CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

Ve

is)

Lecture 14: Filesystem Organization
April 5, 2007

© 2007 Matt Welsh - Harvard University

Filesystems

A filesystem provides a high-level application access to disk
 As well as CD, DVD, tape, floppy, efc...
* Masks the details of low-level sector-based 1/O operations
* Provides structured access to data (files and directories)
» Caches recently-accessed data in memory

Hierarchical filesystems: Most common type
* Organized as a tree of directories and files

Byte-oriented vs. record-oriented files

« UNIX, Windows, etc. all provide byte-oriented file access
* May read and write files a byte at a time
* Many older OS's provided only record-oriented files
* File composed of a set of records; may only read and write a record at a time

Versioning filesystems
« Keep track of older versions of files
* e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

© 2007 Matt Welsh - Harvard University

Filesystem Operations

Filesystems provide a standard interface to files and directories:
* Create a file or directory
 Delete a file or directory
* Open a file or directory — allows subsequent access
* Read, write, append to file contents
* Add or remove directory entries
* Close a file or directory — terminates access

What other features do filesystems provide?
* Accounting and quotas — prevent your classmates from hogging the disks
Backup — some filesystems have a “SHOME/.backup” containing automatic snapshots
Indexing and search capabilities
File versioning
Encryption
Automatic compression of infrequently-used files

Should this functionality be part of the filesystem or built on top?
» Classic OS community debate: Where is the best place to put functionality?

© 2007 Matt Welsh - Harvard University

Basic Filesystem Structures

Every file and directory is represented by an inode
 Stands for “index node”

Contains two kinds of information:

* 1) Metadata describing the file's owner, access rights, etc.

« 2) Location of the file's blocks on disk
disk blocks with file data

size in bytes
owner of file
group ID of file metadata

permission bits f
creation time /
.

modified time
access time

What's one obvious thing missing from the inode metadata?

© 2007 Matt Welsh - Harvard University

A word on blocks vs. sectors...
Filesystems generally access data on disk in terms of blocks

But, recall the disk can only be accessed one sector at a time

Generally, the FS wants to access multiple sectors at once ...
* Why??

Say sector size is 512 bytes, but filesystem block size is 4 KB.
* This means the block consists of 8 contiguous sectors on disk

* Translating from block ID to set of sector IDs is pretty trivial:
 sectors(block id) = { block id*8, (block id*8)+1, ... (block id*8)+7 }

© 2007 Matt Welsh - Harvard University

Directories

A directory is a special kind of file that contains a list of
(filename, inode number) pairs

Filename iInode number
metadata aliases 45686
appletalk.cfg 3206854
authorization 631239
bashrc 41131
crontab 27961
passwd 2859

* These are the contents of the directory “file data” itself — NOT the directory's inode!
* Filenames (in UNIX) are not stored in the inode at all!

Two open questions:
* How do we find the root directory (“ / “ on UNIX systems)?
* How do we get from an inode number to the location of the inode on disk?

© 2007 Matt Welsh - Harvard University

Pathname resolution

* The root directory is a special inode (usually numbered 0 or 1)

Filename inode number
inode bin 2755
L dev 3
etc 2801
home 2126948
usr 10699

© 2007 Matt Welsh - Harvard University

Pathname resolution

* To look up a pathname “/etc/passwd”, start at root directory and walk down chain of

inodes...
inode
0
inode
2859

© 2007 Matt Welsh - Harvard University

Filename inode number
bin 2755
dev 3
etc 2801 S~
home 2126948 > o
usr 10699 N
/
- Filéname inode number
inode .
2801 aliases 45686

appletalk.cfg 3206854
authorization 631239

bashrc 41131
crontab 27961
passwd 2859 - —

—
— — — ==
— — —
e e == e e
— — — mm—— m— E— e

,4;),/////ﬂ'> root:*:0:0:System Administrator:/var/root:/bin/sh

daemon:*:1:1:System Services:/var/root:/usr/bin/false
uucp:*:4:4:Unix to Unix Copy Protocol:/var/spool/uucp:/usr/sbin/uucico

lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

Locating inodes on disk

All right, so directories tell us the inode number of a file.
How the heck do we find the inode itself on disk?

Basic idea: Top part of filesystem contains all of the inodes!

superblock inodes File and directory data blocks

* inode number is just the “index” of the inode
« Easy to compute the block address of a given inode:

» block addr(inode num) = block_offset of first inode + (inode _num * inode_size)
* This implies that a filesystem has a fixed number of potential inodes

» This number is generally set when the filesystem is created

* The superblock stores important metadata on filesystem layout, list of free blocks, etc.

© 2007 Matt Welsh — Harvard University

Stupid directory tricks

Directories map filenames to inode numbers. What does this imply?

We can create multiple pointers to the same inode in
different directories

* Or even the same directory with different filenames

In UNIX this is called a "hard link” and can be done using “In”

bash$ 1ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)

bash$ 1ln /home/foo /tmp/foo

bash$ 1s -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo

* “/home/foo” and “/tmp/foo” now refer to the same file on disk

* Not a copy! You will always see identical data no matter which filename
you use to read or write the file.

* Note: This is not the same as a “symbolic link”, which only links one filename to another.

© 2007 Matt Welsh - Harvard University 11

How should we organize blocks on disk?

Very simple policy: A file consists of linked blocks
* inode points to the first block of the file
« Each block points to the next block in the file (just a linked list on disk)
« What are the advantages and disadvantages??

inode | P B /' \’D

Indexed files
* inode contains a list of block numbers containing the file
 Array is allocated when the file is created
« What are the advantages and disadvantages??

inode

i

© 2007 Matt Welsh - Harvard University

Multilevel Indexed Files

inode contains a list of 10-15 direct block pointers
* First few blocks of file can be referred to by the inode itself

inode also contains a pointer to a single indirect, double indirect, and

triple indirect blocks
* Allows file to grow to be incredibly large!!!

inode

~

direct blocks

single-indirect blocks

-

i

..

O\

double-indirect blocks

© 2007 Matt Welsh - Harvard University

13

