
© Copyright IBM Corporation 2007 Trademarks
Java theory and practice: Stick a fork in it, Part 1 Page 1 of 9

Java theory and practice: Stick a fork in it, Part 1
Learn how to exploit fine-grained parallelism using the fork-join
framework coming in Java 7

Brian Goetz
Senior Staff Engineer
Sun Microsystems

13 November 2007

One of the additions to the java.util.concurrent packages coming in Java™ 7 is a
framework for fork-join style parallel decomposition. The fork-join abstraction provides a natural
mechanism for decomposing many algorithms to effectively exploit hardware parallelism.
The next installment in this series covers the ParallelArray classes, which simplify parallel
sorting and searching operations on in-memory data structures.

View more content in this series

Hardware trends drive programming idioms

Develop skills on this topic
This content is part of a progressive knowledge path for advancing your skills. See Java
concurrency

Languages, libraries, and frameworks shape the way we write programs. Even though Alonzo
Church showed in 1934 that all the known computational frameworks were equivalent in the set of
programs they could represent, the set of programs that real programmers actually write is shaped
by the idioms that the programming model — driven by languages, libraries, and frameworks —
makes easy to express.

In turn, the dominant hardware platforms of the day shape the way we create languages, libraries,
and frameworks. The Java language has had support for threads and concurrency from day 1; the
language includes synchronization primitives such as synchronized and volatile, and the class
library includes classes such as Thread. However, the concurrency primitives that were sensible in
1995 reflected the hardware reality of the time: most commercially available systems provided no
parallelism at all, and even the most expensive systems provided only limited parallelism. In those
days, threads were used primarily for expressing asynchrony, not concurrency, and as a result,
these mechanisms were generally adequate to the demands of the time.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/java/library/j-jtp03048.html
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=practice:
http://www.ibm.com/developerworks/training/kp/j-kp-concurrency/index.html
http://www.ibm.com/developerworks/training/kp/j-kp-concurrency/index.html

developerWorks® ibm.com/developerWorks/

Java theory and practice: Stick a fork in it, Part 1 Page 2 of 9

As multiprocessor systems started to become cheaper, more applications needed to exploit the
hardware parallelism they provided, and programmers found that writing concurrent programs
using the low-level primitives provided by the language and class library was difficult and error-
prone. In Java 5, the java.util.concurrent package was added to the Java platform, providing
a set of useful components for building concurrent applications: concurrent collections, queues,
semaphores, latches, thread pools, and so on. These mechanisms were well-suited to programs
with a reasonably coarse task granularity; applications needed only to partition their work so that
the number of concurrent tasks was not consistently less than the (small) number of processors
available. Using the processing of a single request as the unit of work in a Web server, mail server,
or database server, applications generally met that requirement, and so these mechanisms were
sufficient to keep modestly parallel hardware sufficiently utilized.

Going forward, the hardware trend is clear; Moore's Law will not be delivering higher clock rates,
but instead delivering more cores per chip. It is easy to imagine how you can keep a dozen
processors busy using a coarse-grained task boundary such as a user request, but this technique
will not scale to thousands of processors — traffic may scale exponentially for short periods of
time, but eventually the hardware trend wins out. As we enter the many-core era, we will need to
find finer-grained parallelism or risk keeping processors idle even though there is plenty of work to
do. As the dominant hardware platform shifts, so too must the software platform if we wish to keep
up. To this end, Java 7 will include a framework for representing a certain class of finer-grained
parallel algorithms: the fork-join framework.

Exposing finer-grained parallelism

Most server applications today use the user request-response processing as their unit of work.
Server applications typically run many more concurrent threads, or requests, than there are
processors available. The reason is because in most server applications, the processing of a
request includes a fair amount of I/O, which does not require very much of the processor. (All
network server applications do a lot of socket I/O, as requests are received via sockets; many
do a fair amount of disk (or database) I/O as well.) If each task spends 90 percent of its time
waiting for I/O to complete, you'll need 10 times as many concurrent tasks as processors to keep
the processors fully utilized. As processor counts increase, there may not be enough concurrent
requests to keep all the processors busy. However, it is still possible to use parallelism to improve
another measure of performance: the amount of time the user has to wait to get a response.

As an example of a typical network server application, consider a database server. When a
request arrives at the database server, it goes through a series of phases. First the SQL statement
is parsed and validated. Then a query plan must be selected; for complicated queries, database
servers may evaluate many different candidate plans to minimize the expected number of I/O
operations. Searching for a query plan can be a CPU-intensive task; at some point, considering
more candidate plans will reach a point of negative returns, but evaluating too few candidate
plans will almost certainly require more I/O than necessary. After the data is retrieved from disk,
more processing may be required on the resulting data set; the query may include aggregate
operations such as SUM or AVERAGE or may require sorting of the data set. Then the result must
be encoded and returned to the requestor.

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Stick a fork in it, Part 1 Page 3 of 9

Just like most server requests, processing an SQL query involves a mixture of computation and I/
O. No amount of additional CPU power can reduce the time it takes for an I/O to complete (though
you can use additional memory to reduce the number of I/Os by caching the results of previous I/
O operations), but you can shorten the amount of time it takes for the CPU-intensive portions of
the request processing (such as plan evaluation and sorting) by parallelizing them. In evaluating
candidate query plans, different plans can be evaluated concurrently; in sorting data sets, a
large data set can be broken down into smaller data sets, individually sorted in parallel, and then
merged. Doing so improves the user's perception of performance (even though it may require
more total work to be performed to service the request) because results are received faster.

Divide and conquer

Merge sort is an example of a divide-and-conquer algorithm, where a problem is recursively
broken down into subproblems, and the solutions to the subproblems are combined to arrive at
the final result. Divide-and-conquer algorithms are often useful in sequential environments but
can become even more effective in parallel environments because the subproblems can often be
solved concurrently.

A typical parallel divide-and-conquer algorithm takes the form shown in Listing 1:

Listing 1. Pseudo-code for generic divide-and-conquer parallel algorithms

// PSEUDOCODE
Result solve(Problem problem) {
 if (problem.size < SEQUENTIAL_THRESHOLD)
 return solveSequentially(problem);
 else {
 Result left, right;
 INVOKE-IN-PARALLEL {
 left = solve(extractLeftHalf(problem));
 right = solve(extractRightHalf(problem));
 }
 return combine(left, right);
 }
}

The first thing a parallel divide-and-conquer algorithm does is evaluate whether the problem
is so small that a sequential solution would be faster; typically, this is done by comparing the
problem size to some threshold. If the problem is large enough to merit parallel decomposition,
it divides the problem into two or more sub-problems and recursively invokes itself on the sub-
problems in parallel, waits for the results of the sub-problems, and then combines the results. The
ideal threshold for choosing between sequential and parallel execution is a function of the cost
of coordinating the parallel tasks. If coordination costs are zero, a larger number of finer-grained
tasks tend to offer better parallelism; the lower the coordination costs, the finer-grained we can go
before we need to switch to a sequential approach.

Fork-join

The example in Listing 1 makes use of a nonexistent INVOKE-IN-PARALLEL operation; its
behavior is that the current task is suspended, the two subtasks are executed in parallel, and the

developerWorks® ibm.com/developerWorks/

Java theory and practice: Stick a fork in it, Part 1 Page 4 of 9

current task waits until they complete. Then the results of the two subtasks can be combined.
This kind of parallel decomposition is often called fork-join because executing a task forks (starts)
multiple subtasks and then joins (waits for completion) with them.

Listing 2 shows an example of a problem that is suitable to a fork-join solution: searching a large
array for its maximal element. Of course, this is a very simple example, but the fork-join technique
is suitable for a wide variety of searching, sorting, and data analysis problems.

Listing 2. Selecting a maximal element from a large array
public class SelectMaxProblem {
 private final int[] numbers;
 private final int start;
 private final int end;
 public final int size;

 // constructors elided

 public int solveSequentially() {
 int max = Integer.MIN_VALUE;
 for (int i=start; i<end; i++) {
 int n = numbers[i];
 if (n > max)
 max = n;
 }
 return max;
 }

 public SelectMaxProblem subproblem(int subStart, int subEnd) {
 return new SelectMaxProblem(numbers, start + subStart,
 start + subEnd);
 }
}

Note that the subproblem() method does not copy the elements; it merely copies the array
reference and offsets into an existing data structure. This is typical of fork-join problem
implementations because the process of recursively dividing the problem will create a potentially
large number of new Problem objects. In this case, the data structure being searched is not
modified at all by the searching tasks, so there is no need to maintain private copies of the
underlying data set for each task, and therefore no need to incur the extra overhead of copying.

Listing 3 illustrates a solution for SelectMaxProblem using the fork-join package that is scheduled
for inclusion in Java 7. The package is being developed openly by the JSR 166 Expert Group,
using the code name jsr166y, and you can download it separately and use it with Java 6 or
later. (It will eventually live in the package java.util.concurrent.forkjoin.) The operation
invoke-in-parallel is implemented by the coInvoke() method, which invokes multiple actions
simultaneously and waits for them all to complete. A ForkJoinExecutor is like an Executor in
that it is designed for running tasks, except that it specifically designed for computationally
intensive tasks that do not ever block except to wait for another task being processed by the same
ForkJoinExecutor.

The fork-join framework supports several styles of ForkJoinTasks, including those that require
explicit completions and those executing cyclically. The RecursiveAction class used here
directly supports the style of parallel recursive decomposition for non-result-bearing tasks; the

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Stick a fork in it, Part 1 Page 5 of 9

RecursiveTask class addresses the same problem for result-bearing tasks. (Other fork-join task
classes include CyclicAction, AsyncAction, and LinkedAsyncAction; see the Javadoc for more
details on how they are used.)

Listing 3. Solving the select-max problem with the fork-join framework
public class MaxWithFJ extends RecursiveAction {
 private final int threshold;
 private final SelectMaxProblem problem;
 public int result;

 public MaxWithFJ(SelectMaxProblem problem, int threshold) {
 this.problem = problem;
 this.threshold = threshold;
 }

 protected void compute() {
 if (problem.size < threshold)
 result = problem.solveSequentially();
 else {
 int midpoint = problem.size / 2;
 MaxWithFJ left = new MaxWithFJ(problem.subproblem(0, midpoint), threshold);
 MaxWithFJ right = new MaxWithFJ(problem.subproblem(midpoint +
 1, problem.size), threshold);
 coInvoke(left, right);
 result = Math.max(left.result, right.result);
 }
 }

 public static void main(String[] args) {
 SelectMaxProblem problem = ...
 int threshold = ...
 int nThreads = ...
 MaxWithFJ mfj = new MaxWithFJ(problem, threshold);
 ForkJoinExecutor fjPool = new ForkJoinPool(nThreads);

 fjPool.invoke(mfj);
 int result = mfj.result;
 }
}

Table 1 shows some results of selecting the maximal element of a 500,000 element array on
various systems and varying the threshold at which the sequential version is preferred to the
parallel version. For most runs, the number of threads in the fork-join pool was equal to the
number of hardware threads (cores times threads-per-core) available. The numbers are presented
as a speedup relative to the sequential version on that system.

Table 1. Results of Running select-max on 500k-element Arrays on various
systems

Threshold=500k Threshold=50k Threshold=5k Threshold=500 Threshold=-50

Pentium-4 HT (2
threads)

1.0 1.07 1.02 .82 .2

Dual-Xeon HT (4
threads)

.88 3.02 3.2 2.22 .43

8-way Opteron (8
threads)

1.0 5.29 5.73 4.53 2.03

developerWorks® ibm.com/developerWorks/

Java theory and practice: Stick a fork in it, Part 1 Page 6 of 9

8-core Niagara (32
threads)

.98 10.46 17.21 15.34 6.49

The results are quite encouraging in that they show good speedups over a broad range of
parameters. So as long as you avoid choosing completely unreasonable parameters for the
problem or the underlying hardware, you will get good results with little tuning. With chip-
multithreading, it is not clear what an optimal speedup should be; clearly CMT approaches like
Hyperthreading deliver less performance than the equivalent number of actual cores, but just how
much less is going to depend on a wide range of factors, including the cache miss rate of the code
being executed.

The sequential thresholds chosen here range from 500K (the size of the array, meaning effectively
no parallelism) down to 50. A sequential threshold of 50 in this case is well into "ridiculously small"
territory, and the results show that with a ridiculously low sequential threshold, the overhead of
managing the fork-join tasks dominates. But they do show that as long as you avoid "ridiculously
high" and "ridiculously low" parameters, you can get good results without tuning. Choosing
Runtime.availableProcessors() as the number of worker threads generally offers close to optimal
results, as tasks executed in fork-join pools are supposed to be CPU-bound, but again, results
tend to not be very sensitive to this parameter so long as you avoid sizing the pool way too large or
way too small.

No explicit synchronization is required in the MaxWithFJ class. The data it operates on is
constant for the lifetime of the problem, and there is sufficient internal synchronization within the
ForkJoinExecutor to guarantee visibility of the problem data to subtasks, as well as to guarantee
visibility of subtask results to the tasks that join with them.

Anatomy of the fork-join framework

A fork-join framework like the one illustrated in Listing 3 can be implemented in many ways.
Using raw threads is a possibility; Thread.start() and Thread.join() provide all the necessary
functionality. However, this approach may require more threads than the VM can support. For a
problem size of N (assuming a very small sequential threshold), O(N) threads would be required to

solve the problem (the problem tree has depth log2N, and a binary tree of depth k has 2k nodes).
And, of those, half would spend almost their entire lives waiting for subtasks to complete. Threads
are expensive to create and use a lot of memory, making this approach prohibitive. (While this
approach can be made to work, the code is more complicated and it requires very careful tuning of
the parameters for the problem size and hardware.)

Using conventional thread pools to implement fork-join is also challenging because fork-join tasks
spend much of their lives waiting for other tasks. This behavior is a recipe for thread starvation
deadlock, unless the parameters are carefully chosen to bound the number of tasks created or the
pool itself is unbounded. Conventional thread pools are designed for tasks that are independent of
each other and are also designed with potentially blocking, coarse-grained tasks in mind — fork-
join solutions produce neither. Fine-grained tasks in conventional thread pools can also generate
excessive contention for the task queue shared among all workers.

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Stick a fork in it, Part 1 Page 7 of 9

Work stealing

The fork-join framework reduces contention for the work queue by using a technique known as
work stealing. Each worker thread has its own work queue, which is implemented using a double-
ended queue, or deque. (Java 6 adds several deque implementations to the class library, including
ArrayDeque and LinkedBlockingDeque.) When a task forks a new thread, it pushes it onto the
head of its own deque. When a task executes a join operation with another task that has not yet
completed, rather than sleeping until the target task is complete (as Thread.join() would), it pops
another task off the head of its deque and executes that. In the event the thread's task queue is
empty, it then tries to steal another task off the tail of another thread's deque.

Work stealing can be implemented with standard queues, but using a deque has two principle
advantages over a standard queue: reduced contention and reduced stealing. Because only the
worker thread ever accesses the head of its own deque, there is never contention for the head
of a deque; because the tail of the deque is only ever accessed when a thread runs out of work,
there is rarely contention for the tail of any thread's deque either. (The deque implementation
incorporated into the fork-join framework exploits these access patterns to further reduce the
costs of coordination.) This reduction in contention dramatically reduces the synchronization costs
compared to a traditional thread-pool-based approach. Furthermore, the last-in-first-out (LIFO)
ordering of tasks implied by such an approach means that the largest tasks sit at the tail of the
deque, and therefore when another thread has to steal a task, it steals a large one that can be
decomposed into smaller ones, reducing the need to steal again in the near future. Work stealing
thus produces reasonable load balancing with no central coordination and minimal synchronization
costs.

Summary

The fork-join approach offers a portable means of expressing a parallelizable algorithm without
knowing in advance how much parallelism the target system will offer. All sorts of sorting,
searching, and numerical algorithms are amenable to parallel decomposition. (In the future,
standard library mechanisms like Arrays.sort() may become consumers of the fork-join
framework, allowing applications to get some of the benefits of parallel decomposition for free.)
As processor counts continue to increase, we will need to expose more parallelism inherent in
our programs to utilize these processors effectively; parallel decomposition of computationally
intensive activities such as sorting makes it easier for programs to take advantage of tomorrow's
hardware.

developerWorks® ibm.com/developerWorks/

Java theory and practice: Stick a fork in it, Part 1 Page 8 of 9

Resources

• "Java theory and practice: Stick a fork in it, Part 2" (developerWorks, March 2008): Explore
the ParallelArray classes, which simplify parallel sorting and searching operations on in-
memory data structures.

• "Church-Turing thesis": States that all known nontrivial computational models are equally
expressive.

• Merge sort: Another example of a divide and conquer algorithm.
• Section 4.4 of Concurrent Programming in Java (Doug Lea, Prentice Hall PTR, November

1999): Covers parallel decomposition in greater detail.
• Doug Lea's concurrency-interest website: Download the fork-join framework as part of the

jsr166y package, or read the paper on its design.
• Section 8.1 of Java Concurrency in Practice (Brian Goetz, Addison-Wesley Professional, May

2006): Covers thread-starvation deadlock.
• Browse the technology bookstore for books on these and other technical topics.
• developerWorks Java technology zone: Hundreds of articles about every aspect of Java

programming.
• Check out developerWorks blogs and get involved in the developerWorks community.

http://www.ibm.com/developerworks/java/library/j-jtp03048.html
http://en.wikipedia.org/wiki/Church-Turing_thesis
http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://www.amazon.com/gp/product/0201310090?ie=UTF8&tag=none0b69&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201310090
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/papers/fj.pdf
http://www.amazon.com/gp/product/0321349601?ie=UTF8&tag=none0b69&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321349601
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/java
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community

ibm.com/developerWorks/ developerWorks®

Java theory and practice: Stick a fork in it, Part 1 Page 9 of 9

About the author

Brian Goetz

Brian Goetz has been a professional software developer for 20 years. He is a senior
staff engineer at Sun Microsystems, and he serves on several JCP Expert Groups.
Brian's book, Java Concurrency In Practice, was published in May 2006 by Addison-
Wesley. See Brian's published and upcoming articles in popular industry publications.

© Copyright IBM Corporation 2007
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.amazon.com/exec/obidos/ASIN/0321349601/ref=nosim/none0b69
http://www.briangoetz.com/pubs.html
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Hardware trends drive programming idioms
	Exposing finer-grained parallelism
	Divide and conquer
	Fork-join

	Anatomy of the fork-join framework
	Work stealing

	Summary
	Resources
	About the author
	Trademarks

