
173

Programming with Pipes12

INTRODUCTION

This chapter explores the GNU/Linux pipes. The pipe model is an older but still
useful mechanism for interprocess communication. It looks at what are known as
half-duplex pipes and also named pipes. Each offers a first-in-first-out (FIFO)
queuing model to permit communication between processes.

THE PIPE MODEL

One way to visualize a pipe is a one-way connector between two entities. For ex-
ample, consider the following GNU/Linux command:

ls -1 | wc -l

In This Chapter

Review of the Pipe Model of IPC
Differences Between Anonymous Pipes and Named Pipes
Creating Anonymous and Named Pipes
Communicating Through Pipes
Command-Line Creation and Use of Pipes

This command creates two processes, one for the ls -1 and another for wc -l.
It then connects the two together by setting the standard-input of the second
process to the standard-output of the first process (see Figure 12.1). This has the ef-
fect of counting the number of files in the current subdirectory.

174 GNU/Linux Application Programming

FIGURE 12.1 Simple pipe example.

This command, as illustrated in Figure 12.1, sets up a pipeline between two
GNU/Linux commands. The ls command is performed, which generates output
that is used as the input to the second command, wc (word count). This is a half-
duplex pipe as communication occurs in one direction. The linkage between the
two commands is facilitated by the GNU/Linux kernel, which takes care of con-
necting the two together. You can achieve this in applications as well, which this
chapter demonstrates shortly.

PIPES AND NAMED PIPES

A pipe, or half-duplex pipe, provides the means for a process to communicate with
one of its ancestral subprocesses (of the anonymous variety). This is because no way
exists in the operating system to locate the pipe (it’s anonymous). Its most common
use is to create a pipe at a parent process and then pass the pipe to the child so that
they can communicate. Note that if full-duplex communication is required, the
Sockets API should be considered instead.

Another type of pipe is called a named pipe. A named pipe works like a regular
pipe but exists in the filesystem so that any process can find it. This means that
processes not of the same ancestry are able to communicate with one another.

The following sections look at both half-duplex or anonymous pipes and
named pipes. The chapter first takes a quick tour of pipes and then follows up with
a more detailed look at the pipe API and GNU/Linux system-level commands that
support pipes programming.

WHIRLWIND TOUR

This section begins with a simple example of the pipe programming model. In this
example, you create a pipe within a process, write a message to it, read the message
back from the pipe, and then emit it (see Listing 12.1).

LISTING 12.1 Simple Pipe Example (on the CD-ROM at ./source/ch12/pipe1.c)

1: #include <unistd.h>

2: #include <stdio.h>

3: #include <string.h>

4:
5: #define MAX_LINE 80

6: #define PIPE_STDIN 0

7: #define PIPE_STDOUT 1

8:
9: int main()

10: {

11: const char *string={"A sample message."};

12: int ret, myPipe[2];

13: char buffer[MAX_LINE+1];

14:
15: /* Create the pipe */

16: ret = pipe(myPipe);

17:
18: if (ret == 0) {

19:
20: /* Write the message into the pipe */

21: write(myPipe[PIPE_STDOUT], string, strlen(string));

22:
23: /* Read the message from the pipe */

24: ret = read(myPipe[PIPE_STDIN], buffer, MAX_LINE);

25:
26: /* Null terminate the string */

27: buffer[ret] = 0;

28:
29: printf("%s\n", buffer);

30:
31: }

32:
33: return 0;

34: }

Chapter 12 Programming with Pipes 175

In Listing 12.1, you create your pipe using the pipe call at line 16. You pass in
a two-element int array that represents your pipe. The pipe is defined as a pair of
separate file descriptors, an input and an output. You can write to one end of the
pipe and read from the other. The pipe API function returns zero on success. Upon
return, the myPipe array contains two new file descriptors representing the input to
the pipe (myPipe[1]) and the output from the pipe (myPipe[0]).

At line 21, you write your message to the pipe using the write function. You
specify the stdout descriptor (from the perspective of the application, not the
pipe). The pipe now contains the message and can be read at line 24 using the read
function. Here again, from the perspective of the application, you use the stdin de-
scriptor to read from the pipe. The read function stores what is read from the pipe
in the buffer variable (argument three of the read function). You terminate it (add
a NULL to the end) so that you can properly emit it at line 29 using printf. The pipe
in this example is illustrated in Figure 12.2.

176 GNU/Linux Application Programming

FIGURE 12.2 Half-duplex pipe example from Listing 12.1.

While this example was entertaining, communicating with yourself could be
performed using any number of mechanisms. The detailed review looks at more
complicated examples that provide communication between processes (both re-
lated and unrelated).

DETAILED REVIEW

While the pipe function is the majority of the pipe model, you need to understand
a few other functions in their applicability toward pipe-based programming. Table
12.1 lists the functions that are detailed in this chapter.

This chapter also looks at some of the other functions that are applicable to
pipe communication, specifically those that can be used to communicate using a
pipe.

Remember that a pipe is nothing more than a pair of file descriptors, and therefore
any functions that operate on file descriptors can be used. This includes but is not
restricted to select, read, write, fcntl, freopen, and such.

pipe

The pipe API function creates a new pipe, represented by an array of two file de-
scriptors. The pipe function has the following prototype:

#include <unistd.h>

int pipe(int fds[2]);

The pipe function returns 0 on success, or -1 on failure, with errno set
appropriately. On successful return, the fds array (which was passed by reference)
is filled with two active file descriptors. The first element in the array is a file
descriptor that can be read by the application, and the second element is a file de-
scriptor that can be written to.

Now take a look at a slightly more complicated example of a pipe in a multi-
process application. In this application (see Listing 12.2), you create a pipe (line 14)
and then fork your process into a parent and a child process (line 16). At the child,
you attempt to read from the input file descriptor of your pipe (line 18), which sus-
pends the process until something is available to read. When something is read, you
terminate the string with a NULL and print out what was read. The parent simply
writes a test string through the pipe using the write file descriptor (array offset 1 of
the pipe structure) and then waits for the child to exit using the wait function.

Note that nothing is spectacular about this application except for the fact that
the child process inherited the file descriptors that were created by the parent (using
the pipe function) and then used them to communicate with one another. Recall
that after the fork function is complete, the processes are independent (except
that the child inherited features of the parent, such as the pipe file descriptors).
Memory is separate, so the pipe method provides you with an interesting model to
communicate between processes.

Chapter 12 Programming with Pipes 177

API Function Use

pipe Create a new anonymous pipe.

dup Create a copy of a file descriptor.

mkfifo Create a named pipe (fifo).

TABLE 12.1 API Functions for Pipe Programming

LISTING 12.2 Illustrating the Pipe Model with Two Processes (on the CD-ROM at
./source/ch12/fpipe.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <string.h>

4: #include <wait.h>

5:
6: #define MAX_LINE 80

7:
8: int main()

9: {

10: int thePipe[2], ret;

11: char buf[MAX_LINE+1];

12: const char *testbuf={"a test string."};

13:
14: if (pipe(thePipe) == 0) {
15:
16: if (fork() == 0) {

17:
18: ret = read(thePipe[0], buf, MAX_LINE);
19: buf[ret] = 0;

20: printf("Child read %s\n", buf);

21:
22: } else {

23:
24: ret = write(thePipe[1], testbuf, strlen(testbuf));
25: ret = wait(NULL);
26:
27: }

28:
29: }

30:
31: return 0;

32: }

Note that so far these simple programs, have not discussed closing the pipe, be-
cause after the process finishes, the resources associated with the pipe are automat-
ically freed. It’s good programming practice, nonetheless, to close the descriptors of
the pipe using the close call, as follows:

ret = pipe(myPipe);
...

close(myPipe[0]);
close(myPipe[1]);

178 GNU/Linux Application Programming

If the write end of the pipe is closed and a process tries to read from the pipe,
a zero is returned. This indicates that the pipe is no longer used and should be
closed. If the read end of the pipe is closed and a process tries to write to it, a signal
is generated. This signal (as discussed in Chapter 13, “Introduction to Sockets Pro-
gramming”) is called SIGPIPE. Applications that write to pipes commonly include
a signal handler to catch just this situation.

dup AND dup2

The dup and dup2 calls are very useful functions that provide the ability to duplicate
a file descriptor. They’re most often used to redirect the stdin, stdout, or stderr of
a process. The function prototypes for dup and dup2 are as follows:

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int targetfd);

The dup function allows you to duplicate a descriptor. You pass in an existing
descriptor, and it returns a new descriptor that is identical to the first. This means
that both descriptors share the same internal structure. For example, if you perform
an lseek (seek into the file) for one file descriptor, the file position is the same in the
second. Use of the dup function is illustrated in the following code snippet:

int fd1, fd2;

...

fd2 = dup(fd1);

Creating a descriptor prior to the fork call has the same effect as calling dup.
The child process receives a duplicated descriptor, just like it would after calling
dup.

The dup2 function is similar to dup but allows the caller to specify an active de-
scriptor and the id of a target descriptor. Upon successful return of dup2, the new
target descriptor is a duplicate of the first (targetfd = oldfd). Now take a look at a
short code snippet that illustrates dup2:

int oldfd;

oldfd = open("app_log", (O_RDWR | O_CREATE), 0644);
dup2(oldfd, 1);
close(oldfd);

In this example, you open a new file called app_log and receive a file descriptor
called fd1. You call dup2 with oldfd and 1, which has the effect of replacing the file

Chapter 12 Programming with Pipes 179

descriptor identified as 1 (stdout) with oldfd (the newly opened file). Anything
written to stdout now goes instead to the file named app_log. Note that you close
oldfd directly after duplicating it. This doesn’t close your newly opened file, be-
cause file descriptor 1 now references it.

Now take a look at a more complex example. Recall that earlier in the chapter
you investigated pipelining the output of ls -1 to the input of wc -l. Now this
example is explored in the context of a C application (see Listing 12.3).

You begin in Listing 12.3 by creating your pipe (line 9) and then forking the
application into the child (lines 13–16) and parent (lines 20–23). In the child, we
begin by closing the stdout descriptor (line 13). The child here provides the ls -1
functionality and does not write to stdout but instead to the input to your pipe
(redirected using dup). At line 14, you use dup2 to redirect the stdout to your pipe
(pfds[1]). After this is done, you close your input end of the pipe (as it will never
be used). Finally, you use the execlp function to replace the child’s image with that
of the command ls -1. After this command executes, any output that is generated
is sent to the input.

Now take a look at the receiving end of the pipe. The parent plays this role and
follows a very similar pattern. You first close the stdin descriptor at line 20 (be-
cause you will accept nothing from it). Next, you use the dup2 function again (line
21) to make the stdin the output end of the pipe. This is done by making file de-
scriptor 0 (normal stdin) the same as pfds[0]. You close the stdout end of the pipe
(pfds[1]) because you won’t use it here (line 22). Finally, you execlp the command
wc -l, which takes as its input the contents of the pipe (line 23).

Listing 12.3 Pipelining Commands in C (on the CD-ROM at ./source/ch12/dup.c)

1: #include <stdio.h>

2: #include <stdlib.h>

3: #include <unistd.h>

4:
5: int main()

6: {

7: int pfds[2];

8:
9: if (pipe(pfds) == 0) {

10:
11: if (fork() == 0) {

12:
13: close(1);

14: dup2(pfds[1], 1);

15: close(pfds[0]);

16: execlp("ls", "ls", "-1", NULL);

180 GNU/Linux Application Programming

17:
18: } else {

19:
20: close(0);

21: dup2(pfds[0], 0);

22: close(pfds[1]);

23: execlp("wc", "wc", "-l", NULL);

24:
25: }

26:
27: }

28:
29: return 0;

30: }

What’s important to note in this application is that your child process redirects
its output to the input of the pipe, and the parent redirects its input to the output
of the pipe—a very useful technique that is worth remembering.

mkfifo

The mkfifo function is used to create a file in the filesystem that provides FIFO
functionality (otherwise known as a named pipe). Pipes that this chapter has dis-
cussed thus far are anonymous pipes. They’re used exclusively between a process
and its children. Named pipes are visible in the filesystem and therefore can be used
by any (related or unrelated) process. The function prototype for mkfifo is defined
as follows:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

The mkfifo command requires two arguments. The first (pathname) is the spe-
cial file in the filesystem that is to be created. The second (mode) represents the
read/write permissions for the FIFO. The mkfifo command returns 0 on success or
-1 on error (with errno filled appropriately). Take a look at an example of creating
a fifo using the mkfifo function.

int ret;

...

ret = mkfifo("/tmp/cmd_pipe", S_IFIFO | 0666);
if (ret == 0) {

// Named pipe successfully created

Chapter 12 Programming with Pipes 181

} else {

// Failed to create named pipe

}

In this example, you create a fifo (named pipe) using the file cmd_pipe in the
/tmp subdirectory. You can then open this file for read or write to communicate
through it. After you open a named pipe, you can read from it using the typical I/O
commands. For example, here’s a snippet reading from the pipe using fgets:

pfp = fopen("/tmp/cmd_pipe", "r");
...

ret = fgets(buffer, MAX_LINE, pfp);

You can write to the pipe for this snippet using:

pfp = fopen("/tmp/cmd_pipe", "w+);
...

ret = fprintf(pfp, "Here’s a test string!\n");

What’s interesting about named pipes, which is explored shortly in the discus-
sion of the mkfifo system command, is that they work in what is known as a ren-
dezvous model. A reader is unable to open the named pipe unless a writer has
actively opened the other end of the pipe. The reader is blocked on the open call
until a writer is present. Despite this limitation, the named pipe can be a useful
mechanism for interprocess communication.

SYSTEM COMMANDS

Now it’s time to take a look at a system command that is related to the pipe model
for IPC. The mkfifo command, just like the mkfifo API function, allows you to cre-
ate a named pipe from the command line.

mkfifo

The mkfifo command is one of two methods for creating a named pipe (fifo spe-
cial file) at the command line. The general use of the mkfifo command is as follows:

mkfifo [options] name

where [options] are -m for mode (permissions) and name is the name of the named
pipe to create (including path if needed). If permissions are not specified, the de-
fault is 0644. Here’s a sample use, creating a named pipe in /tmp called cmd_pipe:

182 GNU/Linux Application Programming

$ mkfifo /tmp/cmd_pipe

You can adjust the options simply by specifying them with the -m option.
Here’s an example setting the permissions to 0644 (but deleting the original first):

$ rm cmd_pipe

$ mkfifo -m 0644 /tmp/cmd_pipe

After the permissions are created, you can communicate through this pipe via
the command line. Consider the following scenario. In one terminal, you attempt
to read from the pipe using the cat command:

$ cat cmd_pipe

Upon typing this command, you are suspended awaiting a writer opening the
pipe. In another terminal, you write to the named pipe using the echo command, as
follows:

$ echo Hi > cmd_pipe

When this command finishes, the reader wakes up and finishes (here’s the
complete reader command sequence again for clarity):

$ cat cmd_pipe

Hi

$

This illustrates that named pipes can be useful not only in C applications, but
also in scripts (or combinations).

Named pipes can also be created with the mknod command (along with many
other types of special files). You can create a named pipe (as with mkfifo before) as
follows:

$ mknod cmd_pipe p

where the named pipe cmd_pipe is created in the current subdirectory (with type as
p for named pipe).

Chapter 12 Programming with Pipes 183

SUMMARY

This chapter was a very quick review of anonymous and named pipes. You reviewed
application and command-line methods for creating pipes and also reviewed typical
I/O mechanisms for communicating through them. You also reviewed the ability
to redirect I/O using the dup and dup2 commands. While useful for pipes, these
commands are useful in many other scenarios as well (wherever a file descriptor is
used, such as a socket or file).

PIPE PROGRAMMING APIS

#include <unistd.h>

int pipe(int filedes[2]);
int dup(int oldfd);
int dup2(int oldfd, int targetfd);
int mkfifo(const char *pathname, mode_t mode);

184 GNU/Linux Application Programming

