
94 Chapter 5

Using fcntl() to modify open file status flags is particularly useful in the follow-
ing cases:

The file was not opened by the calling program, so that it had no control over
the flags used in the open() call (e.g., the file may be one of the three standard
descriptors that are opened before the program is started).

The file descriptor was obtained from a system call other than open(). Examples
of such system calls are pipe(), which creates a pipe and returns two file descrip-
tors referring to either end of the pipe, and socket(), which creates a socket and
returns a file descriptor referring to the socket.

To modify the open file status flags, we use fcntl() to retrieve a copy of the existing
flags, then modify the bits we wish to change, and finally make a further call to fcntl()
to update the flags. Thus, to enable the O_APPEND flag, we would write the following:

int flags;

flags = fcntl(fd, F_GETFL);
if (flags == -1)
 errExit("fcntl");
flags |= O_APPEND;
if (fcntl(fd, F_SETFL, flags) == -1)
 errExit("fcntl");

5.4 Relationship Between File Descriptors and Open Files

Up until now, it may have appeared that there is a one-to-one correspondence
between a file descriptor and an open file. However, this is not the case. It is possible—
and useful—to have multiple descriptors referring to the same open file. These file
descriptors may be open in the same process or in different processes.

To understand what is going on, we need to examine three data structures
maintained by the kernel:

the per-process file descriptor table;

the system-wide table of open file descriptions; and

the file system i-node table.

For each process, the kernel maintains a table of open file descriptors. Each entry in
this table records information about a single file descriptor, including:

a set of flags controlling the operation of the file descriptor (there is just one
such flag, the close-on-exec flag, which we describe in Section 27.4); and

a reference to the open file description.

The kernel maintains a system-wide table of all open file descriptions. (This table is
sometimes referred to as the open file table, and its entries are sometimes called open
file handles.) An open file description stores all information relating to an open file,
including:

the current file offset (as updated by read() and write(), or explicitly modified
using lseek());

Fi le I/O: Fur ther Detai l s 95

status flags specified when opening the file (i.e., the flags argument to open());

the file access mode (read-only, write-only, or read-write, as specified in open());

settings relating to signal-driven I/O (Section 63.3); and

a reference to the i-node object for this file.

Each file system has a table of i-nodes for all files residing in the file system. The i-node
structure, and file systems in general, are discussed in more detail in Chapter 14.
For now, we note that the i-node for each file includes the following information:

file type (e.g., regular file, socket, or FIFO) and permissions;

a pointer to a list of locks held on this file; and

various properties of the file, including its size and timestamps relating to dif-
ferent types of file operations.

Here, we are overlooking the distinction between on-disk and in-memory rep-
resentations of an i-node. The on-disk i-node records the persistent attributes
of a file, such as its type, permissions, and timestamps. When a file is accessed,
an in-memory copy of the i-node is created, and this version of the i-node
records a count of the open file descriptions referring to the i-node and the
major and minor IDs of the device from which the i-node was copied. The in-
memory i-node also records various ephemeral attributes that are associated
with a file while it is open, such as file locks.

Figure 5-2 illustrates the relationship between file descriptors, open file descrip-
tions, and i-nodes. In this diagram, two processes have a number of open file
descriptors.

Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes

fd 0

fd
flags

file
ptr

fd 2
fd 1

fd 20

Process A
File descriptor table

file
offset

status
flags

inode
ptr

0

86 5139

23

Open file table
(system-wide)

file
type

file
locks ...

I-node table
(system-wide)

1976

 224

73

fd 0

fd
flags

file
ptr

fd 2
fd 1

Process B
File descriptor table

fd 3

96 Chapter 5

In process A, descriptors 1 and 20 both refer to the same open file description
(labeled 23). This situation may arise as a result of a call to dup(), dup2(), or fcntl()
(see Section 5.5).

Descriptor 2 of process A and descriptor 2 of process B refer to a single open
file description (73). This scenario could occur after a call to fork() (i.e., process A is
the parent of process B, or vice versa), or if one process passed an open descriptor
to another process using a UNIX domain socket (Section 61.13.3).

Finally, we see that descriptor 0 of process A and descriptor 3 of process B
refer to different open file descriptions, but that these descriptions refer to the
same i-node table entry (1976)—in other words, to the same file. This occurs
because each process independently called open() for the same file. A similar situa-
tion could occur if a single process opened the same file twice.

We can draw a number of implications from the preceding discussion:

Two different file descriptors that refer to the same open file description share
a file offset value. Therefore, if the file offset is changed via one file descriptor
(as a consequence of calls to read(), write(), or lseek()), this change is visible
through the other file descriptor. This applies both when the two file descrip-
tors belong to the same process and when they belong to different processes.

Similar scope rules apply when retrieving and changing the open file status
flags (e.g., O_APPEND, O_NONBLOCK, and O_ASYNC) using the fcntl() F_GETFL and F_SETFL
operations.

By contrast, the file descriptor flags (i.e., the close-on-exec flag) are private to
the process and file descriptor. Modifying these flags does not affect other file
descriptors in the same process or a different process.

5.5 Duplicating File Descriptors

Using the (Bourne shell) I/O redirection syntax 2>&1 informs the shell that we wish
to have standard error (file descriptor 2) redirected to the same place to which
standard output (file descriptor 1) is being sent. Thus, the following command
would (since the shell evaluates I/O directions from left to right) send both stan-
dard output and standard error to the file results.log:

$./myscript > results.log 2>&1

The shell achieves the redirection of standard error by duplicating file descriptor 2
so that it refers to the same open file description as file descriptor 1 (in the same
way that descriptors 1 and 20 of process A refer to the same open file description
in Figure 5-2). This effect can be achieved using the dup() and dup2() system calls.

Note that it is not sufficient for the shell simply to open the results.log file
twice: once on descriptor 1 and once on descriptor 2. One reason for this is that
the two file descriptors would not share a file offset pointer, and hence could end
up overwriting each other’s output. Another reason is that the file may not be a
disk file. Consider the following command, which sends standard error down the
same pipe as standard output:

$./myscript 2>&1 | less

Fi le I/O: Fur ther Detai l s 97

The dup() call takes oldfd, an open file descriptor, and returns a new descriptor that
refers to the same open file description. The new descriptor is guaranteed to be the
lowest unused file descriptor.

Suppose we make the following call:

newfd = dup(1);

Assuming the normal situation where the shell has opened file descriptors 0, 1, and
2 on the program’s behalf, and no other descriptors are in use, dup() will create the
duplicate of descriptor 1 using file 3.

If we wanted the duplicate to be descriptor 2, we could use the following
technique:

close(2); /* Frees file descriptor 2 */
newfd = dup(1); /* Should reuse file descriptor 2 */

This code works only if descriptor 0 was open. To make the above code simpler,
and to ensure we always get the file descriptor we want, we can use dup2().

The dup2() system call makes a duplicate of the file descriptor given in oldfd using
the descriptor number supplied in newfd. If the file descriptor specified in newfd is
already open, dup2() closes it first. (Any error that occurs during this close is
silently ignored; safer programming practice is to explicitly close() newfd if it is open
before the call to dup2().)

We could simplify the preceding calls to close() and dup() to the following:

dup2(1, 2);

A successful dup2() call returns the number of the duplicate descriptor (i.e., the
value passed in newfd).

If oldfd is not a valid file descriptor, then dup2() fails with the error EBADF and
newfd is not closed. If oldfd is a valid file descriptor, and oldfd and newfd have the
same value, then dup2() does nothing—newfd is not closed, and dup2() returns the
newfd as its function result.

A further interface that provides some extra flexibility for duplicating file
descriptors is the fcntl() F_DUPFD operation:

newfd = fcntl(oldfd, F_DUPFD, startfd);

#include <unistd.h>

int dup(int oldfd);

Returns (new) file descriptor on success, or –1 on error

#include <unistd.h>

int dup2(int oldfd, int newfd);

Returns (new) file descriptor on success, or –1 on error

98 Chapter 5

This call makes a duplicate of oldfd by using the lowest unused file descriptor
greater than or equal to startfd. This is useful if we want a guarantee that the new
descriptor (newfd) falls in a certain range of values. Calls to dup() and dup2() can
always be recoded as calls to close() and fcntl(), although the former calls are more
concise. (Note also that some of the errno error codes returned by dup2() and fcntl()
differ, as described in the manual pages.)

From Figure 5-2, we can see that duplicate file descriptors share the same file
offset value and status flags in their shared open file description. However, the new
file descriptor has its own set of file descriptor flags, and its close-on-exec flag
(FD_CLOEXEC) is always turned off. The interfaces that we describe next allow explicit
control of the new file descriptor’s close-on-exec flag.

The dup3() system call performs the same task as dup2(), but adds an additional
argument, flags, that is a bit mask that modifies the behavior of the system call.

Currently, dup3() supports one flag, O_CLOEXEC, which causes the kernel to enable the
close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag is useful for the
same reasons as the open() O_CLOEXEC flag described in Section 4.3.1.

The dup3() system call is new in Linux 2.6.27, and is Linux-specific.
Since Linux 2.6.24, Linux also supports an additional fcntl() operation for dupli-

cating file descriptors: F_DUPFD_CLOEXEC. This flag does the same thing as F_DUPFD,
but additionally sets the close-on-exec flag (FD_CLOEXEC) for the new file descriptor.
Again, this operation is useful for the same reasons as the open() O_CLOEXEC flag.
F_DUPFD_CLOEXEC is not specified in SUSv3, but is specified in SUSv4.

5.6 File I/O at a Specified Offset: pread() and pwrite()

The pread() and pwrite() system calls operate just like read() and write(), except that
the file I/O is performed at the location specified by offset, rather than at the cur-
rent file offset. The file offset is left unchanged by these calls.

#define _GNU_SOURCE
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

Returns (new) file descriptor on success, or –1 on error

#include <unistd.h>

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

Returns number of bytes written, or –1 on error

