
666  Chapter 14  Sorting and Searching

In this chapter we have barely begun to scratch the surface of this interesting topic.
There are many sorting algorithms, some with even better performance than merge
sort, and the analysis of these algorithms can be quite challenging. These important
issues are often revisited in later computer science courses.

16.	 Given the timing data for the merge sort algorithm in the table at the beginning
of this section, how long would it take to sort an array of 100,000 values?

17.	 If you double the size of an array, how much longer will the merge sort algo-
rithm take to sort the new array?

Practice It	 Now you can try these exercises at the end of the chapter: R14.7, R14.16, R14.18.

The Quicksort Algorithm

Quicksort is a commonly used algorithm that has the advantage over merge sort that no tem-
porary arrays are required to sort and merge the partial results.

The quicksort algorithm, like merge sort, is based on the strategy of divide and conquer. To
sort a range a[from] ... a[to] of the array a, first rearrange the elements in the range so that no
element in the range a[from] ... a[p] is larger than any element in the range a[p + 1] ... a[to].
This step is called partitioning the range.

For example, suppose we start with a range

5 3 2 6 4 1 3 7

Here is a partitioning of the range. Note that the partitions aren’t yet sorted.

3 3 2 1 4 6 5 7

You’ll see later how to obtain such a partition. In the next step, sort each partition, by recur-
sively applying the same algorithm to the two partitions. That sorts the entire range, because
the largest element in the first partition is at most as large as the smallest element in the second
partition.

1 2 3 3 4 5 6 7

Quicksort is implemented recursively as follows:

public static void sort(int[] a, int from, int to)
{
 if (from >= to) { return; }
 int p = partition(a, from, to);
 sort(a, from, p);
 sort(a, p + 1, to);
}

Let us return to the problem of partitioning a range. Pick an element from the range and call
it the pivot. There are several variations of the quicksort algorithm. In the simplest one, we’ll
pick the first element of the range, a[from], as the pivot.

Now form two regions a[from] ... a[i], consisting of values at most as large as the pivot and
a[j] ... a[to], consisting of values at least as large as the pivot. The region a[i + 1] ... a[j - 1]
consists of values that haven’t been analyzed yet. (See the figure below.) At the beginning,
both the left and right areas are empty; that is, i = from - 1 and j = to + 1.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to down-
load a program for
timing the merge sort
algorithm.

© Alex Slobodkin/iStockphoto.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Special Topic 14.3

© Eric Isselé/iStockphoto.

14.5  Analyzing the Merge Sort Algorithm   667

Partitioning a Range ≤ pivot ≥ pivotNot yet analyzed

[from] [i] [j] [to]

Then keep incrementing i while a[i] < pivot and keep decrementing j while a[j] > pivot. The
figure below shows i and j when that process stops.

Now swap the values in positions i and j, increasing both areas once more. Keep going while
i < j. Here is the code for the partition method:

private static int partition(int[] a, int from, int to)
{
 int pivot = a[from];
 int i = from - 1;
 int j = to + 1;
 while (i < j)
 {
 i++; while (a[i] < pivot) { i++; }
 j--; while (a[j] > pivot) { j--; }
 if (i < j) { ArrayUtil.swap(a, i, j); }
 }
 return j;
}

On average, the quicksort algorithm is an O(n log(n)) algorithm. There is just one unfortunate
aspect to the quicksort algorithm. Its worst-case run-time behavior is O(n2). Moreover, if the
pivot element is chosen as the first element of the region, that worst-case behavior occurs
when the input set is already sorted—a common situation in practice. By selecting the pivot
element more cleverly, we can make it extremely unlikely for the worst-case behavior to occur.
Such “tuned” quicksort algorithms are commonly used because their performance is generally
excellent. For example, the sort method in the Arrays class uses a quicksort algorithm.

Another improvement that is commonly made in practice is to switch to insertion sort
when the array is short, because the total number of operations using insertion sort is lower
for short arrays. The Java library makes that switch if the array length is less than seven.

Extending the Partitions

 ≤ pivot ≥ pivot

[from] [i] [j] [to]

> pivot< pivot

 ≤ pivot≥ pivot

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to down-
load a program that
demonstrates the
quicksort algorithm.

© Alex Slobodkin/iStockphoto.

In quicksort, one partitions the elements into
two groups, holding the smaller and larger
elements. Then one sorts each group.

© Christopher Futcher/iStockphoto.

©
 C

hr
is

to
ph

er
 F

ut
ch

er
/iS

to
ck

ph
ot

o.

