
CSPP 51081 Process Control 11'

&

$

%

File Sharing

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 12'

&

$

%

Data Structures for open files

The kernel maintains three distinct structures for open files:

File

Descriptor

Table

//
System

Open File

Table

//
Kernel

I-node

Table

//
Individual

Filesystems

Inodes

Each table entry contains a pointer to an entry in the next table.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 13'

&

$

%

File Descriptor Table

Each process has its own File Descriptor Table.
• The File Descriptor Table is an array of open file descriptors for a

process. A file descriptor is an index to this array.

• Each table entry consists of
– A file descriptor flag: there is only oneFD_CLOEXEC, which

closes the file descriptor when anexec function is called. This is

set usingfcntl(fd, F_SETFD, FD_CLOEXEC).
– A pointer to an entry in the System Open File Table.

• The File Descriptor Table is copied onfork for the new process.

• The maximum number of open file descriptors a process can have is

given byOPEN_MAX given in<limits.h>.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 14'

&

$

%

System Open File Table

The kernel maintains a system-wide Open File Table.
• Different processes can share the same Open File Table entry, but one

process must be a descendant of the other (created by a chain of

forks).

• Each table entry consists of
– The file status flags for the file (read, write, append, nonblocking,

etc.) passed by call toopen.
– The current file offset
– A counter of the number of file descriptors which currently point

to this entry.
– A pointer to the inode entry of the file in the Kernel I-node Table.

• A new open file entry is created on each call toopen, so the same file

can have several table entries.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 15'

&

$

%

Kernel I-node Table

The kernel maintains a table of recently accessed files.
• There is one entry in the Kernel I-node Table for each file.

• Serveral Open File Table entries may point to the same file entry in
the Kernel I-node Table.

• The Kernel I-node Table is the kernel’s abstraction of a file
maintained by the Virtual File System. (Stevens calls these entries
v-nodesto contrast them with thei-nodeswhich are actually
implemented in each individual file system.)

• Each entry contains at least the following information:
– File information as found onstruct stat: type of file, size,

ownership, etc. Butnot the name of the file!!
– Filesystem device number and i-node in this filesystem, which

togetheruniquelyidentifies the file.
– Pointers to functions which operate on files in the filesystem

(read, write, get i-node, update i-node, etc.)

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 16'

&

$

%

Individual Filesystems

The Virtual Filesystem is an abstraction by the Kernel to hide
many individual filesystems.

• Several operating systems may access the same filesystem. (Think
when you log into two or more CS computers.)

• Filesystems have traditionally maintained file information (user, size,
etc.) by means ofi-nodes; but, this is not necessary for the Virtual
Filesystem. POSIX now calls i-nodesfile serial numbersand leaves
their meaning and implementation to each filesystem.

• Traditionally, the name of the file isnot kept with the i-node, but only
stored in directories.

• Traditionally, each directory stores the name of the file and the inode
of files within the directory.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 17'

&

$

%

Putting it together: I /O operations

• When a file isopened thelowestfile descriptor available is used on

the process File Descriptor Table. An entry in the Open File Table is

created, theflag parameter onopen is copied to the entry, and the

offset is set to 0, unlessO_APPEND is specified, in which case the

offset is set to the file size. The descriptor count on this table is set to

1. If the file is not located on the Kernel I-node Table, the kernel must

create an entry here as well.

• After eachlseek the Open File Table offset is adjusted, but no other

action is taken.

• After aclose the file descriptor entry is closed on the File

Descriptor Table and the count for the relevant entry in the Open File

Table is decremented. This entry is removed if the count reaches 0.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 18'

&

$

%

Putting it together: I /O operations

• After eachwrite is complete, the current file offset in the Open File

Table entry is incremented by the number of bytes written. If this

causes the offset to exceed the current file size, the file size in the

i-node table entry of the Kernel I-node Table is adjusted (and

eventually, the i-node in the filesystem will be changed as well.)

• If the O_APPEND flag is set in the Open File Table, on eachwrite the

current file offset is set to the file size (the end of the file) obtained

from the Kernel I-node Table.

• After afork the File Descriptor Table is copied to the child and all

counts for relevant entries in the Open File Table are incremented.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 19'

&

$

%

First Lesson in Synchronization: Atomic Operations

An atomic operationis an operation composed of multiple
steps, but where all steps are performed together or none are.

• What is wrong with the following code:

lseek(fd, 0L, SEEK_END); /* position to EOF */

write(fd, buff, 100); /* append to EOF */

(Multiple processes have access to the same file. It is possible that

between the system callslseek andwrite another process writes to

the file.)

• Appending to a file is made atomic by using the flagO_APPEND when

opening.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 20'

&

$

%

Second Lesson in Synchronization: File Sharing

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

int main(void) {

FILE *fs;

fs = fopen("myfile", "w");

fork();

fprintf(fs, "Process %ld writing\n", (long)getpid());

sleep(1); /* Process doing other things */

fprintf(fs, "Process %ld writing more\n", (long)getpid());

}

What could happen if parent and child were writing large
blocks of data?

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 21'

&

$

%

dup,dup2: duplicating file descriptors

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 22'

&

$

%

dup,dup2: duplicating file descriptors

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int newfd);

Return:

new file descriptor if OK -1 on error

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 23'

&

$

%

Usage ofdup,dup2

• Bothdup anddup2 create a copy of the file descriptoroldfd:

– dup uses the lowest-number unused descriptor available for the

new descriptor

– dup2 copiesoldfd to newfd (closingnewfd if necessary)

• Botholdfd and the new descriptor point to thesameOpen File Table

entry, so share the same current file offset.

• The file descriptor flag (close-on-exec) is not copied on

duplication–it is cleared on duplication.

• The most common use of duplicating file descriptors is for

redirecting standard input and standard output.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 24'

&

$

%

Duplicating standard input

The following steps redirect standard input tofile:

1. Open:fd = open(file,...);

2. Duplicate:dup2(fd, 0);

3. Close:close(fd);

4. Read, Write:read(0,...);, write(0,...);

Sincefd was no longer needed it was closed. In general, it is a good

practice to close file descriptors that will no longer be used, to conserve a

limited system resource.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 25'

&

$

%

Filters

A filter is a program which reads from standard input, writes
to standard output and reports errors to standard error.

• Examples of filters:head, grep, sort, diff, cat

• The shell handles redirection of standard input and output by

duplicating file descriptors. Example:

cat < my_input > my_output

– fork for a new process

– Redirect standard input and output in child

– exec thecat program.

• The filter reads from standard input, writes to standard output and

reports errors to standard error.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 26'

&

$

%

Why dup2: Atomic Operations

Consider the followining alternative to re-directing standard input

close(0);

open("my_input",O_RDONLY);

Usually, this is an acceptable alternative todup2, but it duplicates intwo

operations.dup2 is atomic and does it inoneoperation. If you have a

signal handler and recieve a signal between closing standard input and

openingmy_input then your program will be executing input between

these operations which may be a problem. Alternative lines of execution,

such as signal handlers called to handle signals, can cause nasty

difficulties in ensuring correct execution. Having an atomic duplication

operation eliminates this problem.

CSPP 51081 Unix Systems Programming



CSPP 51081 Process Control 27'

&

$

%

Possible errors ondup, dup2

errno

EBADF
oldfd is not an open file descriptor, ornewfd is out of the

allowed range for file descriptors

EMFILE
The process already has the maximum number of open file

descriptors.

CSPP 51081 Unix Systems Programming


