length = getLong(argv[2], GN_ANY_BASE, "length");
offset = (argc > 3) ? getlong(argv[3], GN_ANY BASE, "offset") : o;
alignment = (argc > 4) ? getlong(argv[4], GN_ANY_BASE, "alignment") : 4096;

fd = open(argv[1], O _RDONLY | O DIRECT);
if (fd == -1)
errkExit("open");

/* memalign() allocates a block of memory aligned on an address that
is a multiple of its first argument. The following expression
ensures that 'buf' is aligned on a non-power-of-two multiple of
‘alignment'. We do this to ensure that if, for example, we ask
for a 256-byte aligned buffer, then we don't accidentally get
a buffer that is also aligned on a 512-byte boundary.

The '(char *)' cast is needed to allow pointer arithmetic (which
is not possible on the 'void *' returned by memalign()). */

buf = (char *) memalign(alignment * 2, length + alignment) + alignment;
if (buf == NULL)
errExit("memalign");

if (lseek(fd, offset, SEEK SET) == -1)
errExit("1lseek");

numRead = read(fd, buf, length);
if (numRead == -1)
errExit("read");
printf("Read %1d bytes\n", (long) numRead);

exit(EXIT_SUCCESS);

filebuff/direct_read.c

13.7 Mixing Library Functions and System Calls for File 1/0

248

It is possible to mix the use of system calls and the standard C library functions to
perform I/O on the same file. The fileno() and fdopen() functions assist us with this task.

#include <stdio.h>

int fileno(FILE *stream);
Returns file descriptor on success, or =1 on error

FILE *fdopen(int fd, const char *mode);

Returns (new) file pointer on success, or NULL on error

Given a stream, fileno() returns the corresponding file descriptor (i.e., the one that
the stdio library has opened for this stream). This file descriptor can then be used in the
usual way with I/O system calls such as read(), write(), dup(), and fentl().

Chapter 13

13.8

The fdopen() function is the converse of fileno(). Given a file descriptor, it creates a
corresponding stream that uses this descriptor for its I/O. The mode argument is
the same as for fopen(); for example, r for read, w for write, or a for append. If this
argument is not consistent with the access mode of the file descriptor fd, then
Jfdopen() fails.

The fdopen() function is especially useful for descriptors referring to files other
than regular files. As we’ll see in later chapters, the system calls for creating sockets
and pipes always return file descriptors. To use the sidio library with these file
types, we must use fdopen() to create a corresponding file stream.

When using the stdio library functions in conjunction with I/O system calls to
perform I/0O on disk files, we must keep buffering issues in mind. /O system calls
transfer data directly to the kernel buffer cache, while the stdio library waits until
the stream’s user-space buffer is full before calling write() to transfer that buffer to the
kernel buffer cache. Consider the following code used to write to standard output:

printf("To man the world is twofold, ");
write(STDOUT_FILENO, "in accordance with his twofold attitude.\n", 41);

In the usual case, the output of the printf() will typically appear after the output of
the write(), so that this code yields the following output:

in accordance with his twofold attitude.
To man the world is twofold,

When intermingling 1/O system calls and stdio functions, judicious use of fflush()
may be required to avoid this problem. We could also use setvbuf{) or setbuf{) to disable
buffering, but doing so might impact /O performance for the application, since
each output operation would then result in the execution of a write() system call.

SUSv3 goes to some length specifying the requirements for an application to
be able to mix the use of I/O system calls and stdio functions. See the section
headed Interaction of File Descriptors and Standard 1/0 Streams under the chapter
General Information in the System Interfaces (XSH) volume for details.

Summary

Buffering of input and output data is performed by the kernel, and also by the stdio
library. In some cases, we may wish to prevent buffering, but we need to be aware
of the impact this has on application performance. Various system calls and library
functions can be used to control kernel and stdio buffering and to perform one-off
buffer flushes.

A process can use posix_fadvise() to advise the kernel of its likely pattern for
accessing data from a specified file. The kernel may use this information to opti-
mize the use of the buffer cache, thus improving I/O performance.

The Linux-specific open() 0_DIRECT flag allows specialized applications to bypass
the buffer cache.

The fileno() and fdopen() functions assist us with the task of mixing system calls
and standard C library functions to perform I/O on the same file. Given a stream,
fileno() returns the corresponding file descriptor; fdopen() performs the converse
operation, creating a new stream that employs a specified open file descriptor.

File 1/O Buffering 249

13.9
13-1.

13-2.

13-3.

13-4.

13-5.

Further information

[Bach, 1986] describes the implementation and advantages of the buffer cache on
System V. [Goodheart & Cox, 1994] and [Vahalia, 1996] also describe the rationale
and implementation of the System V buffer cache. Further relevant information
specific to Linux can be found in [Bovet & Cesati, 2005] and [Love, 2010].

Exercises

Using the ¢ime builtin command of the shell, try timing the operation of the
program in Listing 4-1 (copy.c) on your system.

a) Experiment with different file and buffer sizes. You can set the buffer size
using the —DBUF_SIZE=nbytes option when compiling the program.

b) Modify the open() system call to include the 0_SYNC flag. How much differ-
ence does this make to the speed for various buffer sizes?

c¢) Try performing these timing tests on a range of file systems (e.g., ext3, XFS,
Btrfs, and JFS). Are the results similar? Are the trends the same when going
from small to large buffer sizes?

Time the operation of the filebuff/write_bytes.c program (provided in the source
code distribution for this book) for various buffer sizes and file systems.

What is the effect of the following statements?

fflush(fp);
fsync(fileno(fp));

Explain why the output of the following code differs depending on whether
standard output is redirected to a terminal or to a disk file.

printf("If I had more time, \n");
write(STDOUT_FILENO, "I would have written you a shorter letter.\n", 43);

The command tail [—n num | file prints the last num lines (ten by default) of the
named file. Implement this command using I/O system calls ({seek(), read(), write(),
and so on). Keep in mind the buffering issues described in this chapter, in order to
make the implementation efficient.

250 Chapter 13

