
COLUMNS

56 / APRIL 2015 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

Pipes and
STDs
Standard input, output and error are confusing—until now.

Punny title aside, the concepts
of STDIN (standard input), STDOUT
(standard output) and STDERR (standard
error) can be very confusing, especially
to folks new to Linux. Once you
understand how data gets into and out
of applications, however, Linux allows
you to string commands together in
awesome and powerful ways. In this
article, I want to clear up how things
work, so you can make the command
line work much more efficiently.

Processes and Their Data
At a basic level, when a process is run
on the command line, it has three “data
ports” where it can send and/or receive
data. Figure 1 shows my depiction of an
application’s I/O design.

Here are some definitions:

 STDIN: this is where an application
receives input. If you run a program
that asks you to enter your age,
it receives that info via its STDIN
mechanism, using the keyboard as

the input device.

 STDOUT: this is where the results
come out of the program. If you
type ls, the file listings are sent to
STDOUT, which by default displays
on the screen.

 STDERR: if something goes wrong,
this is the error message. It can
be a little confusing, because like
STDOUT, STDERR is displayed on the
screen by default as well. If you type
ls mycooldoc, but there’s no such
file as “mycooldoc”, you’ll get an
error message on the screen. Even
though it appears on the screen in
the same place STDOUT appears,
it’s important to understand that it
came out of a different place. That’s
important, because STDOUT and
STDERR can be directed separately
and to different places.

It’s also important to realize that
I/O is different from command-line

SHAWN POWERS

LJ252-April2015.indd 56 3/20/15 4:08 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / APRIL 2015 / 57

arguments or flags. Input, for
example, is data the process gets from
some external source. When you run
a command with arguments, those

arguments just tell the process how to
run. Typing ls -l, for instance, just
tells the ls program how to execute.
The STDIN/OUT/ERR are used only

COLUMNS

THE OPEN-SOURCE CLASSROOM

Figure 1.
The most
confusing
aspect is that
STDOUT and
STDERR both
print to the
console by
default.

LJ252-April2015.indd 57 3/20/15 4:08 PM

http://www.linuxjournal.com

COLUMNS

58 / APRIL 2015 / WWW.LINUXJOURNAL.COM

THE OPEN-SOURCE CLASSROOM

once the program is running as a way
to send or receive data.

STDIN Example
By default, STDIN is read from the
keyboard. So, this little script prompts for
input via the keyboard. When you enter
the information and press enter, it’s fed
into the application’s STDIN. Then that
information is processed, and the result is
dumped out of STDOUT, which by default
is displayed on the command line:

#!/bin/bash

echo "What is your favorite number?"

read favnum

echo "My favorite number is $favnum too!"

If you look closely, the initial
“What’s your favorite number?” text
is also sent out STDOUT, and since it
defaults to the screen, you see it as a
prompt before the script uses the read
command to get data into STDIN.

Redirecting STDOUT and STDERR
You’ve seen that STDOUT and
STDERR both default to displaying on
the screen. It’s often more desirable
to have one or both get saved to a
file instead of displayed. To redirect
the output, use the “greater-than”
symbol. For example, typing:

ls > results.txt

will save the directory listing to a file called
results.txt instead of displaying it on the
screen. That example, however, redirects
only the STDOUT, not the STDERR. So if
something goes wrong, the error message
displays on the screen instead of getting
saved to a file. So in this example:

ls filename > results.txt

if there is not file called “filename”,
you’ll see an error on the screen even
though you redirected STDOUT into a
file. You’ll see something like:

ls filename > results.txt

ls: cannot access filename: No such

file or directory

There is a way to redirect
the STDERR, which is similar to
redirecting STDOUT, and without first
understanding the difference between
the two output “ports”, it can be
confusing. But to redirect STDERR
instead of STDOUT, you’d type this:

ls 2> errors.txt

Which, when typed, simply would
print the file listing on the screen. Using
the 2> structure, you are only redirecting
errors to the file. So in this case:

ls filename 2> errors.txt

LJ252-April2015.indd 58 3/20/15 4:08 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / APRIL 2015 / 59

COLUMNS

THE OPEN-SOURCE CLASSROOM

if there isn’t a file named “filename”,
the error message would get saved
to the file errors.txt, and nothing
would display on the screen. It’s
possible to do both at once too.
So you could type:

ls > results.txt 2> errors.txt

and you’d see the file listing in
results.txt, while any error messages
would go into errors.txt. You’ve
probably seen something similar in
crontab, where the desire is to have
both STDOUT and STDERR go into a
file. Usually, the desire is to have them
both get redirected into the same file,
so you’ll see something like this:

ls > stuff.txt 2>&1

That looks really confusing, but
it’s not as bad as it seems. The first
part should make sense. Redirecting
STDOUT into a file called stuff.txt is
clear. The second part, however, is
just redirecting STDERR into STDOUT.

The reason you can’t just type 2>1
is because Bash would interpret that
as “I want to save the STDERR into
a file named 1”, so the ampersand
preceding the 1 tells Bash you want to
redirect the STDERR into STDOUT.

One last trick regarding the
redirection of STDOUT and STDIN is
the double greater-than symbol. When
you redirect output into a file using
the > symbol, it overwrites whatever is
in the file. So if you have an errors.txt
file, it will overwrite what’s already in
there and just show the single error.
With a >> symbol, it will append the
results instead of overwriting. This is
really useful if you’re trying to make a
log file. For example, typing:

ls >> files.txt

ls -l >> files.txt

will create a file called “files.txt” that
has a list of the files, then a long
directory listing of the same files.
Thankfully, if the file doesn’t exist, using
a double greater-than symbol will create

As you can imagine, redirecting output is very
useful when running scripts or programs that
are executed in the background; otherwise, you’d
never see the output!

LJ252-April2015.indd 59 3/20/15 4:08 PM

http://www.linuxjournal.com

COLUMNS

60 / APRIL 2015 / WWW.LINUXJOURNAL.COM

the file just like a single greater-than
symbol will do. As you can imagine,
redirecting output is very useful when
running scripts or programs that are
executed in the background; otherwise,
you’d never see the output!

Redirecting STDIN
This concept is a little bit harder to
understand, but once you “get” the
whole concept of I/O, it’s not too bad.
It’s important to know that not all
applications listen on their STDIN port,
so for some programs, redirecting
STDIN does nothing. One common
command that does listen on STDIN,
however, is grep. If you type:

grep chicken menu.txt

the grep command will search
through the menu.txt file for any lines
containing the string “chicken”, and
print those lines on the screen (via
STDOUT, which should make sense
now). grep also will accept input
via STDIN instead of via filename,
however, so you could do this:

cat menu.txt | grep chicken

and the exact same results will be
shown. If that seems confusing, just
walk through the process with me.
When you type cat menu.txt, the

cat program displays the contents of
menu.txt to the screen, via STDOUT.
If you used a > symbol, you could
redirect that STDOUT into a new file,
but if you use the pipe symbol (|), you
can redirect the STDOUT data into
another program’s STDIN. That’s what’s
happening in this example. It’s as if the
cat program’s purple STDOUT tube in
Figure 1 is bolted directly onto grep’s
blue STDIN tube. Since grep is listening
on its STDIN port for data, it then
executes its search for the word chicken
on that data that is coming into STDIN
rather than reading from a file.

This example above might seem
frivolous, and honestly it is. Where
redirecting with a pipe symbol comes
in handy is when you string together
multiple actions. So this, for example:

grep chicken menu.txt | grep pasta

will return a list of all of the lines
in menu.txt that have the word
“chicken” in them and have the world
“pasta” in them. You could do the
same thing by typing this:

grep chicken menu.txt > chickenlist.txt

grep pasta chickenlist.txt

But, that takes two lines, and then
you have a fairly useless file on your
system called chickenlist.txt, when all

THE OPEN-SOURCE CLASSROOM

LJ252-April2015.indd 60 3/20/15 4:08 PM

http://www.linuxjournal.com

WWW.LINUXJOURNAL.COM / APRIL 2015 / 61

you wanted was a list of items that
contain both chicken and pasta.

Once you get used to piping
STDOUT from one command into
STDIN for another, you’ll find yourself
becoming a grep ninja in no time.
Granted, there are many other
applications that listen on STDIN for
information, but grep is one that is
very commonly used. For example:

ls -l /etc | grep apache

is a way to look for any files or
directories in the /etc folder that contain
the string “apache” in their name. Or:

cat /var/log/syslog | grep USB

is a great way to look for any log entries
in the syslog that mention USB devices.
You even could go further and type:

cat /var/log/syslog | grep USB > usbresults.txt

and you’d have a text file containing
any lines in /var/log/syslog that mention
USB. Perhaps you’re troubleshooting

an issue, and you need to send those
lines to a tech support person.

Redirecting STDOUT and STDERR
into a file, or piping them into another
process’ STDIN, is an important concept
to understand. It’s important to know
the difference between what a >, >>
and | do so that you get the results you
want. Sometimes redirecting STDOUT,
STDERR and STDIN aren’t enough,
however, because not all applications
listen for data on STDIN. That’s where
xargs comes into play.

xargs: Making Apps Play Nice
Sometimes you want to use the
STDOUT from one command to
interact with an application that
doesn’t support getting data piped
into STDIN. In this case, you can
use the simple and powerful xargs
command. Here’s a scenario: your
hard drive is filling up, so you want
to delete all the .mp3 files in all the
folders in the entire system. You can
get a list of all of those files by typing:

find / -name "*.mp3"

COLUMNS

THE OPEN-SOURCE CLASSROOM

Once you get used to piping STDOUT from one
command into STDIN for another, you’ll find
yourself becoming a grep ninja in no time.

LJ252-April2015.indd 61 3/20/15 4:08 PM

http://www.linuxjournal.com

62 / APRIL 2015 / WWW.LINUXJOURNAL.COM

COLUMNS

and you’ll get a list via STDOUT of all
the files and their full paths. So you
might get something like:

/home/spowers/music/re_your_brains.mp3

/home/spowers/music/mysong.mp3

/tmp/coolsong.mp3

/home/donna/.secretfolder/bieber.mp3

/home/donna/.secretfolder/rundmc.mp3

You could go through and find
all those fi les and delete them one
by one, but it would be far more
useful if you could just rm them all
at once. Unfortunately, rm doesn’t
accept fi le l istings via STDIN, so in
order to accomplish this goal, you
have to use xargs. It would work
l ike this:

find / -name "*.mp3" | xargs rm -rf

What xargs does is listen on its
STDIN, and then execute whatever
command you tell it to while pasting
its own STDIN onto the end of the
command. So running that above
command effectively is executing:

rm -rf /home/spowers/music/re_your_brains.mp3 \

/home/spowers/music/mysong.mp3 /tmp/coolsong.mp3 \

/home/donna/.secretfolder/bieber.mp3 \

/home/donna/.secretfolder/rundmc.mp3

And since rm will delete all the

files you list, it deletes all the files
with a single command. Without
xargs to feed the list of files from
the find command, it turns out to be
surprisingly difficult to accomplish
the task.

STDs and Pipes: Thinking Tools
For some people, the concepts
of STDIN, STDOUT and STDERR
are second nature. But without
that foundational understanding
of how processes do I/O,
redirection and piping are pretty
much incomprehensible. Also,
once you truly understand how
it al l works, the xargs program
really starts to shine. I urge you
to play around with redirection
and piping. At the very least,
your grep kung-fu wil l benefit
from the practice!

Shawn Powers is the Associate Editor for Linux Journal.
He’s also the Gadget Guy for LinuxJournal.com, and he has an

interesting collection of vintage Garfield coffee mugs. Don’t let

his silly hairdo fool you, he’s a pretty ordinary guy and can be

reached via e-mail at shawn@linuxjournal.com. Or, swing by

the #linuxjournal IRC channel on Freenode.net.

THE OPEN-SOURCE CLASSROOM

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ252-April2015.indd 62 3/20/15 4:08 PM

http://www.linuxjournal.com
mailto:shawn@linuxjournal.com
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com
http://Freenode.net

