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What Is OpenGL and What Can It Do
for Me?

* OpenGL is a computer graphics rendering API

— Generate high-quality color images by rendering with
geometric and image primitives

— Create interactive applications with 3D graphics
— OpenGL is
* operating system independent

* window system independent

OpenGL is a library for doing computer graphics. By using it, you
can create interactive applications that render high-quality color images
composed of 3D geometric objects and images.

OpenGL is window and operating system independent. As such, the
part of your application which does rendering is platform independent.
However, in order for OpenGL to be able to render, it needs a window to
draw into. Generally, this is controlled by the windowing system on
whatever platform you are working on.



Course Ground-rules

* We’'re using the most recent version
— OpenGL Version 3.1

* It's different from what you might know
— Shaders only — no fixed-function pipeline

— Applications should go faster and make better use of GPU
functionality

— Increased flexibility ... but at a cost

* Many familiar functions have been removed, e.g.:
— Immediate-mode rendering
— Matrix generation and the transformation stacks

OpenGL 3.1 is the first version of OpenGL not to be backwards compatible
with previous version. This version removed a lot of older-style functionality,
like the immediate-mode rendering interface (e.g., glBegin() /glEnd()
rendering), the matrix transformation stack, and vertex lighting, to name a few
features. The idea was to move all applications to shader-based rendering,
which can better leverage GPUs, and removed the less efficient methods and
functions to help application developer’s get the best performance from their
hardware. Additionally, shaders provide considerably more flexibility in how we
do graphics. We’re no longer constrained by the features implemented in the
core of OpenGL, but can completely control how we render.

For the purposes of this course, we don’t assume you know anything about
OpenGL, just that you know a little about computer graphics. We’'ll take you
step-by-step in constructing an application that renders 3D, moving, shaded
objects.



Getting Started

Working with Objects
OpenGL Shading Language
Transformations

Lighting

Texture Mapping
Application Examples
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The Graphics Pipeline

Application GPU Frame Buffer

v

vertices vertices fragments pixels

Verte>§ » Rasterizer — Fragme_nt B ‘
Processing Processing

Here we show a simplified version of the OpenGL pipeline, which
specifically processes geometry. All OpenGL programs use this pipeline, and
with OpenGL Version 3.1, you get to configure the operation of the pipeline by
writing shaders which are executed by the various stages of the pipeline.

You can see that a vertex shader is used by the vertex processing phase,
which accepts vertices as its input, processes them, and passes them into the
next phase of the pipeline.

The rasterizer is the part of the pipeline that determines which pixels on the
screen should be colored in based on the geometric primitive that the vertex
processing phase finished with. The output of the rasterizer are fragments,
which are passed into the fragment processing phase of the pipeline. Each
fragment references a location in the window, which the fragment processing
phase determines the color for.

The fragment processing phase takes a fragment shader which is executed
for ever fragment from the input geometric primitive. The fragment shader’s job
is to shade (compute the color of) a pixel and then pass it into the fragment
testing pipeline to determine if the color should be displayed in the window
(i.e., written into the framebuffer).

The framebuffer contains the final image after all of the geometric
primitives are processed and shaded.



Steps in Pipeline

* Application: Specifies geometric objects
through sets of vertices and attributes which
are sent to GPU

* Graphics processing unit (GPU) must
produce set of pixels in the frame buffer
— Geometric (vertex) processing
— Rasterization

— Fragment processing

Attributes such as colors, texture coordinates and lighting normals
determine how a geometric object is displayed.

Geometry processing includes coordinate transformations, per-vertex
lighting, clipping and primitive assembly.

The rasterizer generates fragments that correspond to pixel locations
interior to the geometric objects that haven't be clipped. Fragments are
potential pixels can appear on the display but may not due to later processing
such as hidden surface removal. The rasterizer must interpolate vertex
attributes to determine values such as texture coordinates for each fragment.

Fragment processing produces a color for each fragment and includes
hidden surface removal, per fragment lighting, and application of textures.



Graphic Pipeline Varieties

* Fixed-function version * Programmable version

— order of operations is — interesting parts of
fixed pipeline are under your
* can only modify control
parameters and disable « write shaders to
operations implement those
— limited to what's epErations
implemented in the — boring stuff is still “hard
pipeline coded”

* rasterization & fragment
testing

This course concentrates on the programmable version of OpenGL.



OpenGL Versions

* 1.0 — 1.5 Fixed function pipeline

* 2.0- 2.1 Add support for programmable shaders,
retain backward compatibility

* 3.0 adopts deprecation model but retains
backward compatibility

» 3.1 fixed-function pipeline and associated
functions removed

* ES 1.1 Stripped down fixed-function version
* ES 2.0 Shader-only version

OpenGL 3.0 introduced versioned contexts so that application programs
could specify which version of OpenGL is being requested.

Most of the fixed-function pipeline functions were marked as deprecated in
3.0. This removed much of the default functionality and state. These functions
were removed from 3.1 although they are available in an ARB extension that
will likely be supported on most implementations.



Developing an OpenGL 3.1 Application

* OpenGL application must
— Allocate and initialize data objects and load vertex attributes
— Load textures
— Load both a vertex and a fragment shader

— Communicate with window system to open a window

* Shaders are be written with OpenGL Shading
Language (GLSL)

* Interface with window system through GLUT, GLX,
WGL, AGL,.....

In OpenGL 3.1, almost all data is stored in objects, which is memory that
OpenGL manages on your behalf. You can think of if roughly liked calling
mal loc(), where you specify how much memory you need. Once you've
allocated your objects, you'll need to load it with data, like vertex attributes.
It's also quite likely you'll use textures, which is also data you'll pass to
OpenGL to manage, and use to draw your scene.

Next, you'll need to configure how the OpenGL pipeline should process
data. You do this by specifying vertex and fragment shaders, which are small
programs written in the OpenGL Shading Language (commonly called
“GLSL”"). These shaders are compiled and linked like any compiled program.
However, the entire compilation process is done by calling functions inside of
your application.

For the purposes of this class, we use an open-source library for managing
windows named Freeglut. It allows you to easily port the same source code to
any of the popular operating systems: Microsoft Windows, Apple’s Mac OS X,
and Linux. Each of the different operating systems has a specific library that is
used to enable OpenGL rendering within its windowing system. For instance,
you would use Microsoft Windows’ methods to open a window, and then use
WGL - the specific OpenGL windowing interface on Microsoft Windows — to
modify that window to be able to use OpenGL. Likewise, Mac OS X there’s
AGL which serves the same purpose, as does GLX on Linux for the X Window
System.
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OpenGL and Related APls

The above diagram illustrates the relationships of the various
libraries and window system components.

Generally, applications which require more user interface support
will use a library designed to support those types of features (i.e.,
buttons, menu and scroll bars, etc.) such as Motif or the Win32 API.

Prototype applications, or ones which do not require all the bells and
whistles of a full GUI, may choose to use GLUT instead because of its
simplified programming model and window system independence.

The OpenGL Utility Library (GLU) contained many helpful functions
that were constructed from GL including quadrics, some additional
viewing functions, and tessellation code. However, most GLU functions
require OpenGL functions that have been removed from OpenGL 3.1 so
this library will no longer be useful (although much of it could probably
be recreated without the deprecated functions).



Configure
and open a
window

Process
user events

Draw an
image

OpenGL was primarily designed to be able to draw high-quality
images fast enough so that an application could draw many of them a
second, and provide the user with an interactive application, where
each frame could be customized by input from the user.

The general flow of an interactive application, including OpenGL
applications is:

1. Configure and open a window suitable for drawing OpenGL into.

2. Initialize any OpenGL state that you will need to use throughout
the application.

3. Process any events that the user might have entered. These
could include pressing a key on the keyboard, moving the mouse, or
even moving or resizing the application’s window.

4. Draw your 3D image using OpenGL with values that may have
been entered from the user’s actions, or other data that the program
has available to it.



The Simplest OpenGL Program

n.o, clear

#include <GL/freeglut.h>

void
main( int argc, char *argv[] )

{

glutInit( &argc, argv );

glutInitDisplayMode ( GLUT RGBA |
GLUT_DOUBLE ) ;

glutCreateWindow( argv[0] )

init() ;

glutDisplayFunc( display ) ;
glutReshapeFunc( reshape ) ;

The main part of
the program.
glutMainLoop () ; GLUT is used to
open the OpenGL
window, and handle
input from the user.

This slide contains the program statements for the main() routine
of a C program that uses OpenGL and GLUT. For the most part, all of
the programs you will see today, and indeed may of the programs
available as examples of OpenGL programming that use GLUT will look
very similar to this program.

All GLUT-based OpenGL programs begin with configuring the GLUT
window that gets opened.

Next, in the routine Init() (detailed on the following slide), “global”
OpenGL state is configured. By “global’, we mean state that will be left
on for the duration of the application. By setting that state once, we can
make our OpenGL applications run as efficiently as possible. As we
shall later, the shaders must be read, compiled, and linked.

After initialization, we set up our GLUT callback functions, which are
routines that you write to have OpenGL draw objects and other
operations. Callback functions, if you're not familiar with them, make it
easy to have a generic library (like GLUT), that can easily be configured
by providing a few routines of your own construction.

Finally, as with all interactive programs, the event loop is entered.
For GLUT-based programs, this is done by calling glutMainLoop().
As glutMainLoop() never exits (it is essentially an infinite loop), any
program statements that follow glutMainLoop () will never be
executed.



void
init ()
{
glClearColox( 0, 0, 1, 1 );
}

void
reshape( int width, int height )
{

}

glViewport( 0, 0, width, height )

void
display ()
{

glClear( GL_COLOR_BUFFER BIT ) ;

glutSwapBuffers () ;

Here is the remainder of the program. While it's not very impressive, it's
the fundamental structure of every OpenGL program.

We use the 1nit() routine configure settings that aren’t going to change
across the execution of a program. In this case, we show our first OpenGL
routine, glClearColor (), which specifies the color that the window will
show when it's cleared.

Next, we set up the glutReshapeFunc() callback, which we name
reshape() (you'll see a pattern here ©). In this case, we merely reconfigure
the viewport based on the values the windowing system provide to us (which
GLUT passes on for our use). We’'ll discuss the viewport and its importance
later.

Finally, we specify the glutReshapeFunc() callback — display() —
which is were we’ll do all of our drawing. For this simple application, we do to
rendering operations:

1. we clear the window using the OpenGL routine glClear (). You'll notice
that it takes a parameter that specifies we want to clear the color buffer.
We'll see that there are other buffers for our use in a bit.

2. finally, we swap the buffers by calling glutSwapBuffers(). We'll talk
more about double-buffered rendering later as well.

-14 -



» Steps to drawing any object
1. Load object data

SO0 triangle

2. Initialize shaders
3. Draw

The first example we demonstrated wasn’t too visually captivating. Here
we’ll show what'’s required to actually draw something.

This example shows loading object data, initializing the required shaders,
and rendering. Every application leverages these steps — just with more data
and complex shaders. We’'ll discuss the specifics of the process in more detalil
as we proceed.
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init ()
{
//
// --- Load vertex data ---
//
GLfloat wvertices[][4]
{8 =0T =0SE 050,
{0235, =0.5, 0.0,
{0507 07500507,
|

glGenBuffers( 1, &buffer );

glBindBuffer( GL ARRAY BUFFER, buffer );

glBufferData( GL ARRAY BUFFER, sizeof (vertices),
vertices, GL STATIC DRAW ) ;

Here we see one method of specifying the data we use to represent
objects. We’'ll cover this method, and the others, in the next section.

-16 -



const char* vShader = {
"$version 130\n"
"in vec4 vPos;"
"yoid main() {"
" gl Position = vPos;"
H'}II =

}i

const char* fShader = {
"#$version 130\n"
"out vec4 fragColor;"
"wvoid main() {"
U fragColor = vecd4( 1, 1, 0, 1 );"
FI'}II
}:

program = LoadProgram( vShader, fShader ) ;
vPos = glGetAttriblLocation( program, "vPos" );

Here are examples of the types of shaders that OpenGL requires. The
variable vShader contains the source to our vertex shader. This is about the
simplest vertex shader you can have. Similarly, the variable fShader contains
the source of our fragment shader which determines the color of the pixel.
Here, we set the color of all the pixels to a constant color.

We pass the shaders into a helper routine we’ve written for the course
named LoadProgram(), which takes a vertex shader and a fragment shader,
and creates a GLSL “program” from them. We’ll show the internals of
LoadProgram() later, but assuming that there aren’t errors in your shaders
(they’re really small programs that get compiled, and can have errors —
LoadProgram() will report them to you if there’s a problem), it will create a
usable shader program we’ll use later.

The last line retrieves information about a variable in (in this case, the
variable “vPos”) that we’ll need later when it comes time render. For the
curious, all variables labeled “in” in a vertex shader are assigned a location
index that we need to initialize to pass data into. We’ll see how we use those
values when we draw on the next slide.

-17 -



Drawing our Triangle

void
display ()
{
glClear ( GL_COLOR BUFFER BIT ) ;

glUseProgram( program ) ;

glBindBuffer ( GL_ARRAY BUFFER, buffer );

glVertexAttribPointer(_vPos, 4, GL FLOAT,
GL_FALSE, 0, BUFFER_OFFSET (oY)
glEnableVertexAttribArray( vPos ) ;

glDrawArrays( GL TRIANGLES, 0, 3 );

glutSwapBuffers () ;

Here is the entirety of our routine for drawing. As you've seen, we first
clear the window by calling glClear ().

Next, we enable the shader program that we initialized in init()
previously. After this, all data is processed by that program until we turn it off,
or switch to using another shader program.

Next, we tell OpenGL where to find the data for our object, and use the
location value — vPos — that we retrieved in init() to associate our data with
a variable in a shader. After making the association, we tell OpenGL that it
should use the data for that connection. That might seem redundant, but it's
really an option for flexibility. Depending on how you will want to draw
something, you may find it simpler to load lots of data for an object, and switch
between subsets of that data as you draw different versions of it. We’ll show
you how you might do that in just a bit.

We draw the object by calling glDrawArrays(), in this case specifying
that we’d like to draw triangles. It's just one method of drawing objects. We'll
see other methods in the next section.

Finally, we swap the buffers, just like you had seen previously. After the
buffer swap, our completed image is shown in the screen.
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The Simplest Vertex Shader

#version 140
in vecd4 mPosition;

void main ()
{
gl _Position = mPosition;

}

The vertex shader must output the vertex’s position for the rasterizer. Here
we use the special variable gl_Position. A more realistic vertex shader would
also do a coordinate transformation since the input position would likely be in
an application-defined coordinate system (e.g., model coordinates) while
gl_Position must be in clip coordinates. In addition, most vertex shaders would
also process other per-vertex attributes such as colors.
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The Simplest Fragment Shader

#version 140
out vec4 fragColor;

void main ()
{

fragColor = vec4( 0, 0, 1, 1 );
}

OpenGL differentiates between pixels, which are the final pixel colors
stored in the framebuffer, and fragments which are candidate pixels, but still

need to have some more work done to them.

A fragment’s color is computed by a fragment shader. Inside of the
fragment shader, you are provided with some generated information (like the
fragment’s framebuffer location as computed by the rasterizer), as well as any

information you pass into the shader through variables.
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Working With Objects
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Representing Geometry

* We represent * A vertex is a point in space
geometric — specified as homogenous
primitives by their coordinates
vertices * 4-tuple of floating-point values

= most “vertex data” are
homogenous coordinates

— makes the math easier

.o Z

We describe geometric primitives by their vertices, which are either a single
point, the endpoints of a line, or the corners of a triangle. A vertex is a set of
four floating-point values, which we term a homogenous coordinate. The
homogeneity relates to mathematics we use for processing—the subject of a
future slide.

For a vertex, the x-, y-, and z-coordinates describe the vertex’s location in
3D space with respect to an origin (of your choosing). The w-coordinate is
generally just set to the value 1.0. It's role will become clearer a little farther
on.

We group vertices together to form our geometric primitives.
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OpenGL’s Geometric Primitives
L / Y | 6L_LINE_STRIP | G
[ o vowes | [ 61_rIng_tooe |
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GL_TRIANGLES e ¥

OpenGL is a low-level rendering library, and as such, doesn’t know how to
draw too many things. In fact, it really only knows how to draw single points,
line segments (which might be connected to one another), and triangles
(again, which may share boundaries between two triangles). Above are the
seven primitives that OpenGL knows how to render. These primitives specify
how OpenGL should group your processed vertices to form a rendered shape.
Your job is to use collections of these shapes to form geometric objects ,
through a process called modeling.

For those of you with familiar with pervious versions of OpenGL, there were
ten geometric primitives. OpenGL Version 3.1 removed support GL_QUADS,
GL_QUAD_STRIP, and GL_POLYGONSs, as they can easily be rendered using
the above primitives (a quad is two triangles; a quad strip is just a triangle
strip; and a polygon just a triangle fan).
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Vertex Attributes

* Think of a vertex as a “bundle” of data
* Various types of data can be associated with
a vertex:
— World-space coordinates
— Colors
— Texture Coordinates
— Normal vectors for lighting computations

— Generic data for computation

A vertex is a “bundle” of data that is collectively presented to you in a
vertex shader. You determine the data in the bundle by specifying its vertex
attributes. Attributes can be any type of data; floating-point or integer; scalar,
vectors, or matrices; or even user-defined structures, and it's up to your vertex
shader to process the data, and set up the values required for the fragment
shader.

Some vertex attributes have particular uses—like specifying the location of a
vertex in space, or its color—which are used in “classic” computer graphics
computations, while other data are values that only have meaning to you, and
you’ll process in your shader for your own purposes.
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Vertex Arrays

* Vertex attributes are stored in vertex arrays

* All data in OpenGL are stored in buffer
objects

— This includes vertex arrays

 Buffer objects are memory managed by the
GPU

— Effectively a collection of bytes

* You'll tell OpenGL how to interpret them later

Vertices need to be stored in vertex arrays, which are just vectors of vertex
data. They, like all data in OpenGL, are stored in buffers managed by OpenGL
called buffer objects. You can think of buffer objects like dynamic memory
allocated by the GPU—it’s a bucket of bytes that you dump data into, and then
you tell OpenGL how to interpret those bytes as data values.
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Steps for Creating Buffer Objects

1. Generate a buffer id
glGenBuffers( 1, &id );

2. Bind to the buffer
ngind.Buffer( GL_VERTEX_ARRAY, id: ) ;

3. Load it with data

GLfloat myData[n] = { .. };

glBufferData ( GL_VERTEX ARRAY,
sizeof (myData),

(GLvoid*)myData, GL_STATIC_DRAW) ;

Buffer objects—specifically vertex buffer objects (commonly called
VBOs)—are used required for holding vertex attribute data. Creating and
loading data into a VBO is a simple process of generating a unique buffer
name, binding to the buffer, and loading the data. At this point, the data in the
buffer hasn’t been mapped to anything useful for OpenGL. We’'ll need to do a
little extra work to get that to occur.

There are numerous different types of buffers that we’ll encounter.
GL_VERTEX_ARRAY is one specifically for holding vertex attribute data.

All of our sample programs will contain variations on this theme, depending
on the types data that is required by the object.
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Storing Vertex Attributes

* Vertex arrays are very flexible

— store data contiguously as an array, or

glVertexAttribPointer( vIndex, 3,

v c tc GL_FLOAT, GL_FALSE, 0, v );
W €| |16 glVertexAttribPointer( cIndex, 4,
v c | |tc| GL _UNSIGNED BYTE, GL TRUE,
v G tc 0, & );
c tc glVertexAttribPointer( tcIndex, 2,
c

fc GL_FLOAT, GL FALSE, 0, tc );

We need to tell OpenGL where to find the relevant data inside of a buffer
object, and the routine glVertexAttribPointer() is used to provide the
meta-data required for OpenGL. There are two ways to organize vertex
attribute data: as contiguous arrays of attributes (commonly called a “structure
of arrays”), or as an array of bundles of vertex data (the “array of structures”
method).

Here we demonstrate the contiguous array method, providing three sets of
data for each vertex: “v”, “c”, and “tc”. Each call to
glVertexAttribPointer () provides information about the number of
components (e.g., three for “v”), the associated type for each element, whether
integer values should be mapped into a floating-point value in the range [0, 1],
the number of bytes between successive elements (here “0” is a special value
indicating that the data is tightly packed, and normal pointer incrementing [as

you would do in C programs, for example] is sufficient).

The program color-draw-arrays.c demonstrates setting up vertex
attributes in this manner.
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Storing Vertex Attributes (cont’d)

* As “offsets” into a contiguous array of

structures
glVertexAttribPointer( vIndex,
struct VertexData { | {C 3, GL _FLOAT, GL FALSE,
Ezzgiztziii c I sizeof (VertexData) , verts[0].v )
GLfloat vi3ly LV glVertexAttribPointer ( cIndex,
e | tc 4, GL UNSIGNED BYTE, GL_TRUE,
VertexData verts; c sizeoE(VertexD;ta), vergs[O],c j

glVertexAttribPointer( tclIndex,
2, GL FLOAT, GL FALSE,
sizeof (VertexData) , verts[0].te );

By comparison to the previous slide demonstrating contiguous arrays of
data, here we tell OpenGL that all of the vertex attributes for a vertex are
contiguous in memory — the array of structures approach. In this case, the
only differences in our glVertexAttribPointer () calls is that the distance
to find successive elements is the size of the “structure”, and the differing
offsets required to tell OpenGL where in the buffer to find the initial data
values.

Generally speaking, this method may provide better performance than the
previous method due to memory caching in modern computer systems.

The program AOS-color-draw-arrays.c (where the “AOS” is a
mnemonic for Arrays-of-structures) demonstrates storing data in this manner.
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“Turning on” Vertex Arrays

* Need to let OpenGL know which vertex
arrays you're going to use

glEnableVertexAttribArray( vIndex ) ;
glEnableVertexAttribArray( cIndex ) ;

glEnableVertexAttribArray( tcIndex ) ;

The final step in preparing you data for processing by OpenGL (i.e.,
sending it down for rendering) is to specify which vertex attributes you'd like
issued to the graphics pipeline. While this might seem superfluous, it allows
you to specify multiple collections of data, and choose which ones you’'d like to
use at any given time.

Each of the attributes that we enable must be associated with an “in”
variable of the currently bound vertex shader. As you might recall from our
triangle.cxx example, each of those vertex attribute locations was
retrieved from the compiled shader by calling glGetAttribLocation().
We discuss this call in the shader section.
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Drawing Geometric Primitives

* For contiguous groups of vertices

glDrawArrays ( GL_TRIANGLE STRIP, 0, n);

[ X X
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—
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In order to initiate the rendering of primitives, you need to issue a drawing
routine. While there are many routines for this in OpenGL, we’ll discuss the
most fundamental ones. The simplest routine is glDrawArrays(), to which
you specify what type of graphics primitive you want to draw (e.g., here we’re
rending a triangle strip), which vertex in the enabled vertex attribute arrays to
start with, and how many vertices to send.

This is the simplest way of rendering geometry in OpenGL Version 3.1.
You merely need to store you vertex data in sequence, and then
glDrawArrays() takes care of the rest. However, in some cases, this won't
be the most memory efficient method of doing things. Many geometric objects
share vertices between geometric primitives, and with this method, you need
to replicate the data once for each vertex. We’ll see a more flexible, in terms
of memory storage and access in the next slides.

The programs color-draw-arrays.cxx and AOS-color-draw-
arrays.cxx demonstrate using glDrawArrays() with the different
methods of storing data in vertex attribute arrays.
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Drawing Geometric Primitives

* For indexed groups of vertices

0 | 0 . glDrawElements (
' b Le | te 15 GL_TRIANGLE STRIP, n,
1 v Le | [t | 2 | GL_UNSIGNED SHORT,
2 v [ C | tc 3 indices ) ;
3 v c tc °
. | :
4 v e tc | e B .
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The other very common way to rendering geometry is by using indexed
primitives, where access to vertices is done by providing a list of indices into
the array of vertex values. The routine glDrawElements() does this. As
you can see, it takes which primitive type to render, and a count of how many
vertices should be rendered, just like glDrawArrays(). However, you also
pass in an array of values representing the vertex indices to be processed,
including a token describing the type of that array (GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, GL_UNSIGNED_INT are accepted).

The program draw-elements.cxx demonstrates using
glDrawElements() with multiple vertex attribute streams.
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Shaders and GLSL
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Where the work gets done

* Application sets parameters, sends data to
GPU, and loads shaders

* Shaders do the work

e Shaders can be written in a C-like language
called the OpenGL Shading Language
(GLSL) that is part of OpenGL
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Vertex Shader Execution

uniform variables

}

Application ———— Vertex Shader —> rasterizer

vertex data

gl_Vertex

glDrawElements
vertex attributes

shader program

Vertex data (positions, colors, and texture coordinates, for example) are
loaded onto GPU. When application issues a drawing command, each vertex
generates an execution of the vertex shader. The vertex shader outputs a
position and other per vertex variables that will be interpolated by the
rasterizer.

Uniform variables are set by the application and remain unchanged through
an execution of glDrawElements().
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Fragment Shader Execution

texture data
interpolated variables l
W

Frame
Rasterizer ——>  Fragment Shader —> pByffer

fragments gl_FragColor

Application

shader program

uniform variables

Each fragment generated by the rasterizer starts the execution of a
fragments shader. Vertex attributes from the vertex shader are interpolated by
the rasterizer to provide per-fragment values. For example, we can set a
texture coordinate for each vertex in the application and put these data into
vertex arrays. The vertex processor can process these values (or just pass
them on) and output them as input to the rasterizer which will interpolate a
value for each fragment.
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OpenGL Shading Language

* C-like language for writing both vertex and fragment
shaders

— Some additional data types: mat, vec, samplers

— Additional variable qualifiers to deal with how shaders
communicate with each other and the application

* Connecting application with shaders
— Compile
— Link

Specifications are at: http://www.khronos.org/registry/

( http://www.opengl.org/registry/ and http://www.khronos.org/registry/gles/ )
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Types and Qualifiers

float int bool

vec2 vec3 vecd

ivec2 ivec3 ivecd

bvec2 bvec3 bvecd4

mat2 mat3 mat4 matCxR

sampler1D sampler2D sampler3D samplerCube

uniform
in out

Here we some of the basic types and qualifiers used in GLSL. Since GLSL
is very close to C (and C++ in some instances), we don’t dwell on the
language constructs.
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Constructors

/I Scalar
float() int() bool()

Il Vector

vec2() vec3() vecd()
ivec2() ivec3() ivec4()
bvec2() bvec3() bvec4()

/l Matrix
mat2() mat3() mat4() matCxR()

Il Struct
Il Array

Compound types, like vectors and matrices, require construction. They'’re
not arrays like in C — they’re more like classes in C++. Both for creating one of
these types, as well as converting between them (e.g., a collection of vectors
can be used to initialize a matrix) is required in GLSL.
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Components
I/ Vector

xyzw .rgba .stpq [i]

In addition to being able to use vectors like arrays in C (i.e., index into the
using a ‘[]-type construction) , alternate access methods similar to accessing
fields in a structure are available. The multiple forms enhance readability of
code. Use rgba for color, xyxw for positions, stpg for textures but there is no
semantic distinctions; you could just as easily use xyzw for colors as the rgba
swizzlers.
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mat4 a, b;
vecdv;

vec4 first = a *v; // matrix * vector
vecd second = v* a; // vector * matrix
mat4 third = a *b; // matrix * matrix

Note that operations are overloaded so both vA and Av are valid but the
results are different.
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I/l Parameter qualifiers

in out inout

constin

I/ Functions are call by value, copy in, copy out
[/ NOT exactly like C++

I

/I Examples
vec4 function( const in vec3 N, constin vec3 L );
void f( inout float X, const in float Y );

Overloading, restriction is that function prototypes are at global (or outside
global) scope.
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Built-In Variables

/I Vertex
vecd gl_Position; // must be written to
float gl_PointSize;// may be written to

/f Fragment

vecd4gl_FragCoord;// may be read from
bool gl_Frontfacing;// may be read from
vec4gl_FragColor; // may be written to
vecdgl_FragData(i];// may be written to
float gl_FragDepth;// may be written to

In earlier versions of OpenGL, almost all OpenGL state variables were
available to shaders as built in variables. However most have been
deprecated.

42



Built-in Functions

// angles and trigonometry
/l exponential

// common

/I interpolations

I/ geometric

/1 vector relational

Il texture

// shadow

// noise

/l fragment

genType dFdx(genType P );

genType dFdy(genType P );

genType fwidth(genType P );

radians, degrees, sin, cos, tan, asin, acos, atan, atan

pow, exp2, log2, sqrt, inversesqrt

abs, sign, floor, ceil, fract, mod, min, max, clamp

mix, step, smoothstep

length, distance, dot, cross, normalize, faceforward, reflect

lessThan, lessThanEqual, greaterThan, greaterThanEqual, equal,
notEqual, any, all
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Simple Example

* Rotate vertices continuously around z axis
* Three approaches

— All use idle callback to regenerate geometry

1. Generate new vertices in application

2. Reposition original vertices in shader

3. Send transformation matrices to shader

— For now we’ll do 2.

Since we have yet to cover transformations and shading, we’ll specify
vertices in clip coordinates. If all the vertices are in cube centered the origin
with corners at (-1,-1,-1) and (1,1,1), none of the geometry will be clipped out.

In this example we will place all the vertices in the plane z = 0 and color all
fragments with the same color.
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Application Callbacks

static void draw()

{
glClear(GL_COLOR_BUFFER_BIT);
glUniform1f(timeParam, 0.001*glutGet(GLUT_ELAPSED_TIME));
glDrawArrays(GL_TRIANGLES, 0, 3);
glutSwapBuffers();

}
static void idle()

glutPostRedisplay(); // schedule another call to draw()
}

Once the vertex array is created as part of initialization the application
simply redraws the array as fast as possible through the idle callback. Note
that this example is not very efficient since we are sending the same data to
the GPU each time rather than storing it there as a vertex buffer object.

GLUT_ELAPSED_TIME is the elapsed time in milliseconds. It is put into an
application variable timeParam which is aligned with the time variable in the

shader. We will see the details in a few slides.
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Vertex Shader

in vecd wvPosition;
uniform float time;
uniform mat4 MVP;

void main ()

{

gl Position = MVP*vPosition;
gl Position.x = cos(time)*vPosition.x+sin(time) *vPosition.y;
gl _Position.y = sin(time)*vPosition.x+cos(time)*vPosition.y

// color computation

}

MVP is the model-view projection matrix which converts from vertex
positions from model coordinates to clip coordinates. In this example it is
computed in the application.
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Fragment Shader

out vecd fragColor;

void main{()
{

fragColor = vecd ( 1.0, 0.0, 0.0, 1.0 );
t

In general, we would compute colors for each fragment using a lighting
model.

Colors are specified in RGBA space where A is the opacity.
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* Similar to compiling a “C” program

— compile, and link

* Multi-step process
1. create and compile shader objects
2. attach shader objects to program

3. link objects into executable program

* This is what LoadProgram () does
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Shader Compilation (Part 1)

* Create and compile a Shader
GLuint shader = glCreateShader( shaderType ) ;
const char* str = “void main() {..}”:;
glshaderSource( shader, 1, &str, NULL );
glCompileShader ( shader );

* shaderType is either
— GL_VERTEX SHADER

— GL_FRAGMENT SHADER

const GLchar* vSource[] = {
“in vec4 vPos; ”
“"uniform float time;”
"void main()”

gl _Position.x
gl _Position.y
gl _Position.zw = vPos.zw;”

ll}l
};
const GLchar* fSource[] = {

“out vecd fragColor;”

"void main()”
"} fragColor = vec4( 1.0, 0.0, 0.0, 1.0 );”
}:
GLuintvShader, fShader;

/* create program and shader objects */

vShader = glCreateShader(GL_VERTEX_ SHADER);
fShader = glCreateShader(GL_FRAGMENT_SHADER);

glCompileShader(vShader);
glCompi leShader (fShader);

/* check for errors here */

49
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* Checking to see if the shader compiled

GLint compiled;
glGetsShaderiv ( shader, GL_COMPILE_ STATUS, &compiled );
if ( 'compiled ) {
GLint len;
glGetshaderiv( shader, GL_ INFO_LOG_LENGTH, &len );
std::string msgs( ' ', len );
glGetShaderInfolLog( shader, len, &len, &msgs[0] )
std::cerr << msgs << std::endl;

throw shader compile_ error;
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* Create an empty program object

GLuint program = glCreateProgram() ;
* Associate shader objects with program

glAttachShader ( program, vertexShader ) ;
glAttachShader ( program, fragmentShader ) ;

* Link program

glLinkProgram( program ) ;
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* Making sure it worked

GLint linked;

glGetProgramiv( program, GL LINK STATUS, &linked );

if ( 'linked ) {
GLint len;
glGetProgramiv( program, GL_INFO_LOG_LENGTH, &len );
std::string msgs( ' ', len );
glGetProgramInfolog( program, len, &len, &msgs[0] )
std::cerr << msgs << std::endl;

throw shader link error;
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* Need to turn on the appropriate shader

glUseProgram( program ) ;
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* Need to associate a shader variable with an
OpenGL data source

— vertex shader attributes — app vertex attributes
— shader uniforms — app provided uniform values

* OpenGL relates shader variables to indices for the
app to set

» Two methods for determining variable/index
association
— specify association before program linkage
— query association after program linkage
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Determining Shader Variable Locations

* Assumes you already know the variables’
name

GLint uniformIdx =
glGetUniformLocation( program, “name” ) ;

GLint attribldx =
glGetAttribLocation( program, “name” );

As you've seen us use multiple times, when we need to initialize data for a
shader, we first have to find that variables associated index so that we can
load data into its location. Given the two types of variables we need to initialize
— vertex attributes and uniforms — each of the respective commands above
retrieve the index for us. Using these routines require the that the shader has
been linked, as that's when OpenGL assigns indices to variables.
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Initializing Uniform Variable Values

* Uniform Variables

glUniform4f( index, x, y, z, W );

GLboolean transpose = GL _TRUE;
GLfloat mat([3][4][4] = { .. }:

glUniformMatrix4fv( index, 3, transpose, mat );

GLint timeParam = glGetUniformLocation(program, "time"); /* time in
vertex shader */

GLint loc = glGetAttribLocation(program, "vPaosition"); /* vertex locations in
vertex shader */

glEnableVertexAttribArray(loc);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0,0);

In draw() callback we send the time by
glUniform1f(timeParam, 0.001*glutGet(GLUT_ELAPSED_TIME));
The vertex data is in the buffer object
[* Triangle Data */
GLfloat vVertices[][3] = { {0.0f, -0.5f, 0.0f},
{0.5f, 0.0f, 0.0f},

{0.0f, 0.5f, 0.0} };
GLubyte indices[] = {0, 1, 2}; 56
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Transformations

* Transformations are used to move objects
(coordinate systems, really) around in a
scene

— specified by 4 x 4 matrices
* Matrices can be either be
— “hard coded” in a shader’s code, or

— loaded by the application into a shader variable

Transformations are fundamental to computer graphics, and OpenGL
leverages them quite heavily. The most common use is for manipulating the
position and orientation of 3D objects, but they also find applications in
modifying colors, and other vector quantities used in graphics. For OpenGL,
transformations are represented by 4 x 4 matrices. These matrices are
applied in shaders, and can either be static (e.g., “hard coded” in a shader’s
source code), or loaded dynamically by the application into a shader variable.
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Matrix Storage in OpenGL

* OpenGL matrices are column-major

— Element ordering is
exactly opposite of
what most C
programmers expect m.oms  my Mg

OpenGL matrices are generally considered to be column-major, which
causes some trepidation for C programmers, as it's exactly the opposite
indexing of what we’re all used to. There are multiple solutions to this issue:

* You can orient your values in your code to match what OpenGL requires

» Most routines that load matrix values in OpenGL have a transpose
parameter to say that the data should be transposed when loaded

* You can transpose matrices in your shader using the transpose() method

* Finally, you can specify that a matrix is row_major in the shader, however,
this causes the matrix to truly be considered row major, and not merely
transposed, and as such you need to reverse the order of the multiplicands in
your vector-matrix and matrix-matrix multiplications.
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Camera Analogy

* 3D is just like taking a photograph (lots of
photographs!)

viewing
volume

camera

tripod

OpenGL uses a synthetic camera model for specifying how a set of
3D objects are viewed. The model effectively uses three conceptual
parts, each of which is represented by a matrix:

» The projection transformation which specifies how much of the
world is visible. It's like setting the field-of-view on a camera lens

* The viewing transformation which controls the placement and
orientation of the camera in the world

* Finally, modeling transformations are used to control the placement
and orientation of objects in the world
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What Transformations Do in
OpenGL

* Transformations take us from one “space” to
another

— All of our transforms are 4x4 matrices

Object Coords.

Perspective
(w)

) Normalized
World Coords. Eye Coords. Clip Coords.  Device

Coords.

The processing required for converting a vertex from 3D space into a 2D
window coordinate is done by the transform stage of the graphics pipeline.
The operations in that stage are illustrated above. The purple boxes represent
a matrix multiplication operation. In graphics, all of our matrices are 4x4
matrices (they’re homogenous, hence the reason for homogenous
coordinates).

When we want to draw an geometric object, like a chair for instance, we
first determine all of the vertices that we want to associate with the chair.
Next, we determine how those vertices should be grouped to form geometric
primitives, and the order we’re going to send them to the graphics subsystem.
This process is called modeling. Quite often, we’ll model an object in its own
little 3D coordinate system. When we want to add that object into the scene
we’re developing, we need to determine its world coordinates. We do this by
specifying a modeling transformation, which tells the system how to move from
one coordinate system to another.

Modeling transformations, in combination with viewing transforms, which
dictate where the viewing frustum is in world coordinates, are the first
transformation that a vertex goes through. Next, the projection transform is
applied which maps the vertex into another space called clip coordinates,
which is where clipping occurs. After clipping, we divide by the w value of the
vertex, which is modified by projection. This division operation is what allows
the farther-objects-being-smaller activity. The transformed, clipped
coordinates are then mapped into the window.
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Specifying What You Can See

» Set up a viewing frustum to specify how
much of the world we can see

* Done in two steps

— specify the size of the frustum (projection
transform)

— specify its location in space (model-view transform)

* Anything outside of the viewing frustum is
clipped

— primitive is either modified or discarded (if entirely
outside frustum)

Another essential part of the graphics processing is setting up how much of
the world we can see. We construct a viewing frustum, which defines the
chunk of 3-space that we can see. There are two types of views: a
perspective view, which you’re familiar with as it's how your eye works, is used
to generate frames that match your view of reality—things farther from your
appear smaller. This is the type of view used for video games, simulations,
and most graphics applications in general.

The other view, orthographic, is used principally for engineering and design
situations, where relative lengths and angles need to be preserved.

For a perspective, we locate the eye at the apex of the frustum pyramid.
We can see any objects which are between the two planes perpendicular to
eye (they're called the near and far clipping planes, respectively). Any vertices
between near and far, and inside the four planes that connect them will be
rendered. Otherwise, those vertices are clipped out and discarded. In some
cases a primitive will be entirely outside of the view, and the system will
discard it for that frame. Other primitives might intersect the frustum, which we
clip such that the part of them that’s outside is discarded and we create new
vertices for the modified primitive.

While the system can easily determine which primitive are inside the
frustum, it's wasteful of system bandwidth to have lots of primitives discarded
in this manner. We utilize a techniqgue named culling to determine exactly
which primitives need to be sent to the graphics processor, and send only
those primitives to maximize its efficiency.
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Specifying What You Can See (cont’d)

* OpenGL projection model uses eye coordinates
— the “eye” is located at the origin

— looking down the —z axis

* Projection matrices use a six-plane model:
— near (image) plane
— far (infinite) plane
* both are distances from the eye (positive values)
— enclosing planes
* top & bottom
* left & right

Viewing frusta are usually specified by six parameters, which are combined
to set the six clipping planes of the viewing frustum.

OpenGL “sets up” the viewing frustum in eye coordinates, where the eye is
located at the origin, and looking down the negative z-axis. From that the
clipping planes of the frustum are configured.

There are two types of projections, as we’ll see on the following page.
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Orthographic View
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There are two types of projections that are generally used in computer
graphics:

» orthographic projections which are generally used in science and
engineering applications — those that require angels to be preserved during
rendering

* perspective projections which mimic how the eye works — objects seem to
decrease in size the farther from the viewer that are

Here we show how the matrices are constructed from the six values we
described on the previous page: the near and far clipping planes; and the left,
right, top, and bottom values used to compute the planes for the types of
projections. In either case, the near and far clipping planes represent the
“front” (where the imaging plane, or where the image is projected to) and
“back” clipping planes located along the line of sight. The other values are
used to compute the “box” enclosing the viewable region. For orthographic
projections, this really defined a parallelepiped in 3D, where for perspective
projections, it forms a pyramid with the eye located at the apex (which is
coincident with the eye-space coordinate space origin).

Don't fret about constructing those matrices, we have helper routines that
take care of making them for you ©
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The Viewport

* |t's where in window you can draw
* You've seen us call glViewport() a number of times
glviewport( x, y, width, height );
— usually in our reshape() callback
* You usually need to update the viewport when the window’s resized
* The viewport also influences the aspect ratio

— to make objects like correct you need to match aspect ratios

* viewport to projection transform

The viewport is the part of the window you can draw into. Generally, it's a
subset of the pixels inside of the window, and is controlled by calling the
glViewport() routine, which takes the lower-left corner in window
coordinates, and the width and height of the viewport in pixels.

Any time you find a width and height in OpenGL, you should also consider
their ratio, usually termed the aspect ratio, and is the ratio of the width to the
height. In order have geometric objects “look right” — like having squares look
square and sphere look round and not oblong — various aspect ratios need to
match. In particular, the aspect ratio of the viewport should match the viewport
of the projection transformation.

- 65 -



Viewing Transformations

* Position the camera/eye in the scene

— place the tripod down; aim camera tripod
* To “fly through” a scene .
— change viewing transformation and @

redraw scene

LookAt( eye,, eye,, eye,,
look,, look,, look,,
up,, upy, up, )
— up vector determines unique orientation

— careful of degenerate positions

A common way to navigate a scene is as if you're flying. The
LookAt() routine is one that we've implemented based on a routine
named gluLookAt() from OpenGL’s old utility library. It takes three

sets of parameters: where your eye is (eye.); a point you're looking

towards (look.), and a vector in the local coordinate system representing

which direction is “up” in the scene. Please see our Transform.h file for
implementation details.
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Creating the LookAt Matrix

A look—eye \
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* Then we translate to the eye’s position

— we'll use the Translation matrix on the next page

Here we create an ortho-normal basis (a fancy name for three vectors that
are perpendicular to each other, and each have unit length). Those three
vectors form the necessary rotation to orientate our world scene to eye
coordinates.

The final operation in completing the LookAt() function’s transform is to
translate to the eye’s position . Please see the implementation in Transform.h
for more details.
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* Move the origin to a
new location
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e Stretch, mirror or

decimate a coordinate

direction
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Mote, there's a translation applied here to
make things easier to see
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* Rotate coordinate system about an axis in
space

Note, there's a translation applied
here to make things easier to see

70



71



Don’t Worry!

* We've written all of these routines for you to
use

— C++ Matrix class that generates all of the matrices
we just discussed

* available with all the code at our website

We know all that matrix math could be intimidating if you're not too familiar
with linear algebra. We’'ve written a header file, Transform.h, that takes
implements all of those routines, manages the row and column ordering of the
matrices, and makes it very easy to integrate them with your shaders.

For example, you might want to use a perspective projection matrix in
shader. Here’s how you’d do that with our code (this assumes your shader
has a variable named “P” for the projection matrix):

projlndex = glGetUniformLocation( program, “P” );
Matrix p = Perspective( 120.0, aspectRatio, zNear, zFar );

glUniformMatrix4fv( projlndex, 1,
/* transpose matrix? */ GL_FALSE, p );
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Double Buffering

Front
Buffer

Back
Buffer

Display

Double buffer is a technique for tricking the eye into seeing smooth
animation of rendered scenes. The color buffer is usually divided into
two equal halves, called the front buffer and the back buffer.

The front buffer is displayed while the application renders into the
back buffer. When the application completes rendering to the back
buffer, it requests the graphics display hardware to swap the roles of the
buffers, causing the back buffer to now be displayed, and the previous
front buffer to become the new back buffer.
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Animation Using Double Buffering

1. Request a double buffered color buffer
glutInitDisplayMode ( GLUT RGB | GLUT DOUBLE );
2. Clear color buffer
glClear ( GL COLOR BUFFER BIT );
Render scene

4. Request swap of front and back buffers
glutSwapBuffers() ;

* Repeat steps 2 - 4 for animation
— Use a glutIdleFunc () callback

Requesting double buffering in GLUT is simple. Adding
GLUT_DOUBLE to your glutInitDisplayMode() call will cause your
window to be double buffered.

When your application is finished rendering its current frame, and
wants to swap the front and back buffers, the glutSwapBuffers()
call will request the windowing system to update the window’s color
buffers.
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Depth Buffering and
Hidden Surface Removal

Color
Buffer

Depth
Buffer

Display

Depth buffering is a technique to determine which primitives in your
scene are occluded by other primitives. As each pixel in a primitive is
rasterized, its distance from the eyepoint (depth value), is compared
with the values stored in the depth buffer. If the pixel’'s depth value is
less than the stored value, the pixel's depth value is written to the depth
buffer, and its color is written to the color buffer.

The depth buffer algorithm is:

ifT ( pixel->z < depthBuffer(x,y)->z ) {
depthBuffer(x,y)->z = pixel->z;
colorBuffer(x,y)->color = pixel->color;

}

OpenGL depth values range from [0.0, 1.0], with 1.0 being
essentially infinitely far from the eyepoint. Generally, the depth buffer is
cleared to 1.0 at the start of a frame.
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Depth Buffering Using OpenGL

1. Request a depth buffer

glutInitDisplayMode( GLUT RGB | GLUT DOUBLE |
GLUT_DEPTH ) ;

2. Enable depth buffering
glEnable( GL DEPTH TEST ) ;

3. Clear color and depth buffers

glClear( GL COLOR BUFFER BIT |
GL_DEPTH BUFFER BIT );

Render scene
5. Swap color buffers

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using
the glutinitDisplayMode(), and the GLUT_DEPTH bit.

Once the window is created, the depth test is enabled using
glEnable( GL_DEPTH_TEST ).
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Lighting
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Lighting Principles

* Lighting simulates how objects reflect light
— material composition of object
— light’s color and position

— global lighting parameters

* ambient light .
* two sided lighting

Lighting is an important technique in computer graphics. Without
lighting, objects tend to look like they are made out of plastic.

OpenGL divides lighting into three parts: material properties, light
properties and global lighting parameters.



OpenGL Shading

* OpenGL computes a color or shade for each vertex
using a lighting model (the modified Phong model)
that takes into account

— Diffuse reflections
— Specular reflections
— Ambient light

— Emission

* Vertex shades are interpolated across polygons by
the rasterizer

OpenGL can use the shade at one vertex to shade an entire polygon
(constant shading) or interpolated the shades at the vertices across the
polygon (smooth shading), the default.



The Modified Phong Model

* The model is a balance between simple
computation and physical realism
* The model uses
— Light positions and intensities
— Surface orientation (normals)
— Material properties (reflectivity)
— Viewer location

* Computed for each source and each color
component

The orientation of a surface is specified by the normal at each point. For a
flat polygon the normal is constant over the polygon. Because normals are
specified by the application program and can be changed between the
specification of vertices, when we shade a polygon it can appear to be curved.



How OpenGL Simulates Lights

* Phong lighting model
— Computed at vertices
* Lighting contributors
— Surface material properties
— Light properties
— Lighting model properties

Classically, OpenGL lighting was based on the Phong lighting model.
At each vertex in the primitive, a color is computed using that primitives
material properties along with the light settings.

The color for the vertex is computed by adding four computed colors
for the final vertex color. The four contributors to the vertex color are:

*Ambient is color of the object from all the undirected light in a
scene.

Diffuse is the base color of the object under current lighting.
There must be a light shining on the object to get a diffuse
contribution.

*Specular is the contribution of the shiny highlights on the object.

*Emission is the contribution added in if the object emits light
(i.e., glows)
Since we need to do this in shaders, we’ll discuss this model as it
provides a nice description, but please realize there are more accurate
lighting models available you could implement in your shaders.



Surface Normals

* Normals define how a surface reflects light
— Specify normals as vertex attributes
— Use unit normals for proper lighting

* scaling affects a normal’s length

The lighting normal tells OpenGL how the object reflects light around

a vertex. If you imagine that there is a small mirror at the vertex, the
lighting normal describes how the mirror is oriented, and consequently
how light is reflected.

Usually, lighting normals are provided with a vertex (they might also
be generated in the vertex shader, like for algebraic shapes, for
example).

The mathematics of lighting also rely on the fact it's a normalized
vector, which has a length of one, to generate correct results. If your
normals don’t have unit length being passed into a shader, you can use

the normalize() routine within your shader to make the vector have unit

length.



Material Properties

* Define the surface properties of a primitive
* Color based on how material reflects light

* Color = Diffuse + Ambient + Specular + Emission
— Diffuse: Reflected equally in all directions
— Ambient: Due to uniform light in environment
— Specular: Directional reflection (mirror)
— Emission: Material emits light

— Can have separate materials for front and back

Material properties describe the color and surface properties of a
material (dull, shiny, etc.). OpenGL supports material properties for
both the front and back of objects, as described by their vertex winding.



Light Sources

* Light properties
— Match match material properties
— color
— position and type

* Multiple lights: apply model for each light
source and add contributions

Generally, lights have a matching set of color properties to the
material properties, i.e., diffuse, specular, etc. components. In addition —
and more importantly — lights have positions and types. The classic
OpenGL lighting model includes two types of lights: directional and point
lights. Directional lights are like the sun, where all the light rays are
parallel and coming from the same direction. Conversely, point lights
are like light bulbs, they emit light spherically from a point in space.



Light Material Tutorial

Light & Material 5[

Command manipulation window

GLfloat material_Ka[] =

World-space view
. Glfloat materi

Glfioat material_Se

Click on the arguments and move the mouse to

This tutorial is based on fixed-function OpenGL, but provides a
useful and descriptive context for discussing lighting computations in
OpenGL. With shaders, all of the computation that’s done for lighting
must be done in the shader, including specifying variables for the
different types of properties and such.



Texture Mapping




Texture Mapping

geometry screen
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Textures are images that can be pasted on geometry and can be
one, two, or three dimensional. By convention, the coordinates of the
image are s, t, r and g. Thus for the two dimensional image above, a
point in the image is given by its (s, t) values with (0, 0) in the lower-left
corner and (1, 1) in the top-right corner.

A texture map for a two-dimensional geometric object in (x, y, z)
world coordinates maps a point in (s, t) space to a corresponding point
on the screen.



Applying Textures |

* Three steps to applying a texture

— specify the texture

* read or generate the image

* load the to texture
— assign texture coordinates to vertices
— specify texture parameters

* wrapping, filtering

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a
texture it is copied from processor memory to texture memory where
pixels are formatted differently.

Texture coordinates are actually part of the state as are other vertex
attributes such as color and normals. As with colors, OpenGL
interpolates texture inside geometric objects.

Because textures are really discrete and of limited extent, texture

mapping is subject to aliasing errors that can be controlled through
filtering.



Texture Objects

* Have OpenGL store your images
— one image per texture object

— may be shared by several graphics contexts

* Generate texture names

glGenTextures (n, *texIds ) ;

The first step in creating texture objects is to have OpenGL reserve
some indices for your objects. glGenTextures() will request n
texture ids and return those values back to you in texlds.

To begin defining a texture object, you call glBindTexture() with
the id of the object you want to create. The target is one of
GL_TEXTURE_{123}D(). All texturing calls become part of the object
until the next glBindTexture() is called.

To have OpenGL use a particular texture object, call
glBindTexture() with the target and id of the object you want to be

active.
To delete texture objects, use glDeleteTextures().



* Create texture objects with texture data and state

glBindTexture ( target, id ) ;
* Bind textures before using

glBindTexture( target, id );




Specifying a Texture Image

* Define a texture image from an array of
texels in CPU memory

glTexImage2D( target, level,
components, w, h, border, format,
type, *texels );

— There are similar calls for 1D and 3D textures

Specifying the texels for a texture is done using the
glTexImage{123}D() call. This will transfer the texels in CPU
memory to OpenGL, where they will be processed and converted into
an internal format.

The level parameter is used for defining how OpenGL should use
this image when mapping texels to pixels. Generally, you'll set the level
to 0, unless you are using a texturing technique called mipmapping,
which we will discuss in the next section.



Mapping a Texture

* Based on parametric texture coordinates

* Specify a texture coordinate for each vertex

Texture Space Object Space

When you want to map a texture onto a geometric primitive, you
need to provide texture coordinates. Just like a vertex’s positional data,
or lighting normal, texture coordinates are just another (or part of a set
of) vertex attributes. Valid texture coordinates are between 0 and 1, for
each texture dimension, and the default texture coordinate is
(0, 0,0, 1).



Texture Tutorial
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Like our other tutorials, this one reflects using the older fixed-
function methods of doing texture mapping. However the concepts are
still relevant and hopefully illustrative.



Texture Units

* OpenGL supports accessing multiple texture
maps during rendering

* Each texture is associated with a texture unit
— Texture units are specified by calling

glActiveTexture( GL_TEXTUREn ) ;

* In a shader, the texture unit is represented
by a sampler variable

During rendering, you can sample multiple textures and apply them to a single geometric
object. This is a handy technique as often, you'll have a texture map for the surfaces
appearance, another one for controlling the surfaces roughness (these are commonly called
gloss maps — think of being a map of where a surface has shown wear or is still shiny and
reflective), still more for light maps, or transparency maps.

Each texture map needs to be associated with its own texture unit, which is capable of
storing a single (perhaps mipmapped) texture. To switch between different texture units, call
glActiveTexture() passing the token GL_TEXTURERN, where n runs form zero to one less
than the number of supported texture units.

Inside of your shader, you'll access a particular texture unit using a sampler. Samplers are
uniform variables, whose type must match the type of texture bound to that texture unit. The
available types of texture samplers are: sampler1lD, sampler2D, sampler3D, samplerCube
(and a few more advanced versions). When you load a texture, the call and type of texture
(e.g., calling glTexture2D() with GL_TEXTURE_2D) specifies which type of sampler is capable
of accessing that texture. In this case, you'd use a sampler2D to access the texture. The final
issue is that you need to associate the texture unit's number (the n you specified when calling
glActiveTexture()) with the sampler. Being a uniform, you do that by loading a uniform
variable with the texture unit's number. For example, in the shader, say we declare “uniform
sampler2D tex;"”. If we've loaded a two-dimensional texture into texture unit four, we'd need to
do the following:

GLuint texLoc = glGetUniformLocation( program, “tex” );

gluniformli( texLoc, 4 );

After doing that, we can access the texture from our shader.
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Sampling a Texture

* Inside of your shader, to retrieve a texel,
you'll call texture2D ()

— or the suitable call to match the texture’s type

uniform sampler2D tex;

in vec2 tec; // texture coordinates
out vecd4 color;

void main ()

{

color = texture2D( tex, tc );

}

From within a shader, to access a texture you need a suitable sampler and
the appropriate texture coordinates. With those elements, it's as simple as
calling texture2D() (or the appropriate call to match the type of texture stored
in the texture unit). The value returned will be a four-component color that’s

been processed by the texture retrieval system (including filtering and
wrapping the texture).
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Texture Parameters

* Filter Modes

— minification or magnification

— special mipmap minification filters
* Wrap Modes

— clamping or repeating

* Controlled by calling glTexParameter* ()

Textures and the objects being textured are rarely the same size (in
pixels ). Filter modes determine the methods used by how texels
should be expanded
( magnification ), or shrunk ( minification ) to match a pixel’s size. An
additional technique, called mipmapping is a special instance of a
minification filter.

Wrap modes determine how to process texture coordinates outside
of the [0,1] range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid
value,
causing the edges of the texture to be “smeared” across the
primitive
GL_REPEAT - use only the fractional part of the texture coordinate,
causing the texture to repeat across an object.



Filter Modes

Example:
glTexParameteri ( target, type, mode ) ;

Texture Polygon Texture Polygon

Magnification Minification

Filter modes control how pixels are minified or magnified. Generally
a color is computed using the nearest texel or by a linear average of
several texels.

The filter type, above is one of GL_TEXTURE_MIN_FILTER or
GL_TEXTURE_MAG_FILTER.

The mode is one of GL_NEAREST, GL_L INEAR, or special modes
for mipmapping. Mipmapping modes are used for minification only, and

can have values of:
GL_NEAREST_MIPMAP_NEAREST

GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR

Full coverage of mipmap texture filters is outside the scope of this
course.



Mipmapped Textures

* Mipmap allows for prefiltered texture maps of
decreasing resolutions

* Lessens interpolation errors for smaller
textured objects

* Declare mipmap level during texture
definition
—glTexlmage*D( GL_TEXTURE_*D, level, ... )

As primitives become smaller in screen space, a texture may appear
to shimmer as the minification filters creates rougher approximations.
Mipmapping is an attempt to reduce the shimmer effect by creating
several approximations of the original image at lower resolutions.

Each mipmap level should have an image which is one-half the
height and width of the previous level, to a minimum of one texel in
either dimension. For example, level O could be 32 x 8 texels. Then
level 1 would be 16 x 4; level 2 would be 8 x 2; level 3, 4 x 1; level 4, 2 x
1, and finally, level 5, 1 x 1.



Wrapping Mode

*  Example:

glTexParameteri( GL_TEXTURE 2D,
GL_TEXTURE WRAP S, GL_CLAMP )

glTexParameteri( GL_TEXTURE 2D,
GL_TEXTURE_WRAP_T, GL_REPEAT )

t B
oo

S
-

GL REPEAT GL _CLAMP

texture wrapping wrapping

Wrap mode determines what should happen if a texture coordinate
lies outside of the [0,1] range. If the GL_REPEAT wrap mode is used,

for texture coordinate values less than zero or greater than one, the
integer is ignored and only the fractional value is used.

If the GL_CLAMP wrap mode is used, the texture value at the
extreme (either O or 1) is used.



Application Examples
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* Vertex Shaders
— Moving vertices: height fields

— Per vertex lighting: height fields
— Per vertex lighting: cartoon shading
* Fragment Shaders
— Per vertex vs. per fragment lighting: cartoon shader
— Samplers: reflection Map

— Bump mapping
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Height Fields

* A height field is a function y = f(x,z) where
the y value represents a quantity such as the
height above a point in the x-z plane.

* Heights fields are usually rendered by
sampling the function to form a rectangular
mesh of triangles or rectangles from the

samples y; = f(x; y)
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Displaying a Height Field

* Defining a rectangular mesh
for(i=0;i<N;i++) for(j=0;j<N;j++) data[i][j]=f( i, j, time);

* Displaying a mesh with quad line loops

(iIN, data[i][j+1], (j+1)/N) ((i+1)/N, data[i+1][+1], (+1)/N)

(i/N, datali][j], j/N) ((i+1)/N, data[i+1][j], j/N)

* Each quad can be filled with two triangles
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This is the shader from are earlier example with the addition of the
modelviewprojection matrix to allow for viewing and transformation from model
coordinates. Shading is left to the fragment shader.
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To achieve this output all the fragment shader can be as simple as our
trivial example that colors each fragment with the same color.

void main(Q)

{
}

Such a simple coloring will not be adequate if we are to fill the polygons.

gl_FragColor = vec4 ( 0.0, 0.0, 0.0, 1.0 );
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Adding Lighting

* Solid Mesh: convert each quad to two
triangles

* We must add lighting

* Must do per vertex lighting in shader if we
use a vertex shader for time-varying mesh

If we don’t add lighting, we will see a solid black mesh and won’t be able to
see shape.
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Details of lighting model are not important to here. The model includes the
standard modified Phong diffuse and specular terms without distance.

Note that we do the lighting in eye coordinates and therefore must compute
the eye position in this frame.

All the light and material properties are set in the application and sent to
the shader.

time: same as in previous example
modelViewProjection matrix: product of modelview and projection matrices
modelViewMatrix: need to convert normal to eye coordinates

normalMatrx: inverse transpose of the upper left 3 x 3 part of the model
view matrix needed to preserve angle between normal and light source when
going to object coordinates

lightSourcePosition: in eye coordinates

specularLightProduct, diffuseLightProduct: vectors of product of component
of light sources and material reflectivity

mNormal: normal in object coordinates
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Output position computed as before
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Computation of shades using Blinn-Phong model without ambient term and
distance terms
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edge

Cartoon Shader

* This vertex shader uses only two colors but
the color used is based on the orientation of
the surface with respect to the light source

* Normal vector provided by the application

* A third color (black) is used for a silhouette

In this example, we use some of the standard diffuse computation to find
the cosine of the angle between the light vector and the normal vector. Its

value determines whether we color with red or yellow.

A silhouette edge is computed as in the previous example.
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Adding a Silhouette Edge

const vec4 black = vec4(0.0, 0.0, 0.0, 1.0);
vec3 E = -normalize(eyePosition.xyz);

if(abs(dot(E,N))<0.25) vColor= black;

The idea is that if the angle between the eye vector and the surface normal
is small, we are near an edge.
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We can get rid of some of the jaggedness
using the mix function in the shader

vColor= mix(yellow, red, Kd);

But we do even better if we use a fragment shader
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* Per fragment lighting: Cartoon shader

* Texture Mapping: Reflection Map
* Bump Mapping
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Basic job of the vertex shader is to:

Compute position in clip coordinates
Pass normal, light and eye vectors to the rasterizer
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* Specify a cube map in application

* Use reflect function in vertex shader to
compute view direction

* Apply texture in fragment shader

_‘n
| P ?
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The rasterizer interpolates both the texture coordinates and reflection
vector to get the respective values for the fragment shader.

Note that all the texture definitions and parameters are in the application
program.
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Bump Mapping

* Vary normal in fragment shader so that
lighting changes for each fragment

* Application: specify texture maps that
describe surface variations

* Vertex Shader: calculate vertex lighting
vectors and transform to texture space

* Fragment Shader: calculate normals from
texture map and shade each fragment

Details are a little complex
Need lighting model
Usually do computations in a local frame that changes for each fragment

Put code in an appendix
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Single rectangle with moving light source.

Bump map is derived from a texture map with which is a step function.
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Thanks!

References
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* http://www.opengl-redbook.com/s2009

— Updated notes
— Presentation slides

— Code examples
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On-Line Resources

* http://www.opengl.org
— start here; up to date specification and lots of sample code
— online “man pages” for all OpenGL functions

* http://www.mesa3d.org/
— Brian Paul's Mesa 3D

* http://www.cs.utah.edu/~narobins/opengl.html
— very special thanks to Nate Robins for the OpenGL Tutors

— source code for tutors available here!
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Books

* OpenGL Programming Guide, 7t Edition
* The OpenGL Shading Language, 3 Edition

* |nteractive Computer Graphics: A top-down
approach with OpenGL, 5"Edition

* OpenGL Programming for the X Window System
* OpenGL: A Primer 3 Edition

* OpenGL Distilled

* OpenGL Programming on Mac OS® X

The OpenGL Programming Guide— often referred to as the “Red
Book” due to the color of its cover — discusses all aspects of OpenGL
programming, discussing all of the features of OpenGL in detalil.

Mark Kilgard’'s OpenGL Programming for the X Window System, is
the “Green Book”, and Ron Fosner’s OpenGL Programming for
Microsoft Windows, which has a white cover is sometimes called the
“Alpha Book.” The OpenGL Shading Language, by Randi Rost, Barthold
Litchenbelt, and John Kessenich, is the “Orange Book.”

All of the OpenGL programming series books, along with Interactive
Computer Graphics: A top-down approach with OpenGL, OpenGL: A
Primer, and OpenGL Distilled are published by Addison Wesley
Publishers.
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triangle.cxx

IIIITITTIIE 7700077007770 777077777777777777777777717771717771717771177
//
// triangle.cxx - draw a single triangle in normalized-device coordinates

//

#include <stdlib.h>
#include <GL/glew.h>
#ifdef MACOSX

#include <GLUT/glut.h>
#telse

#include <GL/freeglut.h>
#tendif

#include "LoadProgram.h"
#define BUFFER_OFFSET( offset ) ((GLvoid*) offset)

GLuint buffer;
GLuint vPos;
GLuint program;

void
init()
{
//
// --- Load vertex data ---
//
GLfloat vertices[][4] = {
{ -0.75, -0.5, 0.0, 1.
{ .75, -0.5, 0.0, 1.
{ 9.0, 0.75, 0.0, 1.

[ RN
N
[P

B

}s

glGenBuffers( 1, &buffer );

glBindBuffer( GL_ARRAY_BUFFER, buffer );

glBufferData( GL_ARRAY_BUFFER, sizeof(vertices),
vertices, GL_STATIC_DRAW );

//
// --- Load shaders ---
//

#if GLSL_VERSION == 130
const char* vShader = {
"#version 130\n"

"in vec4 vPos;"

"void main() {"
" gl Position = vPos;"
nyn

¥

const char* fShader = {
"#version 130\n"
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60 nn

"out vec4 fColor;"

"void main() {"

" fColor = vec4( 1, 1, 0, 1 );"
65 " } "

ttelse
const char* vShader = {
"attribute vec4 vPos;"

70 nn
"void main() {"
" gl _Position = vPos;"
ll}ll
¥
75
const char* fShader = {
"void main() {"
" gl FragColor = vec4( 1, 1, 0, 1 );"
nyn
80 }s
#tendif // SHADER_VERSION == 130
program = LoadProgram( vShader, fShader );
85
vPos = glGetAttribLocation( program, "vPos" );
glClearColor( 0.0, 0.0, 1.0, 1.0 );
}
90
[/ == mm oo oo
void
display()
95 {
glClear( GL_COLOR_BUFFER_BIT );
glUseProgram( program );

100 glBindBuffer( GL_ARRAY_BUFFER, buffer );
glVertexAttribPointer( vPos, 4, GL_FLOAT, GL_FALSE, ©, BUFFER_OFFSET(®) );
glEnableVertexAttribArray( vPos );
glDrawArrays( GL_TRIANGLES, o, 3 );

105 glutSwapBuffers();

}
[/ == mm oo

110 void

reshape( int width, int height )
{
glViewport( 0, 0, width, height );
}
115
[/ == mm e e
void
keyboard( unsigned char key, int x, int y )
120 {
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switch( key ) {
case 033: // Escape Key
exit( EXIT_SUCCESS );

break;
125 }
glutPostRedisplay();
}
130 J e e R L T e T TP
int
main( int argc, char* argv[] )
{
135 glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
// glutInitContextVersion( 3, 0 );
glutCreateWindow( argv[@] );
140 glewInit();
init();

glutDisplayFunc( display );
145 glutReshapeFunc( reshape );

glutKeyboardFunc( keyboard );

glutMainLoop();

150
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color-draw-arrays.cxx

IITTTTTITP00 000007117 TT T TP 7707701177717 7 707007777777 77777777777117777
//

// color-draw-arrays.cxx - draw a cube using glDrawArrays() with two

// vertex attribute arrays enabled: one for positions, and the other
// for colors.
//

#include <stdlib.h>
#include <GL/glew.h>
#ifdef MACOSX

#include <GLUT/glut.h>
ttelse

#include <GL/freeglut.h>
#tendif

#include "LoadProgram.h"
#define BUFFER_OFFSET( offset ) ((GLvoid*) offset)

GLuint vbo;
GLuint program;

GLuint vPos, vColor;
GLintptr colorOffset;

void
init()
{
GLfloat vertices[] = {
1.0, 0.0, 0.0, /* Index 4 */
1.0, 0.0, 1.0, /* Index 5 */
1.0, 1.0, 1.0, /* Index 7 */

1.0, 0.0, 0.0, /* Index 4 */
1.0, 1.0, 1.0, /* Index 7 */
1.0, 1.0, 0.0, /* Index 6 */

0.0, 0.0, 0.0, /* Index @ */
0.0, 1.0, 0.0, /* Index 2 */
0.0, 1.0, 1.0, /* Index 3 */

0.0, 0.0, 0.9, /* Index @ */
0.0, 1.0, 1.0, /* Index 3 */
0.0, 0.0, 1.0, /* Index 1 */

0.0, 1.0, 0.0, /* Index 2 */
1.0, 1.0, 0.0, /* Index 6 */
1.0, 1.0, 1.0, /* Index 7 */

0.0, 1.0, 0.0, /* Index 2 */
1.0, 1.0, 1.0, /* Index 7 */
0.0, 1.0, 1.0, /* Index 3 */

0.0, 0.0, 0.9, /* Index @ */
0.0, 0.0, 1.0, /* Index 1 */
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85

90

95

100

105

110

115

[y

}s

GLfloat
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=
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120 1.0, 1.0, 0.0, /* Index 6 */
0.0, 1.0, 0.0, /* Index 2 */

9.0, 0.0, 1.0, /* Index 1 */
9.0, 1.0, 1.0, /* Index 3 */
125 1.0, 1.0, 1.0, /* Index 7 */

0.0, 0.0, 1.0, /* Index 1 */
1.0, 1.0, 1.0, /* Index 7 */
1.0, 0.0, 1.0, /* Index 5 */

130 };
//
// --- Load vertex data ---
//

135

glGenBuffers( 1, &vbo );
glBindBuffer( GL_ARRAY_BUFFER, vbo );
glBufferData( GL_ARRAY_BUFFER, sizeof(vertices) + sizeof(colors),
NULL, GL_STATIC_DRAW );
140
colorOffset = sizeof(vertices );

glBufferSubData( GL_ARRAY_BUFFER, ©, sizeof(vertices), vertices );

glBufferSubData( GL_ARRAY_BUFFER, colorOffset, sizeof(colors), colors
145

//

// --- Load shaders ---

/!

150  #if SHADER_VERSION == 130
const char* vShader = {
"#version 130\n"
"in vec3  vPos;"
155 "in vec3  vColor;"
"out vec4 oColor;"
"void main() {"
" oColor = vec4( vColor, 1 );"

160 " gl Position = vec4( vPos, 1 );"
"y
¥
const char* fShader = {
165 "#version 130\n"

in vec4 color;"
"out vec4 fColor;"
170 "void main() {"
" fColor = color;"

"y

#telse
175 const char* vShader = {
"attribute vec3 vPos;"
"attribute vec3 vColor;"
"varying vec4 color;"

180 "void main() {"
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185

190

195

200

205

210

215

220

225

230

235

240

color = vec4( vColor, 1 );
gl Position = vec4( vPos, 1 );

1

const char* fShader = {
"varying vec4 color;"

"void main() {"
" gl _FragColor = color;"

nyo
1
#endif // SHADER_VERSION == 130

program = LoadProgram( vShader, fShader );

vPos = glGetAttribLocation( program, "vPos" );
vColor = glGetAttribLocation( program, "vColor" );

glClearColor( 0.0, 0.9, 1.0, 1.0 );

void

display()

{
glClear( GL_COLOR_BUFFER_BIT );
glUseProgram( program );
glColor3f( 1, 1, 1 );
glBindBuffer( GL_ARRAY_BUFFER, vbo );
glVertexAttribPointer( vPos, 3, GL_FLOAT, GL_FALSE, ©, BUFFER_OFFSET(@) );
glVertexAttribPointer( vColor, 3, GL_FLOAT, GL_FALSE, o,

BUFFER_OFFSET(colorOffset) );

glEnableVertexAttribArray( vPos );
glEnableVertexAttribArray( vColor );
glDrawArrays( GL_TRIANGLES, @, 36 );
glBindBuffer( GL_ARRAY_BUFFER, © );

glutSwapBuffers();

void
reshape( int width, int height )
{

}

glViewport( 0, 0, width, height );

void
keyboard( unsigned char key, int x, int y )

{
switch( key ) {
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case 033: // Escape Key
exit( EXIT_SUCCESS );

break;
245 }
glutPostRedisplay();
}
250 J e e e T T
int
main( int argc, char* argv[] )
{
255 glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
// glutInitContextVersion( 3, 0 );
glutCreateWindow( argv[0] );
260 glewInit();
init();

glutDisplayFunc( display );
265 glutReshapeFunc( reshape );

glutKeyboardFunc( keyboard );

glutMainLoop();

270
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AQS-color-draw-arrays.cxx

IIITIIITI I 7700777770777 0 0777777777777 7717777777777177177177
//

// AOS-color-draw-arrays.cxx - demonstrates using the Array-of-structures

// (AOS) methods of storing data in vertex attributes. The cube is

// rendering using the glDrawArrays() method.

//

#include <stdlib.h>
#include <GL/glew.h>
#ifdef MACOSX

#include <GLUT/glut.h>
ttelse

#include <GL/freeglut.h>
#tendif

#include "LoadProgram.h"
#define BUFFER_OFFSET( offset ) ((GLvoid*) offset)

GLuint vbo;
GLuint program;

GLuint vPos, vColor;
GLintptr vertexOffset;

struct VertexData {
GLfloat color[3];
GLfloat vertex[3];

VertexData( GLfloat x, GLfloat y, GLfloat z ) {
color[@] = x; color[l] =1y; color[2] = z;
vertex[0] = x; vertex[1] = y; vertex[2] = z;

}
s
[/ mmmm e ommem oo
void
init()
{
VertexData vertexData[] = {
VertexData( 1.0, 0.9, 0.0 ), /* Index 4 */
VertexData( 1.0, 0.0, 1.0 ), /* Index 5 */
VertexData( 1.0, 1.0, 1.0 ), /* Index 7 */

VertexData( 1.0, 0.0, 0. /* Index 4 */
VertexData( 1.0, 1.0, 1. /* Index 7 */
VertexData( 1.0, 1.0, 0.0 ), /* Index 6 */

[N
~ ~—
. .

VertexData( 0.9, /* Index @ */
VertexData( ©. /* Index 2 */
VertexData( 0.0, 1.0, 1.0 ), /* Index 3 */

(]

®

[
(SN
[ ]
[OIW]
~ ~—
. .

VertexData( 0.0, 0.0, 0.0 ), /* Index © */
VertexData( ©. . /* Index 3 */
VertexData( 0.0, 0.0, 1.0 ), /* Index 1 */

o
(&Y
-
=
(&Y
-
=
(]
~
-
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VertexData( 0.0, 1.0, 0.0 ), /* Index 2 */
60 VertexData( 1.0, 1.0, 0.0 ), /* Index 6 */
VertexData( 1.0, 1.0, 1.0 ), /* Index 7 */

VertexData( 0.0, 1.0, 0.0 ), /* Index 2 */
VertexData( 1.0, 1.0, 1.0 ), /* Index 7 */
65 VertexData( 0.0, 1.0, 1.0 ), /* Index 3 */

VertexData( 0.0, 0.9, 0.0 ), /* Index @ */
VertexData( 0.0, 0.9, 1.0 ), /* Index 1 */
VertexData( 1.0, 0.0, 1.0 ), /* Index 5 */

70
VertexData( 0.0, 0.9, 0.0 ), /* Index @ */
VertexData( 1.0, 0.0, 1.0 ), /* Index 5 */
VertexData( 1.0, 0.0, 0.0 ), /* Index 4 */
75 VertexData( 0.0, 0.0, 0.0 ), /* Index O */

VertexData( 1.0, 0.0, 0.0 ), /* Index 4 */
VertexData( 1.0, 1.9, 0.0 ), /* Index 6 */

VertexData( 0.0, 0.9, 0.0 ), /* Index @ */
80 VertexData( 1.0, 1.0, 0.0 ), /* Index 6 */
VertexData( 0.0, 1.0, 0.0 ), /* Index 2 */

VertexData( 0.0, 0.0, 1.0 ), /* Index 1 */
VertexData( 0.0, 1.0, 1.0 ), /* Index 3 */
85 VertexData( 1.0, 1.0, 1.0 ), /* Index 7 */

VertexData( 0.0, 0.0, 1.0 ), /* Index 1 */
VertexData( 1. . /* Index 7 */
VertexData( 1.9, 0.9, 1.0 ), /* Index 5 */

[y
(Y
-
[y
[
-
[y
[\
~
-

90 };
vertexOffset = sizeof(vertexData[@].color);

//
95 // --- Load vertex data ---

//

glGenBuffers( 1, &vbo );
glBindBuffer( GL_ARRAY_BUFFER, vbo );
100 glBufferData( GL_ARRAY_BUFFER, sizeof(vertexData),
vertexData, GL_STATIC_DRAW );

//
// --- Load shaders ---
105 //

#if SHADER_VERSION == 130
const char* vShader = {
"#version 130\n"

110 "
"in vec3  vPos;"
"in vec3 vColor;"
"out vec4 oColor;"
115 "void main() {"

oColor = vec4( vColor, 1 );"

gl Position = vec4( vPos, 1 );"
ll}ll

¥
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120

125

130

135

140

145

150

155

160

165

170

175

180

const char* fShader = {
"#tversion 130\n"

in vec4 color;"
"out vec4 fColor;"
"void main() {"

" fColor = color;'

"y

#else
const char* vShader = {
"attribute vec3 vPos;"
"attribute vec3 vColor;"
"varying vec4 color;"
"void main() {"
" color = vec4( vColor, 1 );
gl Position = vec4( vPos, 1 );

nyo
}s

const char* fShader = {
"varying vec4 color;"

"void main() {"
" gl FragColor = color;"

ll}ll
1
#endif // SHADER_VERSION == 130

program = LoadProgram( vShader, fShader );

vPos = glGetAttribLocation( program, "vPos" );
vColor = glGetAttribLocation( program, "vColor" );

glClearColor( 0.0, 0.0, 1.0, 1.0 );

void
display()
{

glClear( GL_COLOR_BUFFER_BIT );
glUseProgram( program );
glColor3f( 1, 1, 1 );
glBindBuffer( GL_ARRAY_BUFFER, vbo );
glVertexAttribPointer( vColor, 3, GL_FLOAT, GL_FALSE,
sizeof(VertexData), BUFFER_OFFSET(@) );
glvertexAttribPointer( vPos, 3, GL_FLOAT, GL_FALSE,
sizeof(VertexData), BUFFER_OFFSET(vertexOffset) );
glEnableVertexAttribArray( vPos );
glEnableVertexAttribArray( vColor );

glDrawArrays( GL_TRIANGLES, 0, 36 );
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glBindBuffer( GL_ARRAY_BUFFER, 0 );
glutSwapBuffers();

185

void
reshape( int width, int height )
190 {
glviewport( 0, 0, width, height );
}

195
void
keyboard( unsigned char key, int x, int y )

{
switch( key ) {
200 case 033: // Escape Key
exit( EXIT_SUCCESS );
break;

}

205 glutPostRedisplay();

210 int
main( int argc, char* argv[] )
{
glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
215 // glutInitContextVersion( 3, @ );
glutCreateWindow( argv[e] );

glewInit();

220 init();
glutDisplayFunc( display );
glutReshapeFunc( reshape );
glutKeyboardFunc( keyboard );

225
glutMainLoop();
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Draw-elements.cxx

IIIITITTIIE 7700077007770 777077777777777777777777717771717771717771177
//

// draw-elements.cxx - render a cube using glDrawElements() indexing into

// a set of vertex attributes stored in array-of-structures (AOS) storage.

//

#include <stdlib.h>
#include <GL/glew.h>
#ifdef MACOSX

#include <GLUT/glut.h>
#else

#include <GL/freeglut.h>
#tendif

#include "LoadProgram.h"
#tdefine BUFFER_OFFSET( offset ) ((GLvoid*) offset)
enum { Vertices, Indices, NumBuffers };

GLuint buffers[NumBuffers];
GLuint program;

GLuint vPos, vColor;
GLintptr vertexOffset;

struct VertexData {
GLfloat color[3];
GLfloat vertex[3];

VertexData( GLfloat x, GLfloat y, GLfloat z ) {
color[@] = x; color[l] =vy; color[2] = z;
vertex[@] = x; vertex[1l] =y; vertex[2] = z;

}
s
[/ = mmmm e e e e e ememeo e
void
init()
{
VertexData vertexData[] = {
VertexData( 0.0, 0.9, 0.0 ), /* Index @ */
VertexData( 0.0, 0.9, 1.0 ), /* Index 1 */
VertexData( 0.0, 1.0, 0.0 ), /* Index 2 */
VertexData( 0.0, 1.0, 1.0 ), /* Index 3 */
VertexData( 1.0, 0.0, 0.0 ), /* Index 4 */
VertexData( 1.0, 0.0, 1.0 ), /* Index 5 */
VertexData( 1.0, 1.0, 0.0 ), /* Index 6 */
VertexData( 1.0, 1.0, 1.0 ), /* Index 7 */

1

GLubyte indices[] = {
, 5, 7, // +X face
> 6.-

) // -X face

)

, // +Y face

)

-

N®\.®-l>-b

-

-
AW NN
-

NP W

-
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2, 7, 3,
60 e, 1, 5, // -Y face
e, 5, 4,
0, 4, 6, // +Z face
0, 6, 2,
1, 3, 7, // -Z face
65 1, 7, 5
s
vertexOffset = sizeof(vertexData[@].color);
70 //
// --- Load vertex data ---
//

glGenBuffers( NumBuffers, buffers );
75 glBindBuffer( GL_ARRAY_BUFFER, buffers[Vertices] );
glBufferData( GL_ARRAY_BUFFER, sizeof(vertexData),
vertexData, GL_STATIC_DRAW );

glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, buffers[Indices] );
80 glBufferData( GL_ELEMENT_ARRAY_BUFFER, sizeof(indices),
indices, GL_STATIC_DRAW );

//
// --- Load shaders ---
85 //

#if SHADER_VERSION == 130
const char* vShader = {
"#version 130\n"
90 "
"in vec3  vPos;"
"in vec3 vColor;"
"out vec4 oColor;"
95 "void main() {"
" oColor = vec4( vColor, 1 );"
gl Position = vec4( vPos, 1 );"
ll}ll
s

const char* fShader = {
"#version 130\n"

100

in vec4 color;"
105 "out vecd fColor;"
"void main() {"
" fColor = color;"
nye
110 };
#telse
const char* vShader = {
"attribute vec3 vPos;"
"attribute vec3 vColor;"
115 "varying vec4 color;"
"void main() {"
" color = vec4( vColor, 1 );"
gl Position = vec4( vPos, 1 );"
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120 "}
1

const char* fShader = {
"varying vec4 color;"
125 nn
"void main() {"
" gl _FragColor = color;"

nyo
1
130  #endif // SHADER_VERSION == 138

program = LoadProgram( vShader, fShader );

vPos = glGetAttribLocation( program, "vPos" );
135 vColor = glGetAttribLocation( program, "vColor" );

glClearColor( 0.0, 0.0, 1.0, 1.0 );

}

140 R e G EE e P TP TP
void
display()

145 ¢ glClear( GL_COLOR_BUFFER_BIT );

glUseProgram( program );

glColor3f( 1, 1, 1 );

150
glBindBuffer( GL_ARRAY_BUFFER, buffers[Vertices] );
glVertexAttribPointer( vColor, 3, GL_FLOAT, GL_FALSE,

sizeof(VertexData), BUFFER_OFFSET(®) );

glvertexAttribPointer( vPos, 3, GL_FLOAT, GL_FALSE,

155 sizeof(VertexData), BUFFER_OFFSET(vertexOffset) );
glEnableVertexAttribArray( vPos );
glEnableVertexAttribArray( vColor );

glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, buffers[Indices] );
160 glDrawElements( GL_TRIANGLES, 36, GL_UNSIGNED BYTE, BUFFER_OFFSET(Q) );

glBindBuffer( GL_ARRAY_BUFFER, © );
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 );

165 glutSwapBuffers();

170 void
reshape( int width, int height )
{

}

glViewport( 0, 0, width, height );

175

void
keyboard( unsigned char key, int x, int y )
180 {
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switch( key ) {
case 033: // Escape Key
exit( EXIT_SUCCESS );

break;
185 }
glutPostRedisplay();
}
190 J e e R L T e T TP
int
main( int argc, char* argv[] )
{
195 glutInit( &argc, argv );
glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE );
// glutInitContextVersion( 3, 0 );
glutCreateWindow( argv[@] );
200 glewInit();
init();

glutDisplayFunc( display );
205 glutReshapeFunc( reshape );
glutKeyboardFunc( keyboard );

glutMainLoop();
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LoadProgram.h

IIITIIITI I 7700777770777 0 0777777777777 7717777777777177177177
//

// --- LoadProgram.h ---

//
I17177777777777777777777777777777777777777777777777777777777777771717177771777

#ifndef _ LOADPROGRAM H__
#define _ LOADPROGRAM H__

#ifdef _ cplusplus
extern "C" {
#tendif /* __cplusplus */

extern GLuint LoadProgram( const char*, const char* );

extern GLuint LoadTransformFeedbackShader( const char*, GLsizei,
const char** );

#ifdef _ _cplusplus

}s
#tendif /* _ cplusplus */

#endif // |__LOADPROGRAM H__

-146 -



10

15

20

25

30

35

40

45

50

55

LoadProgram.c

IITTTTTEPP 000001111 ET 7707077017777 7707770077777 7777777777771177771

//
//
//

--- LoadProgram.c ---

IITTTTTET700 000007117 TT P77 0707701177777 7 7770077777777 77777777111777

#include <stdio.h>
#include <stdlib.h>

#tifdef MACOS

#include <OpenGL/OpenGL.h>
ftelse

#include <GL/glew.h>
ttendif

#tinclude "CheckError.h"

GLuint
LoadProgram( const char* vShader, const char* fShader )

{

GLuint shader, program;
GLint  completed;

program = glCreateProgram();

if ( vShader != NULL ) {
shader = glCreateShader( GL_VERTEX_SHADER );
glShaderSource( shader, 1, &vShader, NULL );
glCompileShader( shader );
glGetShaderiv( shader, GL_COMPILE_STATUS, &completed );

if ( !completed ) {
GLint 1len;
char* msg;

glGetShaderiv( shader, GL_INFO_LOG_LENGTH, &len );

msg = (char*) malloc( len );

glGetShaderInfolLog( shader, len, &len, msg );

fprintf( stderr, "Vertex shader compilation failure:\n%s\n", msg );
free( msg );

glDeleteProgram( program );

exit( EXIT_FAILURE );
}

glAttachShader( program, shader );

CheckError();



60

65

70

75

80

85

90

95

100

105

110

115

** --- Load and compile the fragment shader ---
*/

if ( fShader != NULL ) {
shader = glCreateShader( GL_FRAGMENT_SHADER );
glShaderSource( shader, 1, &fShader, NULL );
glCompileShader( shader );
glGetShaderiv( shader, GL_COMPILE_STATUS, &completed );

if ( !completed ) {
GLint 1len;
char* msg;

glGetShaderiv( shader, GL_INFO_LOG_LENGTH, &len );

msg = (char*) malloc( len );

glGetShaderInfolLog( shader, len, &len, msg );

fprintf( stderr, "Fragment shader compilation failure:\n%s\n",

msg );
free( msg );
glDeleteProgram( program );

exit( EXIT_FAILURE );
}

glAttachShader( program, shader );

CheckError();
}
/* ________________________________________________________________________
* %k
*¥*  --- Link program ---
*/

glLinkProgram( program );
glGetProgramiv( program, GL_LINK_STATUS, &completed );

if ( !completed ) {
GLint len;
char* msg;
glGetProgramiv( program, GL_INFO_LOG_LENGTH, &len );
msg = (char*) malloc( len );
glGetProgramInfoLog( program, len, &len, msg );
fprintf( stderr, "Program link failure:\n%s\n", msg );
free( msg );
glDeleteProgram( program );

exit( EXIT_FAILURE );
}

CheckError();

return program;
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