16

What's GNU, Part Three

By Jerry Peek

This month, let’s dig into three related utilities — mv, cp,
and In — and some of the story behind their new features.

Back in Unix Version 7, ¢p, my, and In had no options: they
simply copied, renamed, or linked one or more files to a des-
tination. Now, GNU ¢p has more than twenty options, and
mv and In aren’t far behind.

Let’s look at some of the major new features of these fun-
damental utilities — and some minor and individual fea-
tures, too — added by GNU programmers and others.

Making Backups

Unix and Linux shells and utilities were written with the
assumption that you know what you’re doing. If you want to
replace the kernel with your shopping list, mv won't ask,
“Are you sure?” (although the superuser prompt # is an
omnipresent reminder to be extra-careful). Many gurus pre-
fer life this way.

Still, mistakes can happen. Many pre-GNU versions of cp,
mw, and In had a -i (“interactive”) option that prompted for
confirmation before it replaced existing destination files.

But, of course, that’s only useful if you're running a utility
interactively. From a script or a cron job, for instance, you
might have prevented overwrites by using the almost-unknown
utility yes to answer i to every prompt:

$ ves n | cp ~i files* dest

(Though, if memory serves, at least one version of cp silent-
ly ignored -1 if the standard input wasn’t a terminal!)

Another way to avoid accidental overwrites was to step
through source files one by one in a loop, making sure each
destination file didn’t exist before running cp. Multiple
invocations of utilities like cp can be inefficient, though.

The GNU utilities ¢p, mo, and In now have the option
~-backup=me t hod, which makes a backup of each file that
would otherwise be overwritten or removed. The backup can
be made with one of four “version control” methods, listed
in Table One. (Each method has two possible names.)

Another GNU option, -b, makes backups with the
existing (or nil) method. (The -v and ~~version-
control options — which are now deprecated for In, at
least — let you choose the method for ~b.)

A numbered backup adds . “n~ to the end of the original
filename. If there are currently no backups, n is 1; otherwise,
n is the lowest unused number. So, if you run cp —~backup
=numbered src dest, and dest already exists, then cp

August 2005 Linux Magazine

renames dest to dest.~1~ before it copies src to dest. Also,
for example, if dest.~I~ and dest.~23~ already exist, cp
renames dest to dest. ~24~.

A simple backup adds a tilde (™) to the end of the desti-
nation filename, then creates a copy at the destination name.
Using this method, each file can have at most one backup.
The option -8 SUFFIX or ~~-guffix=SUFFIX lets you
choose a suffix other than a tilde. For instance, mv ~b
--guffix=.bak foo bar would make or replace a back-
up file named bar.bak. You can also store a global backup suf-
fix in the environment variable SIMPLE_BACKUP_SUFFIX.

The sidebar “Back Me Up” shows a surprising way to
backup a file and the sidebar “Is without backups” has a
handy tip.

Removing Backups

Let’s look at a couple of ways to clean a directory full of
backup files. A command like rm* ~ or xm* .~*" removes
all the simple or numbered backups at once. You could
remove them all with an alias like this (in csh syntax):

alias deltemp ‘xm *77

For safety, you might add the rm —i option. You could also
list all of the files and prompt, like this:

alias deltemp ‘lg -1 *7; \\
echo -n “Remove all those files[ny]?”;

\
LE ($< =7 y*) m *7

Removing a range of numbered backup files — not all the

files, just some - is probably easiest with the Z Shell's
numeric-range glob operator <m-n>.

BACK ME UP

The info page for GNU ¢cp shows a nice way to backup a
file before editing {or for ‘any other reason). Give the file-
name to.cp as both the source dnd destination filename with

the two. options ~~foree and ~=backup (or ~£ ond b,
like this: ~

Sicpi=tbifoo foo
This creates @ backup copy:namied, in this case, foo~. You can

also set the backup method to. make numbered backups.

www.linuxmagazine.com

With Co
email, 1l
and rem

To downl
visitusial

TABLE ONE: Backup methods for GNU cp, mv, and In

METHOD DESCRIPTION ‘
simple, never - Always make simple backups:
(Note that never is different than rione)

exiéting, nil - ‘Make numbered backups of files that -
already have them and simple backups

“of others.
numbered; t Always make numbered backups.
none; off Never make backups.

For instance, in gsh, the command rm foo.~<1-99>"~
removes any files in the range foo.~1~, foo.~2~, and so on,
up to and including foo.~99~. If you aren’t a zsh user, this
bash function calls zsh to run just the one command:

deltemp ()
{
case S$# in
2) zsh -c “rm $1.7<$2>7" ;;
*) echo “Usage: deltemp name suffix-range”
esac

~e
~

Typing deltemp foo 1-99 executes zsh =-c “rm
f00.<1-99>". (The zsh -c¢ option executes a single com-
mand taken from the next argument.)

Note that if you're making a lot of backup copies and you
want to keep them, having a series of backup files in a direc-
tory can be less efficient than using a revision control system

like RCS or Subwersion.

For automated cleanup, nothing beats a cron job. The
sidebar “Automated Cleanup” has some suggestions.

Temporary Files

Automatic removal of backups gives you a new opportunity:
delayed removal of non-backup files. That is, instead of
removing some files with vm, you can rename them to look
like backup files — and those files will be removed en masse
sometime later by your backup-cleanup cron job. A setup
like this can be the Linux shell’s version of the Macintosh
“Trash” or the Windows “Recycle Bin.”

The bash script named temp, which you can get from hetp://
www.linux-mag.com/downloads/2005-08/power/temp.txt,
does this. It finds the highest-numbered existing backup file
and renames a file with the next-higher suffix. It also uses
touch to update the file’s last-modification time so the file
will stay around for the full “grace period” coded into the
cron job.

Copying Sparse Files

When cp reads afile, it makes crude checks for “sparse-ness.”
If it finds holes, it also makes holes in the destination file.

Some versions of cp haven’t worked this way. You could
copy a file that seemed to take few disk blocks and end up
overflowing the destination filesystem. That's one reason
this ability is useful. If you want to control it, though, use the
cp option --sparse=when:

» If when is auto (the default), cp creates a sparse output
file if the input file seems to be sparse. If the output file
is non-regular — a tape drive, for instance — cp won’t try
to make it sparse. (tar -$ is an efficient way to write
sparse files to tape.)

With CommuniGate Pro Real-Time Communications Server, you can
email, IM, video conference and make VolP calls around the world
and remain connected...always.

To download a free 30 day trial
visitus at hﬂp://www,staiker.com

Visit us at Linux World, booth #914

18

¥ Set when to always if the input file has long series of
zero-bytes but is on a filesystem that doesn’t support
sparse files. If the output filesystem does support sparse
files, cp makes a sparse file there. This is handy for restor-
ing darabases and other huge files from media where
“sparse-ness” wasn’t maintained.

¥ Setting when to never means that the output file is
always non-sparse.

Target Directories

When a command line has a series of filenames and a single
directory name at the end, ¢p, mu, and In copies (or moves
or links) all of those files into that directory. That directory
is called the target directory.

The GNU option --target-directory=name is
another way to specify the target directory. You need
--target-directory because of the way the xargs utility
works: it appends a series of arguments to the end of a com-
mand-line. But that means that c¢p, mv, and In can’t have a
target directory with xargs (unless you use the tricky xargs
options ~i or ~-replace).

 AUTOMATED CLEANUP

“Backup files can eventually swamp your directories. A nightly
or weekly cron job running: find can be the perfect way to
clean them up: (For more on find, see the September 2002
column “A Very Valuable Find,” online athttp://wwwilinux-
mag.com/2002-09/power_01.html.)

Your job could remove only those backup files that
. belong to you, or it could skip backup files with recent fime-
stamps, since those files have probably just become backup

_ files. (When cp makes a bockup, it updates the lastmodified
timestamp.}.

Here’s a find command you can run from a cron job. A

‘personal cron job s run from your home directory, 5o . in
the first argument starts searching from your home directory:

C £ind . \(—regex ‘A.M\LT[0-91+7 \
.. -O -name ‘*7 -6 —name fL2¥T! \)
~typé f‘ ~mtime +7 “exec Im -f' N;

The ~regex test uses on exterided regular expression to
find numbered backup files; including “hidden” filenames

. that start with o dot-{as in .¢shr). =name tests find both reg-
ular and hidden filenames ending with a tilde; these use o
shell wildeard pattern instead of o regular expression:

The —exec rm —£({}\; removes the files oneby-one,
which can be inefficient if there are lofs of files to remove.
You might want to replace it with =print0 and pipe the

. outputof find to xargs -r0 rm ~f. The commands £ind
 -print0d and xargs -0 are explained in the May 2005
- column “Filename Trouble,” available online at hitp: //www.

- linuxmag.com/2005:05/power 01 html. The xargs option
Coex keeps it from running rm lf there are no files fo remove.

August 2005 Linux Magazine

Is without backups

The GNU:Is option ~B lists a directory, omitting the 'simple
and numbered backup files. This is a:great.help in directo-
rigs with lots of backup files.

Here’s an example. Your file edited lists all files that you
edited yesterday. Before you start work today, you want to
copy all of those files into the directory /backups/2005-08-05.
Here’s how:

$ xargs cp —target-directory=/back-
ups/2005-08-05 < edited

(You could also do that with command substitution — the
shells’ backquote or $ () operators — but those can fail if
the argument list is too long or if filenames have special
characters. Using xargs -0 can be even more reliable.)

Stripping Trailing Slashes

One little-known part of the POSIX standard can cause
trouble with symbolic links. If you use filename completion
on a symbolic link and that link is a source argument to mo,
look what happens:

$ 1ls -1d a b ¢
1s: c: No such file or directory
drwxr-xr-x 2 jpeek ... a
lrwxrwxrwx 1 jpeek ... b -> a
$ mv b/ ¢

mv: cannot move “b/’ to

c’: Not a direc-
tory

In this case, you can either remove the trailing slash by
backspacing over it on the command line or you can add the
-—strip-trailing-slashes option to make mv ignore
the slash. There’s more information in the mw info page.

There’s More...

Read the info page topics about handling links, device files,
and more — especially during recursive copies. These
options are self-explanatory, but worth knowing about.

Next month’s column changes topics, but there will be
more about what’s GNU in modern versions of perennial
utilities in the first part of next year.

Jerry Peek is a freelance writer and instructor who has used
Unix and Linux for over 20 years. He's happy to hear from
readers; see http://www.jpeek.com/contact.himl.

www.linuxmageazine.com

N .,

