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Multicore processors are now widespread across server, desktop, and laptop hardware. They are also making

their way into smaller devices, such as smartphones and tablets. They open new possibilities for concurrent

programming because the threads of a process can be executed on several cores in parallel. One important

technique for achieving maximal performance in applications is the ability to split intensive tasks into chunks

that can be performed in parallel to maximize the use of computational power.

Dealing with concurrent (parallel) programming has traditionally been difficult, because you have to deal with

thread synchronization and the pitfalls of shared data. Interest in language-level support for concurrent

programming on the Java platform is strong, as proven by the efforts in the Groovy (GPars), Scala, and Clojure

communities. These communities all try to provide comprehensive programming models and efficient

implementations that mask the pain points associated with multithreaded and distributed applications. The

Java language itself should not be considered inferior in this regard. Java Platform, Standard Edition (Java SE)

5 and then Java SE 6 introduced a set of packages providing powerful concurrency building blocks. Java SE 7

further enhanced them by adding support for parallelism

The following article starts with a brief recall of concurrent programming in Java, starting with the low-level

mechanisms that have existed since the early releases. It then shows the rich primitives added by the

java.util.concurrent packages before presenting fork/join tasks, an essential addition provided in Java SE 7 by

the fork/join framework. An example usage of the new APIs is given. Finally, a discussion on the approach

precedes the conclusion.
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In what follows, we assume that the reader comes from a Java SE 5 or Java SE 6 background. We present a few

pragmatic language evolutions of Java SE 7 along the way.

Concurrent Programming in Java

Plain Old Threads

Historically, concurrent programming in Java consisted of writing threads through the 

class and the  interface, then making sure their code behaved in a correct and

consistent fashion with respect to shared mutable objects and avoiding incorrect read/write operations while

not creating deadlocks induced by race conditions on lock acquisitions. Here is an example of basic thread

manipulation:

All the code in this example does is create a thread that prints a string to the standard output stream. The

main thread waits for created (child) thread to complete by calling .

Directly manipulating threads this way is fine for simple examples, but with concurrent programming, such

code can quickly become error-prone, especially when several threads need to cooperate to perform a larger

task. In such cases, their control flow needs to be coordinated.

For example, the completion of a thread’s execution might depend on other threads having completed their

execution. The usual well-known example is that of the producer/consumer, because the producer should

wait for the consumer if the consumer’s queue is full, and the consumer should wait for the producer when

empty. This requirement can be addressed through shared state and condition queues, but you still have to

use synchronization by using  and  on

shared-state objects, which is easy to get wrong.

Finally, a common pitfall is to use synchronize and provide mutual exclusion over large pieces of code or even

whole methods. While this approach leads to thread-safe code, it usually yields poor performance due to the

limited parallelism that is induced by exclusion being in effect too long.

As is often the case in computing, manipulating low-level primitives to implement complex operations opens

the door to mistakes, and as such, developers should seek to encapsulate complexity within efficient, higher-

level libraries. Java SE 5 provided us with just that ability.

java.lang.Thread

java.lang.Runnable

Thread thread = new Thread() { 

        @Override public void run() {

           System.out.println(">>> I am running in a separate thread!");

        }

   };
   thread.start();

   thread.join();

Copy

join()

java.lang.Object.notify() java.lang.Object.wait()



Rich Primitives with the java.util.concurrent Packages

Java SE 5 introduced a packages family called java.util.concurrent, which was further enhanced by Java SE 6.

This packages family offers the following concurrent programming primitives, collections, and features:

As an example, let us consider the following program:

Note: Due to the new integer literals introduced by Java SE 7, underscores can be inserted anywhere to

improve readability (for example, 1_000_000).

Executors, which are an enhancement over plain old threads because they are abstracted from thread pool

management. They execute tasks similar to those passed to threads (in fact, instances implementing 

 can be wrapped). Several implementations are provided with thread pooling and

scheduling strategies. Also, execution results can be fetched both in a synchronous and asynchronous

manner.



java.lang.Runnable

Thread-safe queues allow for passing data between concurrent tasks. A rich set of implementations is

provided with underlying data structures (such as array lists, linked lists, or double-end queues) and

concurrent behaviors (such as blocking, supporting priorities, or delays).



Fine-grained specification of time-out delays, because a large portion of the classes found in the 

 packages exhibit support for time-out delays. An example is an executor that

interrupts tasks execution if the tasks cannot be completed within a bounded timespan.


java.util.concurrent

Rich synchronization patterns that go beyond the mutual exclusion provided by low-level synchronized

blocks in Java. These patterns comprise common idioms such as semaphores or synchronization barriers.


Efficient, concurrent data collections (maps, lists, and sets) that often yield superior performance in

multithreaded contexts through the use of copy-on-write and fine-grained locks.


Atomic variables that shield developers from the need to perform synchronized access by themselves.

These variables wrap common primitive types, such as integers or Booleans, as well as references to other

objects.



A wide range of locks that go beyond the lock/notify capabilities offered by intrinsic locks, for example,

support for re-entrance, read/write locking, timeouts, or poll-based locking attempts.


import java.util.*;

import java.util.concurrent.*;

import static java.util.Arrays.asList;


public class Sums {


    static class Sum implements Callable<Long> {

        private final long from;

        private final long to;

            Sum(long from, long to) {

            this.from = from;

            this.to = to;

        }


        @Override

        public Long call() {

            long acc = 0;




This example program leverages an executor to compute sums of long integers. The inner Sum class

implements the Callable interface that is used by executors for result-bearing computations, and the

concurrent work is performed within the  method. The  class

provides several utility methods, such as providing pre-configured executors or wrapping plain old 

 objects into instances of Callable. The advantage of using Callable over Runnable is

that Callable can explicitly return a value.

This example uses an executor that dispatches work over two threads. The 

 method takes a collection of Callable instances and waits for the

completion of all of them before returning. It returns a list of Future objects, which all represent the “future”

result of the computation. If we were to work in an asynchronous fashion, we could test each Future object to

check whether its corresponding Callable has finished its work and check whether it threw an exception, and

we could even cancel it. By contrast, when using plain old threads, you must encode cancellation logic

through a shared mutable Boolean and cripple the code with periodic checks over this Boolean. Because 

 is blocking, we can directly iterate over the Future instances and fetch their computed sums.

Also note that an executor service must be shut down. If it is not shut down, the Java Virtual Machine will not

exit when the main method does, because there will still be active threads around.

Fork/Join Tasks

Overview

            for (long i = from; i <= to; i++) {

                acc = acc + i;

            }

            return acc;

        }                

    }

    public static void main(String[] args) throws Exception {


        ExecutorService executor = Executors.newFixedThreadPool(2);

        List <Future<Long>> results = executor.invokeAll(asList(

            new Sum(0, 10), new Sum(100, 1_000), new Sum(10_000, 1_000_000)

        ));

        executor.shutdown();


        for (Future<Long> result : results) {

            System.out.println(result.get());

        }                

    }    

}

Copy

call() java.util.concurrent.Executors

java.lang.Runnable

ExecutorService.invokeAll()

invokeAll()



Executors are a big step forward compared to plain old threads because executors ease the management of

concurrent tasks. Some types of algorithms exist that require tasks to create subtasks and communicate with

each other to complete. Those are the “divide and conquer” algorithms, which are also referred to as “map

and reduce,” in reference to the eponymous functions in functional languages. The idea is to split the data

space to be processed by an algorithm into smaller, independent chunks. That is the “map” phase. In turn,

once a set of chunks has been processed, partial results can be collected to form the final result. This is the

“reduce” phase.

An easy example would be a huge array of integers for which you would like to compute the sum (see Figure

1). Given that addition is commutative, one may split the array into smaller portions where concurrent threads

compute partial sums. The partial sums can then be added to compute the total sum. Because threads can

operate independently on different areas of an array for this algorithm, you will see a clear performance boost

on multicore architectures compared to a mono-thread algorithm that would iterate over each integer in the

array.

Figure 1: Partial Sums over an Array of Integers

Solving the problem above with executors is easy: Divide the array into the number n of available physical

processing units, create Callable instances to compute each partial sum, submit them to an executor

managing a pool of n threads, and collect the result to compute the final sum.

On other types of algorithms and data structures, however, the execution plan often is not so simple. In

particular, the “map” phase that identifies chunks of data “small enough” to be processed independently in an

efficient manner does not know the data space topology in advance. This is especially true for graph-based

and tree-based data structures. In those cases, algorithms should create hierarchies of “divisions,” waiting for

subtasks to complete before returning a partial result. Although less optimal in an array like the one in Figure

1, several levels of concurrent partial-sum computations can be used (for example, divide the array into four

subtasks on a dual-core processor).

The problem with the executors for implementing divide and conquer algorithms is not related to creating

subtasks, because a  is free to submit a new subtask to its executor and wait for its result in a

synchronous or asynchronous fashion. The issue is that of parallelism: When a  waits for the result

of another , it is put in a waiting state, thus wasting an opportunity to handle another 

queued for execution.

The fork/join framework added to the java.util.concurrent package in Java SE 7 through Doug Lea’s efforts

fills that gap. The Java SE 5 and Java SE 6 versions of  helped in dealing with

concurrency, and the additions in Java SE 7 help with parallelism.

Additions for Supporting Parallelism

Callable

Callable

Callable Callable

java.util.concurrent



The core addition is a new  executor that is dedicated to running instances implementing 

.  objects support the creation of subtasks plus waiting for the subtasks to

complete. With those clear semantics, the executor is able to dispatch tasks among its internal threads pool by

“stealing” jobs when a task is waiting for another task to complete and there are pending tasks to be run.

 objects feature two specific methods:

Cooperation among tasks happens through  and , as illustrated in Figure 2. Note that the 

 and method names should not be confused with their POSIX counterparts with which a

process can duplicate itself. There,  only schedules a new task within a , but no child

Java Virtual Machine is ever created.

Figure 2: Cooperation Among Fork and Join Tasks

There are two types of  specializations:

In general,  is preferred because most divide-and-conquer algorithms return a value from a

computation over a data set. For the execution of tasks, different synchronous and asynchronous options are

provided, making it possible to implement elaborate patterns.

Example: Counting Occurrences of a Word in Documents

To illustrate the usage of the new fork/join framework, let us take a simple example in which we will count the

occurrences of a word in a set of documents. First and foremost, fork/join tasks should operate as “pure” in-

memory algorithms in which no I/O operations come into play. Also, communication between tasks through

shared state should be avoided as much as possible, because that implies that locking might have to be

performed. Ideally, tasks communicate only when one task forks another or when one task joins another.

Our application operates on a file directory structure and loads each file’s content into memory. Thus, we need

the following classes to represent this model. A document is represented as a list of lines:

ForkJoinPool

ForkJoinTask ForkJoinTask

ForkJoinTask

The  method allows a  to be planned for asynchronous execution. This allows a new 

 to be launched from an existing one.

 fork() ForkJoinTask

ForkJoinTask

In turn, the  method allows a  to wait for the completion of another one. join() ForkJoinTask

fork() join()

fork() join()

fork() ForkJoinPool

ForkJoinTask

Instances of  represent executions that do not yield a return value. RecursiveAction

In contrast, instances of  yield return values. RecursiveTask

RecursiveTask



Note: If you are new to Java SE7, you should be surprised by the  method on two accounts:

A folder is then a simple tree-based structure:

class Document {

    private final List<String> lines;


    Document(List<String> lines) {

        this.lines = lines;

    }

    List<String> getLines() {

        return this.lines;

    }

    static Document fromFile(File file) throws IOException {

        List<String> lines = new LinkedList<>();

        try(BufferedReader reader = new BufferedReader(new FileReader(file))) {

            String line = reader.readLine();

            while (line != null) {

                lines.add(line);

                line = reader.readLine();

            }

        }

        return new Document(lines);

    }
}

Copy

fromFile()

The  uses the diamond syntax (<>) to let the compiler infer the generic type parameters. Since

lines is a ,  is expanded as . The diamond operator

makes dealing with generics easier by avoiding repeating types when they can easily be inferred at

compilation time.

 LinkedList

List<String> LinkedList<> LinkedList<String>

The  block uses the new automatic resource management language feature. Any class implementing 

 can be used in a try block opening. Regardless of whether an exception is

being thrown, any resource declared here will be properly closed when the execution leaves the  block.

Prior to Java SE 7, properly closing multiple resources quickly turned into a nightmare of nested 

 blocks that were often hard to write correctly.

 try

java.lang.AutoCloseable

try

if/try/catch/finally

class Folder {

    private final List<Folder> subFolders;

    private final List<Document> documents;


    Folder(List<Folder> subFolders, List<Document> documents) {

        this.subFolders = subFolders;




We can now start the implementation of our main class:

        this.documents = documents;

    }

    List<Folder> getSubFolders() {

        return this.subFolders;

    }

    List<Document> getDocuments() {

        return this.documents;

    }

    static Folder fromDirectory(File dir) throws IOException {

        List<Document> documents = new LinkedList<>();

        List<Folder> subFolders = new LinkedList<>();

        for (File entry : dir.listFiles()) {

            if (entry.isDirectory()) {

                subFolders.add(Folder.fromDirectory(entry));

            } else {

                documents.add(Document.fromFile(entry));

            }

        }

        return new Folder(subFolders, documents);

    }
}

Copy

import java.io.*;

import java.util.*;

import java.util.concurrent.*;


public class WordCounter {


    String[] wordsIn(String line) {

        return line.trim().split("(\\s|\\p{Punct})+");

    }

    Long occurrencesCount(Document document, String searchedWord) {

        long count = 0;

        for (String line : document.getLines()) {

            for (String word : wordsIn(line)) {

                if (searchedWord.equals(word)) {

                    count = count + 1;

                }

            }

        }

        return count;




The  method returns the number of occurrences of a word in a document, leveraging the

 method, which yields an array of the words in a line. It does so by splitting the line based on blanks

and punctuation characters.

We will implement two types of fork/join tasks. Intuitively, the number of occurrences of a word in a folder is

the sum of those in each of its subfolders and documents. Hence, we will have one task for counting the

occurrences in a document and one for counting them in a folder. The latter type forks children tasks and then

joins them to collect their findings.

The tasks dependency is easy to grasp because it directly maps the underlying document or folder tree

structure, as depicted in Figure 3. The fork/join framework maximizes parallelism by ensuring that a pending

document’s or folder’s word counting task can be executed while a folder’s task is waiting on a 

operation.

Figure 3: Fork/Join Word Counting Tasks

Let us begin with , which counts the occurrences of a word in a document:

    }
}

Copy

occurrencesCount

wordsIn

join()

DocumentSearchTask

class DocumentSearchTask extends RecursiveTask<Long> {

    private final Document document;

    private final String searchedWord;


    DocumentSearchTask(Document document, String searchedWord) {

        super();

        this.document = document;

        this.searchedWord = searchedWord;




Because our tasks yield values, they extend  and take Long as a generic type because the

number of occurrences will be represented by


a  integer. The  method is the core of any . Here it simply delegates to the 

 method above. We


can now tackle the implementation of , the task that operates on folder elements in our

tree structure:

    }

    @Override

    protected Long compute() {

        return occurrencesCount(document, searchedWord);

    }
}

Copy

RecursiveTask

long compute() RecursiveTask

occurrencesCount()

FolderSearchTask

class FolderSearchTask extends RecursiveTask<Long> {

 private final Folder folder;

 private final String searchedWord;

 

 FolderSearchTask(Folder folder, String searchedWord) {

   super();

   this.folder = folder;

   this.searchedWord = searchedWord;

 }

 

 @Override

 protected Long compute() {

   long count = 0L;

   List<RecursiveTask<Long>> forks = new LinkedList<>();

   for (Folder subFolder : folder.getSubFolders()) {

     FolderSearchTask task = new FolderSearchTask(subFolder, searchedWord);

     forks.add(task);

     task.fork();

   }

   for (Document document : folder.getDocuments()) {

     DocumentSearchTask task = new DocumentSearchTask(document, searchedWord);

     forks.add(task);

     task.fork();

   }

   for (RecursiveTask<Long> task : forks) {

     count = count + task.join();

   }

   return count;

 }

}



The implementation of the  method in this task simply forks document and folder tasks for each

element of the folder that it has been passed through its constructor. It then joins them all to compute its

partial sum and returns the partial sum.

We are now missing only a method to bootstrap the word counting operations on the fork/join framework as

well as a fork/join pool executor:

An initial  bootstraps it all. The  method of  allows waiting for

the completion of the computation. In the case above,  is used through its empty constructor.

The parallelism will match the number of hardware processing units available (for example, it will be 2 on

machine with a dual-core processor).

We can now write a  that takes the folder to operate on and the word to search from

command-line arguments:

The complete source code for this example also includes a more traditional, recursion-based implementation

of the same algorithm that works on a single thread:

Copy

compute()

private final ForkJoinPool forkJoinPool = new ForkJoinPool();


Long countOccurrencesInParallel(Folder folder, String searchedWord) {

    return forkJoinPool.invoke(new FolderSearchTask(folder, searchedWord));

}

Copy

FolderSearchTask invoke() ForkJoinPool

ForkJoinPool

main()method

public static void main(String[] args) throws IOException {

    WordCounter wordCounter = new WordCounter();

    Folder folder = Folder.fromDirectory(new File(args[0]));

    System.out.println(wordCounter.countOccurrencesOnSingleThread(folder, args[1
}

Copy

Long countOccurrencesOnSingleThread(Folder folder, String searchedWord) {

    long count = 0;

    for (Folder subFolder : folder.getSubFolders()) {

        count = count + countOccurrencesOnSingleThread(subFolder, searchedWord);
    }



Discussion

An informal test was conducted on a Sun Fire T2000 server from Oracle where the number of cores to be

available for a Java Virtual Machine could be specified. Both the fork/join and single thread variants of the

above example were run to find the number of occurrences of import over the JDK source code files.

The variants ran several times to ensure that the Java Virtual Machine Hotspot optimizations would have

enough time to be put into place. The best execution times with 2, 4, 8, and 12 cores were gathered and then

the speedup, that is, the ratio (time on a single thread/time on fork-join) was computed. The results reflected

in Figure 4 and Table 1.

As you can see, there is a near-linear speedup in the number of cores with minimal effort, because the

fork/join framework takes care of maximizing parallelism.

Table 1: Informal Test Execution Times and Speedup

    for (Document document : folder.getDocuments()) {

        count = count + occurrencesCount(document, searchedWord);

    }
    return count;

}

Copy

Number of Cores
Single-Thread Execution Time

(ms)
Fork/Join Execution Time (ms) Speed

2 18798 11026 1.704

4 19473 8329 2.337

8 18911 4208 4.49

12 19410 2876 6.74



Figure 4: Speedup (Vertical Axis) with Respect to the Number of Cores (Horizontal Axis)

We could have refined the computation to also fork tasks to operate not at the document level, but at the line

level. This would have made it possible for concurrent tasks to operate on different lines of the same

document. This would, however, be far-fetched. Indeed, a fork/join task should perform a “sufficient” amount

of computation to overcome the fork/join thread pool and task management overhead. Working at the line

level would be too trivial and hamper the efficiency of the approach.

The included source code also features another fork/join example based on the merge-sort algorithm over

arrays of integers. This is interesting because it is implemented using , the fork/join task

that does not yield values on join()method invocations. Instead, tasks share mutable state: the array to be

sorted. Again, experiments show a near-linear speedup in the number of cores.

Conclusion

This article discussed concurrent programming in Java with a strong focus on the new fork/join tasks

provided by Java SE 7 for making it easier to write parallel programs. The article showed that rich primitives

can be used and assembled to write high-performance programs that take advantage of multicore processors,

all without having to deal with low-level manipulation of threads and shared state synchronization. The article

illustrated the use of those new APIs on a word-occurrence counting example, which is both compelling and

easy to grasp. A near-linear speedup was obtained in the number of cores in an informal test. These results

show how useful the fork/join framework can be; because we neither had to change the code nor tweak it or

the Java Virtual Machine to maximize hardware core utilization.

You can apply this technique to your own problems and data models, too. You should see sensible speedups

as long as you can rewrite your algorithms in a “divide and conquer” fashion that is free of I/O work and

locking.
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