
UNIX File Management

• We will focus on two types of files

– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others

2

• And mostly ignore the others

– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links

UNIX index node (inode)

• Each file is represented by an Inode

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number (within a partition)

3

• Each inode has a unique number (within a partition)

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

– Mapping can be many-to-one

• Hard links

Inode Contents

• Mode

– Type

• Regular file or directory

– Access mode

• rwxrwxrwx

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

4

• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents

• atime

– Time of last access

• ctime

– Time when file was

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

5

– Time when file was

created

• mtime

– Time when file was

last modified

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents
• Size

– Size of the file in bytes

• Block count

– Number of disk blocks used by
the file.

• Note that number of blocks can
be much less than expected
given the file size

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

6

given the file size

– Files can be sparsely
populated

• E.g. write(f,“hello”); lseek(f,
1000000); write(f, “world”);

• Only needs to store the start
an end of file, not all the
empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents
• Direct Blocks

– Block numbers of first 10

blocks in the file

– Most files are small

• We can find blocks of file

directly from the inode

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
0 7

7

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect

double indirect

triple indirect

3

2

56

0

1

4

7

63

5

6

Disk

8

9

Problem

• How do we store files greater than 10

blocks in size?

– Adding significantly more direct entries in the

inode results in many unused entries most of

8

inode results in many unused entries most of

the time.

Inode Contents
• Single Indirect Block

– Block number of a block

containing block numbers

• In this case 8

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
0 714

9

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Disk

3

2

SI

56

0

1

4

7

63

5

6

8

9

28

29

20

38

61

43

46

12

15

10

13

17

11

14

16

Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– In previous example

10

– In previous example

• 10 direct + 8 indirect = 18 block file

– A more realistic example

• Assume 1Kbyte block size, 4 byte block numbers

• 10 * 1K + 1K/4 * 1K = 266 Kbytes

• For large majority of files (< 266 K), only one or

two accesses required to read any block in file.

Inode Contents
• Double Indirect Block

– Block number of a block

containing block numbers of

blocks containing block

numbers

• Triple Indirect

– Block number of a block

containing block numbers of

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

11

containing block numbers of

blocks containing block

numbers of blocks containing

block numbers ☺

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Unix Inode Block Addressing

Scheme

12

Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256

13

– Single Indirect Blocks = 256

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

– 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB

Inode Summary

• The inode contains the on disk data associated with a
file
– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random

18

– Larger files require progressively more disk accesses for random
access

• Sequential access is still efficient

– Can support really large files via increasing levels of indirection

Where/How are Inodes Stored

• System V Disk Layout (s5fs)

Boot

Block

Super

Block

Inode

Array
Data Blocks

19

• System V Disk Layout (s5fs)
– Boot Block

• contain code to bootstrap the OS

– Super Block
• Contains attributes of the file system itself

– e.g. size, number of inodes, start block of inode array, start of
data block area, free inode list, free data block list

– Inode Array

– Data blocks

Some problems with s5fs

• Inodes at start of disk; data blocks end
– Long seek times

• Must read inode before reading data blocks

• Only one superblock
– Corrupt the superblock and entire file system is lost

20

– Corrupt the superblock and entire file system is lost

• Block allocation suboptimal
– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list
resulting the random allocation

• Inodes allocated randomly
– Directory listing resulted in random inode access
patterns

Superblocks

• Size of the file system, block size and similar
parameters

• Overall free inode and block counters

• Data indicating whether file system check is
needed:

25

needed:
– Uncleanly unmounted

– Inconsistency

– Certain number of mounts since last check

– Certain time expired since last check

• Replicated to provide redundancy to add
recoverability

Thus farP

• Inodes representing files laid out on disk.

• Inodes are referred to by number!!!

– How do users name files? By number?

– Try ls –i to see how useful inode numbers

28

– Try ls –i to see how useful inode numbers

areP.

Ext2fs Directories

• Directories are files of a special type
– Consider it a file of special format, managed by the kernel, that

uses most of the same machinery to implement it

inode rec_len name_len type name…

29

• Inodes, etcP

• Directories translate names to inode numbers

• Directory entries are of variable length

• Entries can be deleted in place
– inode = 0

– Add to length of previous entry

– use null terminated strings for names

Ext2fs Directories

• “f1” = inode 7

• “file2” = inode 43

• “f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

Inode No

Rec Length

Name Length

Name

30

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

0

Ext2fs Directories

• Note that inodes

can have more

than one name

– Called a Hard Link

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name

31

– Called a Hard Link

– Inode (file) 7 has

three names

• “f1” = inode 7

• “file2” = inode 7

• “f3” = inode 7

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

0

Inode Contents
• We can have many name for the same inode.

• When we delete a file by name, i.e. remove

the directory entry (link), how does the file

system know when to delete the underlying

inode?

– Keep a reference count in the inode

• Adding a name (directory entry) increments the

count

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

32

count

• Removing a name decrements the count

• If the reference count == 0, then we have no

names for the inode (it is unreachable), we can

delete the inode (underlying file or directory)

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Ext2fs Directories

• Deleting a filename

– rm file2

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name

33

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

0

Ext2fs Directories

• Deleting a filename

– rm file2

• Adjust the record

length to skip to next

7

32

2

‘f’ ‘1’ 0 0

Inode No

Rec Length

Name Length

Name

34

length to skip to next

valid entry

7

12

2

‘f’ ‘3’ 0 0

0

