
CS 52500 Midterm Exam Fall 2012

The following questions ask you to analyze some code fragments and to write some
code fragments. When you analyze some code, your analysis should be written in complete
sentences organized into paragraphs. Do not write sentence fragments and do not write
the most terse answer that you can think of (even if it is essentially correct). You are being
graded on your ability to communicate, not just on your ability to arrive at correct solutions.

When you write code fragments, you do not need to write compilable code. Just make
sure that your code is not in any way ambiguous.

Write all of your answers neatly on separate pieces of paper. If you want, you can write
your answers using a text editor, Word, or even LATEX. If your answers are all contained in
an electronic document (e.g., text file, Word document, pdf file, etc.), then you can submit
your exam to me by Blackboard. If you write up your solutions long hand, then turn in your
exam in my mailbox in the Mathematics Department office or in class.

Each person should work on this exam by them self. If you have any questions about the
exam, feel free to send me an e-mail or call me on the phone.

This exam should be turned in on Thursday, October 25.

1. The following code outlines a synchronization pattern. Assume that the two threads
begin at the same time, each thread runs on its own core, and there are no other (sig-
nificant) processes running on the cores.

void *thread1(void *vargp)

{ while(1)

{ << do Calculation A >>

sem_post(&semaphore1);

<< do Calculation B >>

sem_post(&semaphore2);

sem_wait(&semaphore3);

}

}

void *thread2(void *vargp)

{ while(1)

{ sem_wait(&semaphore1);

<< do Calculation C >>

sem_post(&semaphore3);

sem_wait(&semaphore2);

}

}

sem_t semaphore1, semaphore2, semaphore3;

int main()

{ pthread_t tid;

sem_init(&semaphore1, 0, 0); // not signaled

sem_init(&semaphore2, 0, 0); // not signaled

sem_init(&semaphore3, 0, 0); // not signaled

pthread_create(&tid, NULL, thread1, NULL);

pthread_create(&tid, NULL, thread2, NULL);

while(1){ Sleep(1000); }

}

(a) (10 points) In what way are the two threads synchronized? Give your answer in
terms of how the three calculations, A, B, and C, are ordered in time. Explain
carefully what role each of the three semaphores plays in the synchronization.

(b) (10 points) Rewrite this program fragment using condition variables.

Solution:

2. Suppose that we have five C functions that together solve some problem. Suppose these
functions, labeled A through E, depend on each other according to the following graph.

A B C

D

E

Each edge of the graph denotes a dependency between two of these functions. For
example, the edge from node B to node D means that functionB must be called, and
must return, before functionD can be called.

(a) (10 points) What is wrong with this sketch of a C program that uses Pthreads to
execute the five functions in parallel in a way that adheres to the above dependency
graph? How would you improve this program (but still use five worker threads and
only the Pthreads functions pthread create() and pthread join())?

void *thread1(void *vargp){ functionA(); }

void *thread2(void *vargp){ functionB(); }

void *thread3(void *vargp){ functionC(); }

void *thread4(void *vargp){ functionD(); }

void *thread5(void *vargp){ functionE(); }

int main()

{ pthread_t tid1, tid2, tid3, tid4, tid5;

pthread_create(&tid2, NULL, thread2, NULL);

pthread_create(&tid3, NULL, thread3, NULL);

pthread_join(tid2, NULL);

pthread_join(tid3, NULL);

pthread_create(&tid1, NULL, thread1, NULL);

pthread_create(&tid4, NULL, thread4, NULL);

pthread_join(tid1, NULL);

pthread_join(tid4, NULL);

pthread_create(&tid5, NULL, thread5, NULL);

pthread_join(tid5, NULL);

}

(b) (10 points) Write another sketch of a Pthreads program to execute the above five
functions in a way that is maximally parallel, adheres to the above dependency
graph, and uses the minimal number of threads possible (including the main()

thread). Your solution should still use only pthread join() for synchronization.

(c) (10 points) Write a sketch of a C program that uses OpenMP to execute the above
five functions in a way that is maximally parallel, but adheres to the above depen-
dency graph.

3. (15 points) Suppose that we have six C functions

void functionA(void);

void functionB(void);

void functionC(void);

void functionD(void);

void functionE(void);

void functionF(void);

that together solve some problem. Suppose these function depend on each other accord-
ing to the following dependency graph.

A B C

D

F

E

Write a sketch of a C program that uses Pthreads to execute the above six functions in
a way that is maximally parallel, but adheres to the above dependency graph. Give a
written explanation of how your code solves the problem.

Solution:

4. (15 points) Suppose that we have a computer with 4 cores. Suppose we use OpenMP
to parallelize a for-loop that initializes to zero the upper triangle of a 100× 100 matrix.

#pragma openmp parallel for private(j) schedule(...)

for (i = 0; i < 99; i++)

for (j = i+1; j < 100; j++)

{

a[i][j] = 0.0;

}

Notice that the schedule() clause has been left undefined. Below are six example
schedule clauses that could be used. Rank these clause from slowest to fasted. In
particular, since each iterate of the inner loop above does just one assignment, we can
estimate the execution time by counting how many assignments each thread does (notice
that all together, there are exactly 4,950 assignments).

So for each schedule clause, estimate how long the parallelized loop will run. Explain
how you arrived at your estimates.

• schedule(static)

• schedule(static, 10)

• schedule(static, 1)

• schedule(dynamic, 1)

• schedule(dynamic, 10)

• schedule(dynamic, 20)

Solution:

5. Consider the following OpenMP program.

#include <stdio.h>

#include <omp.h>

#define NUM_OF_COLUMNS 6

#define NUM_OF_ROWS (3*(NUM_OF_COLUMNS - 1))

int whichThread[NUM_OF_ROWS][NUM_OF_COLUMNS];

void fillColumn(int j)

{ int i;

#pragma omp for

for (i = 0; i < NUM_OF_ROWS; i++)

whichThread[i][j] = omp_get_thread_num();

}

int main()

{ int i, j;

for (i = 0; i < NUM_OF_ROWS; i++) // initialize the array

for (j= 0; j < NUM_OF_COLUMNS; j++)

whichThread[i][j] = -1;

#pragma omp parallel num_threads(NUM_OF_COLUMNS - 1)

fillColumn(0);

#pragma omp parallel for num_threads(NUM_OF_COLUMNS - 1)

for (j = 1; j < NUM_OF_COLUMNS; j++)

fillColumn(j);

for (i = 0; i < NUM_OF_ROWS; i++) // print out the results

{ for (j= 0; j < NUM_OF_COLUMNS; j++)

printf(" %2d ", whichThread[i][j]);

printf("\n");

}

return 0;

}

(a) (10 points) What is the output of this program if it is compiled without the -fopenmp
compiler flag? Briefly explain why.

(b) (10 points) What is the output of this program if it is compiled with the -fopenmp
compiler flag? Explain, very carefully, why the output differs from the output of
the serial version of the program.

10-21-2012 at 01:27 h

