Shell Programming

Having started this book on programming Linux using C, we now take a detour into writing shell
programs. Why? Well, Linux isn’t like systems where the command-line interface is an afterthought to
the graphical interface. UNIX, Linux’s inspiration, originally had no graphical interface at all; every-
thing was done from the command line. Consequently, the command-line system of UNIX underwent
a lot of development and became a very powerful feature. This has been carried into Linux, and some
of the most powerful things that you can do are most easily done from the shell. Because the shell is so
important to Linux, and is so useful for automating simple tasks, shell programming is covered early.

Throughout this chapter, we’ll be showing you the syntax, structures, and commands available to you
when you're programming the shell, usually making use of interactive (screen-based) examples. These
should serve as a useful synopsis of most of the shell’s features and their effects. We will also sneak a
look at a couple of particularly useful command-line utilities often called from the shell: grep and
find. While looking at grep, we also cover the fundamentals of regular expressions, which crop up in
Linux utilities and in programming languages such as Perl, Ruby, and PHP. At the end of the chapter,
you'll learn how to program a real-life script, which is reprogrammed and extended in C throughout
the book. This chapter covers the following:

(W

What a shell is

Basic considerations

The subtleties of syntax: variables, conditions, and program control
Lists

Functions

Commands and command execution

Here documents

Debugging

grep and regular expressions

[E S T I B A A

find

Whether you're faced with a complex shell script in your system administration, or you want to
prototype your latest big (but beautifully simple) idea, or just want to speed up some repetitive
task, this chapter is for you.

Chapter 2: Shell Programming

Why Program with a Shell?

A

18

One reason to use the shell for programming is that you can program the shell quickly and simply.
Moreover, a shell is always available even on the most basic Linux installation, so for simple prototyp-
ing you can find out if your idea works. The shell is also ideal for any small utilities that perform some
relatively simple task for which efficiency is less important than easy configuration, maintenance, and
portability. You can use the shell to organize process control, so that commands run in a predeter-
mined sequence dependent on the successful completion of each stage.

Although the shell has superficial similarities to the Windows command prompt, it’s much more powerful,
capable of running reasonably complex programs in its own right. Not only can you execute commands
and call Linux utilities, you can also write them. The shell executes shell programs, often referred to as
scripts, which are interpreted at runtime. This generally makes debugging easier because you can easily
execute single lines, and there’s no recompile time. However, this can make the shell unsuitable for time-
critical or processor-intensive tasks.

Bit of Philosophy

Here we come to a bit of UNIX — and of course Linux — philosophy. UNIX is built on and depends
on a high level of code reuse. You build a small and simple utility and people use it as one link in a
string of others to form a command. One of the pleasures of Linux is the variety of excellent tools
available. A simple example is this command:

$ 1s -al | more

This command uses the 1s and more utilities and pipes the output of the file listing to a screen-at-a-time
display. Each utility is one more building block. You can often use many small scripts together to create
large and complex suites of programs.

For example, if you want to print a reference copy of the bash manual pages, then use
$ man bash | col -b | lpr

Furthermore, because of Linux’s automatic file type handling, the users of these utilities usually don’t
need to know what language the utilities are written in. If the utility needs to run faster, it’s quite com-
mon to prototype utilities in the shell and reimplement them later in C or C++, Perl, Python, or some
other language that executes more swiftly once an idea has proven its worth. Conversely, if the utility
works adequately in the shell, you can leave well enough alone.

Whether or not you ever reimplement the script depends on whether it needs optimizing, whether it
needs to be portable, whether it should be easy to change, and whether (as usually happens) it outgrows
its original purpose.

Numerous examples of shell scripts are already loaded on your Linux system in case you're curious,
including package installers, .xinitrc and startx, and the scripts in /etc/rc.d to configure the
system on boot-up.

Chapter 2: Shell Programming

What Is a Shell?

Before jumping in and discussing how to program using a shell, let’s review the shell’s function and the
different shells available for Linux. A shell is a program that acts as the interface between you and the Linux
system, enabling you to enter commands for the operating system to execute. In that respect, it resembles the
Windows command prompt, but as mentioned earlier, Linux shells are much more powerful. For example,
input and output can be redirected using < and >, data piped between simultaneously executing programs
using |, and output from a subprocess grabbed by using $ (. . .). On Linux it’s quite feasible to have multi-
ple shells installed, with different users able to pick the one they prefer. Figure 2-1 shows how the shell (two
shells actually, both bash and csh) and other programs sit around the Linux kernel.

Other
programs

The
X Window
System

Figure 2-1

Because Linux is so modular, you can slot in one of the many different shells in use, although most of
them are derived from the original Bourne shell. On Linux, the standard shell that is always installed as
/bin/shis called bash (the GNU Bourne-Again SHell), from the GNU suite of tools. Because this is an
excellent shell that is always installed on Linux systems, is open source, and is portable to almost all
UNIX variants, bash is the shell we will be using. This chapter uses bash version 3 and mostly uses the
features common to all POSIX-compatible shells. We assume that the shell has been installed as /bin/sh
and that it is the default shell for your login. On most Linux distributions, the program /bin/sh, the
default shell, is actually a link to the program /bin/bash.

You can check the version of bash you have with the following command:
$ /bin/bash --version

GNU bash, version 3.2.9(1)-release (i1i686-pc-linux-gnu)
Copyright (C) 2005 Free Software Foundation, Inc.

To change to a different shell — if bash isn’t the default on your system, for example —
just execute the desired shell’s program (e.g., /bin/bash) to run the new shell and
change the command prompt. If you are using UNIX, and bash isn’t installed, you

can download it free from the GNU Web site at www. gnu. org. The sources are highly
portable, and chances are good that it will compile on your version of UNIX straight
out of the box.

19

Chapter 2: Shell Programming

When you create Linux users, you can set the shell that they will use, either when the user is created or
afterwards by modifying their details. Figure 2-2 shows the selection of the shell for a user using Fedora.

Figure 2-2

Many other shells are available, either free or commercially. The following table offers a brief summary
of some of the more common shells available:

Shell Name A Bit of History
sh (Bourne) The original shell from early versions of UNIX
csh, tcsh, zsh The C shell, and its derivatives, originally created by Bill Joy of

Berkeley UNIX fame. The C shell is probably the third most popular
type of shell after bash and the Korn shell.

ksh, pdksh The Korn shell and its public domain cousin. Written by David
Korn, this is the default shell on many commercial UNIX versions.

bash The Linux staple shell from the GNU project. bash, or Bourne Again
SHell, has the advantage that the source code is freely available, and
even if it’s not currently running on your UNIX system, it has proba-
bly been ported to it. bash has many similarities to the Korn shell.

20

Chapter 2: Shell Programming

Except for the C shell and a small number of derivatives, all of these are very similar and are closely aligned
with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 provides the mini-
mum specification for a shell, but the extended specification in X/Open provides a more friendly and pow-
erful shell. X/Open is usually the more demanding specification, but it also yields a friendlier system.

Pipes and Redirection

Before we get down to the details of shell programs, we need to say a little about how inputs and out-
puts of Linux programs (not just shell programs) can be redirected.

Redirecting Output

You may already be familiar with some redirection, such as
$ 1s -1 > lsoutput.txt
which saves the output of the 1s command into a file called 1soutput. txt.

However, there is much more to redirection than this simple example reveals. You'll learn more about the
standard file descriptors in Chapter 3, but for now all you need to know is that file descriptor 0 is the stan-
dard input to a program, file descriptor 1 is the standard output, and file descriptor 2 is the standard error
output. You can redirect each of these independently. In fact, you can also redirect other file descriptors, but
it’s unusual to want to redirect any other than the standard ones: 0, 1, and 2.

The preceding example redirects the standard output into a file by using the > operator. By default, if the
file already exists, then it will be overwritten. If you want to change the default behavior, you can use
the command set -o noclobber (or set -C), which sets the noclobber option to prevent a file from
being overwritten using redirection. You can cancel this option using set +o noclobber. You'll see
more options for the set command later in the chapter.

To append to the file, use the >> operator. For example,

$ ps >> lsoutput.txt
will append the output of the ps command to the end of the specified file.
To redirect the standard error output, preface the > operator with the number of the file descriptor you
wish to redirect. Because the standard error is on file descriptor 2, use the 2> operator. This is often use-
ful to discard error information and prevent it from appearing on the screen.
Suppose you want to use the kill command to kill a process from a script. There is always a slight risk
that the process will die before the ki1l command is executed. If this happens, ki1l will write an error
message to the standard error output, which, by default, will appear on the screen. By redirecting both the
standard output and the error, you can prevent the kill command from writing any text to the screen.
The command

$ kill -HUP 1234 >killout.txt 2>killerr.txt

will put the output and error information into separate files.

21

Chapter 2: Shell Programming

If you prefer to capture both sets of output into a single file, you can use the >& operator to combine the
two outputs. Therefore,

$ kill -1 1234 >killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This
reads as “redirect standard output to the file killouterr. txt, and then direct standard error to the
same place as the standard output.” If you get the order wrong, the redirect won’t work as you expect.

Because you can discover the result of the ki1l command using the return code (discussed in more
detail later in this chapter), you don’t often want to save either standard output or standard error. You
can use the Linux universal “bit bucket” of /dev/null to efficiently discard the entire output, like this:

$ kill -1 1234 >/dev/null 2>&l

Redirecting Input

Rather like redirecting output, you can also redirect input. For example,

S more < killout.txt

Obviously, this is a rather trivial example under Linux; the Linux more command is quite happy to
accept filenames as parameters, unlike the Windows command-line equivalent.

Pipes

22

You can connect processes using the pipe operator (|). In Linux, unlike in MS-DOS, processes connected
by pipes can run simultaneously and are automatically rescheduled as data flows between them. As a
simple example, you could use the sort command to sort the output from ps.

If you don’t use pipes, you must use several steps, like this:

$ ps > psout.txt
$ sort psout.txt > pssort.out

A much more elegant solution is to connect the processes with a pipe:
$ ps | sort > pssort.out

Because you probably want to see the output paginated on the screen, you could connect a third process,
more, all on the same command line:

$ ps | sort | more

There’s practically no limit to the permissible number of connected processes. Suppose you want to see
all the different process names that are running excluding shells. You could use

$ ps -xo comm | sort | uniq | grep -v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using uniq, uses grep -v
sh to remove the process named sh, and finally displays it paginated on the screen.

Chapter 2: Shell Programming

As you can see, this is a much more elegant solution than a string of separate commands, each with its
own temporary file. However, be wary of one thing here: If you have a string of commands, the output
file is created or written to immediately when the set of commands is created, so never use the same file-
name twice in a string of commands. If you try to do something like

cat mydata.txt | sort | unig > mydata.txt

you will end up with an empty file, because you will overwrite the mydata. txt file before you read it.

The Shell as a Programming Language

Now that you’ve seen some basic shell operations, it’s time to move on to some actual shell programs. There
are two ways of writing shell programs. You can type a sequence of commands and allow the shell to exe-
cute them interactively, or you can store those commands in a file that you can then invoke as a program.

Interactive Programs

Just typing the shell script on the command line is a quick and easy way of trying out small code frag-
ments, and is very useful while you are learning or just testing things out.

Suppose you have a large number of C files and wish to examine the files that contain the string POSIX.
Rather than search using the grep command for the string in the files and then list the files individually,
you could perform the whole operation in an interactive script like this:

for file in *

do

if grep -1 POSIX $file

then

more $file

£i

> done

posix

This is a file with POSIX in it - treat it well
$

vV V.V V V n

Note how the normal $ shell prompt changes to a > when the shell is expecting further input. You can
type away, letting the shell decide when you're finished, and the script will execute immediately.

In this example, the grep command prints the files it finds containing POSIX and then more displays
the contents of the file to the screen. Finally, the shell prompt returns. Note also that you called the shell
variable that deals with each of the files to self-document the script. You could equally well have used 1,
but file is more meaningful for humans to read.

The shell also performs wildcard expansion (often referred to as globbing). You are almost certainly
aware of the use of ' *' as a wildcard to match a string of characters. What you may not know is that
you can request single-character wildcards using 2, while [set] allows any of a number of single char-
acters to be checked. [~set] negates the set — that is, it includes anything but the set you've specified.
Brace expansion using {} (available on some shells, including bash) allows you to group arbitrary
strings together in a set that the shell will expand. For example,

$ 1ls my {finger, toels

23

Chapter 2: Shell Programming

will list the files my_fingers and my_toes. This command uses the shell to check every file in the cur-
rent directory. We will come back to these rules for matching patterns near the end of the chapter when
we look in more detail at grep and the power of regular expressions.

Experienced Linux users would probably perform this simple operation in a much more efficient way,
perhaps with a command such as

$ more ‘grep -1 POSIX *°
or the synonymous construction

$ more $(grep -1 POSIX *)
In addition,

$ grep -1 POSIX * | more

will output the name of the file whose contents contained the string POSIX. In this script, you see the
shell making use of other commands, such as grep and more, to do the hard work. The shell simply
enables you to glue several existing commands together in new and powerful ways. You will see wild-
card expansion used many times in the following scripts, and we’ll look at the whole area of expansion
in more detail when we look at regular expressions in the section on the grep command.

Going through this long rigmarole every time you want to execute a sequence of commands is a bore.
You need to store the commands in a file, conventionally referred to as a shell script, so you can execute
them whenever you like.

Creating a Script

Using any text editor, you need to create a file containing the commands; create a file called first that
looks like this:

#!/bin/sh

first

This file looks through all the files in the current

directory for the string POSIX, and then prints the names of

those files to the standard output.

for file in *

do
if grep -g POSIX Sfile
then
echo S$file
fi
done
exit 0

Comments start with a # and continue to the end of a line. Conventionally, though, # is kept in the first col-
umn. Having made such a sweeping statement, we next note that the first line, #! /bin/sh, is a special form

24

Chapter 2: Shell Programming

of comment; the #! characters tell the system that the argument that follows on the line is the program to be
used to execute this file. In this case, /bin/sh is the default shell program.

Note the absolute path specified in the comment. It is conventional to keep this shorter than 32 charac-
ters for backward compatibility, because some older UNIX versions can only use this limited number of
characters when using #!, although Linux generally does not have this limitation.

Since the script is essentially treated as standard input to the shell, it can contain any Linux commands
referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter).
This is rarely checked when programs are run interactively, but if you want to invoke this script from
another script and check whether it succeeded, returning an appropriate exit code is very important.
Even if you never intend to allow your script to be invoked from another, you should still exit with a
reasonable code. Have faith in the usefulness of your script: Assume it may need to be reused as part of
another script someday:.

A zero denotes success in shell programming. Since the script as it stands can’t detect any failures, it
always returns success. We'll come back to the reasons for using a zero exit code for success later in the
chapter, when we look at the exit command in more detail.

Notice that this script does not use any filename extension or suffix; Linux, and UNIX in general, rarely
makes use of the filename extension to determine the type of a file. You could have used .sh or added a
different extension, but the shell doesn’t care. Most preinstalled scripts will not have any filename exten-
sion, and the best way to check if they are scripts or not is to use the £ile command — for example,
file firstor file /bin/bash. Use whatever convention is applicable where you work, or suits you.

Making a Script Executable

Now that you have your script file, you can run it in two ways. The simpler way is to invoke the shell
with the name of the script file as a parameter:

$ /bin/sh first
This should work, but it would be much better if you could simply invoke the script by typing its name,
giving it the respectability of other Linux commands. Do this by changing the file mode to make the file

executable for all users using the chmod command:

$ chmod +x first

Of course, this isn’t the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.

You can then execute it using the command

S first

25

Chapter 2: Shell Programming

26

You may get an error saying the command wasn’t found. This is almost certainly because the shell envi-
ronment variable PATH isn’t set to look in the current directory for commands to execute. To change this,
either type PATH=$PATH: . on the command line or edit your .bash_profile file to add this command
to the end of the file; then log out and log back in again. Alternatively, type . /first in the directory
containing the script, to give the shell the full relative path to the file.

Specifying the path prepended with . / does have one other advantage: It ensures that you don’t acci-
dentally execute another command on the system with the same name as your script file.

You shouldn’t change the PATH variable like this for the superuser, conventionally
the user name root. It’s a security loophole, because the system administrator
logged in as root can be tricked into invoking a fake version of a standard command.
One of the authors admits to doing this once — just to prove a point to the system
administrator about security, of course! It’s only a slight risk on ordinary accounts to
include the current directory in the path, so if you are particularly concerned, just
get into the habit of prepending . / to all commands that are in the local directory.

Once you're confident that your script is executing properly, you can move it to a more appropriate loca-
tion than the current directory. If the command is just for your own use, you could create a bin directory
in your home directory and add that to your path. If you want the script to be executable by others, you
could use /usr/local/bin or another system directory as a convenient location for adding new pro-
grams. If you don’t have root permissions on your system, you could ask the system administrator to
copy your file for you, although you may have to convince them of its worth first. To prevent other users
from changing the script, perhaps accidentally, you should remove write access from it. The sequence of
commands for the administrator to set ownership and permissions would be something like this:

cp first /usr/local/bin

chown root /usr/local/bin/first
chgrp root /usr/local/bin/first
chmod 755 /usr/local/bin/first

H oA H

Notice that rather than alter a specific part of the permission flags, you use the absolute form of the
chmod here because you know exactly what permissions you require.

If you prefer, you can use the rather longer, but perhaps more obvious, form of the chmod command:
chmod u=rwx,go=rx /usr/local/bin/first

Check the manual page of chmod for more details.

In Linux you can delete a file if you have write permission on the directory that
contains it. To be safe, ensure that only the superuser can write to directories con-
taining files that you want to keep safe. This makes sense because a directory is just
another file, and having write permission to a directory file allows users to add and
remove names.

Chapter 2: Shell Programming

Shell Syntax

Now that you've seen an example of a simple shell program, it’s time to look in greater depth at the pro-
gramming power of the shell. The shell is quite an easy programming language to learn, not least because
it’s easy to test small program fragments interactively before combining them into bigger scripts. You can
use the bash shell to write quite large, structured programs. The next few sections cover the following:

Q Variables: strings, numbers, environments, and parameters
Q Conditions: shell Booleans
Q Program control: if, elif, for, while, until, case
Q Lists
Q Functions
O Commands built into the shell
O Getting the result of a command
0 Here documents
Variables

You don’t usually declare variables in the shell before using them. Instead, you create them by simply
using them (for example, when you assign an initial value to them). By default, all variables are consid-
ered and stored as strings, even when they are assigned numeric values. The shell and some utilities will
convert numeric strings to their values in order to operate on them as required. Linux is a case-sensitive
system, so the shell considers the variable foo to be different from Foo, and both to be different from Foo.

Within the shell you can access the contents of a variable by preceding its name with a $. Whenever you
extract the contents of a variable, you must give the variable a preceding $. When you assign a value to a
variable, just use the name of the variable, which is created dynamically if necessary. An easy way to check
the contents of a variable is to echo it to the terminal, preceding its name with a $.

On the command line, you can see this in action when you set and check various values of the variable
salutation:

$ salutation=Hello

S echo $salutation
Hello

$ salutation="Yes Dear"
S echo $salutation

Yes Dear

$ salutation=7+5

$ echo $salutation

7+5

Note how a string must be delimited by quote marks if it contains spaces. In addition,
there can’t be any spaces on either side of the equals sign.

27

Chapter 2: Shell Programming

You can assign user input to a variable by using the read command. This takes one parameter, the
name of the variable to be read into, and then waits for the user to enter some text. The read normally
completes when the user presses Enter. When reading a variable from the terminal, you don’t usually
need the quote marks:

$ read salutation
Wie geht's?
$ echo $salutation
Wie geht's?

Quoting

Before moving on, you should be clear about one feature of the shell: the use of quotes.

Normally, parameters in scripts are separated by whitespace characters (e.g., a space, a tab, or a newline
character). If you want a parameter to contain one or more whitespace characters, you must quote the
parameter.

The behavior of variables such as $ foo inside quotes depends on the type of quotes you use. If you
enclose a $ variable expression in double quotes, then it’s replaced with its value when the line is exe-
cuted. If you enclose it in single quotes, then no substitution takes place. You can also remove the special
meaning of the $ symbol by prefacing it with a \.

Usually, strings are enclosed in double quotes, which protects variables from being separated by white
space but allows $ expansion to take place.

Try It Out Playing with Variables

This example shows the effect of quotes on the output of a variable:
#!/bin/sh
myvar="Hi there"

echo Smyvar

echo "Smyvar"
echo 'Smyvar'
echo \$myvar

echo Enter some text
read myvar

echo 'Smyvar' now equals Smyvar
exit 0

This behaves as follows:

$./variable
Hi there

Hi there
Smyvar
Smyvar

28

Chapter 2: Shell Programming

Enter some text
Hello World

$myvar now equals Hello World

How It Works

The variable myvar is created and assigned the string Hi there. The contents of the variable are dis-
played with the echo command, showing how prefacing the variable with a $ character expands the
contents of the variable. You see that using double quotes doesn’t affect the substitution of the variable,
while single quotes and the backslash do. You also use the read command to get a string from the user.

Environment Variables

When a shell script starts, some variables are initialized from values in the environment. These are nor-
mally in all uppercase form to distinguish them from user-defined (shell) variables in scripts, which are
conventionally lowercase. The variables created depend on your personal configuration. Many are listed
in the manual pages, but the principal ones are listed in the following table:

Environment Variable
$SHOME
$PATH

$PS1

$PS2

$IFS

S0

S#
$S

Description
The home directory of the current user
A colon-separated list of directories to search for commands

A command prompt, frequently $, but in bash you can use some
more complex values; for example, the string [\u@\h \W]$isa
popular default that tells you the user, machine name, and current
directory, as well as providing a $ prompt.

A secondary prompt, used when prompting for additional
input; usually >.

An input field separator. This is a list of characters that are used to
separate words when the shell is reading input, usually space, tab,
and newline characters.

The name of the shell script
The number of parameters passed

The process ID of the shell script, often used inside a script for gener-
ating unique temporary filenames; for example /tmp/tmpfile_$$

If you want to check out how the program works in a different environment by run-
ning the env <command>, try looking at the env manual pages. Later in the chapter
you'll see how to set environment variables in subshells using the export command.

29

Chapter 2: Shell Programming

Parameter Variables

If your script is invoked with parameters, some additional variables are created. If no parameters are
passed, the environment variable $# still exists but has a value of 0.

The parameter variables are listed in the following table:

Parameter Variable Description
31, 82, = The parameters given to the script
Sk Alist of all the parameters, in a single variable, separated by the first

character in the environment variable IFs. If IFs is modified, then
the way $* separates the command line into parameters will change.

se A subtle variation on $*; it doesn’t use the IFS environment vari-
able, so parameters are not run together even if IFs is empty.

It’s easy to see the difference between $e and $* by trying them out:

$ IFS="'

S set foo bar bam
$ echo "$@v

foo bar bam

$ echo "§*n
foobarbam

$ unset IFS

S echo "§*"

foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regard-
less of the IFs value. In general, if you want access to the parameters, $e is the sensible choice.

In addition to printing the contents of variables using the echo command, you can also read them by
using the read command.

Try It Out Manipulating Parameter and Environment Variables

30

The following script demonstrates some simple variable manipulation. Once you've typed the script and
saved it as try_var, don’t forget to make it executable with chmod +x try_var.

#!/bin/sh

salutation="Hello"

echo $salutation

echo "The program $0 is now running"

echo "The second parameter was $2"

echo "The first parameter was S$1"

echo "The parameter list was S$*"

echo "The user's home directory is SHOME"

Chapter 2: Shell Programming

echo "Please enter a new greeting"
read salutation

echo S$salutation
echo "The script is now complete"
exit 0

If you run this script, you get the following output:

$./try var foo bar baz

Hello

The program ./try_var is now running
The second parameter was bar

The first parameter was foo

The parameter list was foo bar baz
The user's home directory is /home/rick
Please enter a new greeting

Sire

Sire

The script is now complete

$

How It Works

This script creates the variable salutation, displays its contents, and then shows how various parame-
ter variables and the environment variable $HOME already exist and have appropriate values.

We'll return to parameter substitution in more detail later in the chapter.

Conditions

Fundamental to all programming languages is the ability to test conditions and perform different actions
based on those decisions. Before we talk about that, though, let’s look at the conditional constructs that
you can use in shell scripts and then examine the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, includ-
ing the scripts that you have written yourself. That’s why it’s important to always include an exit com-
mand with a value at the end of any scripts that you write.

The test or [Command

In practice, most scripts make extensive use of the [or test command, the shell’s Boolean check.
On some systems, the [and test commands are synonymous, except that when the [command is
used, a trailing] is also used for readability. Having a [command might seem a little odd, but within
the code it does make the syntax of commands look simple, neat, and more like other programming
languages.

31

Chapter 2: Shell Programming

These commands call an external program in some older UNIX shells, but they tend
to be built in to more modern ones. We’ll come back to this when we look at com-
mands in a later section.

Because the test command is infrequently used outside shell scripts, many Linux
users who have never written shell scripts try to write simple programs and call
them test. If such a program doesn’t work, it’s probably conflicting with the shell’s
test command. To find out whether your system has an external command of a
given name, try typing something like which test, to check which test command
is being executed, or use . /test to ensure that you execute the script in the current
directory. When in doubt, just get into the habit of executing your scripts by preced-
ing the script name with ./ when invoking them.

We'll introduce the test command using one of the simplest conditions: checking to see whether a file
exists. The command for this is test -f <filename>, so within a script you can write

if test -f fred.c
then

fi
You can also write it like this:

if [-f fred.c]
then

fi

The test command’s exit code (whether the condition is satisfied) determines whether the conditional
code is run.

Note that you must put spaces between the [braces and the condition being checked.
You can remember this by remembering that [is just the same as writing test, and
you would always leave a space after the test command.

If you prefer putting then on the same line as if, you must add a semicolon to separate
the test from the then:

if [-f fred.c]; then

fi

The condition types that you can use with the test command fall into three types: string comparison,
arithmetic comparison, and file conditionals. The following table describes these condition types:

32

Chapter 2: Shell Programming

String Comparison

stringl = string2
stringl != string2
-n string

-z string

Arithmetic Comparison

expressionl
expressionl
expressionl

expressionl

expressionl

expressionl

| expression

-eq expression2

-ne

-gt

—-ge

-1t

-le

File Conditional

-d file

-e file

-f file
-g file
-r file
-s file
-u file
-w file

-x file

expression2
expression2

expression2

expression2

expression2

Result

True if the strings are equal

True if the strings are not equal

True if the string is not null

True if the string is null (an empty string)

Result

True if the expressions are equal

True if the expressions are not equal

True if expressionl is greater than expression2

True if expressionl is greater than or equal to
expression2

True if expressionl is less than expression2

True if expressionl is less than or equal to
expression?2

True if the expression is false, and vice versa
Result
True if the file is a directory

True if the file exists. Note that historically the -e option
has not been portable, so - £ is usually used.

True if the file is a regular file

True if set-group-idisseton file
True if the file is readable

True if the file has nonzero size

True if set-user-idisseton file
True if the file is writable

True if the file is executable

33

Chapter 2: Shell Programming

You may be wondering what the set-group-id and set-user-id (also known as
set-gid and set-uid) bits are. The set-uid bit gives a program the permissions of
its owner, rather than its user, while the set-gid bit gives a program the permissions
of its group. The bits are set with chmod, using the s and g options. The set-gid
and set-uid flags have no effect on files containing shell scripts, only on executable
binary files.

We're getting ahead of ourselves slightly, but following is an example of how you would test the state of
the file /bin/bash, just so you can see what these look like in use:

#!/bin/sh
if [-f /bin/bash]
then
echo "file /bin/bash exists"

fi

if [-d /bin/bash]

then

echo "/bin/bash is a directory"
else

echo "/bin/bash is NOT a directory"
fi

Before the test can be true, all the file conditional tests require that the file also exists. This list contains
just the more commonly used options to the test command, so for a complete list refer to the manual
entry. If you're using bash, where test is built in, use the help test command to get more details.
We’ll use some of these options later in the chapter.

Now that you know about conditions, you can look at the control structures that use them.

Control Structures

The shell has a set of control structures, which are very similar to other programming languages.

In the following sections, the statements are the series of commands to perform
when, while, or until the condition is fulfilled.

The if statement is very simple: It tests the result of a command and then conditionally executes a
group of statements:

if condition

then
statements

34

Chapter 2: Shell Programming

else
statements
fi
A common use for if is to ask a question and then make a decision based on the answer:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [Stimeofday = "yes"]; then
echo "Good morning"

else
echo "Good afternoon"

fi

exit 0

This would give the following output:

Is it morning? Please answer yes Or no
yes
Good morning

$

This script uses the [command to test the contents of the variable timeofday. The result is evaluated by
the i f command, which then allows different lines of code to be executed.

Notice that you use extra white space to indent the statements inside the if. This is
just a convenience for the human reader; the shell ignores the additional white space.

elif
Unfortunately, there are several problems with this very simple script. For one thing, it will take any

answer except yes as meaning no. You can prevent this by using the el1if construct, which allows you
to add a second condition to be checked when the else portion of the if is executed.

Try It Out Doing Checks with an elif

You can modify the previous script so that it reports an error message if the user types in anything other
than yes or no. Do this by replacing the else with elif and then adding another condition:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [Stimeofday = "yes"]

then
echo "Good morning"

35

Chapter 2: Shell Programming

elif [Stimeofday = "no"]; then
echo "Good afternoon"

else
echo "Sorry, Stimeofday not recognized. Enter yes or no"
exit 1

fi

exit 0

How It Works

This is quite similar to the previous example, but now the elif command tests the variable again if
the first 1 £ condition is not true. If neither of the tests is successful, an error message is printed and the
script exits with the value 1, which the caller can use in a calling program to check whether the script
was successful.

A Problem with Variables

36

This fixes the most obvious defect, but a more subtle problem is lurking. Try this new script, but just press
Enter (or Return on some keyboards), rather than answering the question. You'll get this error message:

[: =: unary operator expected

What went wrong? The problem is in the first i f clause. When the variable timeofday was tested, it
consisted of a blank string. Therefore, the i £ clause looks like

if [= "yes"]
which isn’t a valid condition. To avoid this, you must use quotes around the variable:
if ["$timeofday" = "yes"]
An empty variable then gives the valid test:
if ["" = "yes"]
The new script is as follows:
#!/bin/sh

echo "Is it morning? Please answer yes Or no"
read timeofday

if ["Stimeofday" = "yes"]

then
echo "Good morning"

elif ["$timeofday" = "no"]; then
echo "Good afternoon"

else

echo "Sorry, Stimeofday not recognized. Enter yes or no"

Chapter 2: Shell Programming

exit 1
fi

exit 0

This is safe should a user just press Enter in answer to the question.

If you want the echo command to delete the trailing new line, the most portable
option is to use the printf command (see the printf section later in this chapter),
rather than the echo command. Some shells use echo -e, but that’s not supported on
all systems. bash allows echo -n to suppress the new line, so if you are confident
your script needs to work only on bash, we suggest using that syntax.

echo -n "Is it morning? Please answer yes or no: "

Note that you need to leave an extra space before the closing quotes so that there is a gap before the user-
typed response, which looks neater.

for
Use the for construct to loop through a range of values, which can be any set of strings. They could be
simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simple:

for variable in values
do

statements
done

Try It Out Using a for Loop with Fixed Strings
The values are normally strings, so you can write the following;:
#!/bin/sh

for foo in bar fud 43
do
echo $foo
done
exit 0

That results in the following output:

bar
fud
43

37

Chapter 2: Shell Programming

What would happen if you changed the first line from for foo in bar fud 43
to for foo in "bar fud 43"? Remember that adding the quotes tells the shell to
consider everything between them as a single string. This is one way of getting
spaces to be stored in a variable.

How It Works

This example creates the variable foo and assigns it a different value each time around the for loop.
Since the shell considers all variables to contain strings by default, it’s just as valid to use the string 43 as
the string fud.

Try It Out Using a for Loop with Wildcard Expansion

As mentioned earlier, it’s common to use the for loop with a shell expansion for filenames. This means
using a wildcard for the string value and letting the shell fill out all the values at run time.

You've already seen this in the original example, £irst. The script used shell expansion, the * expand-
ing to the names of all the files in the current directory. Each of these in turn is used as the variable
$file inside the for loop.

Let’s quickly look at another wildcard expansion. Imagine that you want to print all the script files start-

ing with the letter “f” in the current directory, and you know that all your scripts end in .sh. You could
do it like this:

#!/bin/sh

for file in $(1ls f*.sh); do
lpr $file

done

exit 0

How It Works

This illustrates the use of the $ (command) syntax, which is covered in more detail later (in the section on
command execution). Basically, the parameter list for the for command is provided by the output of the
command enclosed in the $ () sequence.

The shell expands £*. sh to give the names of all the files matching this pattern.

Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it’s written, so syntax errors in variable declarations are found
only at execution time, as shown earlier when we were quoting empty variables.

38

Chapter 2: Shell Programming

while

Because all shell values are considered strings by default, the for loop is good for looping through a
series of strings, but is not so useful when you don’t know in advance how many times you want the
loop to be executed.

When you need to repeat a sequence of commands, but don’t know in advance how many times they
should execute, you will normally use a while loop, which has the following syntax:

while condition do
statements
done

For example, here is a rather poor password-checking program:
#!/bin/sh

echo "Enter password"
read trythis

while ["Strythis" != "secret"]; do
echo "Sorry, try again"
read trythis

done

exit 0

An example of the output from this script is as follows:

Enter password
password

Sorry, try again
secret

$

Clearly, this isn’t a very secure way of asking for a password, but it does serve to illustrate the while
statement. The statements between do and done are continuously executed until the condition is no
longer true. In this case, you're checking whether the value of trythis is equal to secret. The loop will
continue until $trythis equals secret. You then continue executing the script at the statement imme-
diately following the done.

until

The until statement has the following syntax:

until condition
do

statements
done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop con-
tinues until the condition becomes true, not while the condition is true.

39

Chapter 2: Shell Programming

In general, if a loop should always execute at least once, use a while loop; if it may
not need to execute at all, use an until loop.

As an example of an until loop, you can set up an alarm that is initiated when another user, whose
login name you pass on the command line, logs on:

#!/bin/bash
until who | grep "$1" > /dev/null
do
sleep 60
done

now ring the bell and announce the expected user.

echo -e '\a'
echo "**** &1 has just logged in ****n

exit 0

If the user is already logged on, the loop doesn’t need to execute at all, so using until is a more natural
choice than while.

case

The case construct is a little more complex than those you have encountered so far. Its syntax is as follows:

case variable in

pattern [| pattern] ...) statements;;
pattern [| pattern] ...) statements;;
esac

This may look a little intimidating, but the case construct enables you to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements, depending
on which pattern was matched. It is much simpler than the alternative way of checking several conditions,
which would be to use multiple i £, elif, and else statements.

Notice that each pattern line is terminated with double semicolons (; ;). You can put multiple state-
ments between each pattern and the next, so a double semicolon is needed to mark where one statement
ends and the next pattern begins.

The capability to match multiple patterns and then execute multiple related statements makes the case
construct a good way of dealing with user input. The best way to see how case works is with an example.
We'll develop it over three Try It Out examples, improving the pattern matching each time.

Be careful with the case construct if you are using wildcards such as “** in the pat-
tern. The problem is that the first matching pattern will be taken, even if a later
pattern matches more exactly.

40

Chapter 2: Shell Programming

Try It Out Case I: User Input

You can write a new version of the input-testing script and, using the case construct, make it a little
more selective and forgiving of unexpected input:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "Stimeofday" in
yes) echo "Good Morning";;

no) echo "Good Afternoon";;
y) echo "Good Morning";;
n) echo "Good Afternoon";;
*) echo "Sorry, answer not recognized";;
esac
exit 0
How It Works

When the case statement is executing, it takes the contents of timeofday and compares it to each
string in turn. As soon as a string matches the input, the case command executes the code following
the) and finishes.

The case command performs normal expansion on the strings that it’s using for comparison. You can
therefore specify part of a string followed by the * wildcard. Using a single * will match all possible
strings, so always put one after the other matching strings to ensure that the case statement ends with
some default action if no other strings are matched. This is possible because the case statement com-
pares against each string in turn. It doesn’t look for a best match, just the first match. The default condi-
tion often turns out to be the impossible condition, so using * can help in debugging scripts.

Try It Out Case lI: Putting Patterns Together

The preceding case construction is clearly more elegant than the multiple if statement version, but by
putting the patterns together, you can make a much cleaner version:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "S$timeofday" in

ves | v | Yes | YES) echo "Good Morning";;

n* | N*) echo "Good Afternoon'";;

*) echo "Sorry, answer not recognized";;
esac
exit 0

41

Chapter 2: Shell Programming

How It Works

This script uses multiple strings in each entry of the case so that case tests several different strings for
each possible statement. This makes the script both shorter and, with practice, easier to read. This code
also shows how the * wildcard can be used, although this may match unintended patterns. For exam-
ple, if the user enters never, then this will be matched by n* and Good Afternoon will be displayed,
which isn’t the intended behavior. Note also that the * wildcard expression doesn’t work within quotes.

Try It Out Case llI: Executing Multiple Statements

Finally, to make the script reusable, you need to have a different exit value when the default pattern is
used because the input was not understood:

#!/bin/sh

echo "Is it morning? Please answer yes Or no"
read timeofday

case "S$timeofday" in
ves | y | Yes | YES)

echo "Good Morning"
echo "Up bright and early this morning"

echo "Good Afternoon"

echo "Sorry, answer not recognized"
echo "Please answer yes or no"
exit 1

esac

exit 0

How It Works

42

To show a different way of pattern matching, this code changes the way in which the no case is matched.
You also see how multiple statements can be executed for each pattern in the case statement. You must
be careful to put the most explicit matches first and the most general match last. This is important
because case executes the first match it finds, not the best match. If you put the *) first, it would always
be matched, regardless of what was input.

Note that the ; ; before esac is optional. Unlike C programming, where leaving out a break is poor pro-
gramming practice, leaving out the final ; ; is no problem if the last case is the default because no other
cases will be considered.

To make the case matching more powerful, you could use something like this:

[y¥Y] | [Yyl[EellSs])

Chapter 2: Shell Programming

This restricts the permitted letters while allowing a variety of answers, and offers more control than the
* wildcard.

Lists

Sometimes you want to connect commands in a series. For instance, you may want several different con-
ditions to be met before you execute a statement:

if [-f this_file]; then
if [-f that_file]; then
if [-f the_other_file]; then
echo "All files present, and correct"
fi
fi
fi

Or you might want at least one of a series of conditions to be true:

if [-f this_file]; then
foo="True"

elif [-f that_file]; then
foo="True"

elif [-f the_other file]; then
foo="True"

else
foo="False"

fi

if ["$foo" = "True"]; then
echo "One of the files exists"

fi

Although these can be implemented using multiple if statements, you can see that the results are awk-
ward. The shell has a special pair of constructs for dealing with lists of commands: the AND list and the
OR list. These are often used together, but we’ll review their syntax separately.

The AND List

The AND list construct enables you to execute a series of commands, executing the next command only
if all the previous commands have succeeded. The syntax is

statementl && statement2 && statement3 && ...

Starting at the left, each statement is executed; if it returns true, the next statement to the right is executed.
This continues until a statement returns false, after which no more statements in the list are executed. The
&& tests the condition of the preceding command.

Each statement is executed independently, enabling you to mix many different commands in a single

list, as the following script shows. The AND list as a whole succeeds if all commands are executed suc-
cessfully, but it fails otherwise.

43

Chapter 2: Shell Programming

Try It Out AND Lists

In the following script, you touch file_one (to check whether it exists and create it if it doesn’t) and
then remove file_two. Then the AND list tests for the existence of each of the files and echoes some
text in between.

#!/bin/sh

touch file_one
rm -f file_two

if [-f file_one] && echo "hello" && [-f file two] && echo " there"
then
echo "in if"
else
echo "in else"
fi
exit 0

Try the script and you'll get the following result:

hello
in else

How It Works

The touch and rm commands ensure that the files in the current directory are in a known state. The && list
then executes the [-f file_one] statement, which succeeds because you just made sure that the file
existed. Because the previous statement succeeded, the echo command is executed. This also succeeds
(echo always returns true). The third test, [-f file_two], is then executed. It fails because the file
doesn’t exist. Because the last command failed, the final echo statement isn’t executed. The result of the &&
list is false because one of the commands in the list failed, so the if statement executes its else condition.

The OR List

The OR list construct enables us to execute a series of commands until one succeeds, and then not exe-
cute any more. The syntax is as follows:

statementl || statement2 || statement3 ||

Starting at the left, each statement is executed. If it returns false, then the next statement to the right is
executed. This continues until a statement returns true, at which point no more statements are executed.

The | | list is very similar to the && list, except that the rule for executing the next statement is that the
previous statement must fail.

44

Chapter 2: Shell Programming

Try It Out OR Lists

Copy the previous example and change the shaded lines in the following listing:
#!/bin/sh

rm -f file_one

if [-f file_one] || echo "hello" || echo " there"
then
echo "in 1if"
else
echo "in else"
fi
exit 0

This results in the following output:

hello
in if

How It Works

The first two lines simply set up the files for the rest of the script. The first command, [-f file_one],
fails because the file doesn’t exist. The echo statement is then executed. Surprise, surprise — this returns
true, and no more commands in the | | list are executed. The i succeeds because one of the commands
in the | | list (the echo) was true.

The result of both of these constructs is the result of the last statement to be executed.
These list-type constructs execute in a similar way to those in C when multiple conditions are being
tested. Only the minimum number of statements is executed to determine the result. Statements that
can’t affect the result are not executed. This is commonly referred to as short circuit evaluation.
Combining these two constructs is a logician’s heaven. Try out the following:

[-f file one] && command for true || command for false
This will execute the first command if the test succeeds and the second command otherwise. It's always

best to experiment with these more unusual lists, and in general you should use braces to force the order
of evaluation.

Statement Blocks

If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR
list, you can do so by enclosing them in braces {} to make a statement block. For example, in the appli-
cation presented later in this chapter, you'll see the following code:

get_confirm && {
grep -v "Scdcatnum" $tracks_file > Stemp_file

45

Chapter 2: Shell Programming

cat Stemp_file > Stracks_file
echo
add_record_tracks

Functions

You can define functions in the shell; and if you write shell scripts of any size, you'll want to use them to
structure your code.

As an alternative, you could break a large script into lots of smaller scripts, each of
which performs a small task. This has some drawbacks: Executing a second script
from within a script is much slower than executing a function. It's more difficult to
pass back results, and there can be a very large number of small scripts. You should
consider the smallest part of your script that sensibly stands alone and use that as
your measure of when to break a large script into a collection of smaller ones.

To define a shell function, simply write its name followed by empty parentheses and enclose the state-
ments in braces:

function_name () {
statements

}

Try It Out A Simple Function

Let’s start with a really simple function:
#!/bin/sh
foo() {
echo "Function foo is executing"

}
echo "script starting"
foo

echo "script ended"

exit 0
Running the script will output the following;:

script starting
Function foo is executing
script ending

46

Chapter 2: Shell Programming

How It Works

This script starts executing at the top, so nothing is different there, but when it finds the foo () { con-
struct, it knows that a function called foo is being defined. It stores the fact that foo refers to a function
and continues executing after the matching }. When the single line foo is executed, the shell knows to
execute the previously defined function. When this function completes, execution resumes at the line
after the call to foo.

You must always define a function before you can invoke it, a little like the Pascal style of function defi-
nition before invocation, except that there are no forward declarations in the shell. This isn’t a problem,
because all scripts start executing at the top, so simply putting all the functions before the first call of any
function will always cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2, and so on, are
replaced by the parameters to the function. That’s how you read the parameters passed to the function.
When the function finishes, they are restored to their previous values.

Some older shells may not restore the value of positional parameters after functions
execute. It's wise not to rely on this behavior if you want your scripts to be portable.

You can make functions return numeric values using the return command. The usual way to make
functions return strings is for the function to store the string in a variable, which can then be used after
the function finishes. Alternatively, you can echo a string and catch the result, like this:

foo () { echo JAY;}

result="$(foo)"

Note that you can declare local variables within shell functions by using the 1ocal keyword. The variable is
then only in scope within the function. Otherwise, the function can access the other shell variables that are
essentially global in scope. If a local variable has the same name as a global variable, it overlays that variable,
but only within the function. For example, you can make the following changes to the preceding script to see
this in action:

#!/bin/sh

sample_text="global variable"

foo() {
local sample_text="local variable"
echo "Function foo is executing"
echo $sample_text

}

echo "script starting"
echo S$sample_text

47

Chapter 2: Shell Programming

foo

echo "script ended"
echo S$sample_text

exit 0

In the absence of a return command specifying a return value, a function returns the exit status of the
last command executed.

Try It Out Returning a Value

The next script, my_name, shows how parameters to a function are passed and how functions can return
a true or false result. You call this script with a parameter of the name you want to use in the ques-
tion.

1. After the shell header, define the function yes_or_no:
#!/bin/sh

yes_or_no() {
echo "Is your name S$* 2"
while true
do
echo -n "Enter yes or no: "
read x
case "$x" in
y | yes) return 0;;

n | no) return 1;;
) echo "Answer yes or no"
esac
done

2. Then the main part of the program begins:
echo "Original parameters are $*"

if yes_or_no "$1"

then
echo "Hi $1, nice name"
else
echo "Never mind"
fi
exit 0

Typical output from this script might be as follows:
$./my_name Rick Neil

Original parameters are Rick Neil
Is your name Rick ?

48

Chapter 2: Shell Programming

Enter yes or no: yes
Hi Rick, nice name

$

How It Works

As the script executes, the function yes_or_no is defined but not yet executed. In the if statement, the
script executes the function yes_or_no, passing the rest of the line as parameters to the function after sub-
stituting the $1 with the first parameter to the original script, Rick. The function uses these parameters,
which are now stored in the positional parameters $1, $2, and so on, and returns a value to the caller.
Depending on the return value, the i f construct executes the appropriate statement.

As you've seen, the shell has a rich set of control structures and conditional statements. You need to
learn some of the commands that are built into the shell; then you'll be ready to tackle a real program-
ming problem with no compiler in sight!

Commands

You can execute two types of commands from inside a shell script. There are “normal” commands that
you could also execute from the command prompt (called external commands), and there are “built-in” com-
mands (called internal commands), as mentioned earlier. Built-in commands are implemented internally to
the shell and can’t be invoked as external programs. However, most internal commands are also provided
as standalone programs — this requirement is part of the POSIX specification. It generally doesn’t matter if
the command is internal or external, except that internal commands execute more efficiently.

Here we’ll cover only the main commands, both internal and external, that we use when we’re program-
ming scripts. As a Linux user, you probably know many other commands that are valid at the command
prompt. Always remember that you can use any of these in a script in addition to the built-in commands
presented here.

break

Use break for escaping from an enclosing for, while, or until loop before the controlling condition has
been met. You can give break an additional numeric parameter, which is the number of loops to break out
of, but this can make scripts very hard to read, so we don’t suggest you use it. By default, break escapes a
single level.

#!/bin/sh

rm -rf fred*
echo > fredl
echo > fred2
mkdir fred3

echo > fred4d

for file in fred*
do
if [-d "$file" 1; then
break;

49

Chapter 2: Shell Programming

fi
done

echo first directory starting fred was S$file

rm -rf fred*
exit 0

The : Command

The colon command is a null command. It’s occasionally useful to simplify the logic of conditions, being
an alias for true. Since it’s built-in, : runs faster than true, though its output is also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop in place of the
more common while true.

The : construct is also useful in the conditional setting of variables. For example,
: ${var:=value}

Without the :, the shell would try to evaluate $var as a command.

In some, mostly older, shell scripts, you may see the colon used at the start of a line
to introduce a comment, but modern scripts should always use # to start a comment
line because this executes more efficiently.

#!/bin/sh

rm -f fred
if [-f fred]; then

else
echo file fred did not exist
fi

exit 0

continue

Rather like the C statement of the same name, this command makes the enclosing for, while, or until
loop continue at the next iteration, with the loop variable taking the next value in the list:

#!/bin/sh

rm -rf fred*
echo > fredl
echo > fred2
mkdir fred3

echo > fred4

50

Chapter 2: Shell Programming

for file in fred*

do
if [-d "$file" 1; then
echo "skipping directory S$file"
continue
fi
echo file is S$file
done

rm -rf fred*
exit 0

continue can take the enclosing loop number at which to resume as an optional parameter so that you
can partially jump out of nested loops. This parameter is rarely used, as it often makes scripts much
harder to understand. For example,

for x in 1 2 3
do
echo before $x
continue 1
echo after $x
done

The output for the preceding will be

before 1
before 2
before 3

The . Command

The dot (.) command executes the command in the current shell:
./shell_script

Normally, when a script executes an external command or script, a new environment (a subshell) is cre-
ated, the command is executed in the new environment, and the environment is then discarded apart
from the exit code that is returned to the parent shell. However, the external source and the dot com-
mand (two more synonyms) run the commands listed in a script in the same shell that called the script.

Because, by default, a new environment is created when a shell script is executed, any changes to environ-
ment variables that the script makes are lost. The dot command, on the other hand, allows the executed
script to change the current environment. This is often useful when you use a script as a wrapper to set up
your environment for the later execution of some other command. For example, when you're working on
several different projects at the same time, you may find you need to invoke commands with different
parameters, perhaps to invoke an older version of the compiler for maintaining an old program.

In shell scripts, the dot command works a little like the #include directive in C or C++. Though it doesn’t

literally include the script, it does execute the command in the current context, so you can use it to incor-
porate variable and function definitions into a script.

51

Chapter 2: Shell Programming

Try It Out The Dot Command

The following example uses the dot command on the command line, but you can just as well use it
within a script:

1. Suppose you have two files containing the environment settings for two different development
environments. To set the environment for the old, classic commands, classic_set, you could
use the following;:

#!/bin/sh

version=classic
PATH=/usr/local/old_bin: /usr/bin:/bin:.
PSl="classic> "

2. For the new commands, use latest_set:
#!/bin/sh

version=latest
PATH=/usr/local/new_bin:/usr/bin:/bin:.
PS1l=" latest version> "

You can set the environment by using these scripts in conjunction with the dot command, as in the fol-
lowing sample session:

$. ./classic_set

classic> echo $version
classic

classic> . /latest_set

latest version> echo $version
latest

latest version>

How It Works

The scripts are executed using the dot command, so each script is executed in the current shell. This
enables the script to change environment settings in the current shell, which remains changed even
when the script finishes executing.

echo

Despite the X/Open exhortation to use the print f command in modern shells, we’ve been following
common practice by using the echo command to output a string followed by a newline character.

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX
have implemented different solutions. The common method in Linux is to use

echo -n "string to output"

52

Chapter 2: Shell Programming

but you'll often come across
echo -e "string to output\c"

The second option, echo -e, ensures that the interpretation of backslashed escape characters, such as \c
for suppressing a newline, \t for outputting a tab and \n for outputting carriage returns, is enabled. In
older versions of bash this was often set by default, but more recent versions often default to not interpret-
ing backslashed escape characters. See the manual pages for details of the behavior on your distribution.

If you need a portable way to remove the trailing newline, you can use the external
tr command to get rid of it, but it will execute somewhat more slowly. If you need
portability to UNIX systems, it’s generally better to stick to printf if you need to
lose the newline. If your scripts need to work only on Linux and bash, echo -n
should be fine, though you may need to start the file with #! /bin/bash, to make it
explicit that you desire bash-style behavior.

eval

The eval command enables you to evaluate arguments. It’s built into the shell and doesn’t normally
exist as a separate command. It’s probably best demonstrated with a short example borrowed from the
X/Open specification itself:

foo=10
x=foo
y='$"'%5x
echo Sy

This gives the output $foo. However,
foo=10
x=foo
eval y='$"'S$Sx
echo Sy

gives the output 10. Thus, eval is a bit like an extra $: It gives you the value of the value of a variable.

The eval command is very useful, enabling code to be generated and run on-the-fly. It does complicate
script debugging, but it enables you to do things that are otherwise difficult or even impossible.

exec

The exec command has two different uses. Its typical use is to replace the current shell with a different
program. For example,

exec wall "Thanks for all the fish"

in a script will replace the current shell with the wall command. No lines in the script after the exec
will be processed, because the shell that was executing the script no longer exists.

53

Chapter 2: Shell Programming

The second use of exec is to modify the current file descriptors:

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It’s rarely used.

exit n

The exit command causes the script to exit with exit code n. If you use it at the command prompt of
any interactive shell, it will log you out. If you allow your script to exit without specifying an exit status,
then the status of the last command executed in the script is used as the return value. It’s always good
practice to supply an exit code.

In shell script programming, exit code 0 is success, and codes 1 through 125, inclusive, are error codes that
can be used by scripts. The remaining values have reserved meanings, as shown in the following table:

Exit Code Description

126 The file was not executable
127 A command was not found
128 and above A signal occurred

Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in
scripts is that they enable you to use 125 user-defined error codes without the need for a global error
code variable.

Here’s a simple example that returns success if a file called .profile exists in the current directory:
#!/bin/sh
if [-f .profile]; then
exit 0
fi

exit 1

If you're a glutton for punishment, or at least for terse scripts, you can rewrite this script using the com-
bined AND and OR list shown earlier, all on one line:

[-f .profile] && exit 0 || exit 1

export

54

The export command makes the variable named as its parameter available in subshells. By default,
variables created in a shell are not available in further (sub)shells invoked from that shell. The export
command creates an environment variable from its parameter that can be seen by other scripts and pro-
grams invoked from the current program. More technically, the exported variables form the environ-
ment variables in any child processes derived from the shell. This is best illustrated with an example of
two scripts, exportl and export2.

Chapter 2: Shell Programming

Try It Out Exporting Variables

1. First, list export2:
#!/bin/sh

echo "S$foo"
echo "Sbar"

2. Now for exportl. At the end of this script, invoke export2:
#!/bin/sh

foo="The first meta-syntactic variable"
export bar="The second meta-syntactic variable"

export2
If you run these, you get the following;:

$./exportl

The second meta-syntactic variable

$

How It Works

The export2 script simply echoes the values of the two variables. The export1 script sets both the vari-
ables, but only marks bar as exported, so when it subsequently invokes export1, the value of foo has
been lost, but the value of bar has been exported to the second script. The blank line occurs because
$foo evaluated to nothing, and echoing a null variable gives a newline.

Once a variable has been exported from a shell, it’s exported to any scripts invoked from that shell and
to any shell they invoke in turn, and so on. If the script export2 called another script, it would also have
the value of bar available to it.

The commands set -a or set -allexport will export all variables thereafter.

expr

The expr command evaluates its arguments as an expression. It's most commonly used for simple arith-
metic in the following form:

x="expr $x + 1°

55

Chapter 2: Shell Programming

The ** (backtick) characters make x take the result of executing the command expr $x + 1.You could
also write it using the syntax $ () rather than backticks, like this:

x=$ (expr $x + 1)

The expr command is powerful and can perform many expression evaluations. The principal ones are
shown in the following table:

Expression Evaluation Description
exprl | expr2 exprl if exprl is nonzero, otherwise expr2
exprl & expr2 Zero if either expression is zero, otherwise exprl
exprl = expr2 Equal
exprl > expr2 Greater than
exprl >= expr2 Greater than or equal to
exprl < expr2 Less than
exprl <= expr2 Less than or equal to
exprl != expr2 Not equal
exprl + expr2 Addition
exprl - expr2 Subtraction
exprl * expr2 Multiplication
exprl / expr2 Integer division
exprl % expr2 Integer modulo
In newer scripts, the use of expr is normally replaced with the more efficient $ ((..)) syntax, which is

covered later in the chapter.

printf

56

The printf command is available only in more recent shells. X/Open suggests that it should be used in
preference to echo for generating formatted output, though few people seem to follow this advice.

The syntax is

printf "format string" parameterl parameter?
The format string is very similar to that used in C or C++, with some restrictions. Principally, floating
point isn’t supported, because all arithmetic in the shell is performed as integers. The format string con-

sists of any combination of literal characters, escape sequences, and conversion specifiers. All characters
in the format string other than % and \ appear literally in the output.

Chapter 2: Shell Programming

The following escape sequences are supported:

Escape Sequence Description

\" Double quote

\\ Backslash character

\a Alert (ring the bell or beep)

\b Backspace character

\c Suppress further output

\f Form feed character

\n Newline character

\r Carriage return

\t Tab character

\v Vertical tab character

\ooo The single character with octal value coo
\xHH The single character with the hexadecimal value HH

The conversion specifier is quite complex, so we list only the common usage here. More details can be
found in the bash online manual or in the printf pages from section 1 of the online manual (man 1
printf). (If you can’t find it in section 1 of the manual, try section 3 as an alternative). The conversion
specifier consists of a % character, followed by a conversion character. The principal conversions are
shown in the following table:

Conversion Specifier Description

D Output a decimal number.
€ Output a character.

g Output a string.

% Output the % character.

The format string is then used to interpret the remaining parameters and output the result, as shown in
the following example,

$ printf "%s\n" hello

hello

$ printf "%s %d\t%s" "Hi There" 15 people
Hi There 15 people

57

Chapter 2: Shell Programming

Notice you must use " " to protect the Hi There string and make it a single parameter.

return

The return command causes functions to return, as mentioned when we looked at functions earlier.
return takes a single numeric parameter that is available to the script calling the function. If no parame-
ter is specified, then return defaults to the exit code of the last command.

set

The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space-separated values.

Suppose you want to use the name of the current month in a shell script. The system provides a date com-
mand, which contains the month as a string, but you need to separate it from the other fields. You can do
this using a combination of the set command and the $ (. . .) construct to execute the date command and
return the result (described in more detail very soon). The date command output has the month string as
its second parameter:

#!/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit 0

This program sets the parameter list to the date command’s output and then uses the positional param-
eter $2 to get at the month.

Notice that we used the date command as a simple example to show how to extract positional parameters.
Since the date command is sensitive to the language locale, in reality you would have extracted the name
of the month using date +%B. The date command has many other formatting options; see the manual
page for more details.

You can also use the set command to control the way the shell executes by passing it parameters. The
most commonly used form of the command is set -x, which makes a script display a trace of its cur-
rently executing command. We discuss set and more of its options when we look at debugging, later in
the chapter.

shift

58

The shift command moves all the parameter variables down by one, so that $2 becomes $1, $3 becomes
$2, and so on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parame-
ter is specified in the call to shift, the parameters move that many spaces. The other variables, $*, $@, and
$#, are also modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters passed into a script, and if your script requires
10 or more parameters, you'll need shift to access the tenth and beyond.

Chapter 2: Shell Programming

For example, you can scan through all the positional parameters like this:
#!/bin/sh
while ["$1" != ""]; do
echo "$1"
shift

done

exit 0

trap

The trap command is used to specify the actions to take on receipt of signals, which you'll meet in more
detail later in the book. A common use is to tidy up a script when it is interrupted. Historically, shells
always used numbers for the signals, but new scripts should use names taken from the #include file
signal.h, with the SIG prefix omitted. To see the signal numbers and associated names, you can just
type trap -1 atacommand prompt.

For those not familiar with signals, they are events sent asynchronously to a pro-
gram. By default, they normally cause the program to terminate.

The trap command is passed the action to take, followed by the signal name (or names) to trap on:
trap command signal

Remember that the scripts are normally interpreted from top to bottom, so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as -. To ignore a signal, set the com-
mand to the empty string ' '. A trap command with no parameters prints out the current list of traps
and actions.

The following table lists the more important signals covered by the X/Open standard that can be caught
(with the conventional signal number in parentheses). More details can be found in the signal manual
pages in section 7 of the online manual (man 7 signal).

Signal Description

HUP (1) Hang up; usually sent when a terminal goes offline, or a user logs out
INT (2) Interrupt; usually sent by pressing Ctrl+C

QUIT (3) Quit; usually sent by pressing Ctrl+\

ABRT (6) Abort; usually sent on some serious execution error

ALRM (14) Alarm; usually used for handling timeouts

TERM (15) Terminate; usually sent by the system when it’s shutting down

59

Chapter 2: Shell Programming

Try It Out Trapping Signals

The following script demonstrates some simple signal handling:
#!/bin/sh

trap 'rm -f /tmp/my_tmp_file_ $$' INT
echo creating file /tmp/my_tmp_file_S$
date > /tmp/my_tmp_file_$$

echo "press interrupt (CTRL-C) to interrupt"
while [-f /tmp/my_tmp_file_$$ 1; do
echo File exists
sleep 1
done
echo The file no longer exists

trap INT
echo creating file /tmp/my_tmp_file_S$$
date > /tmp/my_tmp_file_$$

echo "press interrupt (control-C) to interrupt"
while [-f /tmp/my_tmp_file_ $$ 1; do

echo File exists

sleep 1
done

echo we never get here
exit 0

If you run this script, holding down Ctrl and then pressing C (or whatever your interrupt key combina-
tion is) in each of the loops, you get the following output:

creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt
File exists

File exists

File exists

File exists

The file no longer exists

creating file /tmp/my_tmp_file 141
press interrupt (CTRL-C) to interrupt
File exists

File exists

File exists

File exists

60

Chapter 2: Shell Programming

How It Works

This script uses the trap command to arrange for the command rm -f /tmp/my_tmp_file $$ to be exe-
cuted when an INT (interrupt) signal occurs. The script then enters a while loop that continues while the
file exists. When the user presses Ctrl+C, the statement rm -f /tmp/my_tmp_file_$$ is executed, and
then the while loop resumes. Since the file has now been deleted, the first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command be executed when
an INT signal occurs. It then re-creates the file and loops inside the second while statement. When the
user presses Ctrl+C this time, no statement is configured to execute, so the default behavior occurs,
which is to immediately terminate the script. Because the script terminates immediately, the final echo
and exit statements are never executed.

unset

The unset command removes variables or functions from the environment. It can’t do this to read-only
variables defined by the shell itself, such as IFS. It’s not often used.

The following script writes Hello World once and a newline the second time:

#!/bin/sh

foo="Hello World"
echo $foo

unset foo
echo $foo

Writing foo= would have a very similar, but not identical, effect to unset in the pre-
ceding program. Writing foo= has the effect of setting foo to null, but foo still exists.
Using unset foo has the effect of removing the variable foo from the environment.

Two More Useful Commands and Regular Expressions

Before you see how to put this new knowledge of shell programming to use, let’s look at a couple of
other very useful commands, which, although not part of the shell, are often useful when writing shell
programs. Along the way we will also be looking at regular expressions, a pattern-matching feature that
crops up all over Linux and its associated programs.

The find Command

The first command you will look at is £ind. This command, which you use to search for files, is extremely
useful, but newcomers to Linux often find it a little tricky to use, not least because it takes options, tests, and
action-type arguments, and the results of one argument can affect the processing of subsequent arguments.

61

Chapter 2: Shell Programming

62

Before delving into the options, tests, and arguments, let’s look at a very simple example for the file test
on your local machine. Do this as root to ensure that you have permissions to search the whole machine:

find / -name test -print
/usr/bin/test
#

Depending on your installation, you may well find several other files also called test. As you can prob-
ably guess, this says “search starting at / for a file named test and then print out the name of the file.”
Easy, wasn't it? Of course.

However, it did take quite a while to run on our machine, and the disk on our Windows machine on the
network rattled away as well. This is because our Linux machine mounts (using SAMBA) a chunk of
the Windows machine’s file system. It seems like that might have been searched as well, even though

we knew the file we were looking for would be on the Linux machine.

This is where the first of the options comes in. If you specify -mount, you can tell £ind not to search
mounted directories:

find / -mount -name test -print
/usr/bin/test
#

We still find the file on our machine, but faster this time, and without searching other mounted file sys-
tems.

The full syntax for the £ind command is as follows:
find [path] [options] [tests] [actions]

The path part is nice and easy: You can use either an absolute path, such as /bin, or a relative path,
such as .. If you need to, you can also specify multiple paths — for example, £ind /var /home.

There are several options; the main ones are shown in the following table:

Option Meaning

-depth Search the contents of a directory before looking at the directory itself.
-follow Follow symbolic links.

-maxdepths N Search at most N levels of the directory when searching.

-mount (or -xdev) Don’t search directories on other file systems.

Now for the tests. A large number of tests can be given to £ind, and each test returns either true or
false. When f£ind is working, it considers each file it finds in turn and applies each test, in the order
they were defined, on that file. If a test returns false, then £ind stops considering the file it is currently
looking at and moves on; if the test returns true, then find processes the next test or action on the cur-
rent file. The tests listed in the following table are just the most common; consult the manual pages for
the extensive list of possible tests you can apply using £ind.

Chapter 2: Shell Programming

Test Meaning

-atime N The file was last accessed N days ago.

-mtime N The file was last modified N days ago.

-name pattern The name of the file, excluding any path, matches the pattern pro-

vided. To ensure that the pattern is passed to £ind, and not evaluated
by the shell immediately, the pattern must always be in quotes.

-newer otherfile The file is newer than the file otherfile.

-type C The file is of type C, where C can be of a particular type; the most
common are “d” for a directory and “f” for a regular file. For other
types consult the manual pages.

-user username The file is owned by the user with the given name.

You can also combine tests using operators. Most have two forms: a short form and a longer form, as
shown in the following table:

Operatort, Short Form Operator, Long Form Meaning

! -not Invert the test.

-a -and Both tests must be true.
-o -or Either test must be true.

You can force the precedence of tests and operators by using parentheses. Since these have a special
meaning to the shell, you also have to quote the braces using a backslash. In addition, if you use a pat-
tern for the filename, then you must use quotes so that the name is not expanded by the shell but passed
directly to the find command. For example, if you wanted to write the test “newer than file X or called a
name that starts with an underscore,” you could write the following test:

\ (-newer X -0 -name "_*" \)

We present an example just after the next “How it Works” section.

Try It Out Using find with Tests

Try searching in the current directory for files modified more recently than the file while2:
$ find . -newer while2 -print

./elif3
./words.txt
. /words2.txt
./_trap

$

63

Chapter 2: Shell Programming

That looks good, except that you also find the current directory, which you didn’t want. You were inter-
ested only in regular files, so you add an additional test, -type £:

$ find . -newer while2 -type f -print
./elif3

. /words. txt

./words2.txt

./_trap

$

How It Works

64

How did it work? You specified that £ind should search in the current directory (.), for files newer than
the file while2 (-newer while2)and that, if that test passed, then to also test that the file was a regular file
(-type £). Finally, you used the action you already met, -print, just to confirm which files were found.

Now find files that either start with an underscore or are newer than the file while2, but must in either
case be regular files. This will show you how to combine tests using parentheses:

$ find . \(-name "_*" -or -newer while2 \) -type f -print
./elif3
./words. txt
. /words2.txt
./_break
L/_if

./_set
./_shift
./_trap
./_unset
./_until

$

That wasn’t so hard, was it? You had to escape the parentheses so that they were not processed by the
shell, and quote the * so that it was passed directly into £ind as well.

Now that you can reliably search for files, look at the actions you can perform when you find a file matching
your specification. Again, this is just a list of the most common actions; the manual page has the full set.
Action Meaning

-exec command Execute a command. This is one of the most common actions. See the
explanation following this table for how parameters may be passed to
the command. This action must be terminated with a \ ; character pair.

-ok command Like -exec, except that it prompts for user confirmation of each file on
which it will carry out the command before executing the command.
This action must be terminated with a \ ; character pair.

-print Print out the name of the file.

-1s Use the command 1s -dils on the current file.

Chapter 2: Shell Programming

The -exec and -ok commands take subsequent parameters on the line as part of their parameters, until ter-
minated with a \ ; sequence. Effectively, the -exec and -ok commands are executing an embedded com-
mand, so that embedded command has to be terminated with an escaped semicolon so that the £ind
command can determine when it should resume looking for command-line options that are intended for
itself. The magic string " { } " is a special type of parameter to an -exec or -ok command and is replaced
with the full path to the current file.

That explanation is perhaps not so easy to understand, but an example should make things clearer. Take
a look at a simple example, using a nice safe command like 1s:

$ find . -newer while2 -type f -exec 1ls -1 {} \;

—-ITWXr-Xr-x 1 rick rick 275 Feb 8 17:07 ./elif3
-IWXY-Xr-X 1 rick rick 336 Feb 8 16:52 ./words.txt
-TWXY-Xr-X 1 rick rick 1274 Feb 8 16:52 ./words2.txt
—YWXr-Xr-x 1 rick rick 504 Feb 8 18:43 ./_trap

$

As you can see, the £ind command is extremely useful; it just takes a little practice to use it well.
However, that practice will pay dividends, so do experiment with the £ind command.

The grep Command

The second very useful command to look at is grep, an unusual name that stands for general regular
expression parser. You use £ind to search your system for files, but you use grep to search files for
strings. Indeed, it’s quite common to have grep as a command passed after -exec when using find.
The grep command takes options, a pattern to match, and files to search in:

grep [options] PATTERN [FILES]

If no filenames are given, it searches standard input.

Let’s start by looking at the principal options to grep. Again we list only the principal options here; see
the manual pages for the full list.

Option Meaning

=€ Rather than print matching lines, print a count of the number of lines
that match.

-E Turn on extended expressions.

-h Suppress the normal prefixing of each output line with the name of the file it was
found in.

=i Ignore case.

=1 List the names of the files with matching lines; don’t output the actual matched line.

-v Invert the matching pattern to select nonmatching lines, rather than matching lines.

65

Chapter 2: Shell Programming

Try It Out Basic grep Usage

Take a look at grep in action with some simple matches:

S grep in words.txt

When shall we three meet again. In thunder, lightning, or in rain?
I come, Graymalkin!

S grep -c¢ in words.txt words2.txt

words.txt:2

words2.txt:14

$ grep -c¢ -v in words.txt words2.txt

words.txt:9

words2.txt:16

$

How It Works

The first example uses no options; it simply searches for the string “in” in the file words . txt and prints
out any lines that match. The filename isn’t printed because you are searching on just a single file.

The second example counts the number of matching lines in two different files. In this case, the file-
names are printed out.

Finally, use the -v option to invert the search and count lines in the two files that don’t match.

Regular Expressions

As you have seen, the basic usage of grep is very easy to master. Now it’s time to look at the basics of

regular expressions, which enable you to do more sophisticated matching. As mentioned earlier in the

chapter, regular expressions are used in Linux and many other open-source languages. You can use them
in the vi editor and in writing Perl scripts, with the basic principles common wherever they appear.

During the use of regular expressions, certain characters are processed in a special way. The most fre-

66

quently used are shown in the following table:

Character Meaning
8 Anchor to the beginning of a line
$ Anchor to the end of a line

Any single character

[] The square braces contain a range of characters, any one of which
may be matched, such as a range of characters like a—e or an inverted
range by preceding the range with a ~ symbol.

Chapter 2: Shell Programming

If you want to use any of these characters as “normal” characters, precede them with a \. For example, if
you wanted to look for a literal “$” character, you would simply use \$.

There are also some useful special match patterns that can be used in square braces, as described in the
following table:

Match Pattern Meaning

[:alnum:] Alphanumeric characters
[:alpha:] Letters

[:ascii:] ASCII characters

[:blank:] Space or tab

[:cntrl:] ASCII control characters
[:digit:] Digits

[:graph:] Noncontrol, nonspace characters
[:lower:] Lowercase letters

[:print:] Printable characters

[:punct:] Punctuation characters
[:space:] Whitespace characters, including vertical tab
[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digits

In addition, if the -E for extended matching is also specified, other characters that control the comple-
tion of matching may follow the regular expression (see the following table). With grep it is also neces-
sary to precede these characters with a \.

Option Meaning

? Match is optional but may be matched at most once
* Must be matched zero or more times

+ Must be matched one or more times

{n} Must be matched n times

{n,} Must be matched n or more times

{n,m} Must be matched between 7 or m times, inclusive

67

Chapter 2: Shell Programming

That all looks a little complex, but if you take it in stages, you will see it’s not as complex as it perhaps
looks at first sight. The easiest way to get the hang of regular expressions is simply to try a few:

1. Start by looking for lines that end with the letter e. You can probably guess you need to use the
special character $:

$ grep e$ words2.txt

Art thou not, fatal vision, sensible

I see thee yet, in form as palpable

Nature seems dead, and wicked dreams abuse

$

As you can see, this finds lines that end in the letter e.

2. Now suppose you want to find words that end with the letter a. To do this, you need to use the
special match characters in braces. In this case, you use [[:blank:]], which tests for a space or

a tab:

S grep all:blank:]] words2.txt
Is this a dagger which I see before me,
A dagger of the mind, a false creation,
Moves like a ghost. Thou sure and firm-set earth,

$

3. Now look for three-letter words that start with Th. In this case, you need both [[:space:]] to
delimit the end of the word and . to match a single additional character:

$ grep Th.[[:space:]] words2.txt

The handle toward my hand? Come, let me clutch thee.
The curtain'd sleep; witchcraft celebrates

Thy very stones prate of my whereabout,

$

4. Finally, use the extended grep mode to search for lowercase words that are exactly 10 characters
long. Do this by specifying a range of characters to match a to z, and a repetition of 10 matches:

$ grep -E [a-z]\{10\} words2.txt
Proceeding from the heat-oppressed brain?
And such an instrument I was to use.

The curtain'd sleep; witchcraft celebrates
Thy very stones prate of my whereabout,

$

This only touches on the more important parts of regular expressions. As with most things in Linux,
there is a lot more documentation out there to help you discover more details, but the best way of learn-

ing about regular expressions is to experiment.

Command Execution

When you're writing scripts, you often need to capture the result of a command’s execution for use in the
shell script; that is, you want to execute a command and put the output of the command into a variable.

68

Chapter 2: Shell Programming

You can do this by using the $ (command) syntax introduced in the earlier set command example. There is
also an older form, * command’, that is still in common usage.

Note that with the older form of the command execution, the backtick, or backquote,
(%), is used, not the single quote (') that we used in earlier shell quoting (to protect
against variable expansion). Use this form for shell scripts only when you need
them to be very portable.

All new scripts should use the $ (. . .) form, which was introduced to avoid some rather complex rules
covering the use of the characters $, *, and \ inside the backquoted command. If a backtick is used
within the * ... construct, it must be escaped with a \ character. These relatively obscure characters
often confuse programmers, and sometimes even experienced shell programmers are forced to experi-
ment to get the quoting correct in backticked commands.

The result of the $ (command) is simply the output from the command. Note that this isn’t the return
status of the command but the string output, as shown here:

#!/bin/sh

echo The current directory is $PWD
echo The current users are $(who)

exit 0

Since the current directory is a shell environment variable, the first line doesn’t need to use this com-
mand execution construct. The result of who, however, does need this construct if it is to be available to
the script.

If you want to get the result into a variable, you can just assign it in the usual way:

whoisthere=$ (who)
echo $whoisthere

The capability to put the result of a command into a script variable is very powerful, as it makes it easy
to use existing commands in scripts and capture their output. If you ever find yourself trying to convert
a set of parameters that are the output of a command on standard output and capture them as argu-
ments for a program, you may well find the command xargs can do it for you. Look in the manual
pages for further details.

A problem sometimes arises when the command you want to invoke outputs some white space before
the text you want, or more output than you require. In such a case, you can use the set command as
shown earlier.

Arithmetic Expansion

We've already used the expr command, which enables simple arithmetic commands to be processed,
but this is quite slow to execute because a new shell is invoked to process the expr command.

69

Chapter 2: Shell Programming

A newer and better alternative is $ ((..)) expansion. By enclosing the expression you wish to evaluate in
$((..)), you can perform simple arithmetic much more efficiently:
#!/bin/sh
x=0
while ["$x" -ne 10]; do
echo $x
x=$(($x+1))
done
exit 0
Notice that this is subtly different from the x=$(..) command. The double paren-

theses are used for arithmetic substitution. The single parentheses form shown ear-
lier is used for executing commands and grabbing the output.

Parameter Expansion

You've seen the simplest form of parameter assignment and expansion:

foo=fred
echo $foo

A problem occurs when you want to append extra characters to the end of a variable. Suppose you want
to write a short script to process files called 1_tmp and 2_tmp. You could try this:

#!/bin/sh
for i in 1 2
do

my_secret_process $i_tmp
done

But on each loop, you'll get the following:
my_secret_process: too few arguments
What went wrong?
The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn’t
exist. The shell doesn’t consider this an error; it just substitutes nothing, so no parameters at all were

passed to my_secret_process. To protect the expansion of the $1 part of the variable, you need to
enclose the i in braces like this:

#!/bin/sh
for i in 1 2
do

my_secret_process ${i}_tmp
done

70

Chapter 2: Shell Programming

On each loop, the value of i is substituted for ${1i} to give the actual filenames. You substitute the value
of the parameter into a string.

You can perform many parameter substitutions in the shell. Often, these provide an elegant solution to
many parameter-processing problems. The common ones are shown in the following table:

Parameter Expansion Description

${param: -default} If param is null, then set it to the value of default.

$ {#param} Gives the length of param

$ {param¥word} From the end, removes the smallest part of param that

matches word and returns the rest

$ {param%%word} From the end, removes the longest part of param that
matches word and returns the rest

$ {param#word} From the beginning, removes the smallest part of param that
matches word and returns the rest

$ {param##word} From the beginning, removes the longest part of param that

matches word and returns the rest

These substitutions are often useful when you're working with strings. The last four, which remove parts
of strings, are especially useful for processing filenames and paths, as the following example shows.

Try It Out Parameter Processing

Each portion of the following script illustrates the parameter-matching operators:
#!/bin/sh

unset foo
echo ${foo:-bar}

foo=fud
echo ${foo:-bar}

foo=/usr/bin/X11l/startx

echo ${foo#*/}

echo ${foo##*/}
bar=/usr/local/etc/local /networks
echo ${bar%local*}

echo ${bar%%local*}

exit 0

71

Chapter 2: Shell Programming

This gives the following output:

bar

fud
usr/bin/X11l/startx
startx
/usr/local/etc
/usr

How It Works

The first statement, $ { foo: -bar}, gives the value bar, because foo had no value when the statement
was executed. The variable foo is unchanged, as it remains unset.

${foo:=bar}, however, would set the variable to $foo. This string operator checks
that foo exists and isn’t null. If it isn’t null, then it returns its value, but otherwise
it sets foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn’t exist or is
set to null. Lastly, $ {foo: +bar} returns bar if foo exists and isn’t null. What a set
of choices!

The {foo#*/} statement matches and removes only the left / (remember * matches zero or more char-
acters). The { foo##*/} matches and removes as much as possible, so it removes the rightmost / and all
the characters before it.

The {bar%local*} statement matches characters from the right until the first occurrence of local (fol-
lowed by any number of characters) is matched, but the {bar%%local*} matches as many characters as
possible from the right until it finds the leftmost 1ocal.

Since both UNIX and Linux are based heavily around the idea of filters, the result of one operation
must often be redirected manually. Let’s say you want to convert a GIF file into a JPEG file using the
cjpeg program:

S cjpeg image.gif > image.jpg

Sometimes you may want to perform this type of operation on a large number of files. How do you
automate the redirection? It’s as easy as this:

#!/bin/sh
for image in *.gif
do

cjpeg $image > ${image%%gif}jipg
done

This script, giftojpeg, creates a JPEG file for each GIF file in the current directory.

72

Chapter 2: Shell Programming

Here Documents

One special way of passing input to a command from a shell script is to use a here document. This docu-
ment allows a command to execute as though it were reading from a file or the keyboard, whereas in fact
it’s getting input from the script.

A here document starts with the leader <<, followed by a special sequence of characters that is repeated
at the end of the document. << is the shell’s label redirector, which in this case forces the command input
to be the here document. This special sequence acts as a marker to tell the shell where the here document
ends. The marker sequence must not appear in the lines to be passed to the command, so it’s best to
make them memorable and fairly unusual.

Try It Out Using Here Documents

The simplest example is simply to feed input to the cat command:
#!/bin/sh

cat <<!FUNKY!
hello

this is a here
document
'FUNKY !

This gives the following output:

hello
this is a here
document

Here documents might seem a rather curious feature, but they're very powerful because they enable you
to invoke an interactive program such as an editor and feed it some predefined input. However, they’re
more commonly used for outputting large amounts of text from inside a script, as you saw previously,
and avoiding having to use echo statements for each line. You can use exclamation marks (!) on each
side of the identifier to ensure that there’s no confusion.

If you wish to process several lines in a file in a predetermined way, you could use the ed line editor and
feed it commands from a here document in a shell script.

Try It Out Another Use for a Here Document

1. Start witha file called a_text_file that contains the following lines:

That is line
That is line
That is line
That is line

B W N

2. You can edit this file using a combination of a here document and the ed editor:

#!/bin/sh

73

Ch

apter 2: Shell Programming

ed a_text_file <<!FunkyStuff!
3

d

.. \$s/is/was/

w

a
!FunkyStuff!

exit 0

If you run this script, the file now contains the following;:

That is line 1
That is line 2
That was line 4

How It Works

The shell script simply invokes the ed editor and passes to it the commands that it needs to move to
the third line, delete the line, and then replace it with what was in the current line (because line 3 was

deleted, the current line is now what was the last line). These ed commands are taken from the lines in
the script that form the here document — the lines between the markers ! FunkyStuff!.

Notice the \ inside the here document to protect the $ from shell expansion. The \
escapes the $, so the shell knows not to try to expand $s/is/was/ to its value, which
of course it doesn’t have. Instead, the shell passes the text \$ as $, which can then be
interpreted by the ed editor.

Debugging Scripts

74

Debugging shell scripts is usually quite easy, but there are no specific tools to help. In this section we’ll
quickly summarize the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If
the error isn’t immediately apparent, you can add some extra echo statements to display the contents of
variables and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there’s no compilation overhead in modifying and retrying a script. The
main way to trace more complicated errors is to set various shell options. To do this, you can either use
command-line options after invoking the shell or use the set command. The following table summa-
rizes the options:

Chapter 2: Shell Programming

Command Line Option set Option Description

sh -n <script> set -o noexec Checks for syntax errors only;
set -n doesn’t execute commands

sh -v <script> set -o verbose Echoes commands before
set -v running them

sh -x <script> set -o xtrace Echoes commands after pro-
set -x cessing on the command line

sh -u <script> set -o nounset Gives an error message when
set -u an undefined variable is used

You can set the set option flags on, using -o, and off, using +o, and likewise for the abbreviated ver-
sions. You can achieve a simple execution trace by using the xtrace option. For an initial check, you can
use the command-line option, but for finer debugging, you can put the xtrace flags (setting an execu-
tion trace on and off) inside the script around the problem code. The execution trace causes the shell to
print each line in the script, with variables expanded, before executing the line.
Use the following command to turn xtrace on:

set -o xtrace
Use this command to turn xtrace off again:

set +o xtrace

The level of expansion is denoted (by default) by the number of + signs at the start of each line. You can
change the + to something more meaningful by setting the PS4 shell variable in your shell configuration file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal with a
line something like the following placed at the start of the script:

trap 'echo Exiting: critical variable = $critical_variable' EXIT

Going Graphical — The dialog Utility

Before we finish discussing shell scripts, there is one more feature that, although not strictly part of the
shell, is generally useful only from shell programs, so we cover it here.

If you know that your script will only ever need to run on the Linux console, there is a rather neat way

to brighten up your scripts using a utility command called dialog. This command uses text mode
graphics and color, but it still looks pleasantly graphical.

75

