
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 30: Advanced locking in Java

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 30 4 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

18

Reading vs. writing"
•  Recall that the use of synchronization is to protect interfering

accesses
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use

synchronization to ensure one-thread-at-a-time

But:
— This is unnecessarily conservative: we could still allow multiple

simultaneous readers

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations
—  insert operations are very rare

COMP 322, Spring 2011 (V.Sarkar)	

19

java.util.concurrent.locks.ReadWriteLock
interface"

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }
•  Even though the interface appears to just define a pair of locks,

the semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()

–  No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()

–  Multiple threads can acquire readLock()
–  No other thread can acquire writeLock()

•  java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

COMP 322, Spring 2011 (V.Sarkar)	

20

Example code"
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
 … write array[bucket] …

 lk.writeLock().unlock();
 }
}

