44.1

PIPES AND FIFOS

This chapter describes pipes and FIFOs. Pipes are the oldest method of IPC on the
UNIX system, having appeared in Third Edition UNIX in the early 1970s. Pipes
provide an elegant solution to a frequent requirement: having created two pro-
cesses to run different programs (commands), how can the shell allow the output
produced by one process to be used as the input to the other process? Pipes can be
used to pass data between related processes (the meaning of related will become
clear later). FIFOs are a variation on the pipe concept. The important difference is
that FIFOs can be used for communication between any processes.

Overview

Every user of the shell is familiar with the use of pipes in commands such as the
following, which counts the number of files in a directory:

$1s | we -1

In order to execute the above command, the shell creates two processes, executing
Is and we, respectively. (This is done using fork() and exec(), which are described in
Chapters 24 and 27.) Figure 44-1 shows how the two processes employ the pipe.

Among other things, Figure 44-1 is intended to illustrate how pipes got their
name. We can think of a pipe as a piece of plumbing that allows data to flow from
one process to another.

890

pipe

1 stdout byte stream; stdin
S (fd1) unidirectional (fdo)y "¢
write end read end
of pipe of pipe

Figure 44-1: Using a pipe fo connect two processes

One point to note in Figure 44-1 is that the two processes are connected to the pipe
so that the writing process (/s) has its standard output (file descriptor 1) joined to
the write end of the pipe, while the reading process (wc) has its standard input (file
descriptor 0) joined to the read end of the pipe. In effect, these two processes are
unaware of the existence of the pipe; they just read from and write to the standard
file descriptors. The shell must do some work in order to set things up in this way,
and we see how this is done in Section 44.4.

In the following paragraphs, we cover a number of important characteristics
of pipes.

A pipe is a byte stream

When we say that a pipe is a byte stream, we mean that there is no concept of
messages or message boundaries when using a pipe. The process reading from a
pipe can read blocks of data of any size, regardless of the size of blocks written by
the writing process. Furthermore, the data passes through the pipe sequentially—
bytes are read from a pipe in exactly the order they were written. It is not possible
to randomly access the data in a pipe using lseek().

If we want to implement the notion of discrete messages in a pipe, we must do
this within our application. While this is feasible (refer to Section 44.8), it may be
preferable to use alternative IPC mechanisms, such as message queues and data-
gram sockets, which we discuss in later chapters.

Reading from a pipe

Attempts to read from a pipe that is currently empty block until at least one byte
has been written to the pipe. If the write end of a pipe is closed, then a process
reading from the pipe will see end-offile (i.e., read() returns 0) once it has read all
remaining data in the pipe.

Pipes are unidirectional

Data can travel only in one direction through a pipe. One end of the pipe is used
for writing, and the other end is used for reading.

On some other UNIX implementations—notably those derived from System V
Release 4—pipes are bidirectional (so-called stream pipes). Bidirectional pipes are
not specified by any UNIX standards, so that, even on implementations where they
are provided, it is best to avoid reliance on their semantics. As an alternative, we
can use UNIX domain stream socket pairs (created using the socketpair() system call
described in Section 57.5), which provide a standardized bidirectional communi-
cation mechanism that is semantically equivalent to stream pipes.

Chapter 44

Writes of up to PIPE_BUF bytes are guaranteed to be atomic

If multiple processes are writing to a single pipe, then it is guaranteed that their
data won’t be intermingled if they write no more than PIPE_BUF bytes at a time.

SUSv3 requires that PIPE_BUF be at least _POSIX PIPE_BUF (512). An implementa-
tion should define PIPE_BUF (in <limits.h>) and/or allow the call fpathconf(fd,
_PC_PIPE_BUF) to return the actual upper limit for atomic writes. PIPE_BUF varies
across UNIX implementations; for example, it is 512 bytes on FreeBSD 6.0, 4096 bytes
on Tru64 5.1, and 5120 bytes on Solaris 8. On Linux, PIPE_BUF has the value 4096.

When writing blocks of data larger than PIPE_BUF bytes to a pipe, the kernel may
transfer the data in multiple smaller pieces, appending further data as the reader
removes bytes from the pipe. (The write() call blocks until all of the data has been
written to the pipe.) When there is only a single process writing to a pipe (the usual
case), this doesn’t matter. However, if there are multiple writer processes, then
writes of large blocks may be broken into segments of arbitrary size (which may be
smaller than PIPE_BUF bytes) and interleaved with writes by other processes.

The PIPE_BUF limit affects exactly when data is transferred to the pipe. When
writing up to PIPE_BUF bytes, write() will block if necessary until sufficient space is
available in the pipe so that it can complete the operation atomically. When more
than PIPE_BUF bytes are being written, write() transfers as much data as possible to
fill the pipe, and then blocks until data has been removed from the pipe by some
reading process. If such a blocked write() is interrupted by a signal handler, then
the call unblocks and returns a count of the number of bytes successfully trans-
ferred, which will be less than was requested (a so-called partial write).

On Linux 2.2, pipe writes of any size are atomic, unless interrupted by a signal
handler. On Linux 2.4 and later, any write greater than PIPE_BUF bytes may be
interleaved with writes by other processes. (The kernel code implementing pipes
underwent substantial changes between kernel versions 2.2 and 2.4.)

Pipes have a limited capacity

A pipe is simply a buffer maintained in kernel memory. This buffer has a maximum
capacity. Once a pipe is full, further writes to the pipe block until the reader removes
some data from the pipe.

SUSv3 makes no requirement about the capacity of a pipe. In Linux kernels
before 2.6.11, the pipe capacity is the same as the system page size (e.g., 4096 bytes
on x86-32); since Linux 2.6.11, the pipe capacity is 65,536 bytes. Other UNIX
implementations have different pipe capacities.

In general, an application never needs to know the exact capacity of a pipe. If
we want to prevent the writer process(es) from blocking, the process(es) reading
from the pipe should be designed to read data as soon as it is available.

In theory, there is no reason why a pipe couldn’t operate with smaller capacities,
even with a single-byte buffer. The reason for employing large buffer sizes is effi-
ciency: each time a writer fills the pipe, the kernel must perform a context switch
to allow the reader to be scheduled so that it can empty some data from the pipe.
Employing a larger buffer size means that fewer context switches are required.

Starting with Linux 2.6.35, the capacity of a pipe can be modified. The
Linux-specific call fentl(fd, F_SETPIPE_SZ, size) changes the capacity of the
pipe referred to by fd to be at least size bytes. An unprivileged process can

Pipes and FIFOs 891

44.2

change the pipe capacity to any value in the range from the system page size
up to the value in /proc/sys/fs/pipe-max-size. The default value for pipe-max-
size is 1,048,576 bytes. A privileged (CAP_SYS_RESOURCE) process can override
this limit. When allocating space for the pipe, the kernel may round size up to
some value convenient for the implementation. The fentl(fd, F GETPIPE_SZ)
call returns the actual size allocated for the pipe.

Creating and Using Pipes

The pipe() system call creates a new pipe.

#include <unistd.h>

int pipe(int filedes[2]);

Returns 0 on success, or —1 on error

A successful call to pipe() returns two open file descriptors in the array filedes: one
for the read end of the pipe (filedes/0]) and one for the write end (filedes[1]).

As with any file descriptor, we can use the read() and write() system calls to per-
form 1/0 on the pipe. Once written to the write end of a pipe, data is immediately
available to be read from the read end. A read() from a pipe obtains the lesser of the
number of bytes requested and the number of bytes currently available in the pipe
(but blocks if the pipe is empty).

We can also use the stdio functions (prinif(), scanf(), and so on) with pipes by
first using fdopen() to obtain a file stream corresponding to one of the descriptors
in filedes (Section 13.7). However, when doing this, we must be aware of the stdio
buffering issues described in Section 44.6.

The call ioctl(fd, FIONREAD, &ent) returns the number of unread bytes in the
pipe or FIFO referred to by the file descriptor fd. This feature is also available
on some other implementations, but is not specified in SUSv3.

Figure 44-2 shows the situation after a pipe has been created by pipe(), with the call-
ing process having file descriptors referring to each end.

calling process

filedes[1] filedes[0O]

pipe
direction of
data flow

Figure 44-2: Process file descriptors after creating a pipe

A pipe has few uses within a single process (we consider one in Section 63.5.2).
Normally, we use a pipe to allow communication between two processes. To con-
nect two processes using a pipe, we follow the pipe() call with a call to fork(). Dur-
ing a fork(), the child process inherits copies of its parent’s file descriptors
(Section 24.2.1), bringing about the situation shown on the left side of Figure 44-3.

892 Chapter 44

parent process parent process

filedes[1] filedes[0] Siledes[1]
pipe pipe
filedes[1] filedes[0] filedes[0]
child process child process
a) After fork() b) After closing unused descriptors

Figure 44-3: Setfting up a pipe fo transfer data from a parent to a child

While it is possible for the parent and child to both read from and write to the
pipe, this is not usual. Therefore, immediately after the fork(), one process closes its
descriptor for the write end of the pipe, and the other closes its descriptor for the
read end. For example, if the parent is to send data to the child, then it would close
its read descriptor for the pipe, filedes/0], while the child would close its write
descriptor for the pipe, filedes[1], bringing about the situation shown on the right
side of Figure 44-3. The code to create this setup is shown in Listing 44-1.

Listing 44-1: Steps in creating a pipe to transfer data from a parent o a child

int filedes[2];

if (pipe(filedes) == -1) /* Create the pipe */
errkExit("pipe");

switch (fork()) { /* Create a child process */

case -1:

errkExit("fork");

case 0: /* Child */
if (close(filedes[1]) == -1) /* Close unused write end */
errkxit("close");

/* Child now reads from pipe */
break;

default: /* Parent */
if (close(filedes[0]) == -1) /* Close unused read end */
errkxit("close");

/* Parent now writes to pipe */
break;

One reason that it is not usual to have both the parent and child reading from a
single pipe is that if two processes try to simultaneously read from a pipe, we can’t

Pipes and FIFOs 893

894

be sure which process will be the first to succeed—the two processes race for data.
Preventing such races would require the use of some synchronization mechanism.
However, if we require bidirectional communication, there is a simpler way: just
create two pipes, one for sending data in each direction between the two processes.
(If employing this technique, then we need to be wary of deadlocks that may occur
if both processes block while trying to read from empty pipes or while trying to
write to pipes that are already full.)

While it is possible to have multiple processes writing to a pipe, it is typical to
have only a single writer. (We show one example of where it is useful to have multiple
writers to a pipe in Section 44.3.) By contrast, there are situations where it can be useful
to have multiple writers on a FIFO, and we see an example of this in Section 44.8.

Starting with kernel 2.6.27, Linux supports a new, nonstandard system call,
pipe2(). This system call performs the same task as pipe(), but supports an addi-
tional argument, flags, that can be used to modify the behavior of the system
call. Two flags are supported. The 0_CLOEXEC flag causes the kernel to enable the
close-on-exec flag (FD_CLOEXEC) for the two new file descriptors. This flag is useful
for the same reasons as the open() 0_CLOEXEC flag described in Section 4.3.1. The
0_NONBLOCK flag causes the kernel to mark both underlying open file descriptions
as nonblocking, so that future I/O operations will be nonblocking. This saves
additional calls to fentl() to achieve the same result.

Pipes allow communication between related processes

In the discussion so far, we have talked about using pipes for communication
between a parent and a child process. However, pipes can be used for communica-
tion between any two (or more) related processes, as long as the pipe was created
by a common ancestor before the series of fork() calls that led to the existence of
the processes. (This is what we meant when we referred to related processes at the
beginning of this chapter.) For example, a pipe could be used for communication
between a process and its grandchild. The first process creates the pipe, and then
forks a child that in turn forks to yield the grandchild. A common scenario is that a
pipe is used for communication between two siblings—their parent creates the pipe,
and then creates the two children. This is what the shell does when building a pipeline.

There is an exception to the statement that pipes can be used to communicate
only between related processes. Passing a file descriptor over a UNIX domain
socket (a technique that we briefly describe in Section 61.13.3) makes it possible
to pass a file descriptor for a pipe to an unrelated process.

Closing unused pipe file descriptors

Closing unused pipe file descriptors is more than a matter of ensuring that a pro-
cess doesn’t exhaust its limited set of file descriptors—it is essential to the correct
use of pipes. We now consider why the unused file descriptors for both the read
and write ends of the pipe must be closed.

The process reading from the pipe closes its write descriptor for the pipe, so
that, when the other process completes its output and closes its write descriptor,
the reader sees end-of-file (once it has read any outstanding data in the pipe).

If the reading process doesn’t close the write end of the pipe, then, after the
other process closes its write descriptor, the reader won’t see end-of-file, even after

Chapter 44

it has read all data from the pipe. Instead, a read() would block waiting for data,
because the kernel knows that there is still at least one write descriptor open for the
pipe. That this descriptor is held open by the reading process itself is irrelevant; in
theory, that process could still write to the pipe, even if it is blocked trying to read.
For example, the read() might be interrupted by a signal handler that writes data to
the pipe. (This is a realistic scenario, as we’ll see in Section 63.5.2.)

The writing process closes its read descriptor for the pipe for a different reason.
When a process tries to write to a pipe for which no process has an open read
descriptor, the kernel sends the SIGPIPE signal to the writing process. By default,
this signal kills a process. A process can instead arrange to catch or ignore this signal,
in which case the write() on the pipe fails with the error EPIPE (broken pipe). Receiving
the SIGPIPE signal or getting the EPIPE error is a useful indication about the status
of the pipe, and this is why unused read descriptors for the pipe should be closed.

Note that the treatment of a write() that is interrupted by a SIGPIPE handler is
special. Normally, when a write() (or other “slow” system call) is interrupted by
a signal handler, the call is either automatically restarted or fails with the error
EINTR, depending on whether the handler was installed with the sigaction()
SA_RESTART flag (Section 21.5). The behavior in the case of SIGPIPE is different
because it makes no sense either to automatically restart the write() or to simply
indicate that the write() was interrupted by a handler (thus implying that
the write() could usefully be manually restarted). In neither case can a subse-
quent write() attempt succeed, because the pipe will still be broken.

If the writing process doesn’t close the read end of the pipe, then, even after the
other process closes the read end of the pipe, the writing process will still be able to
write to the pipe. Eventually, the writing process will fill the pipe, and a further
attempt to write will block indefinitely.

One final reason for closing unused file descriptors is that it is only after all file
descriptors in all processes that refer to a pipe are closed that the pipe is destroyed
and its resources released for reuse by other processes. At this point, any unread
data in the pipe is lost.

Example program

The program in Listing 44-2 demonstrates the use of a pipe for communication
between parent and child processes. This example demonstrates the byte-stream
nature of pipes referred to earlier—the parent writes its data in a single operation,
while the child reads data from the pipe in small blocks.

The main program calls pipe() to create a pipe @, and then calls fork() to create
a child @. After the fork(), the parent process closes its file descriptor for the read
end of the pipe ®, and writes the string given as the program’s command-line argu-
ment to the write end of the pipe ®. The parent then closes the read end of the
pipe ®, and calls wait() to wait for the child to terminate ®@. After closing its file
descriptor for the write end of the pipe ®, the child process enters a loop where it
reads @ blocks of data (of up to BUF_SIZE bytes) from the pipe and writes ® them to
standard output. When the child encounters end-of-file on the pipe ®, it exits the
loop @, writes a trailing newline character, closes its descriptor for the read end of
the pipe, and terminates.

Pipes and FIFOs 895

Here’s an example of what we might see when running the program in Listing 44-2:
$./simple_pipe 'It was a bright cold day in April, '\

‘and the clocks were striking thirteen.'
It was a bright cold day in April, and the clocks were striking thirteen.

Listing 44-2: Using a pipe to communicate between a parent and child process

pipes/simple_pipe.c
#include <sys/wait.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10

int
main(int argc, char *argv[])

int pfd[2]; /* Pipe file descriptors */
char buf[BUF_SIZE];
ssize t numRead;

if (argc !'= 2 || strcmp(argv[1], "--help") == 0)
usageErr("%s string\n", argv[0]);

® if (pipe(pfd) == -1) /* Create the pipe */
errkExit("pipe");

@ switch (fork()) {
case -1:
errkExit("fork");

case 0: /* Child - reads from pipe */
® if (close(pfd[1]) == -1) /* Write end is unused */
errkExit("close - child");
for (;;) { /* Read data from pipe, echo on stdout */
®@ numRead = read(pfd[0], buf, BUF SIZE);
if (numRead == -1)
errkxit("read");
® if (numRead == 0)
break; /* End-of-file */
® if (write(STDOUT FILENO, buf, numRead) != numRead)
fatal("child - partial/failed write");
}
@ write(STDOUT_FILENO, "\n", 1);
if (close(pfd[0]) == -1)

errkExit("close");
_exit(EXIT_SUCCESS);

default: /* Parent - writes to pipe */

if (close(pfd[o]) == -1) /* Read end is unused */
errkxit("close - parent");

896 Chapter 44

44.3

if (write(pfd[1], argv[1], strlen(argv[1])) != strlen(argv[1]))
fatal("parent - partial/failed write");

if (close(pfd[1]) ==

errkExit("close");
wait(NULL); /* Wait for child to finish */
exit(EXIT_SUCCESS);

-1) /* Child will see EOF */

pipes/simple_pipe.c

Pipes as a Method of Process Synchronization

In Section 24.5, we looked at how signals could be used to synchronize the actions
of parent and child processes in order to avoid race conditions. Pipes can be used
to achieve a similar result, as shown by the skeleton program in Listing 44-3. This
program creates multiple child processes (one for each command-line argument),
each of which is intended to accomplish some action, simulated in the example
program by sleeping for some time. The parent waits until all children have com-
pleted their actions.

To perform the synchronization, the parent builds a pipe @ before creating the
child processes @. Each child inherits a file descriptor for the write end of the pipe
and closes this descriptor once it has completed its action ®. After all of the chil-
dren have closed their file descriptors for the write end of the pipe, the parent’s
read() ® from the pipe will complete, returning end-of-file (0). At this point, the
parent is free to carry on to do other work. (Note that closing the unused write end
of the pipe in the parent @ is essential to the correct operation of this technique;
otherwise, the parent would block forever when trying to read from the pipe.)

The following is an example of what we see when we use the program in List-
ing 44-3 to create three children that sleep for 4, 2, and 6 seconds:

$./pipe_sync 4 2 6

08:22:16 Parent started

08:22:18 Child 2 (PID=2445) closing pipe
08:22:20 Child 1 (PID=2444) closing pipe
08:22:22 Child 3 (PID=2446) closing pipe
08:22:22 Parent ready to go

Listing 44-3: Using a pipe to synchronize multiple processes

pipes/pipe_sync.c
#include "curr_time.h" /* Declaration of currTime() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv([])

int pfd[2]; /* Process synchronization pipe */
int j, dummy;

Pipes and FIFOs 897

if (argc < 2 || stremp(argv[1], "--help") == 0)
usageErr("%s sleep-time...\n", argv[0]);

setbuf(stdout, NULL); /* Make stdout unbuffered, since we
terminate child with _exit() */
printf("%s Parent started\n", currTime("%T"));

® if (pipe(pfd) == -1)
errExit("pipe");

for (j = 1; j < argc; j++) {
@ switch (fork()) {
case -1:
errExit("fork %d", j);

case 0: /* Child */
if (close(pfd[0]) == -1) /* Read end is unused */
errExit("close");

/* Child does some work, and lets parent know it's done */
sleep(getInt(argv[j], GN_NONNEG, "sleep-time"));
/* Simulate processing */
printf("%s Child %d (PID=%1d) closing pipe\n",
currTime("%T"), j, (long) getpid());
® if (close(pfd[1]) == -1)
errkxit("close");
/* Child now carries on to do other things... */

_exit(EXIT_SUCCESS);

default: /* Parent loops to create next child */
break;

}
}

/* Parent comes here; close write end of pipe so we can see EOF */

®@ if (close(pfd[1]) == -1) /* Write end is unused */
errExit("close");

/* Parent may do other work, then synchronizes with children */
® if (read(pfd[0], &dummy, 1) != 0)
fatal("parent didn't get EOF");
printf("%s Parent ready to go\n", currTime("%T"));

/* Parent can now carry on to do other things... */

exit(EXIT_SUCCESS);

pipes/pipe_sync.c

898 Chapter 44

44.4

Synchronization using pipes has an advantage over the earlier example of synchro-
nization using signals: it can be used to coordinate the actions of one process with
multiple other (related) processes. The fact that multiple (standard) signals can’t be
queued makes signals unsuitable in this case. (Conversely, signals have the advantage
that they can be broadcast by one process to all of the members of a process group.)

Other synchronization topologies are possible (e.g., using multiple pipes). Fur-
thermore, this technique could be extended so that, instead of closing the pipe,
each child writes a message to the pipe containing its process ID and some status
information. Alternatively, each child might write a single byte to the pipe. The parent
process could then count and analyze these messages. This approach guards
against the possibility of the child accidentally terminating, rather than explicitly
closing the pipe.

Using Pipes to Connect Filters

When a pipe is created, the file descriptors used for the two ends of the pipe are the
next lowest-numbered descriptors available. Since, in normal circumstances, descrip-
tors 0, 1, and 2 are already in use for a process, some higher-numbered descriptors
will be allocated for the pipe. So how do we bring about the situation shown in
Figure 44-1, where two filters (i.e., programs that read from stdin and write to
stdout) are connected using a pipe, such that the standard output of one program is
directed into the pipe and the standard input of the other is taken from the pipe? And
in particular, how can we do this without modifying the code of the filters themselves?

The answer is to use the techniques described in Section 5.5 for duplicating file
descriptors. Traditionally, the following series of calls was used to accomplish the
desired result:

int pfd[2];
pipe(pfd); /* Allocates (say) file descriptors 3 and 4 for pipe */
/* Other steps here, e.g., fork() */

close(STDOUT_FILENO); /* Free file descriptor 1 */
dup(pfd[1]); /* Duplication uses lowest free file
descriptor, i.e., fd 1 */

The end result of the above steps is that the process’s standard output is bound to
the write end of the pipe. A corresponding set of calls can be used to bind a pro-
cess’s standard input to the read end of the pipe.

Note that these steps depend on the assumption that file descriptors 0, 1, and 2
for a process are already open. (The shell normally ensures this for each program it
executes.) If file descriptor 0 was already closed prior to the above steps, then we
would erroneously bind the process’s standard input to the write end of the pipe.
To avoid this possibility, we can replace the calls to close() and dup() with the follow-
ing dup2() call, which allows us to explicitly specify the descriptor to be bound to
the pipe end:

dup2(pfd[1], STDOUT_FILENO); /* Close descriptor 1, and reopen bound
to write end of pipe */

Pipes and FIFOs 899

900

After duplicating pfdf 1], we now have two file descriptors referring to the write end
of the pipe: descriptor 1 and pfd[1]. Since unused pipe file descriptors should be
closed, after the dup2() call, we close the superfluous descriptor:

close(pfd[1]);

The code we have shown so far relies on standard output having been previously
open. Suppose that, prior to the pipe() call, standard input and standard output had
both been closed. In this case, pipe() would have allocated these two descriptors to
the pipe, perhaps with pfd/0] having the value 0 and pfd/ 1] having the value 1. Con-
sequently, the preceding dup2() and close() calls would be equivalent to the following:

dup2(1, 1); /* Does nothing */
close(1); /* Closes sole descriptor for write end of pipe */

Therefore, it is good defensive programming practice to bracket these calls with an
if statement of the following form:

if (pfd[1] != STDOUT FILENO) {
dup2(pfd[1], STDOUT_FILENO);
close(pfd[1]);

}

Example program

The program in Listing 44-4 uses the techniques described in this section to bring
about the setup shown in Figure 44-1. After building a pipe, this program creates
two child processes. The first child binds its standard output to the write end of the
pipe and then execs ls. The second child binds its standard input to the read end of
the pipe and then execs we.

Listing 44-4: Using a pipe to connect Is and wc
pipes/pipe_ls_wc.c

#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])

int pfd[2]; /* Pipe file descriptors */

if (pipe(pfd) == -1) /* Create pipe */
errExit("pipe");

switch (fork()) {
case -1:
errkExit("fork");

case 0: /* First child: exec 'ls' to write to pipe */
if (close(pfd[0]) == -1) /* Read end is unused */
errkxit("close 1");

Chapter 44

/* Duplicate stdout on write end of pipe; close duplicated descriptor */

if (pfd[1] !'= STDOUT_FILENO) { /* Defensive check */
if (dup2(pfd[1], STDOUT FILENO) == -1)
errExit("dup2 1");
if (close(pfd[1]) == -1)
errkxit("close 2");
}
execlp("1ls", "1s", (char *) NULL); /* Writes to pipe */
errkxit("execlp 1s");
default: /* Parent falls through to create next child */
break;
}
switch (fork()) {
case -1:

errbxit("fork");

case 0: /* Second child: exec 'wc' to read from pipe */
if (close(pfd[1]) == -1) /* Write end is unused */
errkxit("close 3");

/* Duplicate stdin on read end of pipe; close duplicated descriptor */

if (pfd[o] != STDIN_FILENO) { /* Defensive check */
if (dup2(pfd[0], STDIN FILENO) == -1)
errExit("dup2 2");
if (close(pfd[0]) == -1)
errExit("close 4");

}

execlp("wc", "wc", "-1", (char *) NULL); /* Reads from pipe */
errkExit("execlp wc");

default: /* Parent falls through */
break;

}

/* Parent closes unused file descriptors for pipe, and waits for children */

if (close(pfd[0]) == -1)
errkxit("close 5");
if (close(pfd[1]) == -1)
errkxit("close 6");
if (wait(NULL) == -1)
errExit("wait 1");
if (wait(NULL) == -1)
errExit("wait 2");

exit(EXIT_SUCCESS);

pipes/pipe_ls_wc.c

Pipes and FIFOs 901

44.5

When we run the program in Listing 44-4, we see the following:

$./pipe_ls_wc
24

$1s | we -1
24

Verify the resulis using shell commands

Talking to a Shell Command via a Pipe: popen()

A common use for pipes is to execute a shell command and either read its output
or send it some input. The popen() and pclose() functions are provided to simplify
this task.

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

Returns file stream, or NULL on error
int pclose(FILE *stream);

Returns termination status of child process, or -1 on error

The popen() function creates a pipe, and then forks a child process that execs a
shell, which in turn creates a child process to execute the string given in command.
The mode argument is a string that determines whether the calling process will read
from the pipe (mode is r) or write to it (mode is w). (Since pipes are unidirectional,
two-way communication with the executed command is not possible.) The value of
mode determines whether the standard output of the executed command is con-
nected to the write end of the pipe or its standard input is connected to the read
end of the pipe, as shown in Figure 44-4.

Jork(), /bin/sh Jork() Jork() /bin/sh Jork()
exec() ,7 \\ exec() exec() \\ exec()
calling command calling command

process pipe process pipe
Jp [stdout Jp stdin

a) mode is r

b) mode is w

Figure 44-4: Overview of process relationships and pipe usage for popen()

On success, popen() returns a file stream pointer that can be used with the stdio
library functions. If an error occurs (e.g., mode is not r or w, pipe creation fails, or
the fork() to create the child fails), then popen() returns NULL and sets errno to indi-
cate the cause of the error.

After the popen() call, the calling process uses the pipe to read the output of
command or to send input to it. Just as with pipes created using pipe(), when reading
from the pipe, the calling process encounters end-of-file once command has closed

902 Chapter 44

the write end of the pipe; when writing to the pipe, it is sent a SIGPIPE signal, and
gets the EPIPE error, if command has closed the read end of the pipe.

Once I/0 is complete, the pclose() function is used to close the pipe and wait for
the child shell to terminate. (The fclose() function should not be used, since it doesn’t
wait for the child.) On success, pclose() yields the termination status (Section 26.1.3)
of the child shell (which is the termination status of the last command that the shell
executed, unless the shell was killed by a signal). As with system() (Section 27.6), if a
shell could not be execed, then pclose() returns a value as though the child shell had
terminated with the call _exit(127). If some other error occurs, pclose() returns —1.
One possible error is that the termination status could not be obtained. We explain
how this may occur shortly.

When performing a wait to obtain the status of the child shell, SUSv3 requires
that pclose(), like system(), should automatically restart the internal call that it makes
to waitpid() if that call is interrupted by a signal handler.

In general, we can make the same statements for popen() as were made in Sec-
tion 27.6 for system(). Using popen() offers convenience. It builds the pipe, performs
descriptor duplication, closes unused descriptors, and handles all of the details of
Jork() and exec() on our behalf. In addition, shell processing is performed on the
command. This convenience comes at the cost of efficiency. At least two extra pro-
cesses must be created: one for the shell and one or more for the command(s) exe-
cuted by the shell. As with system(), popen() should never be used from privileged
programs.

While there are several similarities between system() and popen() plus pclose(),
there are also significant differences. These stem from the fact that, with system(),
the execution of the shell command is encapsulated within a single function call,
whereas with popen(), the calling process runs in parallel with the shell command
and then calls pclose(). The differences are as follows:

e Since the calling process and the executed command are operating in parallel,
SUSv3 requires that popen() should not ignore SIGINT and SIGQUIT. If generated
from the keyboard, these signals are sent to both the calling process and the
executed command. This occurs because both processes reside in the same
process group, and terminal-generated signals are sent to all of the members of
the (foreground) process group, as described in Section 34.5.

e Since the calling process may create other child processes between the execution
of popen() and pclose(), SUSv3 requires that popen() should not block SIGCHLD.
This means that if the calling process performs a wait operation before the
pclose() call, it may retrieve the status of the child created by popen(). In this
case, when pclose() is later called, it will return -1, with errno set to ECHILD, indi-
cating that pclose() could not retrieve the status of the child.

Example program

Listing 44-5 demonstrates the use of popen() and pclose(). This program repeatedly
reads a filename wildcard pattern @, and then uses popen() to obtain the results
from passing this pattern to the Is command ®. (Techniques similar to this were
used on older UNIX implementations to perform filename generation, also known
as globbing, prior to the existence of the glob() library function.)

Pipes and FIFOs 903

Listing 44-5: Globbing filename patterns with popen()

pipes/popen_glob.c
#include <ctype.h>

#include <limits.h>

#include "print_wait_status.h" /* For printWaitStatus() */

#include "tlpi_hdr.h"

@ #define POPEN_FMT "/bin/1s -d %s 2> /dev/null"
#define PAT_SIZE 50
#tdefine PCMD_BUF_SIZE (sizeof(POPEN_FMT) + PAT_SIZE)

int
main(int argc, char *argv([])

char pat[PAT_SIZE]; /* Pattern for globbing */

char popenCmd[PCMD_BUF SIZE];

FILE *fp; /* File stream returned by popen() */
Boolean badPattern; /* Invalid characters in 'pat'? */

int len, status, fileCnt, j;
char pathname[PATH_MAX];

for (5;) { /* Read pattern, display results of globbing */
printf("pattern: ");
fflush(stdout);
@ if (fgets(pat, PAT SIZE, stdin) == NULL)
break; /* EOF */
len = strlen(pat);
if (len <= 1) /* Empty line */
continue;
if (pat[len - 1] == "\n'") /* Strip trailing newline */

pat[len - 1] = "\0';

/* Ensure that the pattern contains only valid characters,
i.e., letters, digits, underscore, dot, and the shell
globbing characters. (Our definition of valid is more
restrictive than the shell, which permits other characters
to be included in a filename if they are quoted.) */

® for (j = 0, badPattern = FALSE; j < len & !badPattern; j++)
if (!isalnum((unsigned char) pat[j]) &&
strchr("_*?[~-1.", pat[j]) == NULL)
badPattern = TRUE;

if (badPattern) {
printf("Bad pattern character: %c\n", pat[j - 1]);

continue;
}
/* Build and execute command to glob 'pat' */
® snprintf(popenCmd, PCMD_BUF SIZE, POPEN_FMT, pat);
popenCmd[PCMD_BUF_SIZE - 1] = '\0'; /* Ensure string is

null-terminated */

904 Chapter 44

fp = popen(popenCmd, "r");

if (fp == NULL) {
printf("popen() failed\n");
continue;

}
/* Read resulting list of pathnames until EOF */

fileCnt = 0;

while (fgets(pathname, PATH_MAX, fp) != NULL) {
printf("%s", pathname);
fileCnt++;

}

/* Close pipe, fetch and display termination status */

status = pclose(fp);
printf(" %d matching file%s\n", fileCnt, (fileCnt != 1) ? "s" : "");
printf(" pclose() status == %#x\n", (unsigned int) status);
if (status != -1)
printWaitStatus("\t", status);
}

exit(EXIT_SUCCESS);

pipes/popen_glob.c

The following shell session demonstrates the use of the program in Listing 44-5. In
this example, we first provide a pattern that matches two filenames, and then a pat-
tern that matches no filename:

$./popen_glob
pattern: popen_glob* Matches two filenames
popen_glob
popen_glob.c
2 matching files
pclose() status = 0
child exited, status=0

pattern: x* Matches no filename
0 matching files
pclose() status = 0x100 Is(1) exits with status 1
child exited, status=1
pattern: "D$ Type Control-D to terminate

The construction of the command @® for globbing in Listing 44-5 requires some
explanation. Actual globbing of a pattern is performed by the shell. The /s command
is merely being used to list the matching filenames, one per line. We could have
tried using the echo command instead, but this would have had the undesirable
result that if a pattern matched no filenames, then the shell would leave the pattern
unchanged, and eckho would simply display the pattern. By contrast, if is is given the
name of a file that doesn’t exist, it prints an error message on stderr (which we dis-
pose of by redirecting stderr to /dev/null), prints nothing on stdout, and exits with a
status of 1.

Pipes and FIFOs 905

44.6

44.7

Note also the input checking performed in Listing 44-5 ®. This is done to pre-
vent invalid input causing popen() to execute an unexpected shell command. Sup-
pose that these checks were omitted, and the user entered the following input:

pattern: ; rm *

The program would then pass the following command to popen(), with disastrous
results:

/bin/ls -d ; rm * 2> /dev/null

Such checking of input is always required in programs that use popen() (or system())
to execute a shell command built from user input. (An alternative would be for the
application to quote any characters other than those being checked for, so that
those characters don’t undergo special processing by the shell.)

Pipes and stdio Buffering

Since the file stream pointer returned by a call to popen() doesn’t refer to a terminal,
the stdio library applies block buffering to the file stream (Section 13.2). This means
that when we call popen() with a mode of w, then, by default, output is sent to the
child process at the other end of the pipe only when the stdio buffer is filled or we
close the pipe with pclose(). In many cases, this presents no problem. If, however,
we need to ensure that the child process receives data on the pipe immediately,
then we can either use periodic calls to fflush() or disable stdio buffering using the
call sethuf(fp, NULL). This technique can also be used if we create a pipe using the
pipe() system call and then use fdopen() to obtain a stdio stream corresponding to the
write end of the pipe.

If the process calling popen() is reading from the pipe (i.e., mode is r), things
may not be so straightforward. In this case, if the child process is using the stdio
library, then—unless it includes explicit calls to fflush() or setbuf{)—its output will be
available to the calling process only when the child either fills the stdio buffer or
calls felose(). (The same statement applies if we are reading from a pipe created
using pipe() and the process writing on the other end is using the stdio library.) If
this is a problem, there is little we can do unless we can modify the source code of
the program running in the child process to include calls to setbuf() of fflush().

If modifying the source code is not an option, then instead of using a pipe, we
could use a pseudoterminal. A pseudoterminal is an IPC channel that appears to
the process on one end as though it is a terminal. Consequently, the stdio library
line buffers output. We describe pseudoterminals in Chapter 64.

FIFOs

Semantically, a FIFO is similar to a pipe. The principal difference is that a FIFO has
a name within the file system and is opened in the same way as a regular file. This
allows a FIFO to be used for communication between unrelated processes (e.g., a
client and server).

906 Chapter 44

Once a FIFO has been opened, we use the same 1/O system calls as are used
with pipes and other files (i.e., read(), write(), and close()). Just as with pipes, a FIFO
has a write end and a read end, and data is read from the pipe in the same order as
it is written. This fact gives FIFOs their name: first in, first out. FIFOs are also some-
times known as named pipes.

As with pipes, when all descriptors referring to a FIFO have been closed, any
outstanding data is discarded.

We can create a FIFO from the shell using the mkfifo command:

$ mkfifo [-m mode] pathname

The pathname is the name of the FIFO to be created, and the —m option is used to
specify a permission mode in the same way as for the chmod command.

When applied to a FIFO (or pipe), fstat() and stat() return a file type of S_IFIFO
in the st_mode field of the stat structure (Section 15.1). When listed with Is =/, a FIFO
is shown with the type p in the first column, and Is —F appends an the pipe symbol
(1) to the FIFO pathname.

The mkfifo() function creates a new FIFO with the given pathname.

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

Returns 0 on success, or —1 on error

The mode argument specifies the permissions for the new FIFO. These permissions
are specified by ORing the desired combination of constants from Table 154, on
page 295. As usual, these permissions are masked against the process umask value
(Section 15.4.6).

Historically, FIFOs were created using the system call mknod(pathname,
S_IFIFO, 0). POSIX.1-1990 specified mkfifo() as a simpler API avoiding the gen-
erality of mknod(), which allows creation of various types of files, including
device files. (SUSV3 specifies mknod(), but weakly, defining only its use for creating
FIFOs.) Most UNIX implementations provide mkfifo() as a library function layered
on top of mknod().

Once a FIFO has been created, any process can open it, subject to the usual file per-
mission checks (Section 15.4.3).

Opening a FIFO has somewhat unusual semantics. Generally, the only sensible
use of a FIFO is to have a reading process and a writing process on each end.
Therefore, by default, opening a FIFO for reading (the open() 0_RDONLY flag) blocks
until another process opens the FIFO for writing (the open() 0_WRONLY flag). Conversely,
opening the FIFO for writing blocks until another process opens the FIFO for reading.
In other words, opening a FIFO synchronizes the reading and writing processes. If the
opposite end of a FIFO is already open (perhaps because a pair of processes have
already opened each end of the FIFO), then open() succeeds immediately.

Under most UNIX implementations (including Linux), it is possible to circum-
vent the blocking behavior when opening FIFOs by specifying the 0_RDWR flag when
opening a FIFO. In this case, open() returns immediately with a file descriptor that

Pipes and FIFOs 907

908

can be used for reading and writing on the FIFO. Doing this rather subverts the /O
model for FIFOs, and SUSv3 explicitly notes that opening a FIFO with the 0_RDWR
flag is unspecified; therefore, for portability reasons, this technique should be
avoided. In circumstances where we need to prevent blocking when opening a
FIFO, the open() 0_NONBLOCK flag provides a standardized method for doing so (refer
to Section 44.9).

Avoiding the use of the 0_RDWR flag when opening a FIFO can be desirable for a
another reason. After such an open(), the calling process will never see end-of-
file when reading from the resulting file descriptor, because there will always
be at least one descriptor open for writing to the FIFO—the same descriptor
from which the process is reading.

Using FIFOs and tee(1) to create a dual pipeline

One of the characteristics of shell pipelines is that they are linear; each process in
the pipeline reads data produced by its predecessor and sends data to its successor.
Using FIFOs, it is possible to create a fork in a pipeline, so that a duplicate copy of
the output of a process is sent to another process in addition to its successor in the
pipeline. In order to do this, we need to use the tee command, which writes two
copies of what it reads from its standard input: one to standard output and the
other to the file named in its command-line argument.

Making the file argument to tee a FIFO allows us to have two processes simulta-
neously reading the duplicate output produced by tee. We demonstrate this in the
following shell session, which creates a FIFO named myfifo, starts a background wc
command that opens the FIFO for reading (this will block until the FIFO is opened
for writing), and then executes a pipeline that sends the output of Is to tee, which
both passes the output further down the pipeline to sort and sends it to the myfifo
FIFO. (The -k5n option to sort causes the output of Is to be sorted in increasing
numerical order on the fifth space-delimited field.)

$ mkfifo myfifo

$ we -1 < myfifo &

$ 1s -1 | tee myfifo | sort -ks5n
(Resulting output not shown)

Diagrammatically, the above commands create the situation shown in Figure 44-5.

The tee program is so named because of its shape. We can consider tee as function-
ing similarly to a pipe, but with an additional branch that sends duplicate output.
Diagrammatically, this has the shape of a capital letter 7T (see Figure 44-5). In addi-
tion to the purpose described here, tee is also useful for debugging pipelines and
for saving the results produced at some intervening point in a complex pipeline.

D e 7 D o

Figure 44-5: Using a FIFO and tee(1) to create a dual pipeline

Chapter 44

44.8

A Client-Server Application Using FIFOs

In this section, we present a simple client-server application that employs FIFOs for
IPC. The server provides the (trivial) service of assigning unique sequential numbers
to each client that requests them. In the course of discussing this application, we
introduce a few concepts and techniques in server design.

Application overview

In the example application, all clients send their requests to the server using a
single server FIFO. The header file (Listing 44-6) defines the well-known name
(/tmp/segnum_sv) that the server uses for its FIFO. This name is fixed, so that all cli-
ents know how to contact the server. (In this example application, we create the
FIFOs in the /tmp directory, since this allows us to conveniently run the programs
without change on most systems. However, as noted in Section 38.7, creating files in
publicly writable directories such as /tmp can lead to various security vulnerabilities
and should be avoided in real-world applications.)

In client-server applications, we’ll repeatedly encounter the concept of a well-
known address or name used by a server to make its service visible to clients.
Using a well-known address is one solution to the problem of how clients can
know where to contact a server. Another possible solution is to provide some
kind of name server with which servers can register the names of their ser-
vices. Each client then contacts the name server to obtain the location of the
service it desires. This solution allows the location of servers to be flexible, at
the cost of some extra programming effort. Of course, clients and servers
then need to know where to contact the name server; typically, it resides at a
well-known address.

It is not, however, possible to use a single FIFO to send responses to all clients,
since multiple clients would race to read from the FIFO, and possibly read each
other’s response messages rather than their own. Therefore, each client creates a
unique FIFO that the server uses for delivering the response for that client, and the
server needs to know how to find each client’s FIFO. One possible way to do this is
for the client to generate its FIFO pathname, and then pass the pathname as part of
its request message. Alternatively, the client and server can agree on a convention
for constructing a client FIFO pathname, and, as part of its request, the client can
pass the server the information required to construct the pathname specific to this
client. This latter solution is used in our example. Each client’s FIFO name is built
from a template (CLIENT_FIFO_TEMPLATE) consisting of a pathname containing the client’s
process ID. The inclusion of the process ID provides an easy way of generating a
name unique to this client.

Figure 44-6 shows how this application uses FIFOs for communication between
the client and server processes of our application.

The header file (Listing 44-6) defines the formats for the request messages sent
from clients to the server, and for the response messages sent from the server to clients.

Pipes and FIFOs 909

910

Client A
(PID=6514)

Server

Client B
(PID=6523)

Client B FIFO
/tmp/seqnum_cl.6523

Figure 44-6: Using FIFOs in a single-server, multiple-client application

Recall that the data in pipes and FIFOs is a byte stream; boundaries between mul-
tiple messages are not preserved. This means that when multiple messages are
being delivered to a single process, such as the server in our example, then the
sender and receiver must agree on some convention for separating the messages.
Various approaches are possible:

Terminate each message with a delimiter character, such as a newline character.
(For an example of this technique, see the readLine() function in Listing 59-1, on
page 1201.) In this case, either the delimiter character must be one that never
appears as part of the message, or we must adopt a convention for escaping the
delimiter if it does occur within the message. For example, if we use a newline
delimiter, then the characters \ plus newline could be used to represent a real
newline character within the message, while \\ could represent a real \. One
drawback of this approach is that the process reading messages must scan data
from the FIFO a byte at a time until the delimiter character is found.

Include a fixed-size header with a length field in each message specifying the number
of bytes in the remaining variable-length component of the message. In this
case, the reading process first reads the header from the FIFO, and then uses
the header’s length field to determine the number of bytes to read for the
remainder of the message. This approach has the advantage of efficiently
allowing messages of arbitrary size, but could lead to problems if a malformed
message (e.g., bad length field) is written to the pipe.

Use fixed-length messages, and have the server always read messages of this fixed
size. This has the advantage of being simple to program. However, it places an
upper limit on our message size and means that some channel capacity is
wasted (since short messages must be padded to the fixed length). Further-
more, if one of the clients accidentally or deliberately sends a message that is
not of the right length, then all subsequent messages will be out of step; in this
situation, the server can’t easily recover.

These three techniques are illustrated in Figure 44-7. Be aware that for each of
these techniques, the total length of each message must be smaller than PIPE_BUF
bytes in order to avoid the possibility of messages being broken up by the kernel
and interleaved with messages from other writers.

Chapter 44

In the three techniques described in the main text, a single channel (FIFO) is
used for all messages from all clients. An alternative is to use a single connection
for each message. The sender opens the communication channel, sends its message,
and then closes the channel. The reading process knows that the message is
complete when it encounters end-of-file. If multiple writers hold a FIFO open,
then this approach is not feasible, because the reader won’t see end-of-file when
one of the writers closes the FIFO. This approach is, however, feasible when
using stream sockets, where a server process creates a unique communication

channel for each incoming client connection.

delimiter character

1) delimiter character | data | | data | | data | |

<— [en bytes —

2) header with length field | len | data | len | data | len | data |

<— n bytes —><— n bytes —><— n bytes —

3) fixed-length messages | data | data | data |

Figure 44-7: Separating messages in a byte stream

In our example application, we use the third of the techniques described above,
with each client sending messages of a fixed size to the server. This message is
defined by the request structure defined in Listing 44-6. Each request to the server
includes the client’s process ID, which enables the server to construct the name of
the FIFO used by the client to receive a response. The request also contains a field
(seqLen) specifying how many sequence numbers should be allocated to this client.
The response message sent from server to client consists of a single field, segNum,
which is the starting value of the range of sequence numbers allocated to this client.

Listing 44-6: Header file for fifo_seqnum_server.c and fifo_seqnum_client.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "tlpi_hdr.h"

#define SERVER_FIFO "/tmp/segqnum_sv"
/* Well-known name for server's FIFO */
#define CLIENT_FIFO_TEMPLATE "/tmp/seqnum_cl.%1d"
/* Template for building client FIFO name */
#define CLIENT FIFO NAME_LEN (sizeof(CLIENT FIFO_TEMPLATE) + 20)
/* Space required for client FIFO pathname
(+20 as a generous allowance for the PID) */

struct request { /* Request (client --> server) */
pid_t pid; /* PID of client */
int seqlen; /* Length of desired sequence */
};

Pipes and FIFOs

pipes/fifo_seqnum.h

911

912

struct response { /* Response (server --> client) */

b

int segNum; /* Start of sequence */

pipes/fifo_seqnum.h

Server program

Listing 44-7 is the code for the server. The server performs the following steps:

Create the server’s well-known FIFO O and open the FIFO for reading @. The
server must be run before any clients, so that the server FIFO exists by the time
a client attempts to open it. The server’s open() blocks until the first client
opens the other end of the server FIFO for writing.

Open the server’s FIFO once more ®, this time for writing. This will never
block, since the FIFO has already been opened for reading. This second open
is a convenience to ensure that the server doesn’t see end-of-ile if all clients
close the write end of the FIFO.

Ignore the SIGPIPE signal @, so that if the server attempts to write to a client
FIFO that doesn’t have a reader, then, rather than being sent a SIGPIPE signal
(which kills a process by default), it receives an EPIPE error from the write()
system call.

Enter a loop that reads and responds to each incoming client request ®. To
send the response, the server constructs the name of the client FIFO ® and
then opens that FIFO @.

If the server encounters an error in opening the client FIFO, it abandons that
client’s request ®.

This is an example of an iterative server, in which the server reads and handles each
client request before going on to handle the next client. An iterative server design
is suitable when each client request can be quickly processed and responded to, so
that other client requests are not delayed. An alternative design is a concurrent server, in
which the main server process employs a separate child process (or thread) to handle
each client request. We discuss server design further in Chapter 60.

Listing 44-7: An iterative server using FIFOs

pipes/fifo_seqnum_server.c

#include <signal.h>
#include "fifo_segnum.h"

int

main(int argc, char *argv[])

{

Chapter 44

int serverFd, dummyFd, clientFd;

char clientFifo[CLIENT_FIFO_NAME_LEN];

struct request req;

struct response resp;

int segNum = 0; /* This is our “"service" */

/* Create well-known FIFO, and open it for reading */

umask(0); /* So we get the permissions we want */
if (mkfifo(SERVER FIFO, S IRUSR | S_IWUSR | S_IWGRP) == -1
88 errno != EEXIST)
errExit("mkfifo %s", SERVER_FIFO);
serverfFd = open(SERVER_FIFO, O RDONLY);
if (serverfFd == -1)
errExit("open %s", SERVER_FIFO);

/* Open an extra write descriptor, so that we never see EOF */

dummyFd = open(SERVER_FIFO, O_WRONLY);
if (dummyFd == -1)
errkExit("open %s", SERVER FIFO);

if (signal(SIGPIPE, SIG_ICN) == SIG_ERR)
errExit("signal");

for (5;) { /* Read requests and send responses */
if (read(serverFd, &req, sizeof(struct request))
= sizeof(struct request)) {
fprintf(stderr, "Error reading request; discarding\n");
continue; /* Either partial read or error */

}

/* Open client FIFO (previously created by client) */

snprintf(clientFifo, CLIENT_FIFO_NAME_LEN, CLIENT_FIFO_TEMPLATE,
(long) req.pid);
clientFd = open(clientFifo, O WRONLY);

if (clientFd == -1) { /* Open failed, give up on client */
errMsg("open %s", clientFifo);
continue;

}

/* Send response and close FIFO */

resp.seqNum = seqNum;
if (write(clientFd, &resp, sizeof(struct response))
1= sizeof(struct response))
fprintf(stderr, "Error writing to FIFO %s\n", clientFifo);
if (close(clientFd) == -1)
errMsg("close");

segNum += req.seqlen; /* Update our sequence number */

pipes/fifo_seqnum_server.c

Pipes and FIFOs 9213

Client program

Listing 44-8 is the code for the client. The client performs the following steps:

e Create a FIFO to be used for receiving a response from the server @. This is
done before sending the request, in order to ensure that the FIFO exists by the
time the server attempts to open it and send a response message.

e Construct a message for the server containing the client’s process ID and a
number (taken from an optional command-line argument) specifying the
length of the sequence that the client wishes the server to assign to it @. (If no
command-line argument is supplied, the default sequence length is 1.)

e Open the server FIFO ® and send the message to the server ®.
e Open the client FIFO @, and read and print the server’s response ®.

The only other detail of note is the exit handler @, established with atexit() ®,
which ensures that the client’s FIFO is deleted when the process exits. Alterna-
tively, we could have simply placed an unlink() call immediately after the open() of
the client FIFO. This would work because, at that point, after they have both per-
formed blocking open() calls, the server and the client would each hold open file
descriptors for the FIFO, and removing the FIFO name from the file system
doesn’t affect these descriptors or the open file descriptions to which they refer.
Here is an example of what we see when we run the client and server programs:

$./fifo_seqnum_server &

[1] 5066

$./fifo_seqnum_client 3 Request a sequence of three numbers
0 Assigned sequence begins at 0

$./fifo_seqnum_client 2 Regquest a sequence of two numbers
3 Assigned sequence begins at 3

$./fifo_seqnum_client Request a single number

5

Listing 44-8: Client for the sequence-number server

pipes/fifo_seqnum_client.c
#include "fifo_segnum.h"

static char clientFifo[CLIENT FIFO NAME_LEN];

static void /* Invoked on exit to delete client FIFO */
® removeFifo(void)

{
}

unlink(clientFifo);

int

main(int argc, char *argv([])
int serverFd, clientFd;

struct request req;
struct response resp;

914 Chapter 44

44.9

if (argc > 1 8& stremp(argv[1], "--help") == 0)
usageErr("%s [seq-len...]\n", argv[o]);

/* Create our FIFO (before sending request, to avoid a race) */

umask(0); /* So we get the permissions we want */
snprintf(clientFifo, CLIENT FIFO NAME_LEN, CLIENT FIFO TEMPLATE,
(long) getpid());
if (mkfifo(clientFifo, S_IRUSR | S_IWUSR | S_IWGRP) == -1
&& errno != EEXIST)
errExit("mkfifo %s", clientFifo);

if (atexit(removeFifo) != 0)
errExit("atexit");

/* Construct request message, open server FIFO, and send request */

req.pid = getpid();
req.seqlen = (argc > 1) ? getInt(argv[1], GN_GT_0, "seg-len") : 1;

serverFd = open(SERVER_FIFO, O _WRONLY);
if (serverFd == -1)
errkExit("open %s", SERVER _FIFO);

if (write(serverFd, &req, sizeof(struct request)) !=
sizeof(struct request))
fatal("Can't write to server");

/* Open our FIFO, read and display response */

clientFd = open(clientFifo, O RDONLY);
if (clientFd == -1)
errExit("open %s", clientFifo);

if (read(clientFd, &resp, sizeof(struct response))
1= sizeof(struct response))
fatal("Can't read response from server");

printf("%d\n", resp.seqNum);
exit(EXIT_SUCCESS);

pipes/fifo_seqnum_client.c

Nonblocking 1/0

As noted earlier, when a process opens one end of a FIFO, it blocks if the other end
of the FIFO has not yet been opened. Sometimes, it is desirable not to block, and
for this purpose, the 0_NONBLOCK flag can be specified when calling open():

fd = open("fifopath", O _RDONLY | O_NONBLOCK);

if (fd == -1)
errExit("open");

Pipes and FIFOs 915

916

If the other end of the FIFO is already open, then the 0_NONBLOCK flag has no effect
on the open() call-it successfully opens the FIFO immediately, as usual. The
0_NONBLOCK flag changes things only if the other end of the FIFO is not yet open, and
the effect depends on whether we are opening the FIFO for reading or writing:

e If the FIFO is being opened for reading, and no process currently has the write
end of the FIFO open, then the open() call succeeds immediately (just as
though the other end of the FIFO was already open).

e If the FIFO is being opened FIFO for writing, and the other end of the FIFO is
not already open for reading, then open() fails, setting errno to ENXIO.

The asymmetry of the 0_NONBLOCK flag depending on whether the FIFO is being
opened for reading or for writing can be explained as follows. It is okay to open a
FIFO for reading when there is no writer at the other end of the FIFO, since any
attempt to read from the FIFO simply returns no data. However, attempting to
write to a FIFO for which there is no reader would result in the generation of the
SIGPIPE signal and an EPIPE error from write().

Table 44-1 summarizes the semantics of opening a FIFO, including the effects
of 0_NONBLOCK described above.

Table 44-1: Semantics of open() for a FIFO

Type of open() Result of open()
open for | additional flags | other end of FIFO open | other end of FIFO closed
. none (blocking) [succeeds immediately blocks
reading - - - -
0_NONBLOCK succeeds immediately succeeds immediately
. none (blocking) [succeeds immediately blocks
writing - - -
0_NONBLOCK succeeds immediately fails (ENXI0)

Using the 0_NONBLOCK flag when opening a FIFO serves two main purposes:

e It allows a single process to open both ends of a FIFO. The process first opens
the FIFO for reading specifying 0_NONBLOCK, and then opens the FIFO for writing.

e It prevents deadlocks between processes opening two FIFOs.

A deadlock is a situation where two or more process are blocked because each is
waiting on the other process(es) to complete some action. The two processes
shown in Figure 44-8 are deadlocked. Each process is blocked waiting to open a
FIFO for reading. This blocking would not happen if each process could perform
its second step (opening the other FIFO for writing). This particular deadlock
problem could be solved by reversing the order of steps 1 and 2 in process Y, while
leaving the order in process X unchanged, or vice versa. However, such an arrange-
ment of steps may not be easy to achieve in some applications. Instead, we can
resolve the problem by having either process, or both, specify the 0_NONBLOCK flag
when opening the FIFOs for reading.

Chapter 44

44.10

Process X Process Y

1. Open FIFO A for reading 1. Open FIFO B for reading
blocks blocks
2. Open FIFO B for writing 2. Open FIFO A for writing

Figure 44-8: Deadlock between processes opening two FIFOs

Nonblocking read() and write()

The 0_NONBLOCK flag affects not only the semantics of open() but also—because the
flag then remains set for the open file description—the semantics of subsequent
read() and write() calls. We describe these effects in the next section.

Sometimes, we need to change the state of the 0_NONBLOCK flag for a FIFO (or
another type of file) that is already open. Scenarios where this need may arise
include the following:

e We opened a FIFO using 0_NONBLOCK, but we want subsequent read() and write()
calls to operate in blocking mode.

e We want to enable nonblocking mode for a file descriptor that was returned by
pipe(). More generally, we might want to change the nonblocking status of any
file descriptor that was obtained other than from a call to open()—for example,
one of the three standard descriptors that are automatically opened for each
new program run by the shell or a file descriptor returned by socket().

e For some application-specific purpose, we need to switch the setting of the
0_NONBLOCK setting of a file descriptor on and off.

For these purposes, we can use fentl() to enable or disable the 0_NONBLOCK open file
status flag. To enable the flag, we write the following (omitting error checking):

int flags;

flags = fentl(fd, F_GETFL); /* Fetch open files status flags */
flags |= O_NONBLOCK; /* Enable O_NONBLOCK bit */
fentl(fd, F_SETFL, flags); /* Update open files status flags */

And to disable it, we write the following:

flags = fentl(fd, F_GETFL);
flags &= ~0_NONBLOCK; /* Disable O_NONBLOCK bit */
fcntl(fd, F_SETFL, flags);

Semantics of read() and write() on Pipes and FIFOs

Table 44-2 summarizes the operation of read() for pipes and FIFOs, and includes
the effect of the 0_NONBLOCK flag.

The only difference between blocking and nonblocking reads occurs when no
data is present and the write end is open. In this case, a normal read() blocks, while
a nonblocking read() fails with the error EAGAIN.

Pipes and FIFOs 917

Table 44-2: Semantics of reading n bytes from a pipe or FIFO containing p bytes

0_NONBLOCK Data bytes available in pipe or FIFO (p)

enabled? | 4 =, write end open | p = 0, write end closed |p<n p>=n

No block return 0 (EOF) read p bytes | read n bytes
Yes fail (EAGAIN) return 0 (EOF) read p bytes | read n bytes

The impact of the 0_NONBLOCK flag when writing to a pipe or FIFO is made complex
by interactions with the PIPE_BUF limit. The write() behavior is summarized in
Table 44-3.

Table 44-3: Semantics of writing n bytes to a pipe or FIFO

44.11

918

0_NONBLOCK Read end open Read end
enabled? | ;, <= PIPE_BUF n > PIPE_BUF closed
Atomically write n bytes; Write n bytes; may block until
No may block until sufficient | sufficient data read for write() to
data is read for write() to complete; data may be interleaved
be performed with writes by other processes SICPIPE
If sufficient space is If there is sufficient space to .
available to immediately immediately write some bytes, EPIPE
Yes write n bytes, then write() then write between 1 and n bytes
succeeds atomically; (which may be interleaved with
otherwise, it fails (EAGAIN) data written by other processes);
otherwise, write() fails (EAGAIN)

The 0_NONBLOCK flag causes a write() on a pipe or FIFO to fail (with the error EAGAIN)
in any case where data can’t be transferred immediately. This means that if we are
writing up to PIPE_BUF bytes, then the write() will fail if there is not sufficient space in
the pipe or FIFO, because the kernel can’t complete the operation immediately
and can’t perform a partial write, since that would break the requirement that
writes of up to PIPE_BUF bytes are atomic.

When writing more than PIPE_BUF bytes at a time, a write is not required to be
atomic. For this reason, write() transfers as many bytes as possible (a partial write)
to fill up the pipe or FIFO. In this case, the return value from write() is the number
of bytes actually transferred, and the caller must retry later in order to write the
remaining bytes. However, if the pipe or FIFO is full, so that not even one byte can
be transferred, then write() fails with the error EAGAIN.

Summary

Pipes were the first method of IPC under the UNIX system, and they are used fre-
quently by the shell, as well as in other applications. A pipe is a unidirectional, limited-
capacity byte stream that can be used for communication between related processes.
Although blocks of data of any size can be written to a pipe, only writes that do not
exceed PIPE_BUF bytes are guaranteed to be atomic. As well as being used as a
method of IPC, pipes can also be used for process synchronization.

Chapter 44

44.12
44-1.

44-2.

When using pipes, we must be careful to close unused descriptors in order to
ensure that reading processes detect end-of-file and writing processes receive the
SIGPIPE signal or the EPIPE error. (Usually, it is easiest to have the application writing
to a pipe ignore SIGPIPE and detect a “broken” pipe via the EPIPE error.)

The popen() and pclose() functions allow a program to transfer data to or from a
standard shell command, without needing to handle the details of creating a pipe,
execing a shell, and closing unused file descriptors.

FIFOs operate in exactly the same way as pipes, except that they are created
using mkfifo(), have a name in the file system, and can be opened by any process
with appropriate permissions. By default, opening a FIFO for reading blocks until
another process opens the FIFO for writing, and vice versa.

In the course of this chapter, we looked at a number of related topics. First, we
saw how to duplicate file descriptors in such a manner that the standard input or
output of a filter can be bound to a pipe. While presenting a client-server example
using FIFOs, we touched on a number of topics in client-server design, including
the use of a well-known address for a server and iterative versus concurrent server
design. In developing the example FIFO application, we noted that, although data
transmitted through a pipe is a byte stream, it is sometimes useful for communicat-
ing processes to package the data into messages, and we looked at various ways in
which this could be accomplished.

Finally, we noted the effect of the 0_NONBLOCK (nonblocking 1/0) flag when
opening and performing I/0O on a FIFO. The 0_NONBLOCK flag is useful if we don’t
want to block while opening a FIFO. It is also useful if we don’t want reads to block
if no data is available, or writes to block if there is insufficient space within a pipe
or FIFO.

Further information

The implementation of pipes is discussed in [Bach, 1986] and [Bovet & Cesati, 2005].
Useful details about pipes and FIFOs can also be found in [Vahalia, 1996].

Exercises

Write a program that uses two pipes to enable bidirectional communication
between a parent and child process. The parent process should loop reading a
block of text from standard input and use one of the pipes to send the text to the
child, which converts it to uppercase and sends it back to the parent via the other
pipe. The parent reads the data coming back from the child and echoes it on
standard output before continuing around the loop once more.

Implement popen() and pclose(). Although these functions are simplified by not
requiring the signal handling employed in the implementation of system()
(Section 27.7), you will need to be careful to correctly bind the pipe ends to file
streams in each process, and to ensure that all unused descriptors referring to the
pipe ends are closed. Since children created by multiple calls to popen() may be
running at one time, you will need to maintain a data structure that associates the
file stream pointers allocated by popen() with the corresponding child process IDs.
(If using an array for this purpose, the value returned by the fileno() function, which
obtains the file descriptor corresponding to a file stream, can be used to index the

Pipes and FIFOs 919

44-3.

44-4.

44-5.

44-6.

44-7.

array.) Obtaining the correct process ID from this structure will allow pclose() to
select the child upon which to wait. This structure will also assist with the SUSv3
requirement that any still-open file streams created by earlier calls to popen() must
be closed in the new child process.

The server in Listing 44-7 (fifo_segnum_server.c) always starts assigning sequence
numbers from 0 each time it is started. Modify the program to use a backup file
that is updated each time a sequence number is assigned. (The open() 0_SYNC flag,
described in Section 4.3.1, may be useful.) At startup, the program should check
for the existence of this file, and if it is present, use the value it contains to initialize
the sequence number. If the backup file can’t be found on startup, the program
should create a new file and start assigning sequence numbers beginning at 0. (An
alternative to this technique would be to use memory-mapped files, described in
Chapter 49.)

Add code to the server in Listing 44-7 (fifo_seqnum_server.c) so that if the program
receives the SIGINT or SIGTERM signals, it removes the server FIFO and terminates.

The server in Listing 44-7 (fifo_seqnum_server.c) performs a second 0_WRONLY open of
the FIFO so that it never sees end-of-file when reading from the reading descriptor
(serverkd) of the FIFO. Instead of doing this, an alternative approach could be tried:
whenever the server sees end-of-file on the reading descriptor, it closes the
descriptor, and then once more opens the FIFO for reading. (This open would
block until the next client opened the FIFO for writing.) What is wrong with this
approach?

The server in Listing 44-7 (fifo_seqnum_server.c) assumes that the client process is
well behaved. If a misbehaving client created a client FIFO and sent a request to the
server, but did not open its FIFO, then the server’s attempt to open the client FIFO
would block, and other client’s requests would be indefinitely delayed. (If done
maliciously, this would constitute a denial-of-service attack.) Devise a scheme to deal
with this problem. Extend the server (and possibly the client in Listing 44-8)
accordingly.

Write programs to verify the operation of nonblocking opens and nonblocking I/0
on FIFOs (see Section 44.9).

920 Chapter 44

