developer\Vorks.

Java theory and practice: Stick a fork in it, Part 2

Accelerate sorting and searching with the ParallelArray classes in
Java 7

Brian Goetz 04 March 2008
Senior Staff Engineer
Sun Microsystems

One of the additions to the java.util.concurrent packages coming in Java™ 7 is a library
for fork-join-style parallel decomposition. In part one of this series, author Brian Goetz showed
how fork-join provides a natural mechanism for decomposing many algorithms to effectively
exploit hardware parallelism. In this article, he'll cover the ParallelArray classes, which
simplify parallel sorting and searching operations on in-memory data structures.

In the last installment of Java theory and practice, we examined the fork-join library, which will be
added to the java.util.concurrent package in Java 7. Fork-join is a technique that makes it easy
to express divide-and-conquer parallel algorithms in a way that admits efficient execution on a
wide range of hardware, without code changes.

To effectively utilize the available hardware as processor counts increase, we are going to

have to identify and exploit finer-grained parallelism in our programs. In recent years, choosing
coarse-grained task boundaries (such as processing a single request in a Web application)

and executing tasks in thread pools often provided sufficient parallelism to achieve acceptable
hardware utilization. But moving forward, we're going to have to dig deeper to find enough
parallelism to keep the hardware busy. One area that is ripe for parallelization is sorting and
searching in large data sets. It's easy to express such problems using fork-join, as you saw in the
previous installment. But because these problems are so common, the class library provides an
even easier way —ParallelArray.

Review: fork-join decomposition

Fork-join embodies the technique of divide-and-conquer; take a problem and recursively break it
down into subproblems until the subproblems are small enough that they can be more effectively
solved sequentially. The recursive step involves dividing a problem into two or more subproblems,
gueueing the subproblems for solution (the fork step), waiting for the results of the subproblems
(the join step), and merging the results. One example of such an algorithm is merge-sort,
illustrated in Listing 1, using the fork-join library:

© Copyright IBM Corporation 2008 Trademarks
Java theory and practice: Stick a fork in it, Part 2 Page 1 of 8



http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://www.ibm.com/developerworks/java/library/j-jtp11137.html

developerWorks® ibm.com/developerWorks/

Listing 1. Merge-sort using the fork-join library

public class MergeSort extends RecursiveAction {
final int[] numbers;
final int startPos, endPos;
final int[] result;

private void merge(MergeSort left, MergeSort right) {
int i=0, leftPos=0, rightPos=0, leftSize = left.size(), rightSize = right.size();
while (leftPos < leftSize && rightPos < rightSize)
result[i++] = (left.result[leftPos] <= right.result[rightPos])
? left.result[leftPos++]
: right.result[rightPos++];
while (leftPos < leftSize)
result[i++] left.result[leftPos++];
while (rightPos rightSize)
result[i++] right.result[rightPos++];

1Al

}

public int size() {
return endPos-startPos;
}

protected void compute() {
if (size() < SEQUENTIAL_THRESHOLD) {
System.arraycopy(numbers, startPos, result, 0, size());
Arrays.sort(result, 0, size());

}

else {
int midpoint = size() / 2;
MergeSort left = new MergeSort(numbers, startPos, startPos+midpoint);
MergeSort right = new MergeSort(numbers, startPos+midpoint, endPos);
coInvoke(left, right);
merge(left, right);

}

Merge-sort is not an inherently parallel algorithm, as it can be done sequentially, and is popular
when the data set is too large to fit in memory and must be sorted in pieces. Merge sort has O(n
log n) worst-case and average-case performance. But because the merging is difficult to do in
place, generally, it has higher memory requirements than in-place sort algorithms, such as quick-
sort. But because the sorting of the subproblems can be done in parallel, it parallelizes better than
quick-sort.

Given a fixed number of processors, parallelization still can't turn an O(n log n) problem into an
O(n) one, but the more amenable the problem to parallelization, the closer to a factor of n.,,s by
which parallelization can reduce the total runtime. Reducing the total runtime means that the user
gets the result sooner — even if it takes more total CPU cycles to do the work in parallel than it
does sequentially.

The principal benefit of using the fork-join technique is that it affords a portable means of coding
algorithms for parallel execution. The programmer does not have to be aware of how many CPUs
will be available in deployment; the runtime can do a good job of balancing work across available
workers, yielding reasonable results across a wide range of hardware.

Java theory and practice: Stick a fork in it, Part 2 Page 2 of 8



ibm.com/developerWorks/ developerWorks®

Fine-grained parallelism

The most accessible (and alliterative) source of finer-grained parallelism in mainstream server
applications is sorting, searching, selection, and summarizing of data sets. Each of these problems
can be easily parallelized using divide-and-conquer, and can be easily represented as fork-join
tasks. For example, to parallelize the averaging of a large data set, you can recursively break

it down into smaller data sets — as was done in merge-sort — average the subsets, and the
combination step simply computes a weighted average of the averages of the subsets.

ParallelArray

For sorting and searching problems, the fork-join library gives you an even easier means of
expressing parallelizable operations on data sets: the ParallelArray classes. The idea is that a
ParallelArray represents a collection of structurally similar data items, and you use the methods
on ParallelArray to create a description of how you want to slice and dice the data. You then
use the description to actually execute the array operations (which uses the fork-join framework
under the hood) in parallel. This approach has the effect of letting you declaratively specify data
selection, transformation, and post-processing operations, and letting the framework figure out a
reasonable parallel execution plan, just as database systems allow you to specify data operations
in SQL and hide the mechanics of how the operations are implemented. Several implementations
of parallelArray are available for different data types and sizes, including for arrays of objects
and for arrays of various primitives.

Listing 2 shows an example of using ParallelArray to summarize student grades, illustrating

the basic operations of selection, projection, and summarization. The Student class contains
information about students (name, graduation year, GPA). The helper object issenior is used

to select only the students graduating this year, and the helper object getGpa extracts the GPA
field from a given student. The expression at the beginning of the listing creates a parallelArray
representing a set of students and then uses it to select the best GPA from the students graduating
this year.

Listing 2. Using ParallelArray to select, process, and summarize data

ParallelArray<Student> students = new ParallelArray<Student>(fjPool, data);
double bestGpa = students.withFilter(isSenior)

.withMapping(selectGpa)

.max();

public class Student {
String name;
int graduationYear;
double gpa;

}

static final Ops.Predicate<Student> isSenior = new Ops.Predicate<Student>() {

public boolean op(Student s) {
return s.graduationYear == Student.THIS_YEAR;
}

}
static final Ops.ObjectToDouble<Student> selectGpa = new Ops.ObjectToDouble<Student>() {
public double op(Student student) {

return student.gpa;
}

Yi

Java theory and practice: Stick a fork in it, Part 2 Page 3 of 8



developerWorks® ibm.com/developerWorks/

The code for expressing operations on parallel arrays is somewhat deceptive. The withFilter ()
and withMapping() methods do not actually search or transform the data; they merely set up the
parameters of the "query.” The actual work is done in the final step, in this case, the call to max().

The basic operations supported by ParallelArray are as follows:

Filtering: Selecting a subset of the elements to be involved in a computation. In Listing 2, the

filter was specified with the withFilter () method.

Application: Applying a procedure to each selected element. Listing 2 doesn't show this

technique, but the apply() method allows you to perform an action for each selected element.

* Mapping: Converting selected elements to another form (such as extracting a data field from
the element). This conversion is done in the example by the withMapping() method, where
we convert student to the student's GPA. The result is a parallelArray of the results of the
specified selection and mapping.

* Replacement: Creating a new parallel array by replacing each element with another
derived from it. This technique is similar to mapping, but produces a new ParallelArray
on which further queries may be performed. One case of replacement is sorting, where
elements are replaced with different elements so that the resulting array is in sorted order
(the built-in sort () method is provided for this action). Another special case is the cumulate()
method, which replaces each element with a running accumulation according to a specified
combination operation. Replacement can also be used to combine multiple parallelArrays,
such as creating a ParallelArray whose elements are the values of a[i]+b[i] for parallel
arrays a and b.

* Summarization: Combining all the values into a single value, such as computing a sum,

average, minimum, or maximum. The example in Listing 2 uses the max() method. The

predefined summarization methods, such as min(), sum(), and max(), are built using the more

general-purpose reduce() method.

Common summary operations

In Listing 2, we were able to specify the calculation of the highest GPA of any student, but what
we probably want is something slightly different — which student had the highest GPA. This
calculation could be done using two computations (one to compute the highest GPA, and another
to select the students who have that GPA), but ParallelArray provides an easier means of getting
at commonly desired summary statistics such as maximum, minimum, sum, average, and the
index of the maximal and minimal elements. The summary() method computes these summary
statistics in a single, parallel operation.

Listing 3 shows the summary() method computing the summary statistics, which include the
indexes of the minimal and maximal elements, to avoid having to make multiple passes on the
data:

Listing 3. Finding the student with the highest GPA

SummaryStatistics summary = students.withFilter(isSenior)
.withMapping(selectGpa)
.summary();
System.out.println("Worst student: " + students.get(summary.minIndex()).name;
System.out.println("Average GPA: " + summary.getAverage();

Java theory and practice: Stick a fork in it, Part 2 Page 4 of 8



ibm.com/developerWorks/ developerWorks®

Limitations

ParallelArray is not intended to be a general-purpose in-memory database, nor a general-
purpose mechanism for specifying data transformations and extractions (like the language-
integrated query — LinQ — features in .NET 3.0); it is intended only to simplify the expression of
a specific range of data selection and transformation operations so that they can be easily and
automatically parallelized. Accordingly, it has several limitations; for example, filter operations
must be specified before mapping operations. (Multiple filter operations are permitted, though it
is often more efficient to combine them into a single compound-filter operation.) Its main purpose
is to free developers from thinking about how the work can be parallelized; if you can express the
transformation in terms of the operations provided by parallelArray, you should get reasonable
parallelization for no effort.

Performance

To assess the effectiveness of parallelArray, | wrote a simple, unscientific program that runs
the query for various sizes of array and fork-join pools. The results were run on a Core 2 Quad
system running Windows. Table 1 shows the speedup relative to the base case (1000 students,
one thread):

Table 1. Performance measurement for the max-GPA query

Students Threads
1 2 4 8
1000 1.00 0.30 0.35 1.20
10000 2.11 231 1.02 1.62
100000 9.99 5.28 3.63 5.53
1000000 39.34 24.67 20.94 35.11
10000000 340.25 180.28 160.21 190.41

While the results are fairly noisy (biased by a number of factors, including GC activity), you can
see that not only are the best results achieved with a pool size equal to the number of cores
available (which you would expect, given that the tasks are entirely compute-bound), but that also
we've achieved a speedup of 2-3x with four cores compared to one, showing that it is possible to
get reasonable parallelism using high-level, portable mechanisms without tuning.

Connection with closures

ParallelArray offers a nice way to declaratively specify filtering, processing, and aggregation
operations on data sets, while also facilitating automatic parallelization. However, even though

the syntax is easier to express than using the raw fork-join library, the syntax is still somewhat
cumbersome; each filter, mapper, and reducer is usually specified as an inner class, so simple
gueries like "find the highest GPA of any student graduating this year" is still on the order of a
dozen lines of code. One of the possibilities for addition to the Java language in Java 7 is closures;

Java theory and practice: Stick a fork in it, Part 2 Page 5 of 8



developerWorks® ibm.com/developerWorks/

one of the arguments in favor of closures is that it makes expressing small snippets of code —
such as filters, mappers, and reducers in ParallelArray— much more compact.

Listing 4 shows the max-GPA query rewritten using the BGGA closures proposal. (In the version
of parallelArray extended with function types, the type of the parameter to withFilter() is

not ops.Predicate<T>, but instead the function type { T => boolean }.) The closures notation
strips away the boilerplate associated with inner classes, allowing a more compact (and more
importantly, more direct) expression of the desired data operation. Now the code is down to three
lines, almost all of it expressing some important aspect of the result we are trying to achieve.

Listing 4. Writing the max-GPA example using closures

double bestGpa = students.withFilter({Student s => (s.graduationYear == THIS_YEAR) })
.withMapping({ Student s => s.gpa })
.max();

Summary

As the number of available processors increases, we're going to need to find finer-grained sources
of parallelism in our programs. One of the most attractive candidates for doing so is aggregate
data operations — sorting, searching, and summarizing. The fork-join library, to be introduced

in JDK 7, offers a means of "portably expressing" a certain class of parallelizable algorithm,

so that the program can run efficiently on a range of hardware platforms. The parallelArray
component of the fork-join library can make it even easier to express parallel aggregate operations
by declaratively describing the operation you want to perform and letting parallelArray figure out
how to execute it efficiently.

Java theory and practice: Stick a fork in it, Part 2 Page 6 of 8



ibm.com/developerWorks/ developerWorks®

Resources

"Java theory and practice: Stick a fork in it, Part 1" (developerWorks, November 2007):

Explore how fork-join provides a natural mechanism for decomposing many algorithms to

effectively exploit hardware parallelism.

» Section 4.4 of Concurrent Programming in Java (Doug Lea, Prentice Hall PTR, November
1999): Covers parallel decomposition in greater detail.

» Doug Lea's concurrency-interest Web site: Download the fork-join framework as part of the
jsr166y package, or read the paper on its design.

» developerWorks Java technology zone: Hundreds of articles about every aspect of Java
programming.

* Check out developerWorks blogs and get involved in the developerWorks community.

Java theory and practice: Stick a fork in it, Part 2 Page 7 of 8


http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://www.amazon.com/gp/product/0201310090?ie=UTF8&tag=none0b69&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201310090
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/papers/fj.pdf
http://www.ibm.com/developerworks/java
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community

developerWorks® ibm.com/developerWorks/

About the author

Brian Goetz

Brian Goetz has been a professional software developer for 20 years. He is a senior
staff engineer at Sun Microsystems, and he serves on several JCP Expert Groups.
Brian's book, Java Concurrency In Practice, was published in May 2006 by Addison-
Wesley. See Brian's published and upcoming articles in popular industry publications.

© Copyright IBM Corporation 2008
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Java theory and practice: Stick a fork in it, Part 2 Page 8 of 8


http://www.amazon.com/exec/obidos/ASIN/0321349601/ref=nosim/none0b69
http://www.briangoetz.com/pubs.html
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Review: fork-join decomposition
	Fine-grained parallelism
	ParallelArray
	Common summary operations
	Limitations

	Performance
	Connection with closures
	Summary
	Resources
	About the author
	Trademarks

