
Chapter 3

Machine-Level Representation of Programs

When programming in a high-level language such as C, we are shielded from the detailed, machine-level
implementation of our program. In contrast, when writing programs in assembly code, a programmer must
specify exactly how the program manages memory and the low-level instructions the program uses to carry
out the computation. Most of the time, it is much more productive and reliable to work at the higher level
of abstraction provided by a high-level language. The type checking provided by a compiler helps detect
many program errors and makes sure we reference and manipulate data in consistent ways. With modern,
optimizing compilers, the generated code is usually at least as efficient as what a skilled, assembly-language
programmer would write by hand. Best of all, a program written in a high-level language can be compiled
and executed on a number of different machines, whereas assembly code is highly machine specific.

Even though optimizing compilers are available, being able to read and understand assembly code is an
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will
generate a file showing its output in assembly code. Assembly code is very close to the actual machine code
that computers execute. Its main feature is that it is in a more readable textual format, compared to the binary
format of object code. By reading this assembly code, we can understand the optimization capabilities of
the compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5,
programmers seeking to maximize the performance of a critical section of code often try different variations
of the source code, each time compiling and examining the generated assembly code to get a sense of how
efficiently the program will run. Furthermore, there are times when the layer of abstraction provided by a
high-level language hides information about the run-time behavior of a program that we need to understand.
For example, when writing concurrent programs using a thread package, as covered in Chapter 13, it is
important to know what type of storage is used to hold the different program variables. This information
is visible at the assembly code level. The need for programmers to learn assembly code has shifted over
the years from one of being able to write programs directly in assembly to one of being able to read and
understand the code generated by optimizing compilers.

In this chapter, we will learn the details of a particular assembly language and see how C programs get
compiled into this form of machine code. Reading the assembly code generated by a compiler involves a
different set of skills than writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to the computations expressed
in the C code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-

117

118 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

place slow operations such as multiplication by shifts and adds, and even change recursive computations
into iterative ones. Understanding the relation between source code and the generated assembly can of-
ten be a challenge—much like putting together a puzzle having a slightly different design than the picture
on the box. It is a form of reverse engineering—trying to understand the process by which a system was
created by studying the system and working backward. In this case, the system is a machine-generated,
assembly-language program, rather than something designed by a human. This simplifies the task of re-
verse engineering, because the generated code follows fairly regular patterns, and we can run experiments,
having the compiler generate code for many different programs. In our presentation, we give many exam-
ples and provide a number of exercises illustrating different aspects of assembly language and compilers.
This is a subject matter where mastering the details is a prerequisite to understanding the deeper and more
fundamental concepts. Spending time studying the examples and working through the exercises will be well
worthwhile.

We give a brief history of the Intel architecture. Intel processors have grown from rather primitive 16-bit
processors in 1978 to the mainstream machines for today’s desktop computers. The architecture has grown
correspondingly with new features added and the 16-bit architecture transformed to support 32-bit data and
addresses. The result is a rather peculiar design with features that make sense only when viewed from a
historical perspective. It is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the features used by GCC and
Linux. This allows us to avoid much of the complexity and arcane features of IA32.

Our technical presentation starts a quick tour to show the relation between C, assembly code, and object
code. We then proceed to the details of IA32, starting with the representation and manipulation of data
and the implementation of control. We see how control constructs in C, such as if, while, and switch
statements, are implemented. We then cover the implementation of procedures, including how the run-time
stack supports the passing of data and control between procedures, as well as storage for local variables.
Next, we consider how data structures such as arrays, structures, and unions are implemented at the machine
level. With this background in machine-level programming, we can examine the problems of out of bounds
memory references and the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using the GDB debugger for examining the run-time behavior of a machine-
level program.

We then move into material that is marked with an asterisk (*) and is intended for dedicated machine-
language enthusiasts. We give a presentation of IA32 support for floating-point code. This is a particularly
arcane feature of IA32, and so we advise that only people determined to work with floating-point code
attempt to study this section. We give a brief presentation of GCC’s support for embedding assembly code
within C programs. In some applications, the programmer must drop down to assembly code to access
low-level features of the machine. Embedded assembly is the best way to do this.

3.1 A Historical Perspective

The Intel processor line has a long, evolutionary development. It started with one of the first single-chip, 16-
bit microprocessors, where many compromises had to be made due to the limited capabilities of integrated
circuit technology at the time. Since then it has grown to take advantage of technology improvements as
well as to satisfy the demands for higher performance and for supporting more advanced operating systems.

3.1. A HISTORICAL PERSPECTIVE 119

The list that follows shows the successive models of Intel processors, and some of their key features. We use
the number of transistors required to implement the processors as an indication of how they have evolved in
complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a version
of the 8086 with an 8-bit external bus, formed the heart of the original IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The original
models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use.

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT personal computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.9 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not change the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor design, internally known as
the P6 microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium/MMX: (1997, 4.5 M transistors). Added new class of instructions to the Pentium processor for
manipulating vectors of integers. Each datum can be 1, 2, or 4-bytes long. Each vector totals 64 bits.

Pentium II: (1997, 7 M transistors). Merged the previously separate PentiumPro and Pentium/MMX lines
by implementing the MMX instructions within the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced yet another class of instructions for manipulating vec-
tors of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128
bits. Later versions of this chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and floating-point formats to the vector instruc-
tions, along with 144 new instructions for these formats. Intel shifted away from Roman numerals in
their numbering convention.

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. As we will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel now calls its instruction set IA32, for “Intel Architecture 32-bit.” The processor line is also
referred to by the colloquial name “x86,” reflecting the processor naming conventions up through the i486.

120 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Aside: Why not the i586?
Intel discontinued their numeric naming convention, because they were not able to obtain trademark protection for
their CPU numbers. The U. S. Trademark office does not allow numbers to be trademarked. Instead, they coined the
name “Pentium” using the the Greek root word penta as an indication that this was their fifth-generation machine.
Since then, they have used variants of this name, even though the PentiumPro is a sixth-generation machine (hence
the internal name P6), and the Pentium 4 is a seventh-generation machine. Each new generation involves a major
change in the processor design. End Aside.

Aside: Moore’s Law.

Intel microprocessor complexity

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1975 1980 1985 1990 1995 2000 2005

Year

T

r
a

n

s

i
s

t
o

r
s

If we plot the number of transistors in the different IA32 processors listed above versus the year of introduction,
and use a logarithmic scale for the Y axis, we can see that the growth has been phenomenal. Fitting a line through
the data, we see that the number of transistors increases at an annual rate of approximately 33%, meaning that the
number of transistors doubles about every 30 months. This growth has been sustained over the roughly 25 year
history of IA32.

In 1965, Gordon Moore, a founder of Intel Corporation extrapolated from the chip technology of the day, in which
they could fabricate circuits with around 64 transistors on a single chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This predication became known as Moore’s Law. As it turns out,
his prediction was just a little bit optimistic, but also too short-sighted. Over its 40-year history the semiconductor
industry has been able to double transistor counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk capacities, memory
chip capacities, and processor performance. These remarkable growth rates have been the major driving forces of
the computer revolution. End Aside.

Over the years, several companies have produced processors that are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is AMD. For years, AMD’s
strategy was to run just behind Intel in technology, producing processors that were less expensive although
somewhat lower in performance. More recently, AMD has produced some of the highest performing pro-
cessors for IA32. They were the first to the break the 1-gigahertz clock speed barrier for a commercially
available microprocessor. Although we will talk about Intel processors, our presentation holds just as well
for the compatible processors produced by Intel’s rivals.

Much of the complexity of IA32 is not of concern to those interested in programs for the Linux operating
system as generated by the GCC compiler. The memory model provided in the original 8086 and its exten-

3.2. PROGRAM ENCODINGS 121

sions in the 80286 are obsolete. Instead, Linux uses what is referred to as flat addressing, where the entire
memory space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions have been added to IA32
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Unfortunately, current versions of GCC will not
generate any code that uses these new features. In fact, in its default invocations GCC assumes it is generating
code for an i386. The compiler makes no attempt to exploit the many extensions added to what is now
considered a very old architecture.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We would then compile this code using a Unix
command line:

unix> gcc -O2 -o p p1.c p2.c

The command gcc indicates the GNU C compiler GCC. Since this is the default compiler on Linux, we
could also invoke it as simply cc. The flag -O2 instructs the compiler to apply level-two optimizations. In
general, increasing the level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good
compromise between optimized performance and ease of use. All code in this book was compiled with this
optimization level.

This command actually invokes a sequence of programs to turn the source code into executable code. First,
the C preprocessor expands the source code to include any files specified with #include commands and
to expand any macros. Second, the compiler generates assembly code versions of the two source files having
names p1.s and p2.s. Next, the assembler converts the assembly code into binary object code files p1.o
and p2.o. Finally, the linker merges these two object files along with code implementing standard Unix
library functions (e.g., printf) and generates the final executable file. Linking is described in more detail
in Chapter 7.

3.2.1 Machine-Level Code

The compiler does most of the work in the overall compilation sequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly code-representation is very close to machine code. Its main feature is that it
is in a more readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is a key step in understanding how computers
execute programs.

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts
of the processor state are visible that normally are hidden from the C programmer:

122 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

� The program counter (called %eip) indicates the address in memory of the next instruction to be
executed.

� The integer register file contains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are used to hold temporary data, such as the local
variables of a procedure.

� The condition code registers hold status information about the most recently executed arithmetic
instruction. These are used to implement conditional changes in the control flow, such as is required
to implement if or while statements.

� The floating-point register file contains eight locations for storing floating-point data.

Whereas C provides a model in which objects of different data types can be declared and allocated in
memory, assembly code views the memory as simply a large, byte-addressable array. Aggregate data types
in C such as arrays and structures are represented in assembly code as contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctions between signed or unsigned integers, between
different types of pointers, or even between pointers and integers.

The program memory contains the object code for the program, some information required by the operating
system, a run-time stack for managing procedure calls and returns, and blocks of memory allocated by the
user, (for example, by using the malloc library procedure).

The program memory is addressed using virtual addresses. At any given time, only limited subranges
of virtual addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially
span a 4-gigabyte range of address values, a typical program will only have access to a few megabytes. The
operating system manages this virtual address space, translating virtual addresses into the physical addresses
of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new
instruction address. The compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

3.2.2 Code Examples

Suppose we write a C code file code.c containing the following procedure definition:

1 int accum = 0;
2

3 int sum(int x, int y)
4 {
5 int t = x + y;
6 accum += t;
7 return t;
8 }

3.2. PROGRAM ENCODINGS 123

To see the assembly code generated by the C compiler, we can use the “-S” option on the command line:

unix> gcc -O2 -S code.c

This will cause the compiler to generate an assembly file code.s and go no further. (Normally it would
then invoke the assembler to generate an object code file).

GCC generates assembly code in its own format, known as GAS (for “Gnu ASsembler”). We will base our
presentation on this format, which differs significantly from the format used in Intel documentation and
by Microsoft compilers. See the bibiliographic notes for advice on locating documentation of the different
assembly code formats.

The assembly-code file contains various declarations including the set of lines:

sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
addl %eax,accum
movl %ebp,%esp
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, the pushl
instruction indicates that the contents of register %ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We still see a reference to the
global variable accum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the ’-c’ command line option, GCC will both compile and assemble the code:

unix> gcc -O2 -c code.c

This will generate an object code file code.o that is in binary format and hence cannot be viewed directly.
Embedded within the 852 bytes of the file code.o is a 19 byte sequence having hexadecimal representation:

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 89 ec 5d c3

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do I find the byte representation of a program?
First we used a disassembler (to be described shortly) to determine that the code for sum is 19 bytes long. Then we
ran the GNU debugging tool GDB on file code.o and gave it the command:

(gdb) x/19xb sum

124 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

telling it to examine (abbreviated ‘x’) 19 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
that GDB has many useful features for analyzing machine-level programs, as will be discussed in Section 3.12. End
Aside.

To inspect the contents of object code files, a class of programs known as disassemblers can be invaluable.
These programs generate a format similar to assembly code from the object code. With Linux systems, the
program OBJDUMP (for “object dump”) can serve this role given the ‘-d’ command line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations on the right):

Disassembly of function sum in file code.o

1 00000000 <sum>:
Offset Bytes Equivalent assembly language

2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 0c mov 0xc(%ebp),%eax
5 6: 03 45 08 add 0x8(%ebp),%eax
6 9: 01 05 00 00 00 00 add %eax,0x0
7 f: 89 ec mov %ebp,%esp
8 11: 5d pop %ebp
9 12: c3 ret

10 13: 90 nop

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups
of 1 to 6 bytes each. Each of these groups is a single instruction, with the assembly language equivalent
shown on the right. Several features are worth noting:

� IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and those with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

� The instruction format is designed in such a way that from a given starting position, there is a unique
decoding of the bytes into machine instructions. For example, only the instruction pushl %ebp can
start with byte value 55.

� The disassembler determines the assembly code based purely on the byte sequences in the object file.
It does not require access to the source or assembly-code versions of the program.

� The disassembler uses a slightly different naming convention for the instructions than does GAS. In
our example, it has omitted the suffix ‘l’ from many of the instructions.

� Compared with the assembly code in code.s we also see an additional nop instruction at the end.
This instruction will never be executed (it comes after the procedure return instruction), nor would it
have any effect if it were (hence the name nop, short for “no operation” and commonly spoken as
“no op”). The compiler inserted this instruction as a way to pad the space used to store the procedure.

3.2. PROGRAM ENCODINGS 125

Generating the actual executable code requires running a linker on the set of object code files, one of which
must contain a function main. Suppose in file main.c we had the following function:

1 int main()
2 {
3 return sum(1, 3);
4 }

Then, we could generate an executable program test as follows:

unix> gcc -O2 -o prog code.o main.c

The file prog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also
information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the file prog:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 080483b4 <sum>:
2 80483b4: 55 push %ebp
3 80483b5: 89 e5 mov %esp,%ebp
4 80483b7: 8b 45 0c mov 0xc(%ebp),%eax
5 80483ba: 03 45 08 add 0x8(%ebp),%eax
6 80483bd: 01 05 64 94 04 08 add %eax,0x8049464
7 80483c3: 89 ec mov %ebp,%esp
8 80483c5: 5d pop %ebp
9 80483c6: c3 ret

10 80483c7: 90 nop

Note that this code is almost identical to that generated by the disassembly of code.c. One main difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has finally determined the location for
storing global variable accum. On line 6 of the disassembly for code.o the address of accum was still
listed as 0. In the disassembly of prog, the address has been set to 0x8049464. This is shown in the
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed
from least-significant to most as 64 94 04 08.

3.2.3 A Note on Formatting

The assembly code generated by GCC is somewhat difficult to read. It contains some information with which
we need not be concerned. On the other hand, it does not provide any description of the program or how it
works. For example, suppose the file simple.c contains the following code:

126 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

1 int simple(int *xp, int y)
2 {
3 int t = *xp + y;
4 *xp = t;
5 return t;
6 }

When GCC is run with the ‘-S’ flag, it generates the following file for simple.s.

.file "simple.c"

.version "01.01"
gcc2_compiled.:
.text

.align 4
.globl simple

.type simple,@function
simple:

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%edx
addl 12(%ebp),%edx
movl %edx,(%eax)
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

.Lfe1:
.size simple,.Lfe1-simple
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

The file contains more information than we really require. All of the lines beginning with ‘.’ are directives
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form that includes line numbers and
explanatory annotations. For our example, an annotated version would appear as follows:

1 simple:
2 pushl %ebp Save frame pointer

3 movl %esp,%ebp Create new frame pointer

4 movl 8(%ebp),%eax Get xp

5 movl (%eax),%edx Retrieve *xp

6 addl 12(%ebp),%edx Add y to get t

7 movl %edx,(%eax) Store t at *xp

8 movl %edx,%eax Set t as return value

9 movl %ebp,%esp Reset stack pointer

10 popl %ebp Reset frame pointer

11 ret Return

3.3. DATA FORMATS 127

C declaration Intel data type GAS suffix Size (bytes)
char Byte b 1
short Word w 2
int Double word l 4
unsigned Double word l 4
long int Double word l 4
unsigned long Double word l 4
char * Double word l 4
float Single precision s 4
double Double precision l 8
long double Extended precision t 10/12

Figure 3.1: Sizes of standard data types

We typically show only the lines of code relevant to the point being discussed. Each line is numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
quantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the machine representations used for the primitive data types of C. Note that most of
the common data types are stored as double words. This includes both regular and long int’s, whether or
not they are signed. In addition, all pointers (shown here as char *) are stored as 4-byte double words.
Bytes are commonly used when manipulating string data. Floating-point numbers come in three different
forms: single-precision (4-byte) values, corresponding to C data type float; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte) values. GCC uses the
data type long double to refer to extended-precision floating-point values. It also stores them as 12-
byte quantities to improve memory system performance, as will be discussed later. Although the ANSI C
standard includes long double as a data type, they are implemented for most combinations of compiler
and machine using the same 8-byte format as ordinary double. The support for extended precision is
unique to the combination of GCC and IA32.

As the table indicates, every operation in GAS has a single-character suffix denoting the size of the operand.
For example, the mov (move data) instruction has three variants: movb (move byte), movw (move word),
and movl (move double word). The suffix ‘l’ is used for double words, since on many machines 32-bit
quantities are referred to as “long words,” a holdover from an era when 16-bit word sizes were standard.
Note that GAS uses the suffix ‘l’ to denote both a 4-byte integer as well as an 8-byte double-precision
floating-point number. This causes no ambiguity, since floating point involves an entirely different set of

128 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

31 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %ax %bh %bl

%esi %si

%edi %di

Stack pointer%esp %sp

Frame pointer%ebp %bp

Figure 3.2: Integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits (double
word). The two low-order bytes of the first four registers can be accessed independently.

instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eight registers storing 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2 diagrams the eight registers. Their names all
begin with %e, but otherwise, they have peculiar names. With the original 8086, the registers were 16-bits
and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registers is greatly reduced. For the most part, the first six registers can
be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (%eax, %ecx, and %edx),
than for the next three (%ebx, %edi, and %esi). This will be discussed in Section 3.7. The final two
registers (%ebp and %esp) contain pointers to important places in the program stack. They should only be
altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be read or written by word operation instructions. This

3.4. ACCESSING INFORMATION 129

Type Form Operand value Name
Immediate $

����� �����
Immediate

Register ��� R � ���
	 Register
Memory

�����
M � ����� 	 Absolute

Memory (� �) M �R � � � 	�	 Indirect
Memory

�����
(���) M � ������

R � ����	�	 Base + displacement
Memory (��� , ���) M �R � ����	
 R � ����	�	 Indexed
Memory

�����
(��� , ���) M � ������

R � ����	
 R � ����	�	 Indexed
Memory (, ��� , �) M �R � ����	�����	 Scaled indexed
Memory

�����
(, ��� , �) M � ������

R � ����	��!
	 Scaled indexed
Memory (��� , ��� , �) M �R � ����	
 R � ����	��"�#	 Scaled indexed
Memory

�����
(��� , � � , �) M � ������

R � ����	
 R � � � 	��!
	 Scaled indexed

Figure 3.3: Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor $ must be either 1, 2, 4, or 8.

feature stems from IA32’s evolutionary heritage as a 16-bit microprocessor.

3.4.1 Operand Specifiers

Most instructions have one or more operands, specifying the source values to reference in performing an
operation and the destination location into which to place the result. IA32 supports a number of operand
forms (Figure 3.3). Source values can be given as constants or read from registers or memory. Results can
be stored in either registers or memory. Thus, the different operand possibilities can be classified into three
types. The first type, immediate, is for constant values. With GAS, these are written with a ‘$’ followed
by an integer using standard C notation, such as, $-577 or $0x1F. Any value that fits in a 32-bit word
can be used, although the assembler will use one or two-byte encodings when possible. The second type,
register, denotes the contents of one of the registers, either one of the eight 32-bit registers (e.g., %eax) for a
double-word operation, or one of the eight single-byte register elements (e.g., %al) for a byte operation. In
our figure, we use the notation ��� to denote an arbitrary register % , and indicate its value with the reference
R � ���
	 , viewing the set of registers as an array R indexed by register identifiers.

The third type of operand is a memory reference, in which we access some memory location according to a
computed address, often called the effective address. Since we view the memory as a large array of bytes,
we use the notation M ���'&)(*(!+,	 to denote a reference to the - -byte value stored in memory starting at address
&.(*(/+ . To simplify things, we will generally drop the subscript - .
As Figure 3.3 shows, there are many different addressing modes allowing different forms of memory ref-
erences. The most general form is shown at the bottom of the table with syntax

�����
(�0� , ��� , �). Such a

reference has four components: an immediate offset
�����

, a base register ��� , an index register � � , and a scale
factor � , where � must be 1, 2, 4, or 8. The effective address is then computed as

������

R � �1��	
 R � ���2	��! !3

This general form is often seen when referencing elements of arrays. The other forms are simply special
cases of this general form where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.

130 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Instruction Effect Description
movl � , � � � � Move double word
movw � , � � � � Move word
movb � , � � � � Move byte
movsbl � , � � � SignExtend ����� Move sign-extended byte
movzbl � , � � � ZeroExtend ����� Move zero-extended byte
pushl � R � %esp 	�� R � %esp		��
 ; Push

M �R � %esp	�	�� �
popl � � � M �R � %esp 	�	 ; Pop

R �%esp	�� R �%esp	

Figure 3.4: Data movement instructions.

Practice Problem 3.1:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value
%eax
0x104
$0x108
(%eax)
4(%eax)
9(%eax,%edx)
260(%ecx,%edx)
0xFC(,%ecx,4)
(%eax,%edx,4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that perform data movement. The generality of the
operand notation allows a simple move instruction to perform what in many machines would require a
number of instructions. Figure 3.4 lists the important data movement instructions. The most common is the
movl instruction for moving double words. The source operand designates a value that is immediate, stored
in a register, or stored in memory. The destination operand designates a location that is either a register or

3.4. ACCESSING INFORMATION 131

a memory address. IA32 imposes the restriction that a move instruction cannot have both operands refer to
memory locations. Copying a value from one memory location to another requires two instructions—the
first to load the source value into a register, and the second to write this register value to the destination.

The following movl instruction examples show the five possible combinations of source and destination
types. Recall that the source operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register

2 movl %ebp,%esp Register--Register

3 movl (%edi,%ecx),%eax Memory--Register

4 movl $-17,(%esp) Immediate--Memory

5 movl %eax,-12(%ebp) Register--Memory

The movb instruction is similar, except that it moves just a single byte. When one of the operands is a
register, it must be one of the eight single-byte register elements illustrated in Figure 3.2. Similarly, the
movw instruction moves two bytes. When one of its operands is a register, it must be one of the eight 2-byte
register elements shown in Figure 3.2.

Both the movsbl and the movzbl instruction serve to copy a byte and to set the remaining bits in the
destination. The movsbl instruction takes a single-byte source operand, performs a sign extension to 32
bits (i.e., it sets the high-order 24 bits to the most significant bit of the source byte), and copies this to a
double-word destination. Similarly, the movzbl instruction takes a single-byte source operand, expands it
to 32 bits by adding 24 leading zeros, and copies this to a double-word destination.

Aside: Comparing byte movement instructions.
Observe that the three byte movement instructions movb, movsbl, and movzbl differ from each other in subtle
ways. Here is an example:

Assume initially that %dh = 8D, %eax = 98765432

1 movb %dh,%al %eax = 9876548D

2 movsbl %dh,%eax %eax = FFFFFF8D

3 movzbl %dh,%eax %eax = 0000008D

In these examples, all set the low-order byte of register %eax to the second byte of %edx. The movb instruction
does not change the other three bytes. The movsbl instruction sets the other three bytes to either all ones or all
zeros depending on the high-order bit of the source byte. The movzbl instruction sets the other three bytes to all
zeros in any case. End Aside.

The final two data movement operations are used to push data onto and pop data from the program stack. As
we will see, the stack plays a vital role in the handling of procedure calls. Both the pushl and the popl
instructions take a single operand—the data source for pushing and the data destination for popping. The
program stack is stored in some region of memory. As illustrated in Figure 3.5, the stack grows downward
such that the top element of the stack has the lowest address of all stack elements. (By convention, we draw
stacks upside-down, with the stack “top” shown at the bottom of the figure). The stack pointer %esp holds
the address of the top stack element. Pushing a double-word value onto the stack therefore involves first
decrementing the stack pointer by 4 and then writing the value at the new top of stack address. Therefore,
the behavior of the instruction pushl %ebp is equivalent to that of the following pair of instructions:

subl $4,%esp
movl %ebp,(%esp)

132 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Increasing
address

Increasing
address

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

0x104

•
•
•

Stack “top”

Stack “bottom”

0x108

0x123

0x123

0

0x108

%eax

%edx

%esp

0x123

0

0x108

%eax

%edx

%esp

%eax

%edx

%esp

In it ially

0x123

0

0x104

%eax

%edx

%esp

0x123

0

0x104

%eax

%edx

%esp

%eax

%edx

%esp

pushl %eax

0x123

0x123

0x108

%eax

%edx

%esp

0x123

0x123

0x108

%eax

%edx

%esp

%eax

%edx

%esp

popl %edx

0x123
0x108

Figure 3.5: Illustration of stack operation. By convention, we draw stacks upside-down, so that the
“top” of the stack is shown at the bottom. IA32 stacks grow toward lower addresses, so pushing involves
decrementing the stack pointer (register %esp) and storing to memory, while popping involves reading from
memory and incrementing the stack pointer.

except that the pushl instruction is encoded in the object code as a single byte, whereas the pair of in-
struction shown above requires a total of 6 bytes. The first two columns in our figure illustrate the effect of
executing the instruction pushl %eax when %esp is 0x108 and %eax is 0x123. First %esp would be
decremented by 4, giving 0x104, and then 0x123 would be stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and then incrementing the stack
pointer by 4. Therefore, the instruction popl %eax is equivalent to the following pair of instructions:

movl (%esp),%eax
addl $4,%esp

The third column of Figure 3.5 illustrates the effect of executing the instruction popl %edx immediately
after executing the pushl. Value 0x123 would be read from memory and written to register %edx.
Register %esp would be incremented back to 0x108. As shown in the figure, the value 0x123 would
remain at memory location 0x104 until it is overwritten by another push operation. However, the stack top
is always considered to be the address indicated by %esp.

Since the stack is contained in the same memory as the program code and other forms of program data,
programs can access arbitrary positions within the stack using the standard memory addressing meth-
ods. For example, assuming the topmost element of the stack is a double word, the instruction movl
4(%esp),%edxwill copy the second double word from the stack to register %edx.

3.4. ACCESSING INFORMATION 133

code/asm/exchange.c

1 int exchange(int *xp, int y)
2 {
3 int x = *xp;
4

5 *xp = y;
6 return x;
7 }

code/asm/exchange.c

1 movl 8(%ebp),%eax Get xp

2 movl 12(%ebp),%edx Get y

3 movl (%eax),%ecx Get x at *xp

4 movl %edx,(%eax) Store y at *xp

5 movl %ecx,%eax Set x as return value

(a) C code (b) Assembly code

Figure 3.6: C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.

3.4.3 Data Movement Example

New to C?: Some examples of pointers.
Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp is a pointer
to an integer, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and store it as a local variable named
x. This read operation is known as pointer dereferencing. The C operator * performs pointer dereferencing.

The statement

*xp = y;

does the reverse—it writes the value of parameter y at the location designated by xp. This also a form of pointer
dereferencing (and hence the operator *), but it indicates a write operation since it is on the left hand side of the
assignment statement.

The following is an example of exchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print

a = 3, b = 4

The C operator & (called the “address of” operator) creates a pointer, in this case to the location holding local
variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the function value.
Observe how by passing a pointer to exchange, it could modify data held at some remote location. End.

134 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

As an example of code that uses data movement instructions, consider the data exchange routine shown in
Figure 3.6, both as C code and as assembly code generated by GCC. We omit the portion of the assembly
code that allocates space on the run-time stack on procedure entry and deallocates it prior to return. The
details of this set-up and completion code will be covered when we discuss procedure linkage. The code we
are left with is called the “body.”

When the body of the procedure starts execution, procedure parameters xp and y are stored at offsets 8 and
12 relative to the address in register %ebp. Instructions 1 and 2 then move these parameters into registers
%eax and %edx. Instruction 3 dereferences xp and stores the value in register %ecx, corresponding to
program value x. Instruction 4 stores y at xp. Instruction 5 moves x to register %eax. By convention,
any function returning an integer or pointer value does so by placing the result in register %eax, and so this
instruction implements line 6 of the C code. This example illustrates how the movl instruction can be used
to read from memory to a register (instructions 1 to 3), to write from a register to memory (instruction 4),
and to copy from one register to another (instruction 5).

Two features about this assembly code are worth noting. First, we see that what we call “pointers” in C
are simply addresses. Dereferencing a pointer involves putting that pointer in a register, and then using this
register in an indirect memory reference. Second, local variables such as x are often kept in registers rather
than stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.2:

You are given the following information. A function with prototype

void decode1(int *xp, int *yp, int *zp);

is compiled into assembly code. The body of the code is as follows:

1 movl 8(%ebp),%edi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%esi
4 movl (%edi),%eax
5 movl (%ebx),%edx
6 movl (%esi),%ecx
7 movl %eax,(%ebx)
8 movl %edx,(%esi)
9 movl %ecx,(%edi)

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and 16, respectively,
relative to the address in register %ebp.

Write C code for decode1 that will have an effect equivalent to the assembly code above. You can
test your answer by compiling your code with the -S switch. Your compiler may generate code that
differs in the usage of registers or the ordering of memory references, but it should still be functionally
equivalent.

3.5. ARITHMETIC AND LOGICAL OPERATIONS 135

Instruction Effect Description
leal � , � � � & � Load effective address
incl � � � � + 1 Increment
decl � � � � - 1 Decrement
negl � � � - � Negate
notl � � � ˜ � Complement
addl � , � � � � + � Add
subl � , � � � � - � Subtract
imull � , � � � � * � Multiply
xorl � , � � � � ˆ � Exclusive-or
orl � , � � � � | � Or
andl � , � � � � & � And
sall � , � � � � << � Left shift
shll � , � � � � << � Left shift (same as sall)
sarl � , � � � � >> � Arithmetic right shift
shrl � , � � � � >> � Logical right shift

Figure 3.7: Integer arithmetic operations. The load effective address (leal) instruction is commonly
used to perform simple arithmetic. The remaining ones are more standard unary or binary operations.
Note the nonintuitive ordering of the operands with GAS.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the double-word integer operations, divided into four groups. Binary operations
have two operands, while unary operations have one operand. These operands are specified using the same
notation as described in Section 3.4. With the exception of leal, each of these instructions has a counterpart
that operates on words (16 bits) and on bytes. The suffix ‘l’ is replaced by ‘w’ for word operations and ‘b’
for the byte operations. For example, addl becomes addw or addb.

3.5.1 Load Effective Address

The Load Effective Address leal instruction is actually a variant of the movl instruction. It has the
form of an instruction that reads from memory to a register, but it does not reference memory at all. Its
first operand appears to be a memory reference, but instead of reading from the designated location, the
instruction copies the effective address to the destination. We indicate this computation in Figure 3.7 using
the C address operator & � . This instruction can be used to generate pointers for later memory references.
In addition, it can be used to compactly describe common arithmetic operations. For example, if register
%edx contains value � , then the instruction leal 7(%edx,%edx,4), %eax will set register %eax to� �
�� . The destination operand must be a register.

Practice Problem 3.3:

Suppose register %eax holds value � and %ecx holds value � . Fill in the table below with formu-
las indicating the value that will be stored in register %edx for each of the following assembly code

