110 Chapter 5 Interprocess Communication

5.4 Pipes

A pipe is a communication device that permits unidirectional communication. Data
written to the “write end” of the pipe is read back from the “read end.” Pipes are
serial devices; the data is always read from the pipe in the same order it was written.
Typically, a pipe is used to communicate between two threads in a single process or
between parent and child processes.

In a shell, the symbol | creates a pipe. For example, this shell command causes the
shell to produce two child processes, one for 1s and one for less:

% 1s | less

The shell also creates a pipe connecting the standard output of the 1s subprocess with
the standard input of the less process. The filenames listed by 1s are sent to less in
exactly the same order as if they were sent directly to the terminal.

A pipe’s data capacity is limited. If the writer process writes faster than the reader
process consumes the data, and if the pipe cannot store more data, the writer process
blocks until more capacity becomes available. If the reader tries to read but no data is
available, it blocks until data becomes available. Thus, the pipe automatically synchro-
nizes the two processes.

5.4.1 Creating Pipes

To create a pipe, invoke the pipe command. Supply an integer array of size 2. The call
to pipe stores the reading file descriptor in array position 0 and the writing file
descriptor in position 1. For example, consider this code:

int pipe_fds[2];

int read_fd;

int write_fd;

pipe (pipe_fds);
read_fd = pipe_fds[0];
write_fd = pipe_fds[1];

Data written to the file descriptor read_fd can be read back from write_fd.

5.4.2 Communication Between Parent and Child Processes

A call to pipe creates file descriptors, which are valid only within that process and its
children. A process’s file descriptors cannot be passed to unrelated processes; however,
when the process calls fork, file descriptors are copied to the new child process. Thus,
pipes can connect only related processes.

In the program in Listing 5.7, a fork spawns a child process. The child inherits the
pipe file descriptors. The parent writes a string to the pipe, and the child reads it out.
The sample program converts these file descriptors into FILE* streams using fdopen.
Because we use streams rather than file descriptors, we can use the higher-level
standard C library I/O functions such as printf and fgets.

5.4 Pipes

Listing 5.7 (pipe.c) Using a Pipe to Communicate with a Child Process

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second
between each. */

void writer (const char* message, int count, FILE* stream)
{
for (; count > 0@; --count) {
/* Write the message to the stream, and send it off immediately. */
fprintf (stream, "%s\n", message);
fflush (stream);
/* Snooze a while. */
sleep (1);
}
}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)
{
char buffer[1024];
/* Read until we hit the end of the stream. fgets reads until
either a newline or the end-of-file. */
while (!feof (stream)
&& !ferror (stream)
&& fgets (buffer, sizeof (buffer), stream) != NULL)
fputs (buffer, stdout);
}

int main ()

{
int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */
pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
FILE* stream;
/* This is the child process. Close our copy of the write end of
the file descriptor. */
close (fds[1]);
/* Convert the read file descriptor to a FILE object, and read
from it. */
stream = fdopen (fds[0], "r");
reader (stream);

continues

111

112 Chapter 5 Interprocess Communication

Listing 5.7 Continued

close (fds[0]);

}

else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], "w");
writer ("Hello, world.", 5, stream);
close (fds[1]);

}

return 0;

}

At the beginning of main, fds is declared to be an integer array with size 2. The pipe
call creates a pipe and places the read and write file descriptors in that array. The pro-
gram then forks a child process. After closing the read end of the pipe, the parent
process starts writing strings to the pipe. After closing the write end of the pipe, the
child reads strings from the pipe.

Note that after writing in the writer function, the parent flushes the pipe by
calling fflush. Otherwise, the string may not be sent through the pipe immediately.

When you invoke the command 1s | less, two forks occur: one for the 1s child
process and one for the less child process. Both of these processes inherit the pipe file
descriptors so they can communicate using a pipe. To have unrelated processes com-
municate, use a FIFO instead, as discussed in Section 5.4.5, “FIFOs.”

5.4.3 Redirecting the Standard Input, Output, and Error
Streams

Frequently, you’ll want to create a child process and set up one end of a pipe as its
standard input or standard output. Using the dup2 call, you can equate one file
descriptor with another. For example, to redirect a process’s standard input to a file
descriptor fd, use this line:

dup2 (fd, STDIN_FILENO);

The symbolic constant STDIN_FILENO represents the file descriptor for the standard
input, which has the value 0.The call closes standard input and then reopens it as a
duplicate of fd so that the two may be used interchangeably. Equated file descriptors
share the same file position and the same set of file status flags. Thus, characters read
from fd are not reread from standard input.

5.4 Pipes

The program in Listing 5.8 uses dup2 to send the output from a pipe to the sort
command.” After creating a pipe, the program forks. The parent process prints some
strings to the pipe. The child process attaches the read file descriptor of the pipe to its
standard input using dup2. It then executes the sort program.

Listing 5.8 (dup2.c) Redirect Output from a Pipe with dup2

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int main ()

{

}

int fds[2];
pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are
placed in fds. */
pipe (fds);
/* Fork a child process. */
pid = fork ();
if (pid == (pid_t) 0) {
/* This is the child process. Close our copy of the write end of
the file descriptor. */
close (fds[1]);
/* Connect the read end of the pipe to standard input. */
dup2 (fds[0], STDIN_FILENO);
/* Replace the child process with the "sort" program. */
execlp ("sort", "sort", 0);
}
else {
/* This is the parent process. */
FILE* stream;
/* Close our copy of the read end of the file descriptor. */
close (fds[0]);
/* Convert the write file descriptor to a FILE object, and write
to it. */
stream = fdopen (fds[1], "w");

fprintf (stream, "This is a test.\n");
fprintf (stream, "Hello, world.\n");

fprintf (stream, "My dog has fleas.\n");
fprintf (stream, "This program is great.\n");

fprintf (stream, "One fish, two fish.\n");
fflush (stream);
close (fds[1]);
/* Wait for the child process to finish. */
waitpid (pid, NULL, 0);

}

return 0;

2. sort reads lines of text from standard input, sorts them into alphabetical order, and prints

them to standard output.

113

114 Chapter 5 Interprocess Communication

5.4.4 popen and pclose

A common use of pipes is to send data to or receive data from a program being run in
a subprocess. The popen and pclose functions ease this paradigm by eliminating the
need to invoke pipe, fork, dup2, exec, and fdopen.

Compare Listing 5.9, which uses popen and pclose, to the previous example
(Listing 5.8).

Listing 5.9 (popen.c) Example Using popen

#include <stdio.h>
#include <unistd.h>

int main ()

{
FILE* stream = popen ("sort", "w");
fprintf (stream, "This is a test.\n");
fprintf (stream, "Hello, world.\n");
fprintf (stream, "My dog has fleas.\n");
fprintf (stream, "This program is great.\n");
fprintf (stream, "One fish, two fish.\n");
return pclose (stream);

The call to popen creates a child process executing the sort command, replacing calls
to pipe, fork, dup2, and execlp. The second argument, "w", indicates that this process
wants to write to the child process. The return value from popen is one end of a pipe;
the other end is connected to the child process’s standard input. After the writing fin-
ishes, pclose closes the child process’s stream, waits for the process to terminate, and
returns its status value.

The first argument to popen is executed as a shell command in a subprocess run-
ning /bin/sh.The shell searches the PATH environment variable in the usual way to
find programs to execute. If the second argument is "r", the function returns the child
process’s standard output stream so that the parent can read the output. If the second
argument is "w", the function returns the child process’s standard input stream so that
the parent can send data. If an error occurs, popen returns a null pointer.

Call pclose to close a stream returned by popen. After closing the specified stream,
pclose waits for the child process to terminate.

5.4.5 FIFOs

A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem. Any process
can open or close the FIFO; the processes on either end of the pipe need not be
related to each other. FIFOs are also called named pipes.

5.4 Pipes

You can make a FIFO using the mkfifo command. Specify the path to the FIFO
on the command line. For example, create a FIFO in /tmp/fifo by invoking this:

% mkfifo /tmp/fifo

% 1ls -1 /tmp/fifo

prw-rw-rw- 1 samuel users 0 Jan 16 14:04 /tmp/fifo
The first character of the output from 1s is p, indicating that this file is actually a
FIFO (named pipe). In one window, read from the FIFO by invoking the following:

% cat < /tmp/fifo

In a second window, write to the FIFO by invoking this:

% cat > /tmp/fifo

Then type in some lines of text. Each time you press Enter, the line of text is sent
through the FIFO and appears in the first window. Close the FIFO by pressing
Ctrl+D in the second window. Remove the FIFO with this line:

% rm /tmp/fifo

Creating a FIFO

Create a FIFO programmatically using the mkfifo function. The first argument is the
path at which to create the FIFO; the second parameter specifies the pipe’s owner,
group, and world permissions, as discussed in Chapter 10, “Security,” Section 10.3,
“File System Permissions.” Because a pipe must have a reader and a writer, the permis-
sions must include both read and write permissions. If the pipe cannot be created

(for instance, if a file with that name already exists), mkfifo returns —1. Include
<sys/types.h> and <sys/stat.h> if you call mkfifo.

Accessing a FIFO

Access a FIFO just like an ordinary file. To communicate through a FIFO, one pro-
gram must open it for writing, and another program must open it for reading. Either
low-level 170 functions (open, write, read, close, and so on, as listed in Appendix B,
“Low-Level I/0”) or C library I/O functions (fopen, fprintf, fscanf, fclose, and so
on) may be used.
For example, to write a buffer of data to a FIFO using low-level I/O routines, you

could use this code:

int fd = open (fifo_path, O_WRONLY);

write (fd, data, data_length);

close (fd);
To read a string from the FIFO using C library I/O functions, you could use
this code:

FILE* fifo = fopen (fifo_path, "r");

fscanf (fifo, "%s", buffer);

fclose (fifo);

115

116 Chapter 5 Interprocess Communication

A FIFO can have multiple readers or multiple writers. Bytes from each writer are
written atomically up to a maximum size of PIPE_BUF (4KB on Linux). Chunks from
simultaneous writers can be interleaved. Similar rules apply to simultaneous reads.

Differences from Windows Named Pipes

Pipes in the Win32 operating systems are very similar to Linux pipes. (Refer to the
Win32 library documentation for technical details about these.) The main differences
concern named pipes, which, for Win32, function more like sockets. Win32 named
pipes can connect processes on separate computers connected via a network. On
Linux, sockets are used for this purpose. Also, Win32 allows multiple reader-writer
connections on a named pipe without interleaving data, and pipes can be used for
two-way communication.’

5.5 Sockets

A socket 1s a bidirectional communication device that can be used to communicate with
another process on the same machine or with a process running on other machines.
Sockets are the only interprocess communication we’ll discuss in this chapter that
permit communication between processes on different computers. Internet programs
such as Telnet, rlogin, FTP, talk, and the World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using the
Telnet program because they both use sockets for network communications.*
To open a connection to a WWW server at www.codesourcery.com, use
telnet www.codesourcery.com 80.The magic constant 80 specifies a connection to
the Web server programming running www.codesourcery.com instead of some other
process. Try typing GET / after the connection is established. This sends a message
through the socket to the Web server, which replies by sending the home page’s
HTML source and then closing the connection—for example:

% telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is '"]'.

GET /

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso0-8859-1">

3. Note that only Windows NT can create a named pipe; Windows 9x programs can form
only client connections.

4. Usually, you'd use telnet to connect a Telnet server for remote logins. But you can also use
telnet to connect to a server of a different kind and then type comments directly at it.

