
Deep Dive

InfoWorld.com deep dive series 6

Because Bash
has become
the de-facto
standard shell
on most Unix-
like operating
systems and
can gener-
ally be found
everywhere,
it makes an
excellent
place to start.

How to script:
 a BASH course

Few aspects of Unix system administration are

more intimate than the relationship between the

admin and their chosen shell. After all, the shell

is the most fundamental interface to the system,

the conduit for all command-line interactions.

Thus, it’s important to have a solid foundation in

whatever shell you choose.

There are many different shells available,

from Ash to Zsh. They all differ in many ways,

and some (such as Csh and Tcsh) vary wildly from

the others. Each has its selling points. However,

because Bash has become the de-facto standard

shell on most Unix-like operating systems and

can generally be found everywhere, it makes an

excellent place to start, even if you ultimately

choose a different shell for daily use.

This is not designed to be an exhaustive

tutorial, but is structured to introduce you to

shells in general and Bash in particular, touching

on many common aspects and elements of the

shell. It is intended to provide a basic under-

standing of Bash, from the shell prompt to

beginning scripting.

Command-line essentials
When you ssh into a Unix-like system, the system

looks up your user account information and

spawns a new shell process based on your prefer-

ences. This shell process is then connected to the

ssh session, and you’ve logged into the system.

The shell then presents you with a prompt:

[myname@lab1 ~]$

This prompt is fully configurable, and the

different distributions have different ways of

L I N UX A d m in E ssen t ials
S

H
U

T
T

E
R

S
T

O
C

K

An easy step-by-step guide to the Bash
command-line shell and shell scripting
Paul Venezia

Deep Dive

InfoWorld.com deep dive series 7

Bash supports
tab comple-
tion, which
means that if
you type only a
few characters
of a filename
or command,
then hit the
Tab key, Bash
will automati-
cally complete
the rest of the
name.

L I N UX A d m in E ssen t ials

presenting it. Without any configuration, the

prompt would simply be $. The dollar sign signi-

fies that the shell session has the privileges of

a regular user, not a privileged user or adminis-

trator. If you log in to a root shell, the dollar sign

changes to a hash:

[root@lab1 ~]#

The prompts above contain the username,

the @ symbol, and the hostname of the system,

followed by the current working directory. In this

case, we’re in our home directory, which is repre-

sented by the tilde. There are all kinds of ways

that you can modify your prompt to better suit

your workflow. The settings are stored in the PS1

environment variable. The prompt shown above

is constructed like this:

[\u@\h \W]\$

This means that the shell expands \u to the

username, \h to the hostname, and \W to the

working directory. Other special characters can

be added to the prompt as well. You can find a

list in the Bash man page (more on that later).

But we now have a Bash prompt, and we

can start using the shell to navigate around the

system.

The basic file system navigation command

is cd, short for “change directory.” This is fairly

self-explanatory, though note that cd .. will

move you down a directory in the tree and just

cd (when not followed by a directory name) will

return you to your home directory. The other most

common file system interaction is ls, short for

“list.” The ls command will show the files and

directories within the current working directory.

Bash supports tab completion, which means

that if you type only a few characters of a file-

name or command, then hit the Tab key, Bash

will automatically complete the rest of the name.

Tab completion often comes in handy, especially

with large file names. Bash is smart about this. It

knows when you’re trying to enter a command

or reference a file, and if you don’t type enough

unique characters to define a single command

or file, it will show you the options that fit the

characters you entered.

A few command options come in handy

when performing normal file system naviga-

tion. The -la option causes ls to show more

information about the files and directories in the

current directory. It will show permissions, owner,

size, and the time stamp for each file and direc-

tory. Another handy command is -lat, which

will show a list of files with the newest files at

the top:

[myname@lab1 ~]$ ls -lat

You might find that in some directories there

are so many files that the list scrolls off the top

of the terminal window. This is where one of the

most fundamental aspects of shell interaction

comes into play: the Unix pipe.

The pipe is represented by the vertical bar,

|. It functions just as you might guess, allowing

the output of one command to be “piped” into

the input of another command. This allows you

to string together many commands at once

to modify the output on the screen, to cause

certain actions to be taken on a set of files, or

something similar.

For example, we might want to use the less

command to introduce pagination into our file

listing. Thus, we would enter:

[myname@lab1 ~]$ ls -lat | less

 This would pass the output of the ls
-lat command to less. The less command

allows us to view the output a page at a time by

pressing the space bar or to advance the text by

pressing the Enter key.

Another common example of using a pipe is

to manipulate entries in a text file. For instance,

we might have a file named names.txt that has

hundreds or thousands of names entered, one

per line, like so:

Jack
John
Mary
Steven
Mark
Steven
Mary

Deep Dive

InfoWorld.com deep dive series 8

Globs are
Bash’s method
of pattern
matching.
Bash doesn’t
have regular
expressions,
so globs are
used to make it
easier to work
on multiple files
that match a
single pattern.

L I N UX A d m in E ssen t ials

Notice that the file contains some duplicates. Let’s say we want to alphabetize the list and remove

the duplicate entries. This can quickly and easily be done with one line:

[myname@lab1 ~]$ sort names.txt | uniq

This command causes the shell to invoke the sort tool to sort the list, then pipe the output to

uniq, which removes all the duplicate lines. Now, we probably want that output to go into another

file, so we’d instruct the shell to create a new file and place the output there:

[myname@lab1 ~]$ sort names.txt | uniq > sortednames.txt

Here we’ve used shell output redirection to create the new file called sortednames.txt with the

output of the previous commands. The shell uses < and > as directional markers, as well as << and

>>. There’s a vital difference between these, as the single > will cause a file to be overwritten, whereas
>> will cause the output to be appended to any data already in the file. It’s important to get this

straight early on, or you may find that you have unwittingly deleted the contents of a file that you

intended to add content to.

The < symbol is used to direct text or command output from one file to another or back to a

program. For instance, you might have a file that contains some commands that you want another

program to run. Thus, you might enter:

[myname@lab1 ~]$ myprogram < ./mycommands.txt

Many other Bash operators can be used in normal shell sessions or in Bash scripting, but we’ve

covered the major ones. A full listing can be found in the Bash man page, which is accessible by typing

man bash. It’s a lengthy document, but then again, shells do quite a lot, and all of that functionality

needs to be documented.

Special Bash files
There are a few special files in your home directory that Bash reads when you start a new shell. These

are .bash_profile, .bashrc, .bash_history, and .bash_logout. Note that the file names start with a

period, which designates them as hidden files. To see them in a directory listing, you have to use the -a

switch with ls, or ls -a.

The .bash_history file contains the commands you’ve entered into the shell. These can be viewed by

running the history command. The .bash_profile and .bashrc files contain special instructions to create

your environment by setting aliases, environment variables such as your path, and any other variables

you wish to set or commands you want to run. For instance, you might add this line to .bashrc:

export PS1=’[\u@\h \W - \d]\

It would set your prompt to show the date:

[myname@lab1 ~ - Mon Feb 25]$

You can also set aliases in your .bashrc file. Aliases are a handy way to reduce typing for common

commands. For instance, if you find that you’re constantly having to type something like cd ~/myfiles/

documents/project1/data, you might want add an alias to your .bashrc like so:

alias cdp1=’ cd ~/myfiles/documents/project1/data’

Deep Dive

InfoWorld.com deep dive series 9

File globs are
very different
from regular
expressions,
but they are
very handy
when working
with many files
or in scripting.

L I N UX A d m in E ssen t ials

Then you would only have to type to navigate to the directory.

The purpose of the .bash_logout file is to store commands to be run when you terminate the shell,

but it’s not used often.

File globbing
Globs are Bash’s method of pattern matching. Bash doesn’t have regular expressions, so globs are used

to make it easier to work on multiple files that match a single pattern.

A simple glob would be file.*. The asterisk matches anything, so this expression would match

files named file.1 and file.reallylongnamehere. Globs can get more complex and thus more useful. A

glob such as file.? narrows the options. This would match file.1 or file.2 or file.a, but would not

match file.11 or file.ab or file.reallylongnamehere. This is because the ? denotes a single character.

You can also use square brackets to reference multiple options, so file.[ab] would match file.a

and file.b but not file.c. Further, you can use brackets to select based on ranges of the alphabet or

numbers. Thus, file.[a-d] would match file.a, file.b, file.c, and file.d but not file.e. You can also

negate a match with the ^ character. Thus, file.[^ab] would match neither file.a nor file.b, but it would

match file.c.

File globs are very different from regular expressions, but they are very handy when working with

many files or in scripting.

Standard output and standard error
The two main methods that Bash uses to pass output from programs or scripts back to your session

are called stdout and stderr. These are used for normal output and error reporting, respectively. If a

program is running normally, it will use stdout to communicate with the session, but if something fails,

it will send errors through stderr instead. Among other things, this allows you to redirect normal or

error output from any program to a file instead of the screen.

You generally don’t have to worry too much about stdout and stderr when you’re just getting

started, but understanding what they are and what they do will be important when you get deeper

into Bash.

Background processing and job control
Although the shell might seem one-dimensional, in fact you can run many different jobs at the

same time. For instance, say you wanted to run a program that you knew would take a long time to

complete, and you had other things to do in the shell session in the meantime -- no need to just sit

and wait. Rather, tell Bash to run the process in the background. You do this by adding an ampersand

after the command line:

[myname@lab1 ~]$./longprocess.bin &
[1] 3104

The response below the command is Bash’s notification that you’ve started job No. 1, and its

process ID is 3104. The process will continue to run in the background until it completes. When it’s

done, Bash will let you know:

[1]+ Done ./longprocess.bin

If you had not added the & when you ran longprocess.bin, you would not get a Bash prompt

back until the job completed.

You can bring a background job back into the foreground by using the fg command. Likewise, you

can place a foreground job into the background by using the bg command. You can stop a process

Deep Dive

InfoWorld.com deep dive series 1 0

One of the
major func-
tions that Bash
provides is the
ability to run
commands in
a loop.

L I N UX A d m in E ssen t ials

that’s running in the foreground by hitting Ctrl-Z, then place it in the background by entering bg %1:

[myname@lab1 ~]$./longprocess.bin
[1]+ Stopped ./longprocess.bin
[myname@lab1 ~]$ bg %1
[1]+ ./longprocess.bin
[myname@lab1 ~]$

You can view a list of running jobs by using the jobs command:

[myname@lab1 ~]$ jobs
[1]+ Running ./longprocess1.bin
[2]+ Running ./longprocess2.bin

-afG
[3]+ Running ./longprocess3.bin -rT

You can use the fg command to bring one of them back into the foreground:

[myname@lab1 ~]$ fg %1
./longprocess1.bin

Note that any output produced by background processes will be shown in the shell, which can get

messy if there’s a lot of it. Fortunately, we can use our operators to tell Bash to send the output to /
dev/null, which will prevent it from displaying in our session:

[myname@lab1 ~]$./longprocess1.bin > /dev/null &

This will still show us error messages sent to stderr, but not output sent to stdout. If we wanted to redi-

rect stderr as well, we would type this:

[myname@lab1 ~]$./longprocess1.bin > /dev/null 2>&1 &

This tells Bash to send stderr (2) to the same place as stdout (1).

Bash loops
One of the major functions that Bash provides is the ability to run commands in a loop. Loops allow

you to quickly perform many functions on a file or set of files or just for general output.

For instance, you might use a loop to systematically and, very quickly, rename a large number of

files. Let’s say we have a directory full of files like so:

Info1.txt
Info2.txt
Info3.txt
Info4.txt
Info5.txt

These files have served their purpose, and now we need to rename each of them to Info#.txt.old.

Rather than manually typing in each name and using the mv (or move) command, we would be better

off using a for loop:

Deep Dive

InfoWorld.com deep dive series 1 1

Bash shell
scripting is
relatively easy
to learn,
and it can be
surprisingly
powerful.
You can use
shell scripts
to automate
common tasks
or perform any
other opera-
tion that you
could normally
run from the
command line.

L I N UX A d m in E ssen t ials

for i in ‘ls *.txt’; do mv $i $i.old; done

This is a very simple one-line loop command that will rename all the files ending in .txt to their

original name with .old appended at the end. Thus, our files are now named Info1.txt.old, Info2.txt.

old, and so forth.

What this loop is doing is using the output of the ls *.txt command as a list of file names,

which is represented by the variable $i. Bash will take each file name at a time, then run the mv $i
$i.old command, replacing the variable with the actual filename.

Bash provides other looping methods as well, such as while loops. You can use while loops to

keep performing functions until a certain condition is met. For instance, you might want to perform

some functions only on a few files, drawing on a text file with the names of those files. The while loop

would then be:

while read filename; do mv $filename $filename.old; done < ./filelist.txt

This command uses the < operator to redirect the contents of the filelist.txt file into the

loop, where each file name is placed into the $filename variable. As soon as there are no more lines to

be read from filelist.txt, the loop exits.

Bash shell scripting
Shell scripting plays a large role in the normal functions of a Unix-like system. Shell scripts are used

by many distributions to start system services at boot, and by a wide variety of software packages to

perform maintenance and configuration tasks. Shell scripting essentially forms the nuts and bolts of a

Unix-like system.

Bash shell scripting is relatively easy to learn, and it can be surprisingly powerful. You can use shell

scripts to automate common tasks or perform any other operation that you could normally run from

the command line. Every shell script starts out with the hashbang, or #!.

The hashbang is followed by the path to the executable that should run the script. It would typi-

cally be #!/bin/bash on most systems. The rest of the script follows.

Let’s take a look at a simple script that looks in one directory for files with names matching a glob

or filename pattern. It then uses grep to check for a particular text string in those files, and if it finds

it, it moves the file to a new directory.

#!/bin/bash
We declare two variables for the two directories
firstdir=dir1
seconddir=dir2
The for loop that moves the right files
for i in ‘grep -l matchpattern $firstdir/*’; do
 mv $i $seconddir
 echo $i
done

The first thing we do is declare two variables in the script: firstdir and seconddir. These

contain the directory names we’ll be working with. Then we create a for loop that uses grep to find

the names of files that contain the string matchpattern. The -l switch tells grep to output only

the name of files that match, rather than also displaying the match pattern itself. Thus, the $i vari-

able in the for loop contains the file name of a matching file every time the loop runs. If there are 10

matching files, the loop will run 10 times, with the $i variable containing the file name of the next

Deep Dive

InfoWorld.com deep dive series 1 2L I N UX A d m in E ssen t ials

matching file.

During each run of the loop, the mv command is used to move the file from firstdir to

seconddir. The script then echoes the file name back to standard output. This means that if you

run the script, you will see a list of files that have matched the pattern and have been moved to

seconddir.

Note that you can use a text editor such as pico, nano, or vim to create these scripts. Once you’ve

created the script (let’s name it script.sh), you will need either to make the script executable or

to run the script by calling Bash explicitly. You can make an executable script run simply by typing its

name on the command line (assuming it has the right permissions).

You make a script executable using the chmod command:

chmod +x script.sh

To run a script by calling Bash explicitly, enter:

bash ./script.sh

Now, let’s make this a little more complex and allow for the match pattern to be specified on the

command line:

#!/bin/bash
We declare two variables for the two directories
pattern=$1
firstdir=dir1
seconddir=dir2
The for loop that moves the right files
for i in ‘grep -l “$pattern” $firstdir/*’; do
 mv $i $seconddir
 echo $i
done

You can see here that we have a new variable called $pattern, which is set to $1. The expres-

sion $pattern=$1 tells Bash to take the first argument given to the script on the command line and

place it in the $pattern variable. The value of $pattern is then used by grep to find the files. If we

named this script movefiles.sh, we would run it like so:

./movefiles.sh matchpattern

Here’s an alternative:

./movefiles.sh otherpattern

Now we have a script that lets us search for any pattern we like. However, there are no protections

in place if the user does not enter an argument on the command line. In order to avoid problems, let’s

put in a little bit of error checking:

#!/bin/bash
if [-z $1]; then
 echo “No pattern given.”

Deep Dive

InfoWorld.com deep dive series 1 3L I N UX A d m in E ssen t ials

The more time
you spend
with Bash – or
with any shell
– the more
reflexes you
will develop
and the more
natural it
will feel.

 echo “Usage: $0 <pattern>”
 exit
fi
We declare two variables for the two directories
pattern=$1
firstdir=dir1
seconddir=dir2
The for loop that moves the right files
for i in ‘grep -l “$pattern” $firstdir/*’; do
 mv $i $seconddir
 echo $i
done

We’ve added a check at the top to make sure that something was entered on the command line.

We use the Bash built-in test mechanism to check if the length of $1 is nonzero. If the length of $1

is zero, then clearly nothing was entered. In that case, our if/then statement echoes that there was an

error, shows the proper usage of the script, then exits. Note the $0 here. That is a special variable that

contains the name of the script.

The Bash built-in test is represented by the [and] brackets. Bash will evaluate the statement

within the brackets and determine if it’s true or false or a variety of other qualifications. In this case,

we use the -z flag to test the length of the text in the $1 variable. If the length of $1 is nonzero (that

is, the statement in the brackets is false), the if/then statement skips processing and the script runs

normally. Testing is a relatively complex evaluation mechanism, and it can be used in myriad ways. You

can learn about the full scope of the tool by running man test.

The more time you spend with Bash -- or with any shell -- the more reflexes you will develop and

the more natural it will feel. Eventually you will stop thinking about the specific commands or opera-

tors. Instead, you will see only the end goal, and getting there will become a simple matter indeed.

We don’t think about moving a mouse to click a button in a GUI, and eventually, you won’t think

about which flags to use with ls or grep, or how to use pipes and operators and loops to manipu-

late some data. You’ll just do it.  n

Paul Venezia is a veteran *nix system and network architect, and senior contributing editor at Info-

World, where he writes analysis and reviews.

