
15

Mechanism: Address Translation

In developing the virtualization of the CPU, we focused on a general
mechanism known as limited direct execution (or LDE). The idea be-
hind LDE is simple: for the most part, let the program run directly on the
hardware; however, at certain key points in time (such as when a process
issues a system call, or a timer interrupt occurs), arrange so that the OS
gets involved and makes sure the “right” thing happens. Thus, the OS,
with a little hardware support, tries its best to get out of the way of the
running program, to deliver an efficient virtualization; however, by inter-
posing at those critical points in time, the OS ensures that it maintains
control over the hardware. Efficiency and control together are two of the
main goals of any modern operating system.

In virtualizing memory, we will pursue a similar strategy, attaining
both efficiency and control while providing the desired virtualization. Ef-
ficiency dictates that we make use of hardware support, which at first
will be quite rudimentary (e.g., just a few registers) but will grow to be
fairly complex (e.g., TLBs, page-table support, and so forth, as you will
see). Control implies that the OS ensures that no application is allowed
to access any memory but its own; thus, to protect applications from one
another, and the OS from applications, we will need help from the hard-
ware here too. Finally, we will need a little more from the VM system, in
terms of flexibility; specifically, we’d like for programs to be able to use
their address spaces in whatever way they would like, thus making the
system easier to program. And thus we arrive at the refined crux:

THE CRUX:
HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY

How can we build an efficient virtualization of memory? How do
we provide the flexibility needed by applications? How do we maintain
control over which memory locations an application can access, and thus
ensure that application memory accesses are properly restricted? How
do we do all of this efficiently?

1

2 MECHANISM: ADDRESS TRANSLATION

The generic technique we will use, which you can consider an addition
to our general approach of limited direct execution, is something that is
referred to as hardware-based address translation, or just address trans-
lation for short. With address translation, the hardware transforms each
memory access (e.g., an instruction fetch, load, or store), changing the vir-
tual address provided by the instruction to a physical address where the
desired information is actually located. Thus, on each and every memory
reference, an address translation is performed by the hardware to redirect
application memory references to their actual locations in memory.

Of course, the hardware alone cannot virtualize memory, as it just pro-
vides the low-level mechanism for doing so efficiently. The OS must get
involved at key points to set up the hardware so that the correct trans-
lations take place; it must thus manage memory, keeping track of which
locations are free and which are in use, and judiciously intervening to
maintain control over how memory is used.

Once again the goal of all of this work is to create a beautiful illu-
sion: that the program has its own private memory, where its own code
and data reside. Behind that virtual reality lies the ugly physical truth:
that many programs are actually sharing memory at the same time, as
the CPU (or CPUs) switches between running one program and the next.
Through virtualization, the OS (with the hardware’s help) turns the ugly
machine reality into something that is a useful, powerful, and easy to use
abstraction.

15.1 Assumptions

Our first attempts at virtualizing memory will be very simple, almost
laughably so. Go ahead, laugh all you want; pretty soon it will be the OS
laughing at you, when you try to understand the ins and outs of TLBs,
multi-level page tables, and other technical wonders. Don’t like the idea
of the OS laughing at you? Well, you may be out of luck then; that’s just
how the OS rolls.

Specifically, we will assume for now that the user’s address space must
be placed contiguously in physical memory. We will also assume, for sim-
plicity, that the size of the address space is not too big; specifically, that
it is less than the size of physical memory. Finally, we will also assume that
each address space is exactly the same size. Don’t worry if these assump-
tions sound unrealistic; we will relax them as we go, thus achieving a
realistic virtualization of memory.

15.2 An Example

To understand better what we need to do to implement address trans-
lation, and why we need such a mechanism, let’s look at a simple exam-
ple. Imagine there is a process whose address space is as indicated in
Figure 15.1. What we are going to examine here is a short code sequence

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 3

TIP: INTERPOSITION IS POWERFUL

Interposition is a generic and powerful technique that is often used to
great effect in computer systems. In virtualizing memory, the hardware
will interpose on each memory access, and translate each virtual address
issued by the process to a physical address where the desired informa-
tion is actually stored. However, the general technique of interposition is
much more broadly applicable; indeed, almost any well-defined interface
can be interposed upon, to add new functionality or improve some other
aspect of the system. One of the usual benefits of such an approach is
transparency; the interposition often is done without changing the client
of the interface, thus requiring no changes to said client.

that loads a value from memory, increments it by three, and then stores
the value back into memory. You can imagine the C-language represen-
tation of this code might look like this:

void func()
int x;
...
x = x + 3; // this is the line of code we are interested in

The compiler turns this line of code into assembly, which might look
something like this (in x86 assembly). Use objdump on Linux or otool
on Mac OS X to disassemble it:

128: movl 0x0(%ebx), %eax ;load 0+ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem

This code snippet is relatively straightforward; it presumes that the
address of x has been placed in the register ebx, and then loads the value
at that address into the general-purpose register eax using the movl in-
struction (for “longword” move). The next instruction adds 3 to eax,
and the final instruction stores the value in eax back into memory at that
same location.

In Figure 15.1, you can see how both the code and data are laid out in
the process’s address space; the three-instruction code sequence is located
at address 128 (in the code section near the top), and the value of the
variable x at address 15 KB (in the stack near the bottom). In the figure,
the initial value of x is 3000, as shown in its location on the stack.

When these instructions run, from the perspective of the process, the
following memory accesses take place.

• Fetch instruction at address 128
• Execute this instruction (load from address 15 KB)
• Fetch instruction at address 132
• Execute this instruction (no memory reference)
• Fetch the instruction at address 135
• Execute this instruction (store to address 15 KB)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 MECHANISM: ADDRESS TRANSLATION

16KB

15KB

14KB

4KB

3KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code

128
132
135

movl 0x0(%ebx),%eax
addl 0x03, %eax
movl %eax,0x0(%ebx)

3000

Figure 15.1: A Process And Its Address Space

From the program’s perspective, its address space starts at address 0
and grows to a maximum of 16 KB; all memory references it generates
should be within these bounds. However, to virtualize memory, the OS
wants to place the process somewhere else in physical memory, not nec-
essarily at address 0. Thus, we have the problem: how can we relocate
this process in memory in a way that is transparent to the process? How
can we provide the illusion of a virtual address space starting at 0, when
in reality the address space is located at some other physical address?

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 5

64KB

48KB

32KB

16KB

0KB

(not in use)

(not in use)

Operating System

Stack

Code
Heap

(allocated but not in use)

R
el

oc
at

ed
 P

ro
ce

ss

Figure 15.2: Physical Memory with a Single Relocated Process

An example of what physical memory might look like once this pro-
cess’s address space has been placed in memory is found in Figure 15.2.
In the figure, you can see the OS using the first slot of physical memory
for itself, and that it has relocated the process from the example above
into the slot starting at physical memory address 32 KB. The other two
slots are free (16 KB-32 KB and 48 KB-64 KB).

15.3 Dynamic (Hardware-based) Relocation

To gain some understanding of hardware-based address translation,
we’ll first discuss its first incarnation. Introduced in the first time-sharing
machines of the late 1950’s is a simple idea referred to as base and bounds
(the technique is also referred to as dynamic relocation; we’ll use both
terms interchangeably) [SS74].

Specifically, we’ll need two hardware registers within each CPU: one
is called the base register, and the other the bounds (sometimes called a
limit register). This base-and-bounds pair is going to allow us to place the
address space anywhere we’d like in physical memory, and do so while
ensuring that the process can only access its own address space.

In this setup, each program is written and compiled as if it is loaded at
address zero. However, when a program starts running, the OS decides
where in physical memory it should be loaded and sets the base register
to that value. In the example above, the OS decides to load the process at
physical address 32 KB and thus sets the base register to this value.

Interesting things start to happen when the process is running. Now,
when any memory reference is generated by the process, it is translated
by the processor in the following manner:

physical address = virtual address + base

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 MECHANISM: ADDRESS TRANSLATION

ASIDE: SOFTWARE-BASED RELOCATION

In the early days, before hardware support arose, some systems per-
formed a crude form of relocation purely via software methods. The
basic technique is referred to as static relocation, in which a piece of soft-
ware known as the loader takes an executable that is about to be run and
rewrites its addresses to the desired offset in physical memory.

For example, if an instruction was a load from address 1000 into a reg-
ister (e.g., movl 1000, %eax), and the address space of the program
was loaded starting at address 3000 (and not 0, as the program thinks),
the loader would rewrite the instruction to offset each address by 3000
(e.g., movl 4000, %eax). In this way, a simple static relocation of the
process’s address space is achieved.

However, static relocation has numerous problems. First and most im-
portantly, it does not provide protection, as processes can generate bad
addresses and thus illegally access other process’s or even OS memory; in
general, hardware support is likely needed for true protection [WL+93].
A smaller negative is that once placed, it is difficult to later relocate an
address space to another location [M65].

Each memory reference generated by the process is a virtual address;
the hardware in turn adds the contents of the base register to this address
and the result is a physical address that can be issued to the memory
system.

To understand this better, let’s trace through what happens when a
single instruction is executed. Specifically, let’s look at one instruction
from our earlier sequence:

128: movl 0x0(%ebx), %eax

The program counter (PC) is set to 128; when the hardware needs to
fetch this instruction, it first adds the value to the base register value
of 32 KB (32768) to get a physical address of 32896; the hardware then
fetches the instruction from that physical address. Next, the processor
begins executing the instruction. At some point, the process then issues
the load from virtual address 15 KB, which the processor takes and again
adds to the base register (32 KB), getting the final physical address of
47 KB and thus the desired contents.

Transforming a virtual address into a physical address is exactly the
technique we refer to as address translation; that is, the hardware takes a
virtual address the process thinks it is referencing and transforms it into
a physical address which is where the data actually resides. Because this
relocation of the address happens at runtime, and because we can move
address spaces even after the process has started running, the technique
is often referred to as dynamic relocation [M65].

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 7

TIP: HARDWARE-BASED DYNAMIC RELOCATION

With dynamic relocation, we can see how a little hardware goes a long
way. Namely, a base register is used to transform virtual addresses (gen-
erated by the program) into physical addresses. A bounds (or limit) reg-
ister ensures that such addresses are within the confines of the address
space. Together, they combine to provide a simple and efficient virtual-
ization of memory.

Now you might be asking: what happened to that bounds (limit) reg-
ister? After all, isn’t this supposed to be the base-and-bounds approach?
Indeed, it is. And as you might have guessed, the bounds register is there
to help with protection. Specifically, the processor will first check that
the memory reference is within bounds to make sure it is legal; in the sim-
ple example above, the bounds register would always be set to 16 KB. If
a process generates a virtual address that is greater than the bounds, or
one that is negative, the CPU will raise an exception, and the process will
likely be terminated. The point of the bounds is thus to make sure that all
addresses generated by the process are legal and within the “bounds” of
the process.

We should note that the base and bounds registers are hardware struc-
tures kept on the chip (one pair per CPU). Sometimes people call the
part of the processor that helps with address translation the memory
management unit (MMU); as we develop more sophisticated memory-
management techniques, we will be adding more circuitry to the MMU.

A small aside about bound registers, which can be defined in one of
two ways. In one way (as above), it holds the size of the address space,
and thus the hardware checks the virtual address against it first before
adding the base. In the second way, it holds the physical address of the
end of the address space, and thus the hardware first adds the base and
then makes sure the address is within bounds. Both methods are logically
equivalent; for simplicity, we’ll usually assume that the bounds register
holds the size of the address space.

Example Translations

To understand address translation via base-and-bounds in more detail,
let’s take a look at an example. Imagine a process with an address space of
size 4 KB (yes, unrealistically small) has been loaded at physical address
16 KB. Here are the results of a number of address translations:

• Virtual Address 0 → Physical Address 16 KB
• VA 1 KB → PA 17 KB
• VA 3000 → PA 19384
• VA 4400 → Fault (out of bounds)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 MECHANISM: ADDRESS TRANSLATION

ASIDE: DATA STRUCTURE — THE FREE LIST

The OS must track which parts of free memory are not in use, so as to
be able to allocate memory to processes. Many different data structures
can of course be used for such a task; the simplest (which we will assume
here) is a free list, which simply is a list of the ranges of the physical
memory which are not currently in use.

As you can see from the example, it is easy for you to simply add the
base address to the virtual address (which can rightly be viewed as an
offset into the address space) to get the resulting physical address. Only if
the virtual address is “too big” or negative will the result be a fault (e.g.,
4400 is greater than the 4 KB bounds), causing an exception to be raised
and the process to be terminated.

15.4 OS Issues

There are a number of new OS issues that arise when using base and
bounds to implement a simple virtual memory. Specifically, there are
three critical junctures where the OS must take action to implement this
base-and-bounds approach to virtualizing memory.

First, The OS must take action when a process is created, finding space
for its address space in memory. Fortunately, given our assumptions that
each address space is (a) smaller than the size of physical memory and
(b) the same size, this is quite easy for the OS; it can simply view physical
memory as an array of slots, and track whether each one is free or in use.
When a new process is created, the OS will have to search a data structure
(often called a free list) to find room for the new address space and then
mark it used.

An example of what physical memory might look like can be found
in Figure 15.2. In the figure, you can see the OS using the first slot of
physical memory for itself, and that it has relocated the process from the
example above into the slot starting at physical memory address 32 KB.
The other two slots are free (16 KB-32 KB and 48 KB-64 KB); thus, the free
list should consist of these two entries.

Second, the OS must take action when a process is terminated, reclaim-
ing all of its memory for use in other processes or the OS. Upon termina-
tion of a process, the OS thus puts its memory back on the free list, and
cleans up any associated data structures as need be.

Third, the OS must also take action when a context switch occurs.
There is only one base and bounds register on each CPU, after all, and
their values differ for each running program, as each program is loaded at
a different physical address in memory. Thus, the OS must save and restore
the base-and-bounds pair when it switches between processes. Specifi-
cally, when the OS decides to stop running a process, it must save the

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 9

values of the base and bounds registers to memory, in some per-process
structure such as the process structure or process control block (PCB).
Similarly, when the OS resumes a running process (or runs it the first
time), it must set the values of the base and bounds on the CPU to the
correct values for this process.

We should note that when a process is stopped (i.e., not running), it is
possible for the OS to move an address space from one location in mem-
ory to another rather easily. To move a process’s address space, the OS
first deschedules the process; then, the OS copies the address space from
the current location to the new location; finally, the OS updates the saved
base register (in the process structure) to point to the new location. When
the process is resumed, its (new) base register is restored, and it begins
running again, oblivious that its instructions and data are now in a com-
pletely new spot in memory!

We should also note that access to the base and bounds registers is ob-
viously privileged. Special hardware instructions are required to access
base-and-bounds registers; if a process, running in user mode, attempts
to do so, the CPU will raise an exception and the OS will likely termi-
nate the process. Only in kernel (or privileged) mode can such registers

be modified. Imagine the havoc a user process could wreak1 if it could
arbitrarily change the base register while running. Imagine it! And then
quickly flush such dark thoughts from your mind, as they are the ghastly
stuff of which nightmares are made.

15.5 Summary

In this chapter, we have extended the concept of limited direct exe-
cution with a specific mechanism used in virtual memory, known as ad-
dress translation. With address translation, the OS can control each and
every memory access from a process, ensuring the accesses stay within
the bounds of the address space. Key to the efficiency of this technique
is hardware support, which performs the translation quickly for each ac-
cess, turning virtual addresses (the process’s view of memory) into phys-
ical ones (the actual view). All of this is performed in a way that is trans-
parent to the process that has been relocated; the process has no idea its
memory references are being translated, making for a wonderful illusion.

We have also seen one particular form of virtualization, known as base
and bounds or dynamic relocation. Base-and-bounds virtualization is
quite efficient, as only a little more hardware logic is required to add a
base register to the virtual address and check that the address generated
by the process is in bounds. Base-and-bounds also offers protection; the
OS and hardware combine to ensure no process can generate memory
references outside its own address space. Protection is certainly one of
the most important goals of the OS; without it, the OS could not control

1Is there anything other than “havoc” that can be “wreaked”?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 MECHANISM: ADDRESS TRANSLATION

the machine (if processes were free to overwrite memory, they could eas-
ily do nasty things like overwrite the trap table and take over the system).

Unfortunately, this simple technique of dynamic relocation does have
its inefficiencies. For example, as you can see in Figure 15.2 (back a few
pages), the relocated process is using physical memory from 32 KB to
48 KB; however, because the process stack and heap are not too big, all of
the space between the two is simply wasted. This type of waste is usually
called internal fragmentation, as the space inside the allocated unit is not
all used (i.e., is fragmented) and thus wasted. In our current approach, al-
though there might be enough physical memory for more processes, we
are currently restricted to placing an address space in a fixed-sized slot

and thus internal fragmentation can arise2. Thus, we are going to need
more sophisticated machinery, to try to better utilize physical memory
and avoid internal fragmentation. Our first attempt will be a slight gen-
eralization of base and bounds known as segmentation, which we will
discuss next.

2A different solution might instead place a fixed-sized stack within the address space,
just below the code region, and a growing heap below that. However, this limits flexibility
by making recursion and deeply-nested function calls challenging, and thus is something we
hope to avoid.

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

MECHANISM: ADDRESS TRANSLATION 11

References

[M65] “On Dynamic Program Relocation”
W.C. McGee
IBM Systems Journal
Volume 4, Number 3, 1965, pages 184–199
This paper is a nice summary of early work on dynamic relocation, as well as some basics on static
relocation.

[P90] “Relocating loader for MS-DOS .EXE executable files”
Kenneth D. A. Pillay
Microprocessors & Microsystems archive
Volume 14, Issue 7 (September 1990)
An example of a relocating loader for MS-DOS. Not the first one, but just a relatively modern example
of how such a system works.

[SS74] “The Protection of Information in Computer Systems”
J. Saltzer and M. Schroeder
CACM, July 1974
From this paper: “The concepts of base-and-bound register and hardware-interpreted descriptors ap-
peared, apparently independently, between 1957 and 1959 on three projects with diverse goals. At
M.I.T., McCarthy suggested the base-and-bound idea as part of the memory protection system nec-
essary to make time-sharing feasible. IBM independently developed the base-and-bound register as a
mechanism to permit reliable multiprogramming of the Stretch (7030) computer system. At Burroughs,
R. Barton suggested that hardware-interpreted descriptors would provide direct support for the naming
scope rules of higher level languages in the B5000 computer system.” We found this quote on Mark
Smotherman’s cool history pages [S04]; see them for more information.

[S04] “System Call Support”
Mark Smotherman, May 2004
http://people.cs.clemson.edu/˜mark/syscall.html
A neat history of system call support. Smotherman has also collected some early history on items like
interrupts and other fun aspects of computing history. See his web pages for more details.

[WL+93] “Efficient Software-based Fault Isolation”
Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP ’93
A terrific paper about how you can use compiler support to bound memory references from a program,
without hardware support. The paper sparked renewed interest in software techniques for isolation of
memory references.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

12 MECHANISM: ADDRESS TRANSLATION

Homework

The program relocation.py allows you to see how address trans-
lations are performed in a system with base and bounds registers. See the
README for details.

Questions

• Run with seeds 1, 2, and 3, and compute whether each virtual ad-
dress generated by the process is in or out of bounds. If in bounds,
compute the translation.

• Run with these flags: -s 0 -n 10. What value do you have set
-l (the bounds register) to in order to ensure that all the generated
virtual addresses are within bounds?

• Run with these flags: -s 1 -n 10 -l 100. What is the maxi-
mum value that bounds can be set to, such that the address space
still fits into physical memory in its entirety?

• Run some of the same problems above, but with larger address
spaces (-a) and physical memories (-p).

• What fraction of randomly-generated virtual addresses are valid,
as a function of the value of the bounds register? Make a graph
from running with different random seeds, with limit values rang-
ing from 0 up to the maximum size of the address space.

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

