COMP 322: Fundamentals of

Parallel Programming
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 30: Advanced locking in Java

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar®@rice.edu

COMP 322 Lecture 30 4 April 2011




Reading vs. writing

* Recall that the use of synchronization is to protect interfering
accesses

— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

—If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But:

— This is unnecessarily conservative: we could still allow multiple
simultaneous readers

Consider a hashtable with one coarse-grained lock
—So only one thread can perform operations at a time

But suppose:

— There are many simultaneous lookup operations
— insert operations are very rare

18 COMP 322, Spring 2011 (V.Sarkar) &



java.util.concurrent.locks.ReadWriteLock
interface

interface ReadWritelLock {
Lock readLock() ;
Lock writeLock() ;

}

* Even though the interface appears to just define a pair of locks,
the semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()
- No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writelLock().lock()
- Multiple threads can acquire readlLock()

- No other thread can acquire writeLock()

* java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

19

COMP 322, Spring 2011 (V.Sarkar)



Example code

class Hashtable<K,V> {

// coarse-grained, one lock for table

ReadWriteLock 1k = new new ReentrantReadWritelLock();

V lookup (K key) {
int bucket = hasher (key) ;
lk.readLock () .lock(); // only blocks writers

.. read array[bucket] ..
lk.readLock () .unlock () ;

}

void insert(K key, V wval) {
int bucket = hasher (key) ;
lk .writeLock () .lock(); // blocks readers and writers
.. write array[bucket] ..
lk.writeLock () .unlock () ;

COMP 322, Spring 2011 (V.Sarkar)



