474 Chapter 9 Inheritance and Interfaces

Implement the
Comparable interface
so that objects

of your class can

be compared, for
example, ina sort
method.

9.6.3 The Comparable Interface

In the preceding sections, we defined the Measurable interface and provided an average
method that works with any classes implementing that interface. In this section, you
will learn about the Comparable interface of the standard Java library.

The Measurable interface is used for measuring a single object. The Comparable inter-
face is more complex because comparisons involve two objects. The interface declares
a compareTo method. The call

a.compareTo(b)

must return a negative number if a should come before b, zero if a and b are the same,
and a positive number otherwise.
The Comparable interface has a single method:

public interface Comparable

{

}
For example, the BankAccount class can implement Comparable like this:

int compareTo(Object otherObject);

pubTlic class BankAccount implements Comparable

{
public int compareTo(Object otherObject)
{
BankAccount other = (BankAccount) otherObject;
if (balance < other.balance) { return -1; }
if (balance > other.balance) { return 1; }
return 0;
}
}

This compareTo method compares bank accounts by their balance. Note that the
compareTo method has a parameter variable of type Object. To turn it into a BankAccount
reference, we use a cast:

BankAccount other = (BankAccount) otherObject;

Once the BankAccount class implements the Comparable interface, you can sort an array
of bank accounts with the Arrays. sort method:

BankAccount[] accounts = new BankAccount[3];
accounts[0] = new BankAccount(10000);
accounts[1] = new BankAccount(0);
accounts[2] = new BankAccount(2000);
Arrays.sort(accounts);

The accounts array is now sorted by increasing
balance.

The compareTo method checks whether
another object is larger or smaller.

© Janis Dreosti/iStockphoto.

SELF CHECK

S

Practice It

Common Error 9.6

#

Programming Tip 9.2

9.6 Interface Types 475

26. Suppose you want to use the average method to find the average salary of Employee
objects. What condition must the EmpToyee class fulfill?

27. Why can’t the average method have a parameter variable of type Object[]?
28. Why can’t you use the average method to find the average length of String
objects?
29. What is wrong with this code?
Measurable meas = new Measurable();
System.out.println(meas.getMeasure());
30. How can you sort an array of Country objects by increasing area?

31. Canyou use the Arrays.sort method to sort an array of String objects? Check the
API documentation for the String class.

Now you can try these exercises at the end of the chapter: R9.14, E9.18, E9.19.

Forgetting to Declare Implementing Methods as Public

The methods in an interface are not declared as public, because they are public by default.
However, the methods in a class are nor public by default. It is a common error to forget the
public reserved word when declaring a method from an interface:

pubTic class BankAccount implements Measurable

{
double getMeasure() // Oops—should be public
{

return balance;

}
}

Then the compiler complains that the method has a weaker access level, namely package access
instead of public access (see Special Topic 8.4). The remedy is to declare the method as public.

Comparing Integers and Floating-Point Numbers

When you implement a comparison method, you need to return a negative integer to indicate
that the first object should come before the other, zero if they are equal, or a positive integer
otherwise. You have seen how to implement this decision with three branches. When you
compare nonnegative integers, there is a simpler way: subtract the integers:

public class Person implements Comparable

{
private int id; // Mustbe >0

public int compareTo(Object otherObject)
{
Person other = (Person) otherObject;
return id - other.id;

3
The difference is negative if id < other.1d, zero if the values are the same, and positive otherwise.

476 Chapter 9 Inheritance and Interfaces

This trick doesn’t work if the integers can be negative because the difference can overflow
(see Exercise R9.15). However, the Integer.compare method always works:

return Integer.compare(id, other.id); // Safe for negative integers

You cannot compare floating-point values by subtraction (see Exercise R9.16). Instead, use
the Double. compare method:

pubTic class BankAccount implements Comparable

{
pubTic int compareTo(Object otherObject)
{
BankAccount other = (BankAccount) otherObject;
return Double.compare(balance, other.balance);
}
}

Special Topic 9.8 Constants in Interfaces

Interfaces cannot have instance variables, but it is legal to specify constants.

When declaring a constant in an interface, you can (and should) omit the reserved words
public static final, because all variables in an interface are automatically public static final.
For example,

pubTic interface Measurable

{
double OUNCES_PER_LITER = 33.814;

}

To use this constant in your programs, add the interface name:

Measurable.OUNCES_PER_LITER

Generic Interface Types

In Section 9.6.3, you saw how to use the “raw” version of the Comparable interface type. In fact,
the Comparable interface is a parameterized type, similar to the ArrayList type:

public interface Comparable<T>

{

int compareTo(T other)
}
The type parameter specifies the type of the objects that this class is willing to accept for com-
parison. Usually, this type is the same as the class type itself. For example, the BankAccount class
would implement Comparable<BankAccount>, like this:

public class BankAccount implements Comparable<BankAccount>

{
pubTic int compareTo(BankAccount other)
{
return Double.compare(balance, other.balance);
}

Java 8 Note 9.1

_ &; FULL CODE EXAMPLE

Go towiley.com/go/
bjlo2code to down-
load an example of
a static method in
an interface.

Java 8 Note 9.2

9.6 Interface Types 477

The type parameter has a significant advantage: You need not use a cast to convert an Object
parameter variable into the desired type.
Similarly, the Measurer interface can be improved by making it into a generic type:

public interface Measurer<T>

{

doubTe measure(T anObject);

}

The type parameter specifies the type of the parameter of the measure method. Again, you
avoid the cast from Object when implementing the interface:

pubTic class AreaMeasurer implements Measurer<Rectangle>

{
public double measure(Rectangle anObject)
{
double area = anObject.getWidth() * anObject.getHeight();
return area;
}
}

(See Chapter 18 for an in-depth discussion of implementing and using generic classes.)

Static Methods in Interfaces

Before Java 8, all methods in an interface had to be abstract. Java 8 allows static methods in
interfaces that work exactly like static methods in classes. A static method of an interface does
not operate on objects, and its purpose should relate to the interface that contains it.

For example, it would be perfectly sensible to place the average method from Section 9.6.1
into the Measurable interface:

public interface Measurable

{
double getMeasure(); // An abstract method
static double average(Measurable[] objects) // A static method
{
. . . // Same implementation as in Section 9.6.1
}
}

To call this method, provide the name of of the interface and the method name:

doubTe meanArea = Measurable.average(countries);

Default Methods

A default method is a non-static method in an interface that has an implementation. A class

that implements the method either inherits the default behavior or overrides it. By providing

default methods in an interface, it is less work to define a class that implements an interface.
For example, the Measurable interface can declare getMeasure as a default method:

public interface Measurable

{
default double getMeasure() { return 0; }

}

478 Chapter 9 Inheritance and Interfaces

i = 2 FULL CODE EXAMPLE
o

" Gotowiley.com/go/
bjlo2code to down-
load an example of a
default method in an
interface.

Special Topic 9.10

If a class implements the interface and doesn’t provide a getMeasure method, then it inherits this
default method.

This particular example isn’t all that useful. One doesn’t normally want each object to have
measure zero. Here is a more interesting example, in which a default method calls another
interface method:

public interface Measurable

{
double getMeasure(); // An abstract method
default boolean smallerThan(Measurable other)
{
return getMeasure() < other.getMeasure(Q);
}
}

The smallerThan method tests whether an object has a smaller measure than another, which is
useful for arranging objects by increasing measure.

A class that implements the Measurable interface only needs to implement getMeasure, and it
automatically inherits the smallerThan method. This can be a very useful mechanism. For exam-
ple, the Comparator interface that is described in Special Topic 14.5 has one abstract method but
more than a dozen default methods.

Function Objects

In the preceding section, you saw how the Measurable interface type makes it possible to pro-
vide services that work for many classes —provided they are willing to implement the interface
type. But what can you do if a class does not do so? For example, we might want to compute
the average length of a collection of strings, but String does not implement Measurab]e.

Let’s rethink our approach. The average method needs to measure each object. When the
objects are required to be of type Measurable, the responsibility for measuring lies with the
objects themselves, which is the cause of the limitation that we noted. It would be better if
another object could carry out the measurement. Let’s move the measurement method into a
different interface:

public interface Measurer

{
doubTe measure(Object anObject);

}

The measure method measures an object and returns its measurement. We use a parameter vari-
able of type Object, the “lowest common denominator” of all classes in Java, because we do not
want to restrict which classes can be measured.

We add a parameter variable of type Measurer to the average method:

public static double average(Object[] objects, Measurer meas)
{

if (objects.length == 0) { return 0; }

double sum = 0;

for (Object obj : objects)

{

sum = sum + meas.measure(obj);
}
return sum / objects.length;

}

When calling the method, you need to supply a Measurer object. That is, you need to imple-
ment a class with a measure method, and then create an object of that class. Let’s do that for
measuring strings:

- @ FULL CODE EXAMPLE

Go towiley.com/
go/bjlo2code to
download a complete
program that
demonstrates the
string measurer.

Java 8 Note 9.3

9.6 Interface Types 479

public class StringMeasurer implements Measurer

{
public double measure(Object obj)
{
String str = (String) obj; // Cast obj to String type
return str.length(Q);
}
}

Note that the measure method must accept an argument of type Object, even though this partic-

ular measurer just wants to measure strings. The parameter variable must have the same type

as in the Measurer interface. Therefore, the Object parameter variable is cast to the String type.
Finally, we are ready to compute the average length of an array of strings:

String[] words = { "Mary", "had", "a", "little", "lamb" };
Measurer lengthMeasurer = new StringMeasurer();
double result = average(words, TengthMeasurer); // result is setto 3.6

An object such as TengthMeasurer is called a function object. The sole purpose of the object is to
execute a single method, in our case measure. (In mathematics, as well as many other program-
ming languages, the term “function” is used where Java uses “method”.)

The Comparator interface, discussed in Special Topic 14.4, is another example of an interface
for function objects.

Lambda Expressions

In Special Topic 9.10, you saw how to use function objects for specifying variations in behav-
ior. The average method needs to measure each object, and it does so by calling the measure
method of the supplied Measurer object.

Unfortunately, the caller of the average method has to do a fair amount of work; namely,
to define a class that implements the Measurer interface and to construct an object of that class.
Java 8 has a convenient shortcut for these steps, provided that the interface has a single abstract
method. Such an interface is called a functional interface because its purpose is to define a
single function. The Measurer interface is an example of a functional interface.

To specify that single function, you can use alambda expression, an expression that defines
the parameters and return value of a method in a compact notation. Here is an example:

(Object obj) -> ((BankAccount) obj).getBalance()

This expression defines a function that, given an object, casts it to a BankAccount and returns the
balance.

(The term “lambda expression” comes from a mathematical notation that uses the Greek
letter lambda () instead of the -> symbol. In other programming languages, such an expres-
sion is called a function expression.)

A lambda expression cannot stand alone. It needs to be assigned to a variable whose type is
a functional interface:

Measurer accountMeas = (Object obj) -> ((BankAccount) obj).getBalance();
Now the following actions occur:

1. A classis defined that implements the functional interface. The single abstract method
is defined by the lambda expression.

2. An object of that class is constructed.

3. The variable is assigned a reference to that object.

480 Chapter 9 Inheritance and Interfaces

You can also pass a lambda expression to a method. Then the parameter variable of the method
is initialized with the constructed object. For example, consider the call

double averageBalance = average(accounts,
(Object obj) -> ((BankAccount) obj).getBalance());

In the same way as before, an object is constructed that belongs to a class implementing Mea-
surer. The object is used to initialize the parameter variable meas of the average method. Recall
that the parameter variable has type Measurer:

public static double average(Object[] objects, Measurer meas)

{

sum = sum + meas.measure(obj);

}

The average method calls the measure method on meas, which in turn executes the body of the
lambda expression.

In its simplest form, a lambda expression contains a list of parameters and the expression
that is being computed from the parameters. If more work needs to be done, you can write a
method body in the usual way, enclosed in braces and with a return statement:

Measurer areaMeas = (Object obj) ->

{
Rectangle r = (Rectangle) obj;
return r.getWidth() * r.getHeight(Q);
i
Lambda expressions enable the caller of a method to provide code that is called inside the
method, and they enable the implementor of the method to invoke that code as needed. This
can be achieved as follows:

1. The implementor of the method defines an interface that describes the purpose of the
code to be executed. That interface has a single method.

2. The method receives a parameter of that interface, and calls the single method of the
interface whenever the code that can vary needs to be called.

3. The caller of the method provides a lambda expression whose body is the code that
should be called in this invocation.

You will see additional examples of using lambda expressions for event handlers (Java 8
Note 10.1) and comparators (Section 14.8). Lambda expressions are extensively used in the
“streams” API for processing large data sets.

&% WORKED EXAMPLE 9.2 Investigating Number Sequences

Learn how to use a Sequence interface to investigate properties of
arbitrary number sequences. Go towiley.com/go/bjlo2examples and
download Worked Example 9.2.

© Norebbo/

VIDEO EXAMPLE 9.2 Drawing Geometric Shapes U [|

In this Video Example, you will see how to use inheritance to ‘ Y 3 ne
describe and draw different geometric shapes. Go to wiley.com/go/ '
bjlo2videos to view Video Example 9.2.

iStockphoto.

