
Chapter 10

Dynamic Programming

The most challenging algorithmic problems involve optimization, where we seek
to find a solution that maximizes or minimizes an objective function. Traveling
salesman is a classic optimization problem, where we seek the tour visiting all
vertices of a graph at minimum total cost. But as shown in Chapter 1, it is easy
to propose TSP “algorithms” that generate reasonable-looking solutions but do
not always produce the minimum cost tour.

Algorithms for optimization problems require proof that they always return
the best possible solution. Greedy algorithms that make the best local decision
at each step are typically efficient, but usually do not guarantee global optimal-
ity. Exhaustive search algorithms that try all possibilities and select the best
always produce the optimum result, but usually at a prohibitive cost in terms
of time complexity.

Dynamic programming combines the best of both worlds. It gives us a way to
design custom algorithms that systematically search all possibilities (thus guar-
anteeing correctness) while storing intermediate results to avoid recomputing
(thus providing efficiency). By storing the consequences of all possible decisions
and using this information in a systematic way, the total amount of work is
minimized.

After you understand it, dynamic programming is probably the easiest al-
gorithm design technique to apply in practice. In fact, I find that dynamic
programming algorithms are often easier to reinvent than to try to look up.
That said, until you understand dynamic programming, it seems like magic.
You have to figure out the trick before you can use it.

Dynamic programming is a technique for efficiently implementing a recursive
algorithm by storing partial results. It requires seeing that a naive recursive
algorithm computes the same subproblems over and over and over again. In
such a situation, storing the answer for each subproblem in a table to look up
instead of recompute can lead to an efficient algorithm. Dynamic programming
starts with a recursive algorithm or definition. Only after we have a correct
recursive algorithm can we worry about speeding it up by using a results matrix.

Dynamic programming is generally the right method for optimization prob-

307© The Editor(s) (if applicable) and The Author(s), under exclusive license to

S. S. Skiena, The Algorithm Design Manual, Texts in Computer Science,
https://doi.org/10.1007/978-3-030-54256-6_10

Springer Nature Switzerland AG 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54256-6_10&domain=pdf

308 CHAPTER 10. DYNAMIC PROGRAMMING

lems on combinatorial objects that have an inherent left-to-right order among
components. Left-to-right objects include character strings, rooted trees, poly-
gons, and integer sequences. Dynamic programming is best learned by carefully
studying examples until things start to click. I present several war stories where
dynamic programming played the decisive role to demonstrate its utility in prac-
tice.

10.1 Caching vs. Computation

Dynamic programming is essentially a tradeoff of space for time. Repeatedly
computing a given quantity can become a drag on performance. If so, we are
better off storing the results of the initial computation and looking them up
instead of recomputing them.

The tradeoff between space and time exploited in dynamic programming
is best illustrated when evaluating recurrence relations such as the Fibonacci
numbers. We look at three different programs for computing them below.

10.1.1 Fibonacci Numbers by Recursion

The Fibonacci numbers were defined by the Italian mathematician Fibonacci
in the thirteenth century to model the growth of rabbit populations. Rabbits
breed, well, like rabbits. Fibonacci surmised that the number of pairs of rabbits
born in a given month is equal to the number of pairs of rabbits born in each of
the two previous months, starting from one pair of rabbits at the start. Thus, the
number of rabbits born in the nth month is defined by the recurrence relation:

Fn = Fn−1 + Fn−2

with basis cases F0 = 0 and F1 = 1. Thus, F2 = 1, F3 = 2, and the series
continues 3, 5, 8, 13, 21, 34, 55, 89, 144, As it turns out, Fibonacci’s formula
didn’t do a great job of counting rabbits, but it does have a host of interesting
properties and applications.

That they are defined by a recursive formula makes it easy to write a re-
cursive program to compute the nth Fibonacci number. A recursive function
written in C looks like this:

long fib_r(int n) {

if (n == 0) {

return(0);

}

if (n == 1) {

return(1);

}

return(fib_r(n-1) + fib_r(n-2));

}

10.1. CACHING VS. COMPUTATION 309

F(0)

F(0)

F(5)

F(6)=8

F(0)

F(1)

F(3)

F(4)

F(2)

F(1)

F(1)

F(1)

F(0)

F(2)

F(3)

F(1)

F(2)

F(0)

F(3)

F(4)

F(1)
F(1)

F(2)

F(1)

F(2)

Figure 10.1: The recursion tree for computing Fibonacci numbers.

The course of execution for this recursive algorithm is illustrated by its
recursion tree, as illustrated in Figure 10.1. This tree is evaluated in a depth-
first fashion, as are all recursive algorithms. I encourage you to trace this
example by hand to refresh your knowledge of recursion.

Note that F (4) is computed on both sides of the recursion tree, and F (2) is
computed no less than five times in this small example. The weight of all this
redundancy becomes clear when you run the program. It took 4 minutes and
40 seconds for this program to compute F (50) on my laptop. You might well
do it faster by hand using the algorithm below.

How much time does the recursive algorithm take to compute F (n)? Since
Fn+1/Fn ≈ φ = (1+

√
5)/2 ≈ 1.61803, this means that Fn > 1.6n for sufficiently

large n. Since our recursion tree has only 0 and 1 as leaves, summing them up
to get such a large number means we must have at least 1.6n leaves or procedure
calls. This humble little program takes exponential time to run!

10.1.2 Fibonacci Numbers by Caching

In fact, we can do much better. We can explicitly store (or cache) the results
of each Fibonacci computation F (k) in a table data structure indexed by the
parameter k—a technique also known as memoization. The key to implement
the recursive algorithm efficiently is to explicitly check whether we already know
a particular value before trying to compute it:

#define MAXN 92 /* largest n for which F(n) fits in a long */

#define UNKNOWN -1 /* contents denote an empty cell */

long f[MAXN+1]; /* array for caching fib values */

310 CHAPTER 10. DYNAMIC PROGRAMMING

F(0)

F(1)

F(3)

F(3)F(4)

F(5)

F(6)=8

F(4)

F(1)

F(2)

F(2)

Figure 10.2: The recursion tree for computing Fibonacci numbers with caching.

long fib_c(int n) {

if (f[n] == UNKNOWN) {

f[n] = fib_c(n-1) + fib_c(n-2);

}

return(f[n]);

}

long fib_c_driver(int n) {

int i; /* counter */

f[0] = 0;

f[1] = 1;

for (i = 2; i <= n; i++) {

f[i] = UNKNOWN;

}

return(fib_c(n));

}

To compute F (n), we call fib c driver(n). This initializes our cache to
the two values we initially know (F (0) and F (1)) as well as the UNKNOWN flag for
all the rest that we don’t. It then calls a look-before-crossing-the-street version
of the recursive algorithm.

This cached version runs instantly up to the largest value that can fit in
a long integer. The new recursion tree (Figure 10.2) explains why. There is
no meaningful branching, because only the left-side calls do computation. The
right-side calls find what they are looking for in the cache and immediately

10.1. CACHING VS. COMPUTATION 311

return.
What is the running time of this algorithm? The recursion tree provides

more of a clue than looking at the code. In fact, it computes F (n) in linear time
(in other words, O(n) time) because the recursive function fib c(k) is called
at most twice for each value 0 ≤ k ≤ n− 1.

This general method of explicitly caching (or tabling) results from recursive
calls to avoid recomputation provides a simple way to get most of the benefits
of full dynamic programming. It is thus worth a careful look. In principle, such
caching can be employed on any recursive algorithm. However, storing partial
results would have done absolutely no good for such recursive algorithms as
quicksort, backtracking, and depth-first search because all the recursive calls
made in these algorithms have distinct parameter values. It doesn’t pay to store
something you will use once and never refer to again.

Caching makes sense only when the space of distinct parameter values is
modest enough that we can afford the cost of storage. Since the argument to
the recursive function fib c(k) is an integer between 0 and n, there are only
O(n) values to cache. A linear amount of space for an exponential amount of
time is an excellent tradeoff. But as we shall see, we can do even better by
eliminating the recursion completely.

Take-Home Lesson: Explicit caching of the results of recursive calls provides
most of the benefits of dynamic programming, usually including the same run-
ning time as the more elegant full solution. If you prefer doing extra program-
ming to more subtle thinking, I guess you can stop here.

10.1.3 Fibonacci Numbers by Dynamic Programming

We can calculate Fn in linear time more easily by explicitly specifying the order
of evaluation of the recurrence relation:

long fib_dp(int n) {

int i; /* counter */

long f[MAXN+1]; /* array for caching values */

f[0] = 0;

f[1] = 1;

for (i = 2; i <= n; i++) {

f[i] = f[i-1] + f[i-2];

}

return(f[n]);

}

Observe that we have removed all recursive calls! We evaluate the Fibonacci
numbers from smallest to biggest and store all the results, so we know that we

312 CHAPTER 10. DYNAMIC PROGRAMMING

have Fi−1 and Fi−2 ready whenever we need to compute Fi. The linearity of
this algorithm is now obvious. Each of the n values is simply computed as the
sum of two integers, in O(n) total time and space.

More careful study shows that we do not need to store all the intermediate
values for the entire period of execution. Because the recurrence depends on
two arguments, we only need to retain the last two values we have seen:

long fib_ultimate(int n)

{

int i; /* counter */

long back2=0, back1=1; /* last two values of f[n] */

long next; /* placeholder for sum */

if (n == 0) return (0);

for (i=2; i<n; i++) {

next = back1+back2;

back2 = back1;

back1 = next;

}

return(back1+back2);

}

This analysis reduces the storage demands to constant space with no asymp-
totic degradation in running time.

10.1.4 Binomial Coefficients

We now show how to compute binomial coefficients as another example of how
to eliminate recursion by specifying the order of evaluation. The binomial co-
efficients are the most important class of counting numbers, where

(
n
k

)
counts

the number of ways to choose k things out of n possibilities.

How do you compute binomial coefficients? First,
(
n
k

)
= n!

k! (n−k)! , so in

principle you can compute them straight from factorials. However, this method
has a serious drawback. Intermediate calculations can easily cause arithmetic
overflow, even when the final coefficient fits comfortably within an integer.

A more stable way to compute binomial coefficients is using the recurrence
relation implicit in the construction of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

10.1. CACHING VS. COMPUTATION 313

n / k 0 1 2 3 4 5
0 A
1 B G
2 C 1 H
3 D 2 3 I
4 E 4 5 6 J
5 F 7 8 9 10 K

n / k 0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

Figure 10.3: Evaluation order for binomial coefficient at M [5, 4] (left). The
initialization conditions are labeled A–K and recurrence evaluations labeled 1–
10. The matrix contents after evaluation are shown on the right.

Each number is the sum of the two numbers directly above it. The recurrence
relation implicit in this is

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)

Why does this work? Consider whether the nth element appears in one of
the

(
n
k

)
subsets having k elements. If it does, we can complete the subset by

picking k− 1 other items from the remaining n− 1. If it does not, we must pick
all k items from the remaining n− 1. There is no overlap between these cases,
and all possibilities are included, so the sum counts all k-element subsets.

No recurrence is complete without basis cases. What binomial coefficient
values do we know without computing them? The left term of the sum eventu-
ally drives us down to

(
m
0

)
. How many ways are there to choose zero things from

a set? Exactly one, the empty set. If this is not convincing, then it is equally
good to accept

(
m
1

)
= m as the basis case. The right term of the sum runs us

up to
(
m
m

)
. How many ways are there to choose m things from a m-element set?

Exactly one—the complete set. Together, these basis cases and the recurrence
define the binomial coefficients on all interesting values.

Figure 10.3 demonstrates a proper evaluation order for the recurrence. The
initialized cells are marked A–K, denoting the order in which they were assigned
values. Each remaining cell is assigned the sum of the cell directly above it and
the cell immediately above and to the left. The triangle of cells marked 1–10
denote the evaluation order in computing

(
5
4

)
= 5 using the following code:

long binomial_coefficient(int n, int k) {

int i, j; /* counters */

long bc[MAXN+1][MAXN+1]; /* binomial coefficient table */

for (i = 0; i <= n; i++) {

bc[i][0] = 1;

}

314 CHAPTER 10. DYNAMIC PROGRAMMING

for (j = 0; j <= n; j++) {

bc[j][j] = 1;

}

for (i = 2; i <= n; i++) {

for (j = 1; j < i; j++) {

bc[i][j] = bc[i-1][j-1] + bc[i-1][j];

}

}

return(bc[n][k]);

}

Study this function carefully to make sure you see how we did it. The rest
of this chapter will focus more on formulating and analyzing the appropriate
recurrence than the mechanics of table manipulation demonstrated here.

10.2 Approximate String Matching

Searching for patterns in text strings is a problem of unquestionable importance.
Back in Section 6.7 (page 188) I presented algorithms for exact string matching—
finding where the pattern string P occurs as a substring of the text string T .
But life is often not that simple. Words in either the text or pattern can be
mispelled (sic), robbing us of exact similarity. Evolutionary changes in genomic
sequences or language usage mean that we often search with archaic patterns in
mind: “Thou shalt not kill” morphs over time into “You should not murder.”

How can we search for the substring closest to a given pattern, to compensate
for spelling errors? To deal with inexact string matching, we must first define
a cost function telling us how far apart two strings are. A reasonable distance
measure reflects the number of changes that must be made to convert one string
to another. There are three natural types of changes:

• Substitution – Replace a single character in pattern P with a different
character, such as changing shot to spot.

• Insertion – Insert a single character into pattern P to help it match text
T , such as changing ago to agog.

• Deletion – Delete a single character from pattern P to help it match text
T , such as changing hour to our.

Properly posing the question of string similarity requires us to set the cost
of each such transform operation. Assigning each operation an equal cost of
1 defines the edit distance between two strings. Approximate string matching
arises in many applications, as detailed in Section 21.4 (page 688).

10.2. APPROXIMATE STRING MATCHING 315

P S T A R S T A R S T A R

T S C A B S C A B R S C A B

Substitution Insertion Deletion

Figure 10.4: In a single string edit operation, the last character must be either
matched/substituted, inserted, or deleted.

Approximate string matching seems like a difficult problem, because we must
decide exactly where to best perform a complicated sequence of insert/delete
operations in pattern and text. To solve it, let’s think about the problem in
reverse. What information would we need to select the final operation correctly?
What can happen to the last character in the matching for each string?

10.2.1 Edit Distance by Recursion

We can define a recursive algorithm using the observation that the last character
in the string must either be matched, substituted, inserted, or deleted. There is
no other possible choice, as shown in Figure 10.4. Chopping off the characters
involved in this last edit operation leaves a pair of smaller strings. Let i and j be
the indices of the last character of the relevant prefix of P and T , respectively.
There are three pairs of shorter strings after the last operation, corresponding
to the strings after a match/substitution, insertion, or deletion. If we knew the
cost of editing these three pairs of smaller strings, we could decide which option
leads to the best solution and choose that option accordingly. We can learn this
cost through the magic of recursion.

More precisely, let D[i, j] be the minimum number of differences between
the substrings P1P2 . . . Pi and T1T2 . . . Tj . D[i, j] is the minimum of the three
possible ways to extend smaller strings:

• If (Pi = Tj), then D[i − 1, j − 1], else D[i − 1, j − 1] + 1. This means
we either match or substitute the ith and jth characters, depending upon
whether these tail characters are the same. More generally, the cost of a
single character substitution can be returned by a function match(Pi,Tj).

• D[i, j − 1] + 1. This means that there is an extra character in the text to
account for, so we do not advance the pattern pointer and we pay the cost
of an insertion. More generally, the cost of a single character insertion can
be returned by a function indel(Tj).

• D[i− 1, j] + 1. This means that there is an extra character in the pattern
to remove, so we do not advance the text pointer and we pay the cost of
a deletion. More generally, the cost of a single character deletion can be
returned by a function indel(Pi).

316 CHAPTER 10. DYNAMIC PROGRAMMING

#define MATCH 0 /* enumerated type symbol for match */

#define INSERT 1 /* enumerated type symbol for insert */

#define DELETE 2 /* enumerated type symbol for delete */

int string_compare_r(char *s, char *t, int i, int j) {

int k; /* counter */

int opt[3]; /* cost of the three options */

int lowest_cost; /* lowest cost */

if (i == 0) { /* indel is the cost of an insertion or deletion */

return(j * indel(' '));

}

if (j == 0) {

return(i * indel(' '));

}

/* match is the cost of a match/substitution */

opt[MATCH] = string_compare_r(s,t,i-1,j-1) + match(s[i],t[j]);

opt[INSERT] = string_compare_r(s,t,i,j-1) + indel(t[j]);

opt[DELETE] = string_compare_r(s,t,i-1,j) + indel(s[i]);

lowest_cost = opt[MATCH];

for (k = INSERT; k <= DELETE; k++) {

if (opt[k] < lowest_cost) {

lowest_cost = opt[k];

}

}

return(lowest_cost);

}

This program is absolutely correct—convince yourself. It also turns out to
be impossibly slow. Running on my computer, the computation takes several
seconds to compare two 11-character strings, and disappears into Never-Never
Land on anything longer.

Why is the algorithm so slow? It takes exponential time because it re-
computes values again and again and again. At every position in the string, the
recursion branches three ways, meaning it grows at a rate of at least 3n—indeed,
even faster since most of the calls reduce only one of the two indices, not both
of them.

10.2. APPROXIMATE STRING MATCHING 317

10.2.2 Edit Distance by Dynamic Programming

So, how can we make this algorithm practical? The important observation is
that most of these recursive calls compute things that have been previously com-
puted. How do we know? There can only be |P | · |T | possible unique recursive
calls, since there are only that many distinct (i, j) pairs to serve as the argument
parameters of the recursive calls. By storing the values for each of these (i, j)
pairs in a table, we can look them up as needed and avoid recomputing them.

A table-based, dynamic programming implementation of this algorithm is
given below. The table is a two-dimensional matrix m where each of the |P | · |T |
cells contains the cost of the optimal solution to a subproblem, as well as a parent
field explaining how we got to this location:

typedef struct {

int cost; /* cost of reaching this cell */

int parent; /* parent cell */

} cell;

cell m[MAXLEN+1][MAXLEN+1]; /* dynamic programming table */

Our dynamic programming implementation has three differences from the
recursive version. First, it gets its intermediate values using table lookup
instead of recursive calls. Second, it updates the parent field of each cell,
which will enable us to reconstruct the edit sequence later. Third, it is imple-
mented using a more general goal cell() function instead of just returning
m[|P|][|T|].cost. This will enable us to apply this routine to a wider class
of problems.

Be aware that we adhere to special string and index conventions in the
routine below. In particular, we assume that each string has been padded with
an initial blank character, so the first real character of string s sits in s[1].
Why did we do this? It enables us to keep the matrix indices in sync with those
of the strings for clarity. Recall that we must dedicate the zeroth row and column
of m to store the boundary values matching the empty prefix. Alternatively, we
could have left the input strings intact and adjusted the indices accordingly.

int string_compare(char *s, char *t, cell m[MAXLEN+1][MAXLEN+1]) {

int i, j, k; /* counters */

int opt[3]; /* cost of the three options */

for (i = 0; i <= MAXLEN; i++) {

row_init(i, m);

column_init(i, m);

}

318 CHAPTER 10. DYNAMIC PROGRAMMING

for (i = 1; i < strlen(s); i++) {

for (j = 1; j < strlen(t); j++) {

opt[MATCH] = m[i-1][j-1].cost + match(s[i], t[j]);

opt[INSERT] = m[i][j-1].cost + indel(t[j]);

opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = opt[MATCH];

m[i][j].parent = MATCH;

for (k = INSERT; k <= DELETE; k++) {

if (opt[k] < m[i][j].cost) {

m[i][j].cost = opt[k];

m[i][j].parent = k;

}

}

}

}

goal_cell(s, t, &i, &j);

return(m[i][j].cost);

}

To determine the value of cell (i, j), we need to have three values sitting and
waiting for us in matrix m—namely, the cells m(i − 1, j − 1), m(i, j − 1), and
m(i− 1, j). Any evaluation order with this property will do, including the row-
major order used in this program.1 The two nested loops do in fact evaluate m

for every pair of string prefixes, one row at a time. Recall that the strings are
padded such that s[1] and t[1] hold the first character of each input string, so
the lengths (strlen) of the padded strings are one character greater than those
of the input strings.

As an example, we show the cost matrix for turning P = “thou shalt” into
T = “you should” in five moves in Figure 10.5. I encourage you to evaluate
this example matrix by hand, to nail down exactly how dynamic programming
works.

10.2.3 Reconstructing the Path

The string comparison function returns the cost of the optimal alignment, but
not the alignment itself. Knowing you can convert “thou shalt” to “you should”
in only five moves is dandy, but what is the sequence of editing operations that
does it?

The possible solutions to a given dynamic programming problem are de-
scribed by paths through the dynamic programming matrix, starting from the

1Suppose we create a graph with a vertex for every matrix cell, and a directed edge (x, y),
when the value of cell x is needed to compute the value of cell y. Any topological sort on the
resulting DAG (why must it be a DAG?) defines an acceptable evaluation order.

10.2. APPROXIMATE STRING MATCHING 319

T y o u - s h o u l d
P pos 0 1 2 3 4 5 6 7 8 9 10
: 0 1 2 3 4 5 6 7 8 9 10
t: 1 1 1 2 3 4 5 6 7 8 9 10
h: 2 2 2 2 3 4 5 5 6 7 8 9
o: 3 3 3 2 3 4 5 6 5 6 7 8
u: 4 4 4 3 2 3 4 5 6 5 6 7
-: 5 5 5 4 3 2 3 4 5 6 6 7
s: 6 6 6 5 4 3 2 3 4 5 6 7
h: 7 7 7 6 5 4 3 2 3 4 5 6
a: 8 8 8 7 6 5 4 3 3 4 5 6
l: 9 9 9 8 7 6 5 4 4 4 4 5
t: 10 10 10 9 8 7 6 5 5 5 5 5

Figure 10.5: Example of a dynamic programming matrix for editing distance
computation, with the underlined entries appearing on the optimal alignment
path. Blue values denote insertions, green values deletions, and red values
match/substitution.

initial configuration (the pair of empty strings (0, 0)) down to the final goal
state (the pair of full strings (|P |, |T |)). The key to building the solution is
reconstructing the decisions made at every step along the optimal path that
leads to the goal state. These decisions have been recorded in the parent field
of each array cell.

Reconstructing these decisions is done by walking backward from the goal
state, following the parent pointer back to an earlier cell. We repeat this process
until we arrive back at the initial cell, analogous to how we reconstructed the
path found by BFS or Dijkstra’s algorithm. The parent field for m[i][j] tells
us whether the operation at (i, j) was MATCH, INSERT, or DELETE. Tracing back
through the parent matrix in Figure 10.6 yields the edit sequence DSMMMMMISMS
from “thou shalt” to “you should”—meaning delete the first “t”; replace the
“h” with “y”; match the next five characters before inserting an “o”; replace
“a” with “u”; and finally replace the “t” with a “d”.

Walking backward reconstructs the solution in reverse order. However, clever
use of recursion can do the reversing for us:

void reconstruct_path(char *s, char *t, int i, int j,

cell m[MAXLEN+1][MAXLEN+1]) {

if (m[i][j].parent == -1) {

return;

}

if (m[i][j].parent == MATCH) {

reconstruct_path(s, t, i-1, j-1, m);

320 CHAPTER 10. DYNAMIC PROGRAMMING

T y o u - s h o u l d
P pos 0 1 2 3 4 5 6 7 8 9 10

0 -1 1 1 1 1 1 1 1 1 1 1
t: 1 2 0 0 0 0 0 0 0 0 0 0
h: 2 2 0 0 0 0 0 0 1 1 1 1
o: 3 2 0 0 0 0 0 0 0 1 1 1
u: 4 2 0 2 0 1 1 1 1 0 1 1
-: 5 2 0 2 2 0 1 1 1 1 0 0
s: 6 2 0 2 2 2 0 1 1 1 1 0
h: 7 2 0 2 2 2 2 0 1 1 1 1
a: 8 2 0 2 2 2 2 2 0 0 0 0
l: 9 2 0 2 2 2 2 2 0 0 0 1
t: 10 2 0 2 2 2 2 2 0 0 0 0

Figure 10.6: Parent matrix for edit distance computation, with the optimal
alignment path underlined to highlight. Again, blue values denote insertions,
green values deletions, and red values match/substitution.

match_out(s, t, i, j);

return;

}

if (m[i][j].parent == INSERT) {

reconstruct_path(s, t, i, j-1, m);

insert_out(t, j);

return;

}

if (m[i][j].parent == DELETE) {

reconstruct_path(s, t, i-1, j, m);

delete_out(s, i);

return;

}

}

For many problems, including edit distance, the solution can be recon-
structed from the cost matrix without explicitly retaining the last-move array.
In edit distance, the trick is working backward from the costs of the three pos-
sible ancestor cells and corresponding string characters to reconstruct the move
that took you to the current cell at the given cost. But it is cleaner and easier
to explicitly store the moves.

10.2. APPROXIMATE STRING MATCHING 321

10.2.4 Varieties of Edit Distance

The string compare and path reconstruction routines reference several func-
tions that we have not yet defined. These fall into four categories:

• Table initialization – The functions row init and column init initialize
the zeroth row and column of the dynamic programming table, respec-
tively. For the string edit distance problem, cells (i, 0) and (0, i) corre-
spond to matching length-i strings against the empty string. This requires
exactly i insertions/deletions, so the definition of these functions is clear:

row_init(int i)

{

m[0][i].cost = i;

if (i>0)

m[0][i].parent = INSERT;

else

m[0][i].parent = -1;

}

column_init(int i)

{

m[i][0].cost = i;

if (i>0)

m[i][0].parent = DELETE;

else

m[i][0].parent = -1;

}

• Penalty costs – The functions match(c,d) and indel(c) present the costs
for transforming character c to d and inserting/deleting character c. For
standard edit distance, match should cost 0 if the characters are identical,
and 1 otherwise; while indel returns 1 regardless of what the argument
is. But application-specific cost functions can be employed, perhaps with
substitution more forgiving for characters located near each other on stan-
dard keyboard layouts or those that sound or look similar.

int match(char c, char d)

{

if (c == d) return(0);

else return(1);

}

int indel(char c)

{

return(1);

}

• Goal cell identification – The function goal cell returns the indices of
the cell marking the endpoint of the solution. For edit distance, this is
always defined by the length of the two input strings. However, other
applications we will soon encounter do not have fixed goal locations.

void goal_cell(char *s, char *t, int *i, int *j) {

*i = strlen(s) - 1;

*j = strlen(t) - 1;

}

• Traceback actions – The functions match out, insert out, and delete out

perform the appropriate actions for each edit operation during traceback.

322 CHAPTER 10. DYNAMIC PROGRAMMING

For edit distance, this might mean printing out the name of the operation
or character involved, as determined by the needs of the application.

insert_out(char *t, int j)

{

printf("I");

}

delete_out(char *s, int i)

{

printf("D");

}

match_out(char *s, char *t,

int i, int j)

{

if (s[i]==t[j]) printf("M");

else printf("S");

}

All of these functions are quite simple for edit distance computation. How-
ever, we must confess it is difficult to get the boundary conditions and index
manipulations correct. Although dynamic programming algorithms are easy
to design once you understand the technique, getting the details right requires
clear thinking and thorough testing.

This may seem like a lot of infrastructure to develop for such a simple algo-
rithm. However, several important problems can be solved as special cases of
edit distance using only minor changes to some of these stub functions:

• Substring matching – Suppose we want to find where a short pattern P
best occurs within a long text T—say searching for “Skiena” in all its
misspellings (Skienna, Skena, Skina, . . .) within a long file. Plugging this
search into our original edit distance function will achieve little sensitivity,
since the vast majority of any edit cost will consist of deleting all that is
not “Skiena” from the body of the text. Indeed, matching any scattered
. . . S . . . k . . . i . . . e . . . n . . . a . . . and deleting the rest will yield an optimal
solution.

We want an edit distance search where the cost of starting the match
is independent of the position in the text, so that we are not prejudiced
against a match that starts in the middle of the text. Now the goal state is
not necessarily at the end of both strings, but the cheapest place to match
the entire pattern somewhere in the text. Modifying these two functions
gives us the correct solution:

void row_init(int i, cell m[MAXLEN+1][MAXLEN+1]) {

m[0][i].cost = 0; /* NOTE CHANGE */

m[0][i].parent = -1; /* NOTE CHANGE */

}

10.2. APPROXIMATE STRING MATCHING 323

void goal_cell(char *s, char *t, int *i, int *j) {

int k; /* counter */

*i = strlen(s) - 1;

*j = 0;

for (k = 1; k < strlen(t); k++) {

if (m[*i][k].cost < m[*i][*j].cost) {

*j = k;

}

}

}

• Longest common subsequence – Perhaps we are interested in finding the
longest scattered string of characters included within both strings, without
changing their relative order. Indeed, this problem will be discussed in
Section 21.8. Do Democrats and Republicans have anything in common?
Certainly! The longest common subsequence (LCS) between “democrats”
and “republicans” is ecas.

A common subsequence is defined by all the identical-character matches in
an edit trace. To maximize the number of such matches, we must prevent
substitution of non-identical characters. With substitution forbidden, the
only way to get rid of the non-common subsequence will be through in-
sertion and deletion. The minimum cost alignment has the fewest such
“in-dels,” so it must preserve the longest common substring. We get the
alignment we want by changing the match-cost function to make substi-
tutions expensive:

int match(char c, char d) {

if (c == d) {

return(0);

}

return(MAXLEN);

}

Actually, it suffices to make the substitution penalty greater than that of
an insertion plus a deletion for substitution to lose any allure as a possible
edit operation.

• Maximum monotone subsequence – A numerical sequence is monotonically
increasing if the ith element is at least as big as the (i−1)st element. The
maximum monotone subsequence problem seeks to delete the fewest num-
ber of elements from an input string S to leave a monotonically increasing
subsequence. A maximum monotone subsequence of 243517698 is 23568.

324 CHAPTER 10. DYNAMIC PROGRAMMING

In fact, this is just a longest common subsequence problem, where the
second string is the elements of S sorted in increasing order: 123456789.
Any common sequence of these two must (a) represent characters in proper
order in S, and (b) use only characters with increasing position in the col-
lating sequence—so the longest one does the job. Of course, this approach
can be modified to give the longest decreasing sequence simply by revers-
ing the sorted order.

As you can see, our edit distance routine can be made to do many amazing
things easily. The trick is observing that your problem is just a special case of
approximate string matching.

The alert reader may notice that it is unnecessary to keep all O(mn) cells
to compute the cost of an alignment. If we evaluate the recurrence by filling
in the columns of the matrix from left to right, we will never need more than
two columns of cells to store what is necessary to complete the computation.
Thus, O(m) space is sufficient to evaluate the recurrence without changing the
time complexity. This is good, but unfortunately we cannot reconstruct the
alignment without the full matrix.

Saving space in dynamic programming is very important. Since memory on
any computer is limited, using O(nm) space proves more of a bottleneck than
O(nm) time. Fortunately, there is a clever divide-and-conquer algorithm that
computes the actual alignment in the same O(nm) time but only O(m) space.
It is discussed in Section 21.4 (page 688).

10.3 Longest Increasing Subsequence

There are three steps involved in solving a problem by dynamic programming:

1. Formulate the answer you want as a recurrence relation or recursive algo-
rithm.

2. Show that the number of different parameter values taken on by your
recurrence is bounded by a (hopefully small) polynomial.

3. Specify an evaluation order for the recurrence so the partial results you
need are always available when you need them.

To see how this is done, let’s see how we would develop an algorithm to
find the longest monotonically increasing subsequence within a sequence of n
numbers. Truth be told, this was described as a special case of edit distance in
Section 10.2.4 (page 323), where it was called maximum monotone subsequence.
Still, it is instructive to work it out from scratch. Indeed, dynamic programming
algorithms are often easier to reinvent than look up.

We distinguish an increasing sequence from a run, where the elements must
be physical neighbors of each other. The selected elements of both must be
sorted in increasing order from left to right. For example, consider the sequence

S = (2, 4, 3, 5, 1, 7, 6, 9, 8)

10.3. LONGEST INCREASING SUBSEQUENCE 325

The longest increasing subsequence of S is of length 5: for example, (2,3,5,6,8).
In fact, there are eight of this length (can you enumerate them?). There are
four increasing runs of length 2: (2, 4), (3, 5), (1, 7), and (6, 9).

Finding the longest increasing run in a numerical sequence is straightforward.
Indeed, you should be able to easily devise a linear-time algorithm. But finding
the longest increasing subsequence is considerably trickier. How can we identify
which scattered elements to skip?

To apply dynamic programming, we need to design a recurrence relation
for the length of the longest sequence. To find the right recurrence, ask what
information about the first n− 1 elements of S = (s1, . . . , sn) would enable you
to find the answer for the entire sequence:

• The length L of the longest increasing sequence in (s1, s2, . . . , sn−1) seems
a useful thing to know. In fact, this will be the length of the longest
increasing sequence in S, unless sn extends some increasing sequence of
the same length.

Unfortunately, this length L is not enough information to complete the
full solution. Suppose I told you that the longest increasing sequence in
(s1, s2, . . . , sn−1) was of length 5 and that sn = 8. Will the length of the
longest increasing subsequence of S be 5 or 6? It depends on whether the
length-5 sequence ended with a value < 8.

• We need to know the length of the longest sequence that sn will extend. To
be certain we know this, we really need the length of the longest sequence
ending at every possible value si.

This provides the idea around which to build a recurrence. Define Li to
be the length of the longest sequence ending with si. The longest increasing
sequence containing sn will be formed by appending it to the longest increasing
sequence to the left of n that ends on a number smaller than sn. The following
recurrence computes Li:

Li = 1 + max
0≤j<i
sj<si

Lj ,

L0 = 0

These values define the length of the longest increasing sequence ending at each
sequence element. The length of the longest increasing subsequence of S is given
by L = max1≤i≤n Li, since the winning sequence must end somewhere. Here is
the table associated with our previous example:

Index i 1 2 3 4 5 6 7 8 9
Sequence si 2 4 3 5 1 7 6 9 8
Length Li 1 2 2 3 1 4 4 5 5

Predecessor pi – 1 1 2 – 4 4 6 6

326 CHAPTER 10. DYNAMIC PROGRAMMING

What auxiliary information will we need to store to reconstruct the actual se-
quence instead of its length? For each element si, we will store its predecessor—
the index pi of the element that appears immediately before si in a longest
increasing sequence ending at si. Since all of these pointers go towards the left,
it is a simple matter to start from the last value of the longest sequence and
follow the pointers back so as to reconstruct the other items in the sequence.

What is the time complexity of this algorithm? Each one of the n values of
Li is computed by comparing si against the i − 1 ≤ n values to the left of it,
so this analysis gives a total of O(n2) time. In fact, by using dictionary data
structures in a clever way, we can evaluate this recurrence in O(n lg n) time.
However, the simple recurrence would be easy to program and therefore is a
good place to start.

Take-Home Lesson: Once you understand dynamic programming, it can be
easier to work out such algorithms from scratch than to try to look them up.

10.4 War Story: Text Compression for Bar Codes

Ynjiun waved his laser wand over the torn and crumpled fragments of a bar code
label. The system hesitated for a few seconds, then responded with a pleasant
blip sound. He smiled at me in triumph. “Virtually indestructible.”

I was visiting the research laboratories of Symbol Technologies (now Zebra),
the world’s leading manufacturer of bar code scanning equipment. Although we
take bar codes for granted, there is a surprising amount of technology behind
them. Bar codes exist because conventional optical character recognition (OCR)
systems are not sufficiently reliable for inventory operations. The bar code
symbology familiar to us on each box of cereal, pack of gum, or can of soup
encodes a ten-digit number with enough error correction that it is virtually
impossible to scan the wrong number, even if the can is upside-down or dented.
Occasionally, the cashier won’t be able to get a label to scan at all, but once
you hear that blip you know it was read correctly.

The ten-digit capacity of conventional bar code labels provides room enough
to only store a single ID number in a label. Thus, any application of supermarket
bar codes must have a database mapping (say) 11141-47011 to a particular
brand and size of soy sauce. The holy grail of the bar code world had long been
the development of higher-capacity bar code symbologies that can store entire
documents, yet still be read reliably.

“PDF-417 is our new, two-dimensional bar code symbology,” Ynjiun ex-
plained. A sample label is shown in Figure 10.7. Although you may be more
familiar with QR codes, PDF-417 is now a well accepted standard. Indeed, the
back of every New York State drivers license contains the criminal record of its
owner, elegantly rendered in PDF-417.

“How much data can you fit in a typical 1-inch label?” I asked him.

“It depends upon the level of error correction we use, but about 1,000 bytes.
That’s enough for a small text file or image,” he said.

10.4. WAR STORY: TEXT COMPRESSION FOR BAR CODES 327

Figure 10.7: A two-dimensional barcode label of the Gettysburg Address using
PDF-417.

“Interesting. You should use some data compression technique to maximize
the amount of text you can store in a label.” See Section 21.5 (page 693) for a
discussion of standard data compression algorithms.

“We do incorporate a data compaction method,” he explained. “We under-
stand the different types of files our customers will want to make labels for.
Some files will be all in uppercase letters, while others will use mixed-case let-
ters and numbers. We provide four different text modes in our code, each with
a different subset of alphanumeric characters available. We can describe each
character using only 5 bits as long as we stay within a mode. To switch modes,
we issue a mode switch command first (taking an extra 5 bits) and then code
for the new character.”

“I see. So you designed the mode character sets to minimize the number
of mode switch operations on typical text files.” The modes are illustrated in
Figure 10.8.

“Right. We put all the digits in one mode and all the punctuation characters
in another. We also included both mode shift and mode latch commands. We
can shift into a new mode just for the next character, perhaps to produce a
punctuation mark. Or we can latch permanently into a different mode, if we are
at the start of a run of several characters from there, like a phone number.”

“Wow!” I said. “With all of this mode switching going on, there must be
many different ways to encode any given text as a label. How do you find the
smallest such encoding?”

“We use a greedy algorithm. We look a few characters ahead and then decide
which mode we would be best off in. It works fairly well.”

I pressed him on this. “How do you know it works fairly well? There might
be significantly better encodings that you are simply not finding.”

“I guess I don’t know. But it’s probably NP-complete to find the optimal
coding.” Ynjiun’s voice trailed off. “Isn’t it?”

I started to think. Every encoding starts in a given mode and consists of a
sequence of intermixed character codes and mode shift/latch operations. From
any given position in the text, we can either output the next character code (as-
suming it is available in our current mode) or decide to shift. As we moved from
left to right through the text, our current state would be completely reflected
by our current character position and current mode. For a given position/mode

328 CHAPTER 10. DYNAMIC PROGRAMMING

s

l

l
s

s

l

sl

l

Mixed

a−z

A−Z

;<>@[\$/"*(
Punctuation

Alpha

Case

Lower

0−9, #$%=

Figure 10.8: Mode switching in PDF-417.

pair, we would have been interested in the cheapest way of getting there, over
all possible encodings. . . .

My eyes lit up so bright they cast shadows on the walls.

“The optimal encoding for any given text in PDF-417 can be found using
dynamic programming. For each possible mode 1 ≤ m ≤ 4, and each character
position 1 ≤ i ≤ n, we fill a matrix M [i,m] with the cost of the cheapest
encoding of the first i characters ending in mode m. Our next move from each
mode/position is either match, shift, or latch, so there are only a few possible
operations to consider at each position.”

Basically,

M [i, j] = min
1≤m≤4

(M [i− 1,m] + c(Si,m, j))

where c(Si,m, j) is the cost of encoding character Si and switching from mode
m to mode j. The cheapest possible encoding results from tracing back from
M [n,m], where m is the value of k that minimizes M [n, k]. Each of the 4n cells
can be filled in constant time, so it takes time linear in the length of the string
to find the optimal encoding.

Ynjiun was skeptical, but he encouraged us to implement an optimal encoder.
A few complications arose due to weirdnesses of PDF-417 mode switching, but
my student Yaw-Ling Lin rose to the challenge. Symbol compared our encoder
to theirs on 13,000 labels and concluded that dynamic programming gave an 8%
tighter encoding on average. This was significant, because no one wants to waste
8% of their potential storage capacity, particularly in an environment where the
capacity is only a few hundred bytes. Of course, an 8% average improvement
meant that it did much better than that on certain labels, and it never did
worse than the original encoder. While our encoder took slightly longer to run
than the greedy encoder, this was not significant, because the bottleneck would
be the time needed to print the label.

Our observed impact of replacing a heuristic solution with the global opti-
mum is probably typical of most applications. Unless you really botch up your

10.5. UNORDERED PARTITION OR SUBSET SUM 329

heuristic, you should get a decent solution. Replacing it with an optimal result,
however, usually gives a modest but noticeable improvement, which can have
pleasing consequences for your application.

10.5 Unordered Partition or Subset Sum

The knapsack or subset sum problem asks whether there exists a subset S′ of
an input multiset of n positive integers S = {s1, . . . , sn} whose elements add up
a given target k. Think of a backpacker trying to completely fill a knapsack of
capacity k with possible selections from set S. Applications of this important
problem are discussed in greater detail in Section 16.10.

Dynamic programming works best on linearly ordered items, so we can con-
sider them from left to right. The ordering of items in S from s1 to sn provides
such an arrangement. To formulate a recurrence relation, we need to determine
what information we need on items s1 to sn−1 in order to decide what to do
about sn.

Here is the idea. Either the nth integer sn is part of a subset adding up to
k, or it is not. If it is, then there must be a way to make a subset of the first
n− 1 elements of S adding up to k − sn, so the last element can finish the job.
If not, there may well be a solution that does not use sn. Together this defines
the recurrence:

Tn,k = Tn−1,k ∨ Tn−1,k−sn

This gives an O(nk) algorithm to decide whether target k is realizable:

bool sum[MAXN+1][MAXSUM+1]; /* table of realizable sums */

int parent[MAXN+1][MAXSUM+1]; /* table of parent pointers */

bool subset_sum(int s[], int n, int k) {

int i, j; /* counters */

sum[0][0] = true;

parent[0][0] = NIL;

for (i = 1; i <= k; i++) {

sum[0][i] = false;

parent[0][i] = NIL;

}

for (i = 1; i <= n; i++) { /* build table */

for (j = 0; j <= k; j++) {

sum[i][j] = sum[i-1][j];

parent[i][j] = NIL;

if ((j >= s[i-1]) && (sum[i-1][j-s[i-1]]==true)) {

330 CHAPTER 10. DYNAMIC PROGRAMMING

sum[i][j] = true;

parent[i][j] = j-s[i-1];

}

}

}

return(sum[n][k]);

}

The parent table encodes the actual subset of numbers totaling to k. An
appropriate subset exists whenever sum[n][k]==true, but it does not use sn as
an element when parent[n][k]==NIL. Instead, we walk up the matrix until we
find an interesting parent, and follow the corresponding pointer:

void report_subset(int n, int k) {

if (k == 0) {

return;

}

if (parent[n][k] == NIL) {

report_subset(n-1,k);

}

else {

report_subset(n-1,parent[n][k]);

printf(" %d ",k-parent[n][k]);

}

}

Below is an example showing the sum table for input set S = {1, 2, 4, 8}
and target k = 11. The true in the lower right corner signals that the sum is
realizable. Because S here represents all the powers of twos, and every target
integer can be written in binary, the entire bottom row consists of trues:

i si 0 1 2 3 4 5 6 7 8 9 10 11
0 0 T F F F F F F F F F F F
1 1 T T F F F F F F F F F F
2 2 T T T T F F F F F F F F
3 4 T T T T T T T T F F F F
4 8 T T T T T T T T T T T T

Below is the corresponding parents array, encoding the solution 1+2+8 =
11. The 3 in the lower right corner reflects that 11 − 8 = 3. The red bolded
cells represent those encountered on the walk back to recover the solution.

10.6. WAR STORY: THE BALANCE OF POWER 331

i si 0 1 2 3 4 5 6 7 8 9 10 11
0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 2 -1 -1 0 1 -1 -1 -1 -1 -1 -1 -1 -1
3 4 -1 -1 -1 -1 0 1 2 3 -1 -1 -1 -1
4 8 -1 -1 -1 -1 -1 -1 -1 -1 0 1 2 3

The alert reader might wonder how we can have an O(nk) algorithm for
subset sum when subset sum in an NP-complete problem? Isn’t this polynomial
in n and k? Did we just prove that P = NP?

Unfortunately, no. Note that the target number k can be specified using
O(log k) bits, meaning that this algorithm runs in time exponential in the size
of the input, which is O(n log k). This is the same reason why factoring integer
N by explicitly testing all

√
N candidates for smallest factor is not polynomial,

because the running time is exponential in the O(logN) bits of the input.
Another way to see the problem is to consider what happens to the algo-

rithm when we take a specific problem instance and multiply each integer by
1,000,000. Such a transform would not have affected the running time of sorting
or minimum spanning tree, or any other algorithm we have seen so far in this
book. But it would slow down our dynamic programming algorithm by a factor
of 1,000,000, and require a million times as much space for storing the table.
The range of the numbers matters in the subset sum problem, which becomes
hard for large integers.

10.6 War Story: The Balance of Power

One of the many (presumably too many) uncharitable suspicions I hold is that
most electrical engineering (EE) students today would not know how to build
a radio. The reason for this is that the EE students I encounter study electri-
cal and computer engineering, focusing on computer architecture and embedded
systems that involve as much software as hardware. When a natural disas-
ter comes, these guys are not going to be very concerned about restoring the
operation of my favorite AM radio station.

Thus, it was a relief when an EE professor and his students came to me with
an honest EE problem, about optimizing the performance of the power grid.

“Alternating current (AC) power systems transmit electricity on each of
three different phases. Call them A, B, and C. The system works best when
the loads on each phase are roughly equal.” he explained.

“I guess loads are the machines needing power, right?” I asked insightfully.
“Yeah, think of every house on the street as being a load. Each house will

get assigned one of the three phases as its source of power.”
“Presumably they connect every third house A, B, C, A, B, C as they wire

up the street to balance the load.”
“Something like that,” the EE professor confirmed. “But not all houses

use the same amount of power, and it is even worse in industrial areas. One

332 CHAPTER 10. DYNAMIC PROGRAMMING

company might just turn on the lights when another runs an arc furnace. After
we measure the loads people are actually using, we would like to move some to
different phases to balance the loads.”

Now I saw the algorithmic problem. “So given a set of numbers representing
the various loads, you want to assign them phases A, B, and C so the load is
balanced as well as possible, right?”

“Yeah. Can you give me a fast algorithm to do this?,” he asked.
This seemed clear enough to me. It smelled like an integer partition problem,

namely the subset sum problem of the previous section where the target k =
(
∑n

i=1 sn)/2. The most balanced possible partition occurs when the sum of
elements in the selected subset (here k) equals the sum of the elements left
behind (here

∑n
i=1 sn − k).

The generalization of the problem to partition into three subsets instead of
two was straightforward, but it wasn’t going to get any easier to solve. Adding
a single new item sn+1 = k and asking for a partitioning of S into three equal
weight subsets requires solving an integer partition on the original elements.

I broke the bad news gently. “Integer partition is an NP-complete problem,
and three-phase balancing is just as hard as it is. There is no polynomial-time
algorithm for your problem.”

They got up and started to leave. But then I remembered the dynamic
programming algorithm for subset sum described in Section 10.5 (page 329).
Why couldn’t this be extended to three phases? Indeed, define the function
C[n,A,B] for a given set of loads S, where C[n,wA, wB] is true if there is a way
to partition the first n loads of S such that the weight on phase A is wA and
the weight on phase B is wB . Note that there is no need to explicitly keep track
of the weight on phase C, because wC =

∑n
i=1 si − wA − wB . Then we get the

following recurrence, defined by which subset we put the nth load on:

C[n,wA, wB] = C[n−1, wA−sn, wB] ∨ C[n−1, wA, wB−sn] ∨ C[n−1, wA, wB]

This took constant time per cell to update, but there were nk2 cells to
update, where k is the maximum amount of power we are willing to consider on
any single phase. Thus, we could optimally balance the phases in O(nk2) time.

This pleased them immensely, and they set to work to implement the algo-
rithm. But I had one question before they went off, which I purposely directed
to one of the computer engineering students. “Why is it that AC power has
three phases?”

“Uh, maybe impedance matching and, uh, complex numbers?” he fumphered.
His advisor shot him a dirty look, as I felt the warm glow of reassurance.

But that computer engineering student could code, and that was what mat-
tered here. He quickly implemented the dynamic programming algorithm and
performed experiments on representative problems, reported in [WSR13].

Our dynamic programming algorithm always produced at least as good a
solution as several heuristics, and usually better. This is no surprise, since we
always produced an optimal solution and they didn’t. Our dynamic program
had a running time that grew quadratically in the range of the loads, which

10.7. THE ORDERED PARTITION PROBLEM 333

could be a problem, but binning the loads by (say) �si/10	 would reduce the
running time by a factor of 100 and produce solutions that were still pretty
good for the original problem.

Dynamic programming really proved its worth when our electrical engineers
got interested in more ambitious objective functions. It is not a cost-free opera-
tion to change which phase a load is on, and so they wanted to find a relatively
balanced load assignment which minimized the number of changes required to
achieve it. This is essentially the same recurrence, storing the cheapest cost to
realize each state instead of just a flag indicating that you could reach it:

C[n,wA, wB] = min(C[n− 1, wA − sn, wB] + 1,

C[n− 1, wA, wB − sn] + 1,

C[n− 1, wA, wB])

They then got greedy, and wanted the lowest cost solution that never got
seriously unbalanced at any point on the line. A globally balanced solution
might choose to fill the total load on A before any loads on B or C, and that
this would be bad. But the same recurrence above still does the job, provided
we set C[n,wA, wB] = ∞ whenever the loads at this state are deemed too
unbalanced to be desirable.

That is the power of dynamic programming. Once you can reduce your state
space to a small enough size, you can optimize just about anything. Just walk
through each possible state and score it appropriately.

10.7 The Ordered Partition Problem

Suppose that three workers are given the task of scanning through a shelf of
books in search of a given piece of information. To get the job done fairly and
efficiently, the books are to be partitioned among the three workers. To avoid
the need to rearrange the books or separate them into piles, it is simplest to
divide the shelf into three regions and assign each region to one worker.

But what is the fairest way to divide up the shelf? If all books are the same
length, the job is pretty easy. Just partition the books into equal-sized regions,

100 100 100 | 100 100 100 | 100 100 100

so that everyone has 300 pages to deal with.
But what if the books are not the same length? Suppose we used the same

partition when the book sizes looked like this:

100 200 300 | 400 500 600 | 700 800 900

I would volunteer to take the first section, with only 600 pages to scan, instead
of the last one, with 2,400 pages. The fairest possible partition for this shelf
would be

100 200 300 400 500 | 600 700 | 800 900

334 CHAPTER 10. DYNAMIC PROGRAMMING

where the largest job is only 1,700 pages.
In general, we have the following problem:

Problem: Integer Partition without Rearrangement
Input: An arrangement S of non-negative numbers s1, . . . , sn and an integer k.
Output: Partition S into k or fewer ranges, to minimize the maximum sum over
all the ranges, without reordering any of the numbers.

This so-called ordered partition problem arises often in parallel processing.
We seek to balance the work done across processors to minimize the total elapsed
running time. The bottleneck in this computation will be the processor assigned
the most work. Indeed, the war story of Section 5.8 (page 161) revolves around
a botched solution to the very problem discussed here.

Stop for a few minutes and try to find an algorithm to solve the linear
partition problem.

A novice algorist might suggest a heuristic as the most natural approach to
solving the partition problem, perhaps by computing the average weight of a
partition,

∑n
i=1 si/k, and then trying to insert the dividers to come close to this

average. However, such heuristic methods are doomed to fail on certain inputs
because they do not systematically evaluate all possibilities.

Instead, consider a recursive, exhaustive search approach to solving this
problem. Notice that the kth partition starts right after the (k − 1)st divider.
Where can we place this last divider? Between the ith and (i + 1)st elements
for some i, where 1 ≤ i ≤ n. What is the cost after this insertion? The total
cost will be the larger of two quantities:

• the cost of the last partition
∑n

j=i+1 sj , and

• the cost of the largest partition formed to the left of the last divider.

What is the size of this left partition? To minimize our total, we must use
the k − 2 remaining dividers to partition the elements s1, . . . , si as equally as
possible. This is a smaller instance of the same problem, and hence can be
solved recursively!

Therefore, define M [n, k] to be the minimum possible cost over all partition-
ings of s1, . . . , sn into k ranges, where the cost of a partition is the largest sum
of elements in one of its parts. This function can be evaluated:

M [n, k] =
n

min
i=1

⎛
⎝max(M [i, k − 1],

n∑

j=i+1

sj)

⎞
⎠

We also need to specify the boundary conditions of the recurrence relation.
These boundary conditions resolve the smallest possible values for each of the
arguments of the recurrence. For this problem, the smallest reasonable value of
the first argument is n = 1, meaning that the first partition consists of a single
element. We can’t create a first partition smaller than s1 regardless of how

10.7. THE ORDERED PARTITION PROBLEM 335

M k D k
s 1 2 3 s 1 2 3
1 1 1 1 1 – – –
1 2 1 1 1 – 1 1
1 3 2 1 1 – 1 2
1 4 2 2 1 – 2 2
1 5 3 2 1 – 2 3
1 6 3 2 1 – 3 4
1 7 4 3 1 – 3 4
1 8 4 3 1 – 4 5
1 9 5 3 1 – 4 6

M k D k
s 1 2 3 s 1 2 3
1 1 1 1 1 – – –
2 3 2 2 2 – 1 1
3 6 3 3 3 – 2 2
4 10 6 4 4 – 3 3
5 15 9 6 5 – 3 4
6 21 11 9 6 – 4 5
7 28 15 11 7 – 5 6
8 36 21 15 8 – 5 6
9 45 24 17 9 – 6 7

Figure 10.9: Dynamic programming matrices M and D for two instances
of the ordered partition problem. Partitioning (1, 1, 1, 1, 1, 1, 1, 1, 1)
into ((1, 1, 1), (1, 1, 1), (1, 1, 1)) (left) and (1, 2, 3, 4, 5, 6, 7, 8, 9) into
((1, 2, 3, 4, 5), (6, 7), (8, 9)) (right). Prefix sum entries appear in red and
the optimal solution divider positions in blue.

many dividers are used. The smallest reasonable value of the second argument
is k = 1, implying that we do not partition S at all. In summary:

M [1, k] = s1, for all k > 0

M [n, 1] =
n∑

i=1

si

How long does it take to compute this when we store the partial results?
There are a total of k · n cells in the table. How much time does it take to
compute the values of M [n′, k′] for 1 ≤ n′ ≤ n, 1 ≤ k′ ≤ k ? Calculating
this quantity using the general recurrence involves finding the minimum of n′

quantities, each of which is the larger of two numbers: a table lookup and the
sum of at most n′ elements (taking O(n′) time). If filling each of kn boxes takes
at most n2 time per box, the total recurrence can be computed in O(kn3) time.

The evaluation order computes the smaller values before the bigger values,
so that each evaluation has what it needs waiting for it. Full details are provided
in the following implementation:

void partition(int s[], int n, int k) {

int p[MAXN+1]; /* prefix sums array */

int m[MAXN+1][MAXK+1]; /* DP table for values */

int d[MAXN+1][MAXK+1]; /* DP table for dividers */

int cost; /* test split cost */

int i,j,x; /* counters */

p[0] = 0; /* construct prefix sums */

for (i = 1; i <= n; i++) {

p[i] = p[i-1] + s[i];

}

336 CHAPTER 10. DYNAMIC PROGRAMMING

for (i = 1; i <= n; i++) {

m[i][1] = p[i]; /* initialize boundaries */

}

for (j = 1; j <= k; j++) {

m[1][j] = s[1];

}

for (i = 2; i <= n; i++) { /* evaluate main recurrence */

for (j = 2; j <= k; j++) {

m[i][j] = MAXINT;

for (x = 1; x <= (i-1); x++) {

cost = max(m[x][j-1], p[i]-p[x]);

if (m[i][j] > cost) {

m[i][j] = cost;

d[i][j] = x;

}

}

}

}

reconstruct_partition(s, d, n, k); /* print book partition */

}

This implementation above, in fact, runs faster than advertised. Our original
analysis assumed that it took O(n2) time to update each cell of the matrix. This
is because we selected the best of up to n possible points to place the divider,
each of which requires the sum of up to n possible terms. In fact, it is easy to
avoid the need to compute these sums by storing the n prefix sums pi =

∑i
k=1 sk,

since
∑j

k=i sk = pj − pi−1. This enables us to evaluate the recurrence in linear
time per cell, yielding an O(kn2) algorithm. These prefix sums also appear as
the initialization values for k = 1, and are shown in the dynamic programming
matrices of Figure 10.9.

By studying the recurrence relation and the dynamic programming matrices
of these two examples, you should be able to convince yourself that the final
value ofM [n, k] will be the cost of the largest range in the optimal partition. But
for most applications, we need the actual partition that does the job. Without
it, all we are left with is a coupon with a great price on an out-of-stock item.

The second matrix, D, is used to reconstruct the optimal partition. When-
ever we update the value of M [i, j], we record which divider position was used
to achieve this value. We reconstruct the path used to get the optimal solution
by working backwards from D[n, k], and add a divider at each specified position.
This backwards walking is best achieved by a recursive subroutine:

10.8. PARSING CONTEXT-FREE GRAMMARS 337

void reconstruct_partition(int s[],int d[MAXN+1][MAXK+1], int n, int k) {

if (k == 1) {

print_books(s, 1, n);

} else {

reconstruct_partition(s, d, d[n][k], k-1);

print_books(s, d[n][k]+1, n);

}

}

void print_books(int s[], int start, int end) {

int i; /* counter */

printf("\{");

for (i = start; i <= end; i++) {

printf(" %d ", s[i]);

}

printf("}\n");

}

10.8 Parsing Context-Free Grammars

Compilers identify whether a particular program is a legal expression in a par-
ticular programming language, and reward you with syntax errors if it is not.
This requires a precise description of the language syntax, typically given by a
context-free grammar, as shown in Figure 10.10(l). Each rule or production of
the grammar defines an interpretation for the named symbol on the left side of
the rule as a sequence of symbols on the right side of the rule. The right side
can be a combination of nonterminals (themselves defined by rules) or terminal
symbols defined simply as strings, such as the, a, cat, milk, and drank.

Parsing a given text sequence S as per a given context-free grammar G is the
algorithmic problem of constructing a parse tree of rule substitutions defining
S as a single nonterminal symbol of G. Figure 10.10(right) presents the parse
tree of a simple sentence using our sample grammar.

Parsing seemed like a horribly complicated subject when I took a compilers
course as a graduate student. But, more recently a friend easily explained it to
me over lunch. The difference is that I understand dynamic programming much
better now than when I was a student.

We assume that the sequence S has length n while the grammar G itself
is of constant size. This is fair, because the grammar defining a particular
programming language (say C or Java) is of fixed length regardless of the size
of the program we seek to compile.

Further, we assume that the definitions of each rule are in Chomsky normal
form, like the example of Figure 10.10. This means that the right sides of every
rule consists of either (a) exactly two nonterminals, for example, X → Y Z, or

338 CHAPTER 10. DYNAMIC PROGRAMMING

sentence ::= noun−phrase

 verb−phrase

noun−phrase ::= article noun

verb−phrase ::= verb noun−phrase

article ::= the, a

cat, milk

drankverb ::=

noun ::=

sentence

cat milkthe thedrank

article

article

noun

noun verb noun−phrase

verb−phrasenoun−phrase

Figure 10.10: A context-free grammar (on left) with an associated parse tree
(right)

(b) exactly one terminal symbol, X → α. Any context-free grammar can be
easily and mechanically transformed into Chomsky normal form by repeatedly
shortening long right-hand sides at the cost of adding extra nonterminals and
productions. Thus, there is no loss of generality with this assumption.

So how can we efficiently parse S using a context-free grammar where each
interesting rule produces two nonterminals? The key observation is that the rule
applied at the root of the parse tree (say X → Y Z) splits S at some position i
such that the left part, S1 · · ·Si, must be generated by nonterminal Y , and the
right part (Si+1 · · ·Sn) generated by Z.

This suggests a dynamic programming algorithm, where we keep track of all
nonterminals generated by each contiguous subsequence of S. Define M [i, j,X]
to be a Boolean function that is true iff subsequence Si · · ·Sj is generated by
nonterminal X. This is true if there exists a production X → Y Z and breaking
point k between i and j such that the left part generates Y and the right part
Z. In other words, for i < j we have

M [i, j,X] =
∨

(X→Y Z)∈G

(
j−1∨

k=i

M [i, k, Y] ∧M [k + 1, j, Z]

)

where ∨ denotes the logical or over all productions and split positions, and ∧
denotes the logical and of two Boolean values.

The terminal symbols define the boundary conditions of the recurrence. In
particular, M [i, i,X] is true iff there exists a production X → α such that
Si = α.

What is the complexity of this algorithm? The size of our state-space is
O(n2), as there are n(n + 1)/2 subsequences defined by (i, j) pairs with i ≥ j.
Multiplying this by the number of nonterminals, which is finite because the
grammar was defined to be of constant size, has no impact on the Big Oh.
Evaluating M [i, j,X] requires testing all intermediate values k where i ≤ k < j,
so it takes O(n) in the worst case to evaluate each of the O(n2) cells. This yields
an O(n3) or cubic-time algorithm for parsing.

10.9. LIMITATIONS OF DYNAMIC PROGRAMMING: TSP 339

Stop and Think: Parsimonious Parserization

Problem: Programs often contain trivial syntax errors that prevent them from
compiling. Given a context-free grammar G and input sequence S, find the
smallest number of character substitutions you must make to S so that the
resulting sequence is accepted by G.

Solution: This problem seemed extremely difficult when I first encountered it.
But on reflection, it is just a very general version of edit distance, addressed
naturally by dynamic programming. Parsing first sounded difficult, too, but
fell to the same technique. Indeed, we can solve the combined problem by
generalizing the recurrence relation we used for simple parsing.

DefineM ′[i, j,X] to be an integer function that reports the minimum number
of changes to subsequence Si · · ·Sj so it can be generated by nonterminal X.
This symbol will be generated by some production X → Y Z. Some of the
changes to S may be to the left of the breaking point and some to the right,
but all we care about is minimizing the sum. In other words, for i < j we have

M ′[i, j,X] = min
(X→Y Z)∈G

(
j−1

min
k=i

M ′[i, k, Y] +M ′[k + 1, j, Z]

)

The boundary conditions also change mildly. If there exists a production
X → α, the cost of matching at position i depends on the contents of Si. If
Si = α, M ′[i, i,X] = 0. Otherwise, we can pay one substitution to change Si

to α, so M ′[i, i,X] = 1 if Si �= α. If the grammar does not have a production
of the form X → α, there is no way to substitute a single character string into
something generating X, so M ′[i, i,X] = ∞ for all i.

Take-Home Lesson: For optimization problems on left-to-right objects, such
as characters in a string, elements of a permutation, points around a polygon,
or leaves in a search tree, dynamic programming likely leads to an efficient
algorithm to find the optimal solution.

10.9 Limitations of Dynamic Programming: TSP

Dynamic programming doesn’t always work. It is important to see why it can
fail, to help avoid traps leading to incorrect or inefficient algorithms.

Our algorithmic poster child will once again be the traveling salesman prob-
lem, where we seek the shortest tour visiting all the cities in a graph. We will
limit attention here to an interesting special case:

Problem: Longest Simple Path
Input: A weighted graph G = (V,E), with specified start and end vertices s and
t.
Output: What is the most expensive path from s to t that does not visit any
vertex more than once?

340 CHAPTER 10. DYNAMIC PROGRAMMING

This problem differs from TSP in two quite unimportant ways. First, it
asks for a path instead of a closed tour. This difference isn’t substantial: we
get a closed tour simply by including the edge (t, s). Second, it asks for the
most expensive path instead of the least expensive tour. Again this difference
isn’t very significant: it encourages us to visit as many vertices as possible
(ideally all), just as in TSP. The critical word in the problem statement is
simple, meaning we are not allowed to visit any vertex more than once.

For unweighted graphs (where each edge has cost 1), the longest possible
simple path from s to t is of weight n − 1. Finding such Hamiltonian paths (if
they exist) is an important graph problem, discussed in Section 19.5 (page 598).

10.9.1 When is Dynamic Programming Correct?

Dynamic programming algorithms are only as correct as the recurrence relations
they are based on. Suppose we define LP [i, j] to be the length of the longest
simple path from i to j. Note that the longest simple path from i to j has to
visit some vertex x right before reaching j. Thus, the last edge visited must be
of the form (x, j). This suggests the following recurrence relation to compute
the length of the longest path, where c(x, j) is the cost/weight of edge (x, j):

LP [i, j] = max
x∈V

(x,j)∈E

LP [i, x] + c(x, j)

This idea seems reasonable, but can you see the problem? I see at least two of
them.

First, this recurrence does nothing to enforce simplicity. How do we know
that vertex j has not appeared previously on the longest simple path from i to
x? If it did, then adding the edge (x, j) will create a cycle. To prevent this,
we must define a recursive function that explicitly remembers where we have
been. Perhaps we could define LP ′[i, j, k] to denote the length of the longest
path from i to j avoiding vertex k? This would be a step in the right direction,
but still won’t lead to a viable recurrence.

The second problem concerns evaluation order. What can you evaluate first?
Because there is no left-to-right or smaller-to-bigger ordering of the vertices on
the graph, it is not clear what the smaller subprograms are. Without such an
ordering, we get stuck in an infinite loop as soon as we try to do anything.

Dynamic programming can be applied to any problem that obeys the prin-
ciple of optimality. Roughly stated, this means that partial solutions can be
optimally extended given the state after the partial solution, instead of the
specifics of the partial solution itself. For example, in deciding whether to ex-
tend an approximate string matching by a substitution, insertion, or deletion,
we did not need to know the sequence of operations that had been performed
to date. In fact, there may be several different edit sequences that achieve a
cost of C on the first p characters of pattern P and t characters of string T .
Future decisions are made based on the consequences of previous decisions, not
the actual decisions themselves.

10.9. LIMITATIONS OF DYNAMIC PROGRAMMING: TSP 341

Problems do not satisfy the principle of optimality when the specifics of the
operations matter, as opposed to just their cost. Such would be the case with
a special form of edit distance where we are not allowed to use combinations
of operations in certain particular orders. Properly formulated, however, many
combinatorial problems respect the principle of optimality.

10.9.2 When is Dynamic Programming Efficient?

The running time of any dynamic programming algorithm is a function of two
things: (1) the number of partial solutions we must keep track of, and (2) how
long it takes to evaluate each partial solution. The first issue—namely the size
of the state space—is usually the more pressing concern.

In all of the examples we have seen, the partial solutions are completely de-
scribed by specifying the possible stopping places in the input. This is because
the combinatorial objects being worked on (typically strings and numerical se-
quences) have an implicit order defined upon their elements. This order cannot
be scrambled without completely changing the problem. Once the order is fixed,
there are relatively few possible stopping places or states, so we get efficient al-
gorithms.

When the objects are not firmly ordered, however, we likely have an expo-
nential number of possible partial solutions. Suppose the state of our partial
longest simple path solution is the entire path P taken from the start to end
vertex. Thus, LP [i, j, Pij] denotes the cost of longest simple path from i to j,
where Pij is the sequence of intermediate vertices between i and j on this path.
The following recurrence relation works correctly to compute this, where P + x
denotes appending x to the end of P :

LP [i, j, Pij] = max
j
∈Pix

(x,j)∈E
Pij=Pix+j

LP [i, x, Pix] + c(x, j)

This formulation is correct, but how efficient is it? The path Pij consists
of an ordered sequence of up to n − 3 vertices, so there can be up to (n − 3)!
such paths! Indeed, this algorithm is really using combinatorial search (like
backtracking) to construct all the possible intermediate paths. In fact, the max
here is somewhat misleading, as there can only be one value of Pij to construct
the state LP [i, j, Pij].

We can do something better with this idea, however. Let LP ′[i, j, Sij] denote
the longest simple path from i to j, where where Sij is the set of the intermediate
vertices on this path. Thus, if Sij = {a, b, c, i, j}, there are exactly six paths
consistent with Sij : iabcj, iacbj, ibacj, ibcaj, icabj, and icbaj. This state space
has at most 2n elements, and is thus smaller than the enumeration of all the
paths. Further, this function can be evaluated using the following recurrence
relation:

LP ′[i, j, Sij] = max
j
∈Six

(x,j)∈E
Sij=Six∪{j}

LP ′[i, x, Six] + c(x, j)

342 CHAPTER 10. DYNAMIC PROGRAMMING

where S ∪ {x} denotes unioning S with x.
The longest simple path from i to j can then be found by maximizing over

all possible intermediate vertex subsets:

LP [i, j] = max
S

LP ′[i, j, S]

There are only 2n subsets of n vertices, so this is a big improvement over
enumerating all n! tours. Indeed, this method can be used to solve TSPs for up
to thirty vertices or more, where n = 20 would be impossible using the O(n!)
algorithm. Still, dynamic programming proves most effective on well-ordered
objects.

Take-Home Lesson: Without an inherent left-to-right ordering on the ob-
jects, dynamic programming is usually doomed to require exponential space
and time.

10.10 War Story: What’s Past is Prolog

“But our heuristic works very, very well in practice.” My colleague was simul-
taneously boasting and crying for help.

Unification is the basic computational mechanism in logic programming lan-
guages like Prolog. A Prolog program consists of a set of rules, where each rule
has a head and an associated action whenever the rule head matches or unifies
with the current computation.

An execution of a Prolog program starts by specifying a goal, say p(a,X, Y),
where a is a constant andX and Y are variables. The system then systematically
matches the head of the goal with the head of each of the rules that can be unified
with the goal. Unification means binding the variables with the constants, if it
is possible to match them. For the nonsense program below, p(X,Y, a) unifies
with either of the first two rules, since X and Y can be bound to match the
extra characters. The goal p(X,X, a) would only match the first rule, since the
variable bound to the first and second positions must be the same.

p(a, a, a) := h(a);
p(b, a, a) := h(a) ∗ h(b);
p(c, b, b) := h(b) + h(c);
p(d, b, b) := h(d) + h(b);

“In order to speed up unification, we want to preprocess the set of rule
heads so that we can quickly determine which rules match a given goal. We
must organize the rules in a trie data structure for fast unification.”

Tries are extremely useful data structures in working with strings, as dis-
cussed in Section 15.3 (page 448). Every leaf of the trie represents one string.
Each node on the path from root to leaf is labeled with exactly one character
of the string, with the ith node of the path corresponding to the string’s ith
character.

10.10. WAR STORY: WHAT’S PAST IS PROLOG 343

a a

aa

a

b b

b

b c d

dca

a

a

b

b

b

b

dbbcbbbaaaaa aaa baa cbb dbb

1

2 2 2 2

3 3 3 3

2

3 3

1 1

Figure 10.11: Two different tries for the same set of Prolog rule heads, where
the trie on the right has four less edges.

“I agree. A trie is a natural way to represent your rule heads. Building a
trie on a set of strings of characters is straightforward: just insert the strings
starting from the root. So what is your problem?” I asked.

“The efficiency of our unification algorithm depends very much on minimiz-
ing the number of edges in the trie. Since we know all the rules in advance,
we have the freedom to reorder the character positions in the rules. Instead of
the root node always representing the first argument in the rule, we can choose
to have it represent the third argument. We would like to use this freedom to
build a minimum-size trie for a set of rules.”

He showed me the example in Figure 10.11. A trie constructed according to
the original string position order (1, 2, 3) uses a total of 12 edges. However, by
permuting the character order to (2, 3, 1) on both sides, we could obtain a trie
with only 8 edges.

“Interesting. . . ” I started to reply before he cut me off again.
“There’s one other constraint. We must keep the leaves of the trie ordered,

so that the leaves of the underlying tree go left to right in the same order as the
rules appear on the page. The order of rules in Prolog programs is very, very
important. If you change the order of the rules, the program returns different
results.”

Then came my mission.
“We have a greedy heuristic for building good, but not optimal, tries that

picks as the root the character position that minimizes the degree of the root.
In other words, it picks the character position that has the smallest number of
distinct characters in it. This heuristic works very, very well in practice. But
we need you to prove that finding the best trie is NP-complete so our paper is,
well, complete.”

I agreed to try to prove the hardness of the problem, and chased him from my
office. The problem did seem to involve some nontrivial combinatorial optimiza-
tion to build the minimal tree, but I couldn’t see how to factor the left-to-right
order of the rules into a hardness proof. In fact, I couldn’t think of any NP-

344 CHAPTER 10. DYNAMIC PROGRAMMING

complete problem that had such a left-to-right ordering constraint. After all, if
a given set of n rules contained a character position in common to all the rules,
this character position must be probed first in any minimum-size tree. Since the
rules were ordered, each node in the subtree must represent the root of a run of
consecutive rules. Thus, there were only

(
n
2

)
possible nodes to choose from for

this tree. . . .

Bingo! That settled it.

The next day I went back to my colleague and told him. “I can’t prove
that your problem is NP-complete. But how would you feel about an efficient
dynamic programming algorithm to find the best possible trie!” It was a pleasure
watching his frown change to a smile as the realization took hold. An efficient
algorithm to compute what you need is infinitely better than a proof saying you
can’t do it!

My recurrence looked something like this. Suppose that we are given n
ordered rule heads s1, . . . , sn, each with m arguments. Probing at the pth
position, 1 ≤ p ≤ m, partitions the rule heads into runs R1, . . . , Rr, where each
rule in a given run Rx = si, . . . , sj has the same character value as si[p]. The
rules in each run must be consecutive, so there are only

(
n
2

)
possible runs to

worry about. The cost of probing at position p is the cost of finishing the trees
formed by each created run, plus one edge per tree to link it to probe p:

C[i, j] =
m
min
p=1

(
r∑

k=1

(C[ik, jk] + 1)

)

A graduate student immediately set to work implementing this algorithm to
compare with their heuristic. On many inputs, the optimal and greedy algo-
rithms constructed the exact same trie. However, for some examples, dynamic
programming gave a 20% performance improvement over greedy—that is, 20%
better than very, very well in practice. The run time spent in doing the dynamic
programming was a bit larger than with greedy, but in compiler optimization
you are always happy to trade off a little extra compilation time for better exe-
cution time in the performance of your program. Is a 20% improvement worth
this effort? That depends upon the situation. How useful would you find a 20%
increase in your salary?

The fact that the rules had to remain ordered was the crucial property that
we exploited in the dynamic programming solution. Indeed, without it I was
able to prove that the problem was NP-complete with arbitrary rule orderings,
something we put in the paper to make it complete.

Take-Home Lesson: The global optimum (found perhaps using dynamic pro-
gramming) is often noticeably better than the solution found by typical heuris-
tics. How important this improvement is depends on your application, but it
can never hurt.

10.11. EXERCISES 345

Chapter Notes

Bellman [Bel58] is credited with inventing the technique of dynamic program-
ming. The edit distance algorithm is originally due to Wagner and Fischer
[WF74]. A faster algorithm for the book partition problem appears in Khanna
et al. [KMS97].

Techniques such as dynamic programming and backtracking can be used
to generate worst-case efficient (although still non-polynomial) algorithms for
many NP-complete problems. See Downey and Fellows [DF12] and Woeginger
[Woe03] for nice surveys of such techniques.

More details about the war stories in this chapter are available in published
papers. See Dawson et al. [DRR+95] for more on the Prolog trie minimization
problem. Our algorithm for phase-balancing power loads from Section 10.6
(page 331) is reported in Wang et al. [WSR13]. Two-dimensional bar codes,
presented in Section 10.4 (page 326), were developed largely through the efforts
of Theo Pavlidis and Ynjiun Wang at Stony Brook [PSW92].

The dynamic programming algorithm presented for parsing is known as
the CKY algorithm after its three independent inventors (Cocke, Kasami, and
Younger). See [You67]. The generalization of parsing to edit distance is due to
Aho and Peterson [AP72].

10.11 Exercises

Elementary Recurrences

10-1. [3] Up to k steps in a single bound! A child is running up a staircase with n
steps and can hop between 1 and k steps at a time. Design an algorithm to
count how many possible ways the child can run up the stairs, as a function of
n and k. What is the running time of your algorithm?

10-2. [3] Imagine you are a professional thief who plans to rob houses along a street
of n homes. You know the loot at house i is worth mi, for 1 ≤ i ≤ n, but you
cannot rob neighboring houses because their connected security systems will
automatically contact the police if two adjacent houses are broken into. Give an
efficient algorithm to determine the maximum amount of money you can steal
without alerting the police.

10-3. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-
point free throws. Give an algorithm that computes how many possible mixes
(1s,2s,3s) of scoring add up to a given n. For n = 5 there are four possible
solutions: (5, 0, 0), (2, 0, 1), (1, 2, 0), and (0, 1, 1).

10-4. [5] Basketball games are a sequence of 2-point shots, 3-point shots, and 1-point
free throws. Give an algorithm that computes how many possible scoring se-
quences add up to a given n. For n = 5 there are thirteen possible sequences,
including 1-2-1-1, 3-2, and 1-1-1-1-1.

10-5. [5] Given an s × t grid filled with non-negative numbers, find a path from top
left to bottom right that minimizes the sum of all numbers along its path. You
can only move either down or right at any point in time.

346 CHAPTER 10. DYNAMIC PROGRAMMING

(a) Give a solution based on Dijkstra’s algorithm. What is its time complexity
as a function of s and t?

(b) Give a solution based on dynamic programming. What is its time complexity
as a function of s and t?

Edit Distance

10-6. [3] Typists often make transposition errors exchanging neighboring characters,
such as typing “setve” for “steve.” This requires two substitutions to fix under
the conventional definition of edit distance.

Incorporate a swap operation into our edit distance function, so that such neigh-
boring transposition errors can be fixed at the cost of one operation.

10-7. [4] Suppose you are given three strings of characters: X, Y , and Z, where
|X| = n, |Y | = m, and |Z| = n + m. Z is said to be a shuffle of X and Y iff
Z can be formed by interleaving the characters from X and Y in a way that
maintains the left-to-right ordering of the characters from each string.

(a) Show that cchocohilaptes is a shuffle of chocolate and chips, but chocochi-
latspe is not.

(b) Give an efficient dynamic programming algorithm that determines whether
Z is a shuffle of X and Y . (Hint: the values of the dynamic programming
matrix you construct should be Boolean, not numeric.)

10-8. [4] The longest common substring (not subsequence) of two strings X and Y is
the longest string that appears as a run of consecutive letters in both strings.
For example, the longest common substring of photograph and tomography is
ograph.

(a) Let n = |X| and m = |Y |. Give a Θ(nm) dynamic programming algo-
rithm for longest common substring based on the longest common subse-
quence/edit distance algorithm.

(b) Give a simpler Θ(nm) algorithm that does not rely on dynamic program-
ming.

10-9. [6] The longest common subsequence (LCS) of two sequences T and P is the
longest sequence L such that L is a subsequence of both T and P . The shortest
common supersequence (SCS) of T and P is the smallest sequence L such that
both T and P are a subsequence of L.

(a) Give efficient algorithms to find the LCS and SCS of two given sequences.

(b) Let d(T, P) be the minimum edit distance between T and P when no
substitutions are allowed (i.e., the only changes are character insertion
and deletion). Prove that d(T, P) = |SCS(T, P)| − |LCS(T, P)| where
|SCS(T, P)| (|LCS(T, P)|) is the size of the shortest SCS (longest LCS)
of T and P .

10-10. [5] Suppose you are given n poker chips stacked in two stacks, where the edges
of all chips can be seen. Each chip is one of three colors. A turn consists of
choosing a color and removing all chips of that color from the tops of the stacks.
The goal is to minimize the number of turns until the chips are gone.

For example, consider the stacks (RRGG,GBBB). Playing red, green, and
then blue suffices to clear the stacks in three moves. Give an O(n2) dynamic
programming algorithm to find the best strategy for a given pair of chip piles.

10.11. EXERCISES 347

Greedy Algorithms

10-11. [4] Let P1, P2, . . . , Pn be n programs to be stored on a disk with capacity D
megabytes. Program Pi requires si megabytes of storage. We cannot store them
all because D <

∑n
i=1 si

(a) Does a greedy algorithm that selects programs in order of non-decreasing
si maximize the number of programs held on the disk? Prove or give a
counter-example.

(b) Does a greedy algorithm that selects programs in order of non-increasing
si use as much of the capacity of the disk as possible? Prove or give a
counter-example.

10-12. [5] Coins in the United States are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1, . . . , dk} units. We seek an algorithm to make change of n units using the
minimum number of this country’s coins.

(a) The greedy algorithm repeatedly selects the biggest coin no bigger than
the amount to be changed and repeats until it is zero. Show that the greedy
algorithm does not always use the minimum number of coins in a country whose
denominations are {1, 6, 10}.
(b) Give an efficient algorithm that correctly determines the minimum number
of coins needed to make change of n units using denominations {d1, . . . , dk}.
Analyze its running time.

10-13. [5] In the United States, coins are minted with denominations of 1, 5, 10, 25, and
50 cents. Now consider a country whose coins are minted with denominations
of {d1, . . . , dk} units. We want to count how many distinct ways C(n) there are
to make change of n units. For example, in a country whose denominations are
{1, 6, 10}, C(5) = 1, C(6) to C(9) = 2, C(10) = 3, and C(12) = 4.

(a) How many ways are there to make change of 20 units from {1, 6, 10}?

(b) Give an efficient algorithm to compute C(n), and analyze its complex-
ity. (Hint: think in terms of computing C(n, d), the number of ways to
make change of n units with highest denomination d. Be careful to avoid
overcounting.)

10-14. [6] In the single-processor scheduling problem, we are given a set of n jobs J .
Each job i has a processing time ti, and a deadline di. A feasible schedule
is a permutation of the jobs such that when the jobs are performed in that
order, every job is finished before its deadline. The greedy algorithm for single-
processor scheduling selects the job with the earliest deadline first.

Show that if a feasible schedule exists, then the schedule produced by this greedy
algorithm is feasible.

348 CHAPTER 10. DYNAMIC PROGRAMMING

Number Problems

10-15. [3] You are given a rod of length n inches and a table of prices obtainable for
rod-pieces of size n or smaller. Give an efficient algorithm to find the maximum
value obtainable by cutting up the rod and selling the pieces. For example, if
n = 8 and the values of different pieces are:

length 1 2 3 4 5 6 7 8

price 1 5 8 9 10 17 17 20

then the maximum obtainable value is 22, by cutting into pieces of lengths 2
and 6.

10-16. [5] Your boss has written an arithmetic expression of n terms to compute your
annual bonus, but permits you to parenthesize it however you wish. Give an
efficient algorithm to design the parenthesization to maximize the value. For
the expression:

6 + 2× 0− 4

there exist parenthesizations with values ranging from −32 to 2.

10-17. [5] Given a positive integer n, find an efficient algorithm to compute the smallest
number of perfect squares (e.g. 1, 4, 9, 16, . . .) that sum to n. What is the running
time of your algorithm?

10-18. [5] Given an array A of n integers, find an efficient algorithm to compute the
largest sum of a continuous run. For A = [−3, 2, 7,−3, 4,−2, 0, 1], the largest
such sum is 10, from the second through fifth positions.

10-19. [5] Two drivers have to divide up m suitcases between them, where the weight
of the ith suitcase is wi. Give an efficient algorithm to divide up the loads so
the two drivers carry equal weight, if possible.

10-20. [6] The knapsack problem is as follows: given a set of integers S = {s1, s2, . . . , sn},
and a given target number T , find a subset of S that adds up exactly to T . For
example, within S = {1, 2, 5, 9, 10} there is a subset that adds up to T = 22 but
not T = 23.

Give a dynamic programming algorithm for knapsack that runs in O(nT) time.

10-21. [6] The integer partition takes a set of positive integers S = {s1, . . . , sn} and
seeks a subset I ⊂ S such that

∑

i∈I

si =
∑

i/∈I

si

Let
∑

i∈S si = M . Give an O(nM) dynamic programming algorithm to solve
the integer partition problem.

10-22. [5] Assume that there are n numbers (some possibly negative) on a circle, and
we wish to find the maximum contiguous sum along an arc of the circle. Give
an efficient algorithm for solving this problem.

10-23. [5] A certain string processing language allows the programmer to break a string
into two pieces. It costs n units of time to break a string of n characters into
two pieces, since this involves copying the old string. A programmer wants to
break a string into many pieces, and the order in which the breaks are made can
affect the total amount of time used. For example, suppose we wish to break

10.11. EXERCISES 349

a 20-character string after characters 3, 8, and 10. If the breaks are made in
left-to-right order, then the first break costs 20 units of time, the second break
costs 17 units of time, and the third break costs 12 units of time, for a total of
49 units. If the breaks are made in right-to-left order, the first break costs 20
units of time, the second break costs 10 units of time, and the third break costs
8 units of time, for a total of only 38 units.

Give a dynamic programming algorithm that takes a list of character positions
after which to break and determines the cheapest break cost in O(n3) time.

10-24. [5] Consider the following data compression technique. We have a table of m
text strings, each at most k in length. We want to encode a data string D of
length n using as few text strings as possible. For example, if our table contains
(a,ba,abab,b) and the data string is bababbaababa, the best way to encode it is
(b,abab,ba,abab,a)—a total of five code words. Give an O(nmk) algorithm to
find the length of the best encoding. You may assume that every string has at
least one encoding in terms of the table.

10-25. [5] The traditional world chess championship is a match of 24 games. The
current champion retains the title in case the match is a tie. Each game ends
in a win, loss, or draw (tie) where wins count as 1, losses as 0, and draws as
1/2. The players take turns playing white and black. White plays first and so
has an advantage. The champion plays white in the first game. The champ has
probabilities ww, wd, and wl of winning, drawing, and losing playing white, and
has probabilities bw, bd, and bl of winning, drawing, and losing playing black.

(a) Write a recurrence for the probability that the champion retains the title.
Assume that there are g games left to play in the match and that the
champion needs to get i points (which may be a multiple of 1/2).

(b) Based on your recurrence, give a dynamic programming algorithm to cal-
culate the champion’s probability of retaining the title.

(c) Analyze its running time for an n game match.

10-26. [8] Eggs break when dropped from great enough height. Specifically, there must
be a floor f in any sufficiently tall building such that an egg dropped from the
fth floor breaks, but one dropped from the (f − 1)st floor will not. If the egg
always breaks, then f = 1. If the egg never breaks, then f = n+ 1.

You seek to find the critical floor f using an n-floor building. The only operation
you can perform is to drop an egg off some floor and see what happens. You
start out with k eggs, and seek to make as few drops as possible. Broken eggs
cannot be reused. Let E(k, n) be the minimum number of egg drops that will
always suffice.

(a) Show that E(1, n) = n.

(b) Show that E(k, n) = Θ(n
1
k).

(c) Find a recurrence for E(k, n). What is the running time of the dynamic
program to find E(k, n)?

350 CHAPTER 10. DYNAMIC PROGRAMMING

Graph Problems

10-27. [4] Consider a city whose streets are defined by an X×Y grid. We are interested
in walking from the upper left-hand corner of the grid to the lower right-hand
corner.

Unfortunately, the city has bad neighborhoods, whose intersections we do not
want to walk in. We are given an X × Y matrix bad, where bad[i,j] = “yes” iff
the intersection between streets i and j is in a neighborhood to avoid.

(a) Give an example of the contents of bad such that there is no path across the
grid avoiding bad neighborhoods.

(b) Give an O(XY) algorithm to find a path across the grid that avoids bad
neighborhoods.

(c) Give an O(XY) algorithm to find the shortest path across the grid that
avoids bad neighborhoods. You may assume that all blocks are of equal length.
For partial credit, give an O(X2Y 2) algorithm.

10-28. [5] Consider the same situation as the previous problem. We have a city whose
streets are defined by an X × Y grid. We are interested in walking from the
upper left-hand corner of the grid to the lower right-hand corner. We are given
an X ×Y matrix bad, where bad[i,j] = “yes” iff the intersection between streets
i and j is somewhere we want to avoid.

If there were no bad neighborhoods to contend with, the shortest path across
the grid would have length (X − 1) + (Y − 1) blocks, and indeed there would
be many such paths across the grid. Each path would consist of only rightward
and downward moves.

Give an algorithm that takes the array bad and returns the number of safe paths
of length X + Y − 2. For full credit, your algorithm must run in O(XY).

10-29. [5] You seek to create a stack out of n boxes, where box i has width wi, height
hi, and depth di. The boxes cannot be rotated, and can only be stacked on
top of one another when each box in the stack is strictly larger than the box
above it in width, height, and depth. Give an efficient algorithm to construct
the tallest possible stack, where the height is the sum of the heights of each box
in the stack.

Design Problems

10-30. [4] Consider the problem of storing n books on shelves in a library. The order
of the books is fixed by the cataloging system and so cannot be rearranged.
Therefore, we can speak of a book bi, where 1 ≤ i ≤ n, that has a thickness ti
and height hi. The length of each bookshelf at this library is L.

Suppose all the books have the same height h (i.e., h = hi for all i) and the
shelves are all separated by a distance greater than h, so any book fits on any
shelf. The greedy algorithm would fill the first shelf with as many books as
we can until we get the smallest i such that bi does not fit, and then repeat
with subsequent shelves. Show that the greedy algorithm always finds the book
placement that uses the minimum number of shelves, and analyze its time com-
plexity.

10-31. [6] This is a generalization of the previous problem. Now consider the case where
the height of the books is not constant, but we have the freedom to adjust the
height of each shelf to that of the tallest book on the shelf. Here the cost of a
particular layout is the sum of the heights of the largest book on each shelf.

10.11. EXERCISES 351

• Give an example to show that the greedy algorithm of stuffing each shelf
as full as possible does not always give the minimum overall height.

• Give an algorithm for this problem, and analyze its time complexity. (Hint:
use dynamic programming.)

10-32. [5] Consider a linear keyboard of lowercase letters and numbers, where the left-
most 26 keys are the letters A–Z in order, followed by the digits 0–9 in order,
followed by the 30 punctuation characters in a prescribed order, and ended on a
blank. Assume you start with your left index finger on the “A” and your right
index finger on the blank.

Give a dynamic programming algorithm that finds the most efficient way to type
a given text of length n, in terms of minimizing total movement of the fingers
involved. For the text ABABABAB . . . ABAB, this would involve shifting both
fingers all the way to the left side of the keyboard. Analyze the complexity of
your algorithm as a function of n and k, the number of keys on the keyboard.

10-33. [5] You have come back from the future with an array G, where G[i] tells you
the price of Google stock i days from now, for 1 ≤ i ≤ n. You seek to use
this information to maximize your profit, but are only permitted to complete at
most one transaction (i.e. either buy one or sell one share of the stock) per day.
Design an efficient algorithm to construct the buy–sell sequence to maximize
your profit. Note that you cannot sell a share unless you currently own one.

10-34. [8] You are given a string of n characters S = s1 . . . sn, which you believe to
be a compressed text document in which all spaces have been removed, like
itwasthebestoftimes.

(a) You seek to reconstruct the document using a dictionary, which is available
in the form of a Boolean function dict(w), where dict(w) is true iff string w is
a valid word in the language. Give an O(n2) algorithm to determine whether
string S can be reconstituted as a sequence of valid words, assuming calls to
dict(w) take unit time.

(b) Now assume you are given the dictionary as a set of m words each of length
at most l. Give an efficient algorithm to determine whether string S can be
reconstituted as a sequence of valid words, and its running time.

10-35. [8] Consider the following two-player game, where you seek to get the biggest
score. You start with an n-digit integer N . With each move, you get to take
either the first digit or the last digit from what is left of N , and add that to
your score, with your opponent then doing the same thing to the now smaller
number. You continue taking turns removing digits until none are left. Give an
efficient algorithm that finds the best possible score that the first player can get
for a given digit string N , assuming the second player is as smart as can be.

10-36. [6] Given an array of n real numbers, consider the problem of finding the max-
imum sum in any contiguous subarray of the input. For example, in the array

[31,−41, 59, 26,−53, 58, 97,−93,−23, 84]

the maximum is achieved by summing the third through seventh elements, where
59+26+(−53)+58+97 = 187. When all numbers are positive, the entire array
is the answer, while when all numbers are negative, the empty array maximizes
the total at 0.

352 CHAPTER 10. DYNAMIC PROGRAMMING

• Give a simple and clear Θ(n2)-time algorithm to find the maximum con-
tiguous subarray.

• Now give a Θ(n)-time dynamic programming algorithm for this problem.
To get partial credit, you may instead give a correct O(n log n) divide-and-
conquer algorithm.

10-37. [7] Consider the problem of examining a string x = x1x2 . . . xn from an alphabet
of k symbols, and a multiplication table over this alphabet. Decide whether or
not it is possible to parenthesize x in such a way that the value of the resulting
expression is a, where a belongs to the alphabet. The multiplication table is
neither commutative or associative, so the order of multiplication matters.

a b c

a a c c
b a a b
c c c c

For example, consider the above multiplication table and the string bbbba. Paren-
thesizing it (b(bb))(ba) gives a, but ((((bb)b)b)a) gives c.

Give an algorithm, with time polynomial in n and k, to decide whether such
a parenthesization exists for a given string, multiplication table, and goal sym-
bol.

10-38. [6] Let α and β be constants. Assume that it costs α to go left in a binary
search tree, and β to go right. Devise an algorithm that builds a tree with
optimal expected query cost, given keys k1, . . . , kn and the probabilities that
each will be searched p1, . . . , pn.

Interview Problems

10-39. [5] Given a set of coin denominations, find the minimum number of coins to
make a certain amount of change.

10-40. [5] You are given an array of n numbers, each of which may be positive, negative,
or zero. Give an efficient algorithm to identify the index positions i and j to
obtain the maximum sum of the ith through jth numbers.

10-41. [7]Observe that when you cut a character out of a magazine, the character on the
reverse side of the page is also removed. Give an algorithm to determine whether
you can generate a given string by pasting cutouts from a given magazine.
Assume that you are given a function that will identify the character and its
position on the reverse side of the page for any given character position.

LeetCode

10-1. https://leetcode.com/problems/binary-tree-cameras/

10-2. https://leetcode.com/problems/edit-distance/

10-3. https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/

https://leetcode.com/problems/binary-tree-cameras/
https://leetcode.com/problems/edit-distance/
https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/

10.11. EXERCISES 353

HackerRank

10-1. https://www.hackerrank.com/challenges/ctci-recursive-staircase/

10-2. https://www.hackerrank.com/challenges/coin-change/

10-3. https://www.hackerrank.com/challenges/longest-increasing-subsequent/

Programming Challenges

These programming challenge problems with robot judging are available at
https://onlinejudge.org:

10-1. “Is Bigger Smarter?”—Chapter 11, problem 10131.

10-2. “Weights and Measures”—Chapter 11, problem 10154.

10-3. “Unidirectional TSP”—Chapter 11, problem 116.

10-4. “Cutting Sticks”—Chapter 11, problem 10003.

10-5. “Ferry Loading”—Chapter 11, problem 10261.

https://www.hackerrank.com/challenges/ctci-recursive-staircase/
https://www.hackerrank.com/challenges/coin-change/
https://www.hackerrank.com/challenges/longest-increasing-subsequent/
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=28

	Chapter 10 Dynamic Programming
	10.1 Caching vs. Computation
	10.1.1 Fibonacci Numbers by Recursion
	10.1.2 Fibonacci Numbers by Caching
	10.1.3 Fibonacci Numbers by Dynamic Programming
	10.1.4 Binomial Coefficients

	10.2 Approximate String Matching
	10.2.1 Edit Distance by Recursion
	10.2.2 Edit Distance by Dynamic Programming
	10.2.3 Reconstructing the Path
	10.2.4 Varieties of Edit Distance

	10.3 Longest Increasing Subsequence
	10.4 War Story: Text Compression for Bar Codes
	10.5 Unordered Partition or Subset Sum
	10.6 War Story: The Balance of Power
	10.7 The Ordered Partition Problem
	10.8 Parsing Context-Free Grammars
	10.9 Limitations of Dynamic Programming: TSP
	10.9.1 When is Dynamic Programming Correct?
	10.9.2 When is Dynamic Programming Efficient?

	10.10 War Story: What's Past is Prolog
	10.11 Exercises

