Whitaker, 2003), or solve the Navier-Stokes equations (Harris, 2004).

: General purpose computation is often performed.on the GPU using multiple
rendermg “passes ‘and inost computatlon is done using the fragment processor
due to its hlghly data—palallel setup. Fach pass, called a kemel completes a por-
tion of the computation. Kernels work on streams of data with several kernels
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strung together to form the overall computation. The first kernel completes the
first part of the computation,.the second kernel works on the first kernel’s data,
and 50 on, until the calculation is complete. In this style of programming, working
with data-and data structures on the GPU is different than conventional program-
ming and does requitre a bit of thought. Fortunately, recent efforts are providing
abstractions and information for creating efficient data- structures. for GPU pro-
gramming (A, Lefohn, Kniss, & Owens, 2005).

Using the GPU for general purpose programming does require that you un-
derstand how to program the graphics hardware. For instance, most applications
that perform GPGPU will render a simple quadrilateral, or sets of quadrilater-
als, with vertex and fragment shaders operating on that geometry. The geometry
doesn’t have to be visible; or.drawn to the screen, but it is necessary to allow
the vertex and fragment operations to occur, This focus on graphics does make
thelearning curve for general purpose computing on-this hardware-an adventure,
Fortunately, recent. efforls are working:to make the interface to the GPU more
like traditional programming. The Brook for GPUs project (Buck et al., 2004)
is a system that provides a C-like interface to afford stream computations on the
GPU, which should allow more people (o take advantage of the computatmnal
power on modern graphws hardware,

Frequently Asked Questions

¢ How do | debug shader programs?

On most platforms, debugging both vertex shaders and fragment shaders is not

in general, and even less available for runtime debugging of shader programs.
However, this is starting to change. In the latest versions of Mac OS X, Linux,
and Windows, support for shader programming is incorporated. A good solution
for debugging shader programs is to use one of the shader development tools
available from various graphics hardware manufacturexs.

Notes

There are many good resources available to learn more about the technical de-
tails involved with programming graphics hardware. A good starting point might
be the OpenGL™ Programming Guide (Shreiner et al., 2004). The OpenGL™
Shading Language (Rost, 2004) and The Cg Tutorial (Fernando & Killgard, 2003)

simple. There is very little runtime support for debugging graphics applications -

L
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provide details on how to program using a shading language. More advanced
technical -information and éxamples for programming the vertex and fragment
processors - can be found in the GPU . Gems series of books
(Fernando, 2004; Pharr & Fernando, 2005)." A source of information for learning
more about general purpose computation on GPUs (GPGPU) can be found on the
GPGPU.org web site (http://www.gpgpu.org).

Exermses

~1.-How fast is the GPU as compared to performmg the operations on the CPU?
Write a program in which you can parameterize how much data is processed

+: on the GPU, ranging from no computation using a shader program to all
-of the computation being performed vsing a shader program. How does
the performance of you application change when the computation is belng
performed solely on the GPU?

2. Are there siZés of friangle'strip lengths that work better than others? Try
' to determine the maximum size of a triangle strip that maximizes perfor—
mance, What does this tell you about the memory, or cache stmcture on

the graphics hardware?
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