CHAPTER 10

I/0 Redirection and Pipes

OBJECTIVES
Ideas and Skills

I/0 Redirection: What and why?

Definitions of standard input, output, and error
Redirecting standard I/O to files

Using fork to redirect I/O for other programs
Pipes

Using fork with pipes

System Calls and Functions

e dup, dup2
* pipe

10.1 SHELL PROGRAMMING

How do the commands

1s > my.files
who | sort > userlist

work? How does the shell tell a program to send its output to a file instead of the
screen? How does the shell connect the output stream of one process to the input
stream of another process? What does the term standard input really mean?

" In this chapter, we focus on a particular form of interprocess communication:
input/output (I/O) redirection and pipes. We start by seeing how 1/O redirection and

321

322 Chapter 10 I/O Redirection and Pipes

pipes help in writing shell scripts. We then look at underlying features of the operating
system that make 1/O redirection work. Finally, we write our own programs that change
input and output streams for processes.

10.2 A SHELL APPLICATION: WATCH FOR USERS

Consider the following problem: You have a list of pals that use the same Unix ma-
chine you do. You want a program that notifies you when people log in or log out of the
system so you can watch for your pals.

You could write a C program that uses the utmp file and interval timers. The pro-
gram would open the utwp file, make a list of users, and then sleep for a while, rescan the
utnp file, and report any changes. How much time and how much code would that take?

A simpler solution is to write a shell script. Unix already has a program that lists
current users: who. Unix also includes programs to sleep and to process lists of strings.
Here is a Unix script that reports all logins and logouts:

logic shell code
get list of users (call it prev) who | sort > prev
while true while true ; do
sleep sleep 60
get list of users (call it curr) who | sort > curr
compare lists echo "logged out:"
in prev, not in curr -> logout comm -23 prev curr
echo "logged in:"
in curr, not in prev -> login ’ comm -13 prev curr
make prev = curr mv curr prev
repeat done

In this script, we combine seven Unix tools, one while loop, and a generous helping of
I/O redirection to build a program that solves the problem. Let us look at the details of
the programs and the connections among these programs.

The first line in the script builds a list, sorted by username, of all users logged in
when the script starts running. The who command outputs a list of users, and the sort
command reads a list as input and outputs a sorted version of that list.

who ! sort > file

FIGURE 10.1

Connecting output of who to input of sort.

The line who | sort > prev tells the shell to run the commands who and sort
at the same time, and to send the output of who directly to the input to sort. (See .
Figure 10.1.) The who command does not have to finish analyzing the utmp file be-
fore sort begins reading and sorting input. The two processes are scheduled to run in

10.2 A Shell Application: Watch for Users 323

small time slices, sharing CPU time with other processes on the system. Furthermore,
the sort > prev part of the line tells the shell to send the output of sort into a file
called prev, creating the file if it does not exist and replacing its contents if it does.

After sleeping for a minute, the script creates a new list of users in the file called
curr. How can we compare two sorted lists of log-in records? The Unix tool corm, de-
picted in Figure 10.2, finds lines common to two sorted files. Given two files, there are
three subsets: lines in set 1 only, lines in set 2 only, and lines in both sets. The comm com-
mand compares two sorted lists and prints out three columns, one for each of these
subsets. Command-line options allow you to suppress any of the columns. For example,
the two commands

comm -23 prev curr # drop columns 2 and 3 => show lines only in prev
and
comm -13 prev curr 4 drop columns 1 and 3 => show lines only in curr

produce exactly the two sets we want: those log-in records in the previous list, but not
in the current list (logouts), and those log-in records not in the previous list, but only in
the current list (logins).

‘FIGURE 10.2

comm compares two lists and outputs three sets.

Finally, the command mv curr prev replaces the list called prev with the list
called curr.

Lessons
This watch. sh script demonstrates three important ideas:
(a) Power of shell scripts—easier and quicker than C

(b) Flexibility of software tools—each tool does one specific, general task
(¢) Use and value of /O redirection and pipes

watch. sh shows how to use the > operator to treat files as variables of arbitrary size
and structure. In the same way one writes

x = func_a(func_b(y)): /* store output of func a of func_b in x */

in C, one writes

prog_b | prog_a > x # store output of combination in x
in sh.

Questions

How does all this work? What role does the shell play in connecting processes? What
role does the kernel play? What role do the individual programs play?

324 Chapter 10 I/O Redirection and Pipes

10.3

10.3.1

FACTS ABOUT STANDARD 1/0 AND REDIRECTION

All Unix I/O redirection is based on the principle of standard streams of data. Consid-
er the sort tool. sort reads bytes from one stream of data, writes the sorted results to
another stream, and reports any errors to a third stream. Ignoring for now the question
of where these standard streams of data go, the sort utility has the basic shape shown
in Figure 10.3. The three channels for data flow are as follows:

standard input—the stream of data to process
standard output—the stream of result data
standard error—a stream of error messages

@ @ ~—— eITOT messages

input data —» @ FIGURE 10.3
~ A software tool reads input and writes
output data output and errors.

Fact One: Three Standard File Descriptors

All Unix tools use the three-stream model shown in Figure 10.3. The model is imple-
mented via a simple rule. Each of these three streams is a specific file descriptor.
Figure 10.4 shows the details.

Standard file descriptors

0: stdin
1: stdout
2: stderr

FIGURE 10.4

Three special file descriptors.

10.3.2

10.3.3

1034

10.3 Facts about Standard 1/O and Redirection 325

FACT: All Unix tools use file descriptors 0, 1, and 2.

Standard input means file descriptor 0, standard output means file descriptor 1, and
standard error means file descriptor 2. Unix tools expect to find file descriptors 0, 1,
and 2 already open for reading, writing, and writing, respectively.

Default Connections: the tty

When you run a Unix tool from the command line of the shell, stdin, stdout, and
stderr are usually connected to your terminal. Therefore, the tool reads from the
keyboard and writes output and error messages to the screen. For example, if you
type sort and press the Enter key, your terminal will be connected to the sort tool.
Type as many lines of input as you like. When you indicate end of file by pressing
Ctrl-D on a line by itself, the sort program sorts the input and writes the result
to stdout.

Most Unix tools process data from files or from standard input. If the tool is
given file names on the command line, it reads input from those files. If there are no
files named on the command line, the program reads from standard input.

Output Goes Only to stdout

On the other hand, most programs do not accept names for output files; they always
write results to file descriptor 1 and errors to file descriptor 2.1 If you want to send the
output of a process to a file or to the input of another process, you change where the
file descriptor goes.

The Shell, Not the Program, Redirects I/O

You tell the shell to attach file descriptor 1 to a file by using the output redirection no-
tation: cmd > filename.The shell connects that file descriptor to the named file.

The program continues to write to file descriptor 1, unaware of the new data des-
tination. The following program, called 1istargs.c, shows that the program does not
even see the redirection notation on the command line:

/* listargs.c

* print the number of command line args, list the args,
* then print a message to stderr

*/
#include <stdio.h>

main(int ac, char *avi])

{
int i;

printf ("Number of args: %d, Args are:\n", ac);

1The commands sort and dd allow stdout overrides, but they have good reasons.

326 Chapter 10 /O Redirection and Pipes

10.3.5

for(i=0;i<ac;i++)
printf ("args[%d] %s\n", i, av(il);

fprintf (stderr, "This message is sent to stderr.\n");

listargs prints to standard output the list of command-line arguments. Notice that
listargs does not print the redirection symbol and filename:

$ cec listargs.c -o listargs

$./listargs testing one two
args([0] ./listargs

args[l] testing

args[2] one

args[3] two

This message is sent to stderr.
$./listargs testing one two > xyz
This message i1s sent to stderr.
S cat xnyz

args[0] ./listargs

args[l] testing

args{2] one

args[3] two

$./listargs testing >xyz one two 2> oops
$ cat xyz

args[0] ./listargs

"args[l] testing

args[2] one

args[3] two

$ cat oops

This message is sent to stderr.

These examples demonstrate some important facts about output redirection in the
shell. The most important fact is that the shell does not pass the redirection symbol and
filename to the command.

The second fact is that the redirection request can appear anywhere in the com-
mand and does not require spaces around the redirection symbol. Even a command
like > 1listing 1s is acceptable. Thus, the > sign does not terminate the command and
arguments; it is just an added request.

The final fact is that many shells provide notation for redirecting other file de-
scriptors. For example, 2>filename redirects file descriptor 2, that is, standard error, to
the named file. '

Understanding 1/0 Redirection

We saw in watch. sh'that I/O redirection is an integral part of Unix programming. We
saw in listargs.c that the shell, not the tool, redirects input and output.

10.3.6

10.3.7

10.3 Facts about Standard I/O and Redirection 327

But kow does the shell do I/O redirection? How can we write programs that redi-
rect I/0? Our project for this chapter is to write programs that do three basic redirec-
tion operations:

who > userlist attach stdout to a file
sort < data attach stdin to a file
who | sort attach stdout to stdin

Fact Two: The “Lowest-Available-£d” Principle .

What is a file descriptor anyway? A file descriptor is a remarkably simple concept: It is
an array index. Each process has a collection of files it has open. Those open files are
kept in an array. A file descriptor is simply an index of an item in that array. Figure 10.5
illustrates the “lowest-available-file-descriptor” rule.

Unix always assigns new connections to the lowest available file descriptor.

FIGURE 10.5

The “lowest-available-file-descriptor” rule.

FACT: When you open a file, you always get the lowest available spot in the array.

Making a new connection with file descriptors is like receiving a connection on a mul-
tiline phone. Callers dial a main number, and the internal phone system assigns each
new connection an internal line. On many such systems, the next incoming call is as-
signed the lowest available line.

The Synthesis

We now have two basic facts. First, we have the convention that all Unix processes use
file descriptors 0,1, and 2 for the standard input, output, and error channels. Second, we
have the fact that the kernel assigns the lowest available file descriptor when a process
requests a new file descriptor. By combining these two facts, we can understand how
T/O redirection works, and we can write programs that perform I/O redirection.

328 Chapter 10 1/O Redirection and Pipes

104

10.4.1

HOW TO ATTACH stdin TO A FILE

We now examine in detail how a program redirects standard input so that data come
from a file. To be precise, processes do not read from files; processes read from file de-
scriptors. If we attach file descriptor O to a file, that file becomes the source for stan-
dard input.

We examine three methods for attaching standard input to a file. Some of these
methods are not appropriate for files, but are essential when we work with pipes.

Method 1: Close Then Open

The first method is the close-then-open technique. This technique is like hanging up to
free a particular line and then picking up the telephone so you get that line. Here are
the steps:

Starting, we have a typical configuration. The three standard streams are connect-
ed to the terminal driver. Data flow in through file descriptor 0 and data flow out
through file descriptors 1 and 2. (See Figure 10.6.)

terminal

terminal driver FIGURE 10.6

disk file Typical starting configuration.

Then, close(0), the first step, is to hang up the connection to standard input. We call
close(0) to break the connection from standard input to the terminal driver. Figure 10. 7
shows how the first element in the array of file descriptors is now unused.

after calling close (0)

FIGURE 10.7

stdin is now closed.

10.4 How to Attach stdin to a File 329

Finally, open(filename,O_RDONLY), the last step, is to open the file you want to

attach to stdin. The lowest number available file descriptor is 0, so the file you open
will be attached at standard input. (See Figure 10.8.) Any functions that read from
standard input will read from that file.

pointer to

after calling open ()

open creates a connection

to a file and puts a pointer
~ to that connection in the

lowest available entry.

new connection FIGURE 10.8.

stdin now attached to file.

The following program uses the close-then-open method:

/* stdinredirl.c

*

purpose: show how to redirect standard input by replacing file

* descriptor 0 with a connection to a file.
* action: reads three lines from standard input, then
* closes fd 0, opens a digk file, then reads in
* three more lines from standard input
*/
#include <stdio.h>
#include <fentl. h>
maii'l()
{

int fd ;
char 1line[100];

/* read and print three lines */

fgets(line, 100, stdin); printf("%$s", line);
fgets(line, 100, stdin); printf("%s", line);
fgets(line, 100, stdin); printf("%s", line);

/* redirect input */

close(0);

fd = open("/etc/passwd", O_RDONLY) ;

if (£d 1= 0){
fprintf (stderr, "Could not open data as f£4 0\n");
exit(1);

330 Chapter 10 I/O Redirection and Pipes

10.4.2

/* read and print three lines */

fgets(line, 100, stdin); printf(*%s", line);

fgets(line, 100, stdin); printf("%$s", line);

fgets{ line, 100, stdin)}; printf("$s", line);
}

stdinreaderl reads and prints three lines from standard input, redirects standard
input, and then reads and prints three more lines from standard input. stdinreaderl
reads the first three lines from the keyboard, and then reads the next three lines from
the passwd file: R

$./stdinredirl

linel

linel

testing line?2

testing line2

line 3 here

line 3 here

root:x:0:0:root:/root: /bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon: /sbin:

$

Nothing else special is going on. Just hang up the line and dial the new number. When
the connection is made, you are now hearing from a new source of standard input.

Method 2: open..close..dup..close

Consider this situation: the telephone rings, you pick up the upstairs extension, but you
realize you want to take the call on the downstairs phone. You tell someone downstairs
to pick up that phone, giving you two connections to the caller, then you hang up the
upstairs phone, leaving the only active connection on the downstairs phone. Does that
sound familiar? The idea in this method is to duplicate the connection from the up-
stairs phone to the downstairs phone so you can hang up the upstairs phone without
losing the connection.

The Unix system call dup, depicted in Figure 10.9, makes a second connection to
an existing file descriptor. The method requires four steps:

open(file) The first step is to open the file to which stdin should be attached.
This call returns a file descriptor, which is not 0, since 0 is currently
open.

close(0) The next step is to close file descriptor 0. File descriptor 0 is now
unused.

dup(fd) The dup (£d) system call makes a duplicate of £d. The duplicate uses

the lowest number unused file descriptor. Therefore, the duplicate of
the connection to the file is at spot 0 in the array of open files. We have -
thereby attached the disk file to file descriptor 0.

10.4 How to Attach stdin to a File 331

fd = open("£", O_RDONLY):; ' close(0);

FIGURE 10.9
Using dup to redirect.

close(fd) Finally, we close(£d), the original connection to the file, leaving only
the connection on file descriptor 0. Compare this method to the tech-
nique of moving a phone call from one extension to another.

This program, stdinredir2.c, uses method 2:

/* stdinredir2.c

* shows two more methods for redirecting standard input
* use #define to set one or the other
*/
#include <stdio.h>
#include <fentl. h>
/* #define CLOSE_DUP /* open, close, dup, close */
/* #define USE_DUP2 /* open, dup2, close */
main()
{
int fd4 ;
int newfd;

char 1ine[100];
/* read and print three lines */

" fgets(line, 100, stdin); printf("%s", line);
fgets(line, 100, stdin); printf("$s", line);
fgets(line, 100, stdin); printf("$s", line);

/* redirect input */

332 Chapter 10 I/O Redirection and Pipes

10.4.3

10.4.4

fd = open("data", O_RDONLY); /* open the disk file */

#ifdef CLOSE_DUP

close(0);

newfd = dup(£d); ~ /* copy open fd to 0 */
#else ‘

newfd = dup2(£4,0); /* close 0, dup £d to 0 */
#endif

if (newfd != 0){
fprintf (stderr, "Could not duplicate fd to 0\n");
exit(1l);

}

close (£d); ' /* close original fd */

/* read and print three lines */

fgets({ line, 100, stdin); printf("%s", line);
fgets{ line, 100, stdin); printf("%s", line);
fgets({ line, 100, stdin); printf("%s", line);

This four-step method is included for the pedagogical purpose of demonstrating the
dup system call, an essential tool when working with pipes. A simpler method combines
the close (0) and dup (£d) steps into a single system call, dup2.

System Call Summary: dup

dup, dup2 v
PURPOSE Copy a file descriptor
INCLUDE #include <unistd.h>
USAGE newfd = dup(oldfd);
newfd = dup2(oldfd, newfd);

ARGS oldfd file descriptor to copy
newfd copy of oldfd

RETURNS -1 if error
newfd new file descriptor

dup creates a copy of file descriptor oldfd. dup2 makes file descriptor newfd the copy of
oldfd. The two file descriptors refer to the same open file. Both calls return the new file
descriptor or —1 on error.

Method 3: open..dup2..close

The code for stdinredir2.c includes #ifdef-ed code to replace the close(0) and.
dup (£d) system calls with dup2(£d,0). dup2 (orig,new) makes a duplicate of file

10.4.5

10.5

10.5 Redirecting /O for Another Program: who- > userlist 333

descriptor old at file descriptor new, even if it has to close an existing connection on
new first.

But the Shell Redirects stdin for Other Programs

These samples show how a program can attach its standard input to a file. In practice,
of course, if a program wants to read a file, it can just open the file directly rather than
changing standard input. The real value of these samples is to show how one program
can change standard input for another program.

REDIRECTING 1/0 FOR ANOTHER PROGRAM: who > userlist

When a user types who > userlist, the shell runs the command who with the standard
output of who attached to the file called userlist. How does that work?

The secret is the split second between fork and exec. After fork, the child
process is still running the shell code, but is about to call exec. exec will replace the
program running in the process, but it will not change either the attributes or the con-
nections of the process. That is, after exec, the process will have the same user ID it
had before, the process will have the same priority it had before, and the process will
have the same file descriptors it had before the exec. To repeat, a program gets the
open files of the process into which it is loaded. Figure 10.10 illustrates the redirection
of output for a child. :

The child inherits
from the parent
the pointers to
open files. The
child redirects
standard output:

close(l);
creat ("f");
exec();

\
open file inherited by child
file opened by child

FIGURE 10.10
The shell redirects output for a child.

Let us watch a process use this principle to redirect standard output:

1. Start here
In Figure 10.11, a process is running in user space. File descriptor 1 is attached to
an open file called f as shown. To make the picture clearer, other open files are not
shown.

334 Chapter 10 1/O Redirection and Pipes

FIGURE 10.11

A process about to fork and its standard output.

2. After parent calls fork

parent —___|

\ /\ pointer to open file

S
§ «— open file

FIGURE 10.12
Standard output of child is copied from parent. -

In Figure 10.12, a new process appears. This process runs the same code as the
original process, but knows it is a child process. The child process contains the
same code, the same data, and the same set of open files as its parent. Therefore
the item in spot 1 in the array of open files refers, also, to file f. The child calls
close(l).

3. After child calls close (1)

parent —___|

\ available entry

The parent still has a E
connection to this file. —-

FIGURE 10.13

The child can close its standard output.

10.5 Redirecting I/O for Another Program: who > userlist 335

In Figure 10.13, the parent process has not called close(1), so file descriptor 1 in
the parent still connects to file f. In the child process, file descriptor 1 is the low-
est unused file descriptor. The child now opens a file called g.

4. After child calls creat ("g",m)

FIGURE 10.14
Child opens a new file, getting £a = 1.

In Figure 10.14, file descriptor 1 is now attached to g. Standard output in the child
is redirected to g. The child now calls exec to run who.

S. After child execs a new program

| child process

I NCW program

The array of
pointers to open
files is part of
the process; the
array is not
program data.

FIGURE 10.15
Child runs a program with new standard output.

In Figure 10.15, the child executes the who program. The code and data for the shell
are removed from the child process and are replaced by the code and data for the
who program. The file descriptors are retained across the exec. Open files are not
part of the code nor data of a program; they are attributes of a process.

The who command writes the list of users to file descriptor 1. Unbeknownst
to who, that stream of output bytes flows into file g. ¢

The program whotofile.c demonstrates the method:

/* whotofile.c

* purpose: show how to redirect output for another program

* idea: fork, then in the child, redirect output, then exec
*/

336 Chapter 10 1/O Redirection and Pipes

#include <stdio.h>
main ()
{

int pid ;

int fd;

printf("About to run who into a file\n");

/* create a new process or quit */

if((pid = fork() } == -1){
perror("fork"); exit(l);

}

/* child does the work */

if (pid == 0){

close(l); /* close, */

fd = creat("userlist", 0644); /* then open */
execlp("who", "who", NULL): /* and run */
perror ("execlp") ;

exit(1l);

}.
/* parent waits then reports */
if (pid !'= 0){
wait (NULL) ;
printf ("Done running who. results in userlisti\n®);
} ;
}

10.5.1 Summary of Redirection to Files

Three basic facts make it easy under Unix to attach standard input, standard output,
and standard error to disk files:

(a) Standard input, output, and error are file descriptors 0, 1, and 2.
(b) The kernel always uses the lowest numbered unused file descriptor.
(c) The set of file descriptors is passed unchanged across exec calls.

The shell uses the interval in the child between fork and exec to attach standard data
streams to files.
The shell also supports notation of the following form:

who >> userlog
sort < data

Writing the code to perform these two operations is left as an exercise.

10.6 PROGRAMMING PIPES

We saw how to write a program that attaches standard output to a file. We now exam-
ine how to use pipes to connect the standard output of one process to the standard
input of another process. Figure 10.16 shows how pipes work. A pipe is a one-way data

10.6 Programming Pipes 337

FIGURE 10.16

Two processes connected by a pipe.

channel in the kernel. A pipe has a reading endanda writing end. To write who | sort,
we need two skills: how to create a pipe and how to connect standard input and output
to a pipe.

10.6.1 Creating a Pipe

A pipe is illustrated in Figure 10.17. Use the pipe system call, summarized as follows, to
create a pipe:

pipe
PURPOSE Create a pipe
INCLUDE #include <unistd.h>
USAGE result = pipe(int array{2])
ARGS array an array of two ints
RETURNS -1 if error
0 if success
pipetl] pipe[0]

writing end readingend FIGURE 10.17

A pipe.

pipe creates the pipe and connects its two ends to two file descriptors. array[0] is the
file descriptor of the reading end, and array(1] is the file descriptor of the writing end.
The internals of the pipe, like the internals of an open file, are hidden in the kernel. The
process sees two file descriptors.

338 Chapter 10 I/O Redirection and Pipes

The pair of before and after shots in Figure 10.18 shows a process creating a pipe.
The before shot shows the standard set of file descriptors. The after shot shows the
newly created pipe in the kernel and the two connections to that pipe in the process.
Notice that pipe, like open, uses the lowest-numbered available file descriptors.

Before pipe After pipe

The process has some usual files open. The kernel creates a pipe and sets file descriptors.

FIGURE 10.18

A process creates a pipe.

The program, pipedemo.c, creates a pipe and then uses the pipe to send data to
itself: '

/* pipedemo.c * Demonstrates: how to create and use a pipe

* * BEffect: creates a pipe, writes into writing
* end, then runs around and reads from reading
* : end. A little weird, but demonstrates the idea.
*/
#include <stdio.h>
#include <unistd.h>
main()
{
int len, i, apipel2]; /* two file descriptors */
char buf [BUFSIZ] ; /* for reading end */
/* get a pipe */
if (pipe (apipe) == -1){
perror {"could not make pipe");
exit(l);

}
printf("Got a pipe! It is file descriptors: { %d %d }\n",

apipe(0], apipel[l]);

/* read from stdin, write into pipe, read from pipe, print */

10.6 Programming Pipes 339

while (fgets(buf, BUFSIZ, stdin) .){
len = strlen(buf);

if (write(apipel[l], buf, len) i=len){ /* send */
perror ("writing to pipe"); /* down */
break; /* pipe */

}

for (1 =0 ; i<len ; i++) /* wipe */
buffi] = 'X' ;

len = read(apipel[0], buf, BUFSIZ) ; /* read */

if (len == -1){ /* from */
perror ("reading from pipe"); /* pipe */
break;

}

if (write(1, buf, len) != len){ /* send */
perror("writing to stdout"); /* to */
break; ' /* stdout */

Figure 10.19 depicts the flow of bytes from keyboard to process, from process to pipe,
from pipe to process, and from process back to terminal.

We now know how to create a pipe and how to write data into a pipe and how to
read data from a pipe. In practice, one rarely writes a program that sends data to itself.
By combining pipe with fork, though, we can connect two processes.

FIGURE 10.19

Data flow in pipedemo.c.

340 Chapter 10 IO Redirection and Pipes

10.6.2 Using fork to Share a Pipe

When a process creates a pipe, the process has connections to both ends of the pipe.
When that process calls fork, the child process, a copy of the parent, also has connec-
tions to the pipe, as shown in Figure 10.20. Parent and child can write bytes to the writ-
ing end of the pipe, and parent and child can read bytes from the reading end of the
pipe. (See Figure 10.21.) Both processes can read and write, but a pipe is most effective
when one process writes data and the other process reads the data.

Sharing a pipe:

A process calls pipe.
The kernel creates a
pipe and adds to the
array of file descriptors
pointers to the ends

of the pipe.

The process then calls .
fork. The kernel

creates a new process,

and copies into that process
the array of file desriptors
from the parent.

Both processes have
access to both ends
of one pipe.

FIGURE 10.20
Sharing a pipe.

FIGURE 10.21

Interprocess data flow.

10.6 Programming Pipes 341

This program, pipedemo2 . ¢, shows how to combine pipe and fork to create a péir
of processes that communicate through a pipe:

/* pipedemo2.c * Demonstrates how pipe is duplicated in fork()
* * parent continues to write and read pipe,

* but child also writes to the pipe

*/

#include <stdio.h> »

#define CHILD_MESS "I want a cookie\n"

#define PAR_MESS "testing..\n"

#define ocops(m,x) { perror(m); exit(x); }

main()

{
int pipefd[2]; - /* the pipe */
int len; /* for write */
char buf [BUFSIZ] ; /* for read */
int read_len;
if (pipe(pipefd) == -1)

oops ("cannot get a pipe", 1);

switch(fork()){
case -1: A
oops ("cannot fork", 2);

/* child writes to pipe every 5 seconds */
case 0:
len = strlen(CHILD MESS);
while (1){
if (write (pipefd[1l], CHILD_MESS, len) != len)
oops ("write", 3);
sleep(5);
}

/* parent reads from pipe and also writes to pipe */
default:
len = strlen(PAR MESS);
while (1){ .
if (write(pipefd[l], PAR_MESS, len)!=len)
oops ("write", 4); :
sleep(l);
read len = read(pipefd[0], buf, BUFSIZ);
if (read_len <= 0)
break;
write(1 , buf, read len);

342 Chapter 10 I/O Redirection and Pipes

10.6.3 The Finale: Using pipe, fork, and exec

We now know all the ideas and skills required to write a program that connects the
output of who to the input of sort. We know how to create a pipe, we know how to
share a pipe between two processes, we know how to change the standard input of a
process, and we know how to change the standard output of a process.

We combine all these skills to write a general-purpose program called pipe that
takes the names of two programs as arguments. The examples

pipe who sort
pipe 1ls head

show two uses of pipe. The logic of the program is as follows:

pipe(p)
fork()
|
o et +
child parent

| I
close(p(0]) close(pll])
dup2 (pf1],1) dup2 (p{0],0)
close(p[l]) close(p[0])
exec "who" exec "sort"

Here is the code:

/* pipe.c

* * Demonstrates how to create a pipeline from one process to another
* * Takes two args, each a command, and connects
* av[l]’s output to input of av([2]

* * usage: pipe commandl command2

* effect: commandl | command2

* * Limitations: commands do not take arguments

* * uses execlp() since known number of args

* * Note: exchange child and parent and watch fun
*/

#include <stdio.h>

#include <unistd.h>

#define oops(m,x) { perror(m); exit(x); }

main({int ac, char **av)
{
int thepipe(2], /* two file descriptors */
newfd, /* useful for pipes */

10.6.4

}

10.6 - Programming Pipes 343

pid; /* and the pid
if (ac 1= 3){
fprintf (stderr, “"usage: pipe cmdl cmd2\n");
exit(1);
}
if (pipe(thepipe) == -1) /* get a pipe
oops {"Cannot get a pipe", 1);
/* _____________________________________
/* now we have a pipe, now let’s get two processes
if ((pid = fork()) == -1) /* get a proc
oops ("Camnot fork", 2);
2 NS S
/* Right Here, there are two processes
/* parent will read from pipe
if (pid > 0){ /* parent will exec av{2]
close (thepipe([ll); /* parent doesn’t write to pipe
if (dup2(thepipe(0], 0) == -1)
oops ("could not redirect stdin®,3);
close(thepipe[0]1); /* stdin is duped, close pipe
execlp(av([2], av[2], NULL);
oops(av([2], 4);
} .
/* child execs av[l] and writes into pipe
close(thepipe([0]); /* child doesn’t read from pipe
if { dup2(thepipel[i]l, 1) == -1)
oops ("could not redirect stdout”, 4);
close(thepipe(l]); /* stdout is duped, close pipe

execlp{ av[l], av[l], NULL);
oops (av[1l], 5);

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/

The pipe.c program uses the same ideas and techniques the shell uses to create
pipelines. The shell, though, does not run an external program like pipe.c. The shell
has to create the pipe, then fork to create the two processes, then redirect standard
input and output to the pipe, and finally exec the two programs. ‘

Technical Details: Pipes Are Not Files

~ In many ways, pipes look like regular files. A process uses write to put data into a pipe

and uses read to get data from a pipe. A pipe, like a file, appears as a sequence of bytes
without any particular block or record structure. In other ways, pipes differ from files.
What, for instance, does end of file mean for a pipe? The following technical details
clarify some of these similarities and differences.

344 Chapter 10 I/O Redirection and Pipes
Reading from Pipes

1. xead on a pipe blocks
When a process tries to read from a pipe, the call blocks until some bytes are
written into the pipe. What prevents a process from waiting forever?

2. Reading EOF on a pipe
When all writers close the writing end of the pipe, attempts to read from the pipe
return 0, that is, end of file.

3. Multtple readers can cause trouble
A pipe is a queue. When a process reads bytes from a pipe, those bytes are no
longer in the pipe. If two processes try to read from the same pipe, one process
will get some of the bytes from the pipe, and the other process will get the other
bytes. Unless the two processes use some method to coordinate their access to
the pipe, the data they read are likely to be incomplete.

Writing to Pipes

4, write to a pipe blocks until there is space
Pipes have a finite capacity that is far lower than the file-size limit imposed on
disk files. When a process tries to write to a pipe, the call blocks until there is
enough space in the pipe. If a process wants to write, say, 1000 bytes, and there is
only room for 500 bytes, the call waits until 1000 bytes of space are available.
What if the process wanted to write a million bytes? Would the call wait forever?

5. write guarantees a minimum chunk size
The POSIX standard states that the kernel will not split up chunks of data into
blocks smaller than 512 bytes. Linux guarantees an unbroken buffer size of 4096
for pipes. If two different processes write to a pipe, and each process limits its
messages to 512 bytes, the processes are assured their messages will not be split.

6. write fails if no readers
If all readers have closed the reading ends of a pipe, then an attempt to write to
the pipe can lead to trouble. If data were accepted, where would they go? To
avoid losing data, the kernel uses two methods to notify a process that write is
futile. The kernel sends SIGPIPE to the process. If that kills the process, no further
action is required. Otherwise, write returns —1 and sets errno to EPIPE.

SUMMARY
MAIN IDEAS

» Input/Output redirection allows separate programs to work as a team, each pro-
gram a specialist.

¢ The Unix convention is that programs read input from file descrlptor 0, write results
to file descriptor 1, and report errors to file descriptor 2. Those three tile descriptors -
are called standard input, standard output, and standard error.

Explorations 349

e When you log in to Unix, the log-in procedure sets up file descriptors 0, 1, and 2.
These connections, and all open file descriptors, are passed from parent to child and
across the exec system call.

e System calls that create file descriptors always use the lowest-numbered free file de-
scriptor.

e Redirecting standard input, output, or error means changing where file descriptors
0,1, or 2 connect. There are several techniques for redirecting standard 1/O.

e A pipe is a data queue in the kernel with each end attached to a file descriptor. A
program creates a pipe with the pipe system call.

e Both ends of a pipe are copied to a child process when the parent calls fork.

* Pipes can only connect processes that share a common parent.

WHAT NEXT?

The traditional Unix pipe carries data between processes in one direction. What if two
processes wanted to pass data back and forth? What if two processes were not related,
or if two processes were on different computers? In the next several chapters, we look
at pipes in more detail and then study network programming. The idea of a pipe gener-
alizes to the idea of a socket.

EXPLORATIONS

101 Meaning of >>The >> notation tells the shell to append output to a file. Does the shell use
auto-append mode (see Chapter 5), or does it simply seek to the end of the file and start
writing there? Devise an experiment using shell scripts to answer the question.

102 In pipe.c, the parent process runs the program that consumes data, and the child process
runs the program that produces data. What difference would it make if those roles were
reversed? By changing the test if (pid > 0) toif (pid ==0), the roles will be re-
versed. What happens? Why?

10.3 What changes do you need to make to your shell to include pipes? First, how would you
modify the flow of control to identify and handle commands that end with a pipe sign?
Second, what if there are several commands separated by pipe signs?

104 In pipe.c, the reading process, soxt, closes its copy of the writing end of the pipe. Change
the code so the reading process does not close the writing end of the pipe. Now run the
program and explain its behavior. :

10.5 Adding > and < to your shell We examined earlier in this chapter the notation to attach
standard input or standard output to a file. We saw that the redirection symbol and file-
name may appear anywhere in the command line. We also saw that the symbol and file-
name are not part of the list of arguments passed to the new program.

Where in the logic of our small shell should we identify the request to change input or out-
put to a disk file?

Where in the logic of our small shell should the redirection be performed?

What if a user typed set > varlist 2 Does the shell allow you to redirect the output of
built-in commands? How can you add that to our shell?

10.6 Protecting users What if a user types sort <data >data _What is the problem with this re-
quest? What do standard Unix shells do about it? How can your shell handle this problem?

346

Chapter 10 I/O Redirection and Pipes

10.7

10.8
10.9

We examined methods for attaching the standard input or standard output of a process to
a file. All our examples have assumed regular plain disk files. Can I/O redirection work for
files that represent devices? That is, what if you close(0) and open("/dev/tty",0)? What
does the shell do with the command who > /dev/tty ?

In pipe.c, we call fork and exec, but we do not call wait. Why not?

How is aup like 1ink? Discuss pointers.

PROGRAMMING EXERCISES

10.10

10.11

10.12

10.13

10.14

10.15

Modify the watch.sh script so it has nicer features.

(a) This version prints out logins and logouts for all users. A more useful version would
accept as a command-line argument a name of a file that contains a list of users to
watch.

(b) This version prints out something each time through the loop, even if nothing has
changed. Modify the program so it prints out the new logins and new logouts mes-
sages only if there is something to show.

(¢) The who command lists in addition to username, the log-in time and the terminal
name. That may be more information than you want. If a user connects using a second
window, that may not be interesting to you. Write a version of the program that re-
ports when a watched user changes from “is logged on” to “is not logged on,” regard-
less of terminal.

(d) This version stores its data in files called prev and curr in the current directory and
leaves those files there when the program stops running. This design is poor for sever-
al reasons. What are some of the reasons? Revise the script to use temporary files and
to remove those files at exit. Read about the trap command in the shell. Examine the
use of the mktemp command.

Modify the whotofile.c sample program so it appends the output of who to a file. Make
sure your program works if the file does not exist.

Write a program called sortfromfile.c that redirects the input of the sort command so it
reads from a file. The filename is specified on the command line.

Extend pipe.c to handle three-part pipelines. This new version should accept three pro-
gram names as arguments and run them as a pipeline. The command

pipe3 who sort head

should have the same effect as who | sort | head.

Extend the pipe3 program in the previous problem to handle an arbitrary number of
arguments.

process tee The tee utility lets you redirect data to a file and also pass the data to the next
command in a pipeline. For example,

who | tee userlist | sort > list2

produces an unsorted file and a sorted file: userlist and list2.The argument to tee is the
name of a file; read the manual for more details, Write a program called progtee that redi-
rects data to a program and also passes the data to the next command in a pipeline. For

example, the pipeline

who | progtee mail smith | sort | progtee mail -s "hello" root > list2

10.16

Programming Exercises 347

.sends an unsorted list to smith, sends a sorted list to root, and puts a copy of the sorted list

into the file 1ist2.

isatty Programs that write to standard output do not usually care if the file descriptor leads
to a terminal or to a disk file. The text suggests that a process has no way of knowing where
the file descriptor leads. This is false. The library function isatty (£4) returns a true value
if fd refers to a terminal. isatty uses the system call £stat. Read about £stat and use that
information to write a function isaregfile that returns a true value if its argument is a file
descriptor connected to a regular file.

