
69

Chapter 5

Concurrency Utilities
and Executors

The previous four chapters focused on Java’s low-level support for threads. This chapter
switches that focus to Java’s high-level thread support, which is known as the concurrency
utilities. Think of the concurrency utilities as being analogous to writing applications in a
high-level language and its low-level thread support as being analogous to writing
applications in assembly language. After briefly introducing you to these utilities, I take
you on a tour of executors. The next three chapters will cover other subsets of the various
concurrency utilities.

Introducing the Concurrency Utilities
Java’s low-level threads support lets you create multithreaded applications that offer
better performance and responsiveness over their single-threaded counterparts.
However, there are problems:

•	 Low-level concurrency primitives such as synchronized and
wait()/notify() are often hard to use correctly. Incorrect use of
these primitives can result in race conditions, thread starvation,
deadlock, and other hazards, which can be hard to detect and
debug.

•	 Too much reliance on the synchronized primitive can lead to
performance issues, which affect an application’s scalability. This
is a significant problem for highly-threaded applications such as
web servers.

•	 Developers often need higher-level constructs such as thread
pools and semaphores. Because these constructs aren’t included
with Java’s low-level thread support, developers have been forced
to build their own, which is a time-consuming and error-prone
activity.

Chapter 5 ■ Concurrency Utilities and Executors

70

To address these problems, Java 5 introduced the concurrency utilities, a powerful
and extensible framework of high-performance threading utilities such as thread pools
and blocking queues. This framework consists of various types in the following packages:

•	 java.util.concurrent: Utility types that are often used in
concurrent programming, for example, executors.

•	 java.util.concurrent.atomic: Utility classes that support lock-
free thread-safe programming on single variables.

•	 java.util.concurrent.locks: Utility types that lock and wait on
conditions (objects that let threads suspend execution [wait] until
notified by other threads that some boolean state may now be
true). Locking and waiting via these types is more performant and
flexible than doing so via Java’s monitor-based synchronization
and wait/notification mechanisms.

This framework also introduces a long nanoTime() method to the java.lang.System
class, which lets you access a nanosecond-granularity time source for making relative
time measurements.

The concurrency utilities can be classified as executors, synchronizers, a locking
framework, and more. I explore executors in the next section and these other categories
in subsequent chapters.

Exploring Executors
The Threads API lets you execute runnable tasks via expressions such as new java.
lang.Thread(new RunnableTask()).start();. These expressions tightly couple task
submission with the task’s execution mechanics (run on the current thread, a new thread,
or a thread arbitrarily chosen from a pool [group] of threads).

■■ Note A task is an object whose class implements the java.lang.Runnable interface
(a runnable task) or the java.util.concurrent.Callable interface (a callable task). I’ll say
more about Callable later in this chapter.

The concurrency utilities include executors as a high-level alternative to low-level
thread expressions for executing runnable tasks. An executor is an object whose class
directly or indirectly implements the java.util.concurrent.Executor interface, which
decouples task submission from task-execution mechanics.

Chapter 5 ■ Concurrency Utilities and Executors

71

■■ Note T he Executor Framework’s use of interfaces to decouple task submission from
task-execution is analogous to the Collections Framework’s use of core interfaces to
decouple lists, sets, queues, and maps from their implementations. Decoupling results in
flexible code that’s easier to maintain.

Executor declares a solitary void execute(Runnable runnable) method that
executes the runnable task named runnable at some point in the future. execute()
throws java.lang.NullPointerException when runnable is null and java.util.
concurrent.RejectedExecutionException when it cannot execute runnable.

■■ Note  RejectedExecutionException can be thrown when an executor is shutting down
and doesn’t want to accept new tasks. Also, this exception can be thrown when the executor
doesn’t have enough room to store the task (perhaps the executor uses a bounded blocking
queue to store tasks and the queue is full—I discuss blocking queues in Chapter 8).

The following example presents the Executor equivalent of the aforementioned new
Thread(new RunnableTask()).start(); expression:

Executor executor = ...; // ... represents some executor creation
executor.execute(new RunnableTask());

Although Executor is easy to use, this interface is limited in various ways:

•	 Executor focuses exclusively on Runnable. Because Runnable’s
run() method doesn’t return a value, there’s no easy way for a
runnable task to return a value to its caller.

•	 Executor doesn’t provide a way to track the progress of runnable
tasks that are executing, cancel an executing runnable task, or
determine when the runnable task finishes execution.

•	 Executor cannot execute a collection of runnable tasks.

•	 Executor doesn’t provide a way for an application to shut down
an executor (much less properly shut down an executor).

These limitations are addressed by the java.util.concurrent.ExecutorService
interface, which extends Executor and whose implementation is typically a thread pool.
Table 5-1 describes ExecutorService’s methods.

http://dx.doi.org/10.1007/978-1-4842-1700-9_8

Chapter 5 ■ Concurrency Utilities and Executors

72

Table 5-1.  ExecutorService’s Methods

Method Description

boolean awaitTermination(long
timeout, TimeUnit unit)

Block (wait) until all tasks have finished after a
shutdown request, the timeout (measured in
unit time units) expires, or the current thread
is interrupted, whichever happens first. Return
true when this executor has terminated and
false when the timeout elapses before
termination. This method throws java.lang.
InterruptedException when interrupted.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks)

Execute each callable task in the tasks collection
and return a java.util.List of java.util.
concurrent.Future instances (discussed later in
this chapter) that hold task statuses and results
when all tasks complete—a task completes
through normal termination or by throwing an
exception. The List of Futures is in the same
sequential order as the sequence of tasks
returned by tasks’ iterator. This method throws
InterruptedException when it’s interrupted
while waiting, in which case unfinished tasks
are canceled; NullPointerException when
tasks or any of its elements is null; and
RejectedExecutionException when any one of
tasks’ tasks cannot be scheduled for execution.

<T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks, long
timeout, TimeUnit unit)

Execute each callable task in the tasks
collection and return a List of Future
instances that hold task statuses and results
when all tasks complete—a task completes
through normal termination or by throwing
an exception—or the timeout (measured in
unit time units) expires. Tasks that are not
completed at expiry are canceled. The List of
Futures is in the same sequential order as
the sequence of tasks returned by tasks’
iterator. This method throws
InterruptedException when it’s interrupted
while waiting (unfinished tasks are canceled).
It also throws NullPointerException when
tasks, any of its elements, or unit is null; and
throws RejectedExecutionException when
any one of tasks’ tasks cannot be scheduled
for execution.

(continued)

Chapter 5 ■ Concurrency Utilities and Executors

73

Table 5-1.  (continued)

Method Description

<T> T invokeAny(Collection<?
extends Callable<T>> tasks)

Execute the given tasks, returning the result of an
arbitrary task that’s completed successfully (in
other words, without throwing an exception), if
any does. On normal or exceptional return, tasks
that haven’t completed are canceled. This
method throws InterruptedException when it’s
interrupted while waiting, NullPointerException
when tasks or any of its elements is null, java.
lang.IllegalArgumentException when tasks is
empty, java.util.concurrent.ExecutionException
when no task completes successfully, and
RejectedExecutionException when none of the
tasks can be scheduled for execution.

<T> T invokeAny(Collection<?
extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Execute the given tasks, returning the result of an
arbitrary task that’s completed successfully (no
exception was thrown), if any does before the
timeout (measured in unit time units)
expires—tasks that are not completed at expiry
are canceled. On normal or exceptional return,
tasks that have not completed are canceled. This
method throws InterruptedException when it’s
interrupted while waiting; NullPointerException
when tasks, any of its elements, or unit is null;
IllegalArgumentException when tasks is empty;
java.util.concurrent.TimeoutException when
the timeout elapses before any task successfully
completes; ExecutionException when no task
completes successfully; and
RejectedExecutionException when none of the
tasks can be scheduled for execution.

boolean isShutdown() Return true when this executor has been shut
down; otherwise, return false.

boolean isTerminated() Return true when all tasks have completed
following shutdown; otherwise, return false. This
method will never return true prior to shutdown()
or shutdownNow() being called.

void shutdown() Initiate an orderly shutdown in which previously
submitted tasks are executed, but no new tasks
will be accepted. Calling this method has no effect
after the executor has shut down. This method
doesn’t wait for previously submitted tasks to
complete execution. Use awaitTermination()
when waiting is necessary.

(continued)

Chapter 5 ■ Concurrency Utilities and Executors

74

Table 5-1.  (continued)

Method Description

List<Runnable> shutdownNow() Attempt to stop all actively executing tasks, halt
the processing of waiting tasks, and return a list of
the tasks that were awaiting execution. There are
no guarantees beyond best-effort attempts to stop
processing actively executing tasks. For example,
typical implementations will cancel via Thread.
interrupt(), so any task that fails to respond to
interrupts may never terminate.

<T> Future<T>
submit(Callable<T> task)

Submit a callable task for execution and return a
Future instance representing task’s pending
results. The Future instance’s get() method
returns task’s result on successful completion.
This method throws RejectedExecutionException
when task cannot be scheduled for execution and
NullPointerException when task is null. If you
would like to immediately block while waiting for a
task to complete, you can use constructions of the
form result = exec.submit(aCallable).get();.

Future<?> submit(Runnable
task)

Submit a runnable task for execution and
return a Future instance representing task’s
pending results. The Future instance’s get()
method returns task’s result on successful
completion. This method throws
RejectedExecutionException when task
cannot be scheduled for execution and
NullPointerException when task is null.

<T> Future<T> submit(Runnable
task, T result)

Submit a runnable task for execution and return a
Future instance whose get() method returns
result’s value on successful completion. This
method throws RejectedExecutionException
when task cannot be scheduled for execution and
NullPointerException when task is null.

Table 5-1 refers to java.util.concurrent.TimeUnit, an enum that represents
time durations at given units of granularity: DAYS, HOURS, MICROSECONDS, MILLISECONDS,
MINUTES, NANOSECONDS, and SECONDS. Furthermore, TimeUnit declares methods for
converting across units (such as long toHours(long duration)), and for performing
timing and delay operations (such as void sleep(long timeout)) in these units.

Table 5-1 also refers to callable tasks. Unlike Runnable, whose void run() method
cannot return a value and throw checked exceptions, Callable<V>’s V call() method
returns a value and can throw checked exceptions because it’s declared with a throws
Exception clause.

Chapter 5 ■ Concurrency Utilities and Executors

75

Table 5-2.  Future’s Methods

Method Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempt to cancel execution of this task and return true
when the task is canceled; otherwise, return false (the
task may have completed normally before cancel() was
called). Cancellation fails when the task is done, canceled,
or couldn’t be canceled for another reason. If successful
and this task hadn’t yet started, the task should never
run. If the task has started, mayInterruptIfRunning
determines whether (true) or not (false) the thread
running this task should be interrupted in an attempt to
stop the task. After returning, subsequent calls to isDone()
always return true; isCancelled() always return true
when cancel() returns true.

V get() Wait if necessary for the task to complete and then return
the result. This method throws java.util.concurrent.
CancellationException when the task was canceled prior
to this method being called, ExecutionException when
the task threw an exception, and InterruptedException
when the current thread was interrupted while waiting.

V get(long timeout,
TimeUnit unit)

Wait at most timeout units (as specified by unit) for the
task to complete and then return the result (if available).
This method throws CancellationException when the
task was canceled prior to this method being called,
ExecutionException when the task threw an exception,
InterruptedException when the current thread was
interrupted while waiting, and TimeoutException when
this method’s timeout value expires (the wait times out).

boolean isCancelled() Return true when this task was canceled before it
completed normally; otherwise, return false.

boolean isDone() Return true when this task completed; otherwise, return
false. Completion may be due to normal termination, an
exception, or cancellation—this method returns true in all
of these cases.

Finally, Table 5-1 refers to the Future interface, which represents the result of an
asynchronous computation. The result is known as a future because it typically will not
be available until some moment in the future. Future, whose generic type is Future<V>,
provides methods for canceling a task, for returning a task’s value, and for determining
whether or not the task has finished. Table 5-2 describes Future’s methods.

Chapter 5 ■ Concurrency Utilities and Executors

76

Suppose you intend to write an application whose graphical user interface lets the
user enter a word. After the user enters the word, the application presents this word
to several online dictionaries and obtains each dictionary’s entry. These entries are
subsequently displayed to the user.

Because online access can be slow, and because the user interface should remain
responsive (perhaps the user might want to end the application), you offload the “obtain
word entries” task to an executor that runs this task on a separate thread. The following
example uses ExecutorService, Callable, and Future to accomplish this objective:

ExecutorService executor = ...; // ... represents some executor creation
Future<String[]> taskFuture =
 executor.submit(new Callable<String[]>()
 {
 @Override
 public String[] call()
 {
 String[] entries = ...;
 // Access online dictionaries
 // with search word and populate
 // entries with their resulting
 // entries.
 return entries;
 }
 });
// Do stuff.
String entries = taskFuture.get();

After obtaining an executor in some manner (you will learn how shortly), the
example’s thread submits a callable task to the executor. The submit() method immediately
returns with a reference to a Future object for controlling task execution and accessing
results. The thread ultimately calls this object’s get() method to get these results.

■■ Note T he java.util.concurrent.ScheduledExecutorService interface extends
ExecutorService and describes an executor that lets you schedule tasks to run once or to
execute periodically after a given delay.

Although you could create your own Executor, ExecutorService, and
ScheduledExecutorService implementations (such as class DirectExecutor implements
Executor { @Override public void execute(Runnable r) { r.run(); } }—
run executor directly on the calling thread), there’s a simpler alternative: java.util.
concurrent.Executors.

Chapter 5 ■ Concurrency Utilities and Executors

77

■■ Tip I f you intend to create your own ExecutorService implementations, you will find
it helpful to work with the java.util.concurrent.AbstractExecutorService and
java.util.concurrent.FutureTask classes.

The Executors utility class declares several class methods that return instances of
various ExecutorService and ScheduledExecutorService implementations (and other
kinds of instances). This class’s static methods accomplish the following tasks:

•	 Create and return an ExecutorService instance that’s configured
with commonly used configuration settings.

•	 Create and return a ScheduledExecutorService instance that’s
configured with commonly used configuration settings.

•	 Create and return a “wrapped” ExecutorService or
ScheduledExecutorService instance that disables
reconfiguration of the executor service by making
implementation-specific methods inaccessible.

•	 Create and return a java.util.concurrent.ThreadFactory
instance (that is, an instance of a class that implements the
ThreadFactory interface) for creating new Thread objects.

•	 Create and return a Callable instance out of other closure-
like forms so that it can be used in execution methods that
require Callable arguments (such as ExecutorService’s
submit(Callable) method). Wikipedia’s “Closure (computer
science)” entry at http://en.wikipedia.org/wiki/Closure_
(computer_science) introduces the topic of closures.

For example, static ExecutorService newFixedThreadPool(int nThreads)
creates a thread pool that reuses a fixed number of threads operating off of a shared
unbounded queue. At most, nThreads threads are actively processing tasks. If additional
tasks are submitted when all threads are active, they wait in the queue for an available
thread.

If any thread terminates because of a failure during execution before the executor
shuts down, a new thread will take its place when needed to execute subsequent tasks.
The threads in the pool will exist until the executor is explicitly shut down. This method
throws IllegalArgumentException when you pass zero or a negative value to nThreads.

■■ Note T hread pools are used to eliminate the overhead from having to create a new
thread for each submitted task. Thread creation isn’t cheap, and having to create many
threads could severely impact an application’s performance.

http://en.wikipedia.org/wiki/Closure_(computer_science)
http://en.wikipedia.org/wiki/Closure_(computer_science)

Chapter 5 ■ Concurrency Utilities and Executors

78

You would commonly use executors, runnables, callables, and futures in file and
network input/output contexts. Performing a lengthy calculation offers another scenario
where you could use these types. For example, Listing 5-1 uses an executor, a callable,
and a future in a calculation context of Euler’s number e (2.71828...).

Listing 5-1.  Calculating Euler’s Number e

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
 
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
 
public class CalculateE
{
 final static int LASTITER = 17;
 
 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Callable<BigDecimal> callable;
 callable = new Callable<BigDecimal>()
 {
 @Override
 public BigDecimal call()
 {
 MathContext mc =
 new MathContext(100, RoundingMode.HALF_UP);
 BigDecimal result = BigDecimal.ZERO;
 for (int i = 0; i <= LASTITER; i++)
 {
 BigDecimal factorial =
 factorial(new BigDecimal(i));
 BigDecimal res = BigDecimal.ONE.divide(factorial,
 mc);
 result = result.add(res);
 }
 return result;
 }
 

Chapter 5 ■ Concurrency Utilities and Executors

79

 public BigDecimal factorial(BigDecimal n)
 {
 if (n.equals(BigDecimal.ZERO))
 return BigDecimal.ONE;
 else
 return n.multiply(factorial(n.
 subtract(BigDecimal.ONE)));
 }
 };
 Future<BigDecimal> taskFuture = executor.submit(callable);
 try
 {
 while (!taskFuture.isDone())
 System.out.println("waiting");
 System.out.println(taskFuture.get());
 }
 catch(ExecutionException ee)
 {
 System.err.println("task threw an exception");
 System.err.println(ee);
 }
 catch(InterruptedException ie)
 {
 System.err.println("interrupted while waiting");
 }
 executor.shutdownNow();
 }
}

The default main thread that executes main() first obtains an executor by calling
Executors’ newFixedThreadPool() method. It then instantiates an anonymous class
that implements the Callable interface and submits this task to the executor, receiving a
Future instance in response.

After submitting a task, a thread typically does some other work until it requires the
task’s result. I simulate this work by having the main thread repeatedly output a waiting
message until the Future instance’s isDone() method returns true. (In a realistic
application, I would avoid this looping.) At this point, the main thread calls the instance’s
get() method to obtain the result, which is then output. The main thread then shuts
down the executor.

■■ Caution I t’s important to shut down an executor after it completes; otherwise,
the application might not end. The previous executor accomplishes this task by calling
shutdownNow(). (You could also use the shutdown() method.)

Chapter 5 ■ Concurrency Utilities and Executors

80

The callable’s call() method calculates e by evaluating the mathematical power
series e = 1 / 0! + 1 / 1! + 1 / 2! + . . . . This series can be evaluated by summing 1 / n!, where
n ranges from 0 to infinity (and ! stands for factorial).

call() first instantiates java.math.MathContext to encapsulate a precision (number
of digits) and a rounding mode. I chose 100 as an upper limit on e’s precision, and I also
chose HALF_UP as the rounding mode.

■■ Tip I ncrease the precision as well as the value of LASTITER to converge the series to a
lengthier and more accurate approximation of e.

call() next initializes a java.math.BigDecimal local variable named result to
BigDecimal.ZERO. It then enters a loop that calculates a factorial, divides BigDecimal.ONE
by the factorial, and adds the division result to result.

The divide() method takes the MathContext instance as its second argument to
provide rounding information. (If I specified 0 as the precision for the math context and a
nonterminating decimal expansion [the quotient result of the division cannot be represented
exactly—0.3333333..., for example] occurred, java.lang.ArithmeticException would be
thrown to alert the caller to the fact that the quotient cannot be represented exactly. The
executor would rethrow this exception as ExecutionException.)

Compile Listing 5-1 as follows:

javac CalculateE.java

Run the resulting application as follows:

java CalculateE

You should observe output that’s similar to the following (you’ll probably observe
more waiting messages):

waiting
waiting
waiting
waiting
waiting
2.71828182845904507051604779584860506117897963525103269890073500406522504250
4843314055887974344245741730039454062711

Chapter 5 ■ Concurrency Utilities and Executors

81

EXERCISES

The following exercises are designed to test your understanding of Chapter 5’s content:

1.	 What are the concurrency utilities?

2.	 Identify the packages in which the concurrency utilities types
are stored.

3.	 Define task.

4.	 Define executor.

5.	 Identify the Executor interface’s limitations.

6.	 How are Executor’s limitations overcome?

7.	 What differences exist between Runnable’s run( ) method and
Callable’s call( ) method?

8.	 True or false: You can throw checked and unchecked exceptions
from Runnable’s run( ) method but can only throw unchecked
exceptions from Callable’s call( ) method.

9.	 Define future.

10.	 Describe the Executors class’s newFixedThreadPool( ) method.

11.	 Refactor the following CountingThreads application to work
with Executors and ExecutorService:

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = �Thread.currentThread().

getName();
 int count = 0;
 while (true)
 System.out.println(�name + ": " +

count++);
 }
 };

http://dx.doi.org/10.1007/978-1-4842-1700-9_5

Chapter 5 ■ Concurrency Utilities and Executors

82

 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 }
}

12.	 When you execute the previous exercise’s CountingThreads
application, you’ll observe output that identifies the threads via
names such as pool-1-thread-1. Modify CountingThreads
so that you observe names A and B. Hint: You’ll need to use
ThreadFactory.

Summary
Java’s low-level thread capabilities let you create multithreaded applications that
offer better performance and responsiveness over their single-threaded counterparts.
However, performance issues that affect an application’s scalability and other problems
resulted in Java 5’s introduction of the concurrency utilities.

The concurrency utilities organize various types into three packages: java.util.
concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks.
Basic types for executors, thread pools, concurrent hashmaps, and other high-level
concurrency constructs are stored in java.util.concurrent; classes that support lock-
free, thread-safe programming on single variables are stored in java.util.concurrent.
atomic; and types for locking and waiting on conditions are stored in java.util.
concurrent.locks.

An executor decouples task submission from task-execution mechanics and
is described by the Executor, ExecutorService, and ScheduledExecutorService
interfaces. You obtain an executor by calling one of the utility methods in the Executors
class. Executors are associated with callables and futures.

Chapter 6 presents synchronizers.

http://dx.doi.org/10.1007/978-1-4842-1700-9_6

	Chapter 5: Concurrency Utilities and Executors
	Introducing the Concurrency Utilities
	Exploring Executors
	Summary

