
13
Inter-Process

Communication: Pipes

In Chapter 11, you saw a very simple way of sending messages between two processes using signals.
You created notification events that could be used to provoke a response, but the information trans-
ferred was limited to a signal number.

In this chapter, you take a look at pipes, which allow more useful data to be exchanged between
processes. By the end of the chapter, you’ll be using your newfound knowledge to re-implement
the CD database program as a very simple client/server application. 

We cover the following topics in this chapter:

❑ The definition of a pipe

❑ Process pipes

❑ Pipe calls

❑ Parent and child processes

❑ Named pipes: FIFOs

❑ Client/server considerations

What Is a Pipe?
We use the term pipe to mean connecting a data flow from one process to another. Generally you
attach, or pipe, the output of one process to the input of another.

Most Linux users will already be familiar with the idea of a pipeline, linking shell commands
together so that the output of one process is fed straight to the input of another. For shell com-
mands, this is done using the pipe character to join the commands, such as

cmd1 | cmd2
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The shell arranges the standard input and output of the two commands, so that

❑ The standard input to cmd1 comes from the terminal keyboard.

❑ The standard output from cmd1 is fed to cmd2 as its standard input.

❑ The standard output from cmd2 is connected to the terminal screen.

What the shell has done, in effect, is reconnect the standard input and output streams so that data flows
from the keyboard input through the two commands and is then output to the screen. See Figure 13-1 for
a visual representation of this process.

Figure 13-1

In this chapter, you see how to achieve this effect within a program and how you can use pipes to connect
multiple processes to allow you to implement a simple client/server system.

Process Pipes
Perhaps the simplest way of passing data between two programs is with the popen and pclose functions.
These have the following prototypes:

#include <stdio.h>

FILE *popen(const char *command, const char *open_mode);
int pclose(FILE *stream_to_close);

popen
The popen function allows a program to invoke another program as a new process and either pass data
to it or receive data from it. The command string is the name of the program to run, together with any
parameters. open_mode must be either “r” or “w”.

If the open_mode is “r”, output from the invoked program is made available to the invoking program
and can be read from the file stream FILE * returned by popen, using the usual stdio library functions
for reading (for example, fread). However, if open_mode is “w”, the program can send data to the
invoked command with calls to fwrite. The invoked program can then read the data on its standard
input. Normally, the program being invoked won’t be aware that it’s reading data from another process;
it simply reads its standard input stream and acts on it.

CMD1 CMD2pipe

standard
output

standard
input
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A call to popen must specify either “r” or “w”; no other option is supported in a standard implementa-
tion of popen. This means that you can’t invoke another program and both read from and write to it. On
failure, popen returns a null pointer. If you want bidirectional communication using pipes, the normal
solution is to use two pipes, one for data flow in each direction.

pclose
When the process started with popen has finished, you can close the file stream associated with it using
pclose. The pclose call will return only when the process started with popen finishes. If it’s still run-
ning when pclose is called, the pclose call will wait for the process to finish.

The pclose call normally returns the exit code of the process whose file stream it is closing. If the invoking
process has already executed a wait statement before calling pclose, the exit status will be lost because
the invoked process has finished and pclose will return –1, with errno set to ECHILD.

Try It Out Reading Output from an External Program
Let’s try a simple popen and pclose example, popen1.c. You’ll use popen in a program to access infor-
mation from uname. The uname -a command prints system information, including the machine type,
the OS name, version and release, and the machine’s network name.

Having initialized the program, you open the pipe to uname, making it readable and setting read_fp to
point to the output. At the end, the pipe pointed to by read_fp is closed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;
memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“uname -a”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
if (chars_read > 0) {

printf(“Output was:-\n%s\n”, buffer);
}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, you should get output like the following (from one of the authors’ machines):

$ ./popen1
Output was:-
Linux suse103 2.6.20.2-2-default #1 SMP Fri Mar 9 21:54:10 UTC 2007 i686 i686 i386
GNU/Linux
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How It Works
The program uses the popen call to invoke the uname command with the -a parameter. It then uses the
returned file stream to read data up to BUFSIZ characters (as this is a #define from stdio.h) and then
prints it out so it appears on the screen. Because you’ve captured the output of uname inside a program,
it’s available for processing.

Sending Output to popen
Now that you’ve seen an example of capturing output from an external program, let’s look at sending
output to an external program. Here’s a program, popen2.c, that pipes data to another. Here, you’ll use
od (octal dump).

Try It Out Sending Output to an External Program
Have a look at the following code; you can see that it is very similar to the preceding example, except
you are writing down a pipe instead of reading from it. This is popen2.c.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *write_fp;
char buffer[BUFSIZ + 1];

sprintf(buffer, “Once upon a time, there was...\n”);
write_fp = popen(“od -c”, “w”);
if (write_fp != NULL) {

fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
pclose(write_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, you should get the following output:

$ ./popen2
0000000   O   n   c   e       u   p   o   n       a       t   i   m   e
0000020   ,       t   h   e   r   e       w   a   s   .   .   .  \n
0000037

How It Works
The program uses popen with the parameter “w” to start the od -c command, so that it can send data to
that command. It then sends a string that the od -c command receives and processes; the od -c com-
mand then prints the result of the processing on its standard output.
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From the command line, you can get the same output with the command

$ echo “Once upon a time, there was...” | od -c

Passing More Data
The mechanism that you’ve used so far simply sends or receives all the data in a single fread or
fwrite. Sometimes you may want to send the data in smaller pieces, or perhaps you may not know the
size of the output. To avoid having to declare a very large buffer, you can just use multiple fread or
fwrite calls and process the data in parts.

Here’s a program, popen3.c, that reads all of the data from a pipe.

Try It Out Reading Larger Amounts of Data from a Pipe
In this program, you read data from an invoked ps ax process. There’s no way to know in advance how
much output there will be, so you must allow for multiple reads of the pipe.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;

memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“ps ax”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading %d:-\n %s\n”, BUFSIZ, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

The output, edited for brevity, is similar to this:

$ ./popen3
Reading 1024:-

PID TTY STAT  TIME COMMAND
1  ?  Ss    0:03 init [5]
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2  ?  SW    0:00 [kflushd]
3  ?  SW    0:00 [kpiod]
4  ?  SW    0:00 [kswapd]
5  ?  SW<   0:00 [mdrecoveryd]

...
240 tty2 S    0:02 emacs draft1.txt

Reading 1024:-
368 tty1 S    0:00 ./popen3
369 tty1 R    0:00 ps -ax

...

How It Works
The program uses popen with an “r” parameter in a similar fashion to popen1.c. This time, it continues
reading from the file stream until there is no more data available. Notice that, although the ps command
takes some time to execute, Linux arranges the process scheduling so that both programs run when they
can. If the reader process, popen3, has no input data, it’s suspended until some becomes available. If the
writer process, ps, produces more output than can be buffered, it’s suspended until the reader has con-
sumed some of the data. 

In this example, you may not see Reading:- output a second time. This will be the case if BUFSIZ is
greater than the length of the ps command output. Some (mostly more recent) Linux systems set BUFSIZ
as high as 8,192 or even higher. To test that the program works correctly when reading several chunks of
output, try reading less than BUFSIZ, maybe BUFSIZE/10, characters at a time.

How popen Is Implemented
The popen call runs the program you requested by first invoking the shell, sh, passing it the command
string as an argument. This has two effects, one good and the other not so good.

In Linux (as in all UNIX-like systems), all parameter expansion is done by the shell, so invoking the shell to
parse the command string before the program is invoked allows any shell expansion, such as determining
what files *.c actually refers to, to be done before the program starts. This is often quite useful, and it
allows complex shell commands to be started with popen. Other process creation functions, such as execl,
can be much more complex to invoke, because the calling process has to perform its own shell expansion.

The unfortunate effect of using the shell is that for every call to popen, a shell is invoked along with the
requested program. Each call to popen then results in two extra processes being started, which makes
the popen function a little expensive in terms of system resources and invocation of the target command
is slower than it might otherwise have been.

Here’s a program, popen4.c, that you can use to demonstrate the behavior of popen. You can count the
lines in all the popen example source files by cating the files and then piping the output to wc -l,
which counts the number of lines. On the command line, the equivalent command is

$ cat popen*.c | wc -l

Actually, wc -l popen*.c is easier to type and much more efficient, but the example serves to illus-
trate the principle.
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Try It Out popen Starts a Shell
This program uses exactly the preceding command, but through popen so that it can read the result:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;

memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“cat popen*.c | wc -l”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading:-\n %s\n”, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When you run this program, the output is

$ ./popen4
Reading:-

94

How It Works
The program shows that the shell is being invoked to expand popen*.c to the list of all files starting
popen and ending in .c and also to process the pipe (|) symbol and feed the output from cat into wc.
You invoke the shell, the cat program, and wc and cause an output redirection, all in a single popen call.
The program that invokes the command sees only the final output.

The Pipe Call
You’ve seen the high-level popen function, but now let’s move on to look at the lower-level pipe func-
tion. This function provides a means of passing data between two programs, without the overhead of
invoking a shell to interpret the requested command. It also gives you more control over the reading and
writing of data.
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The pipe function has the following prototype:

#include <unistd.h>

int pipe(int file_descriptor[2]);

pipe is passed (a pointer to) an array of two integer file descriptors. It fills the array with two new file
descriptors and returns a zero. On failure, it returns -1 and sets errno to indicate the reason for failure.
Errors defined in the Linux manual page for pipe (in section 2 of the manual) are

❑ EMFILE: Too many file descriptors are in use by the process.

❑ ENFILE: The system file table is full.

❑ EFAULT: The file descriptor is not valid.

The two file descriptors returned are connected in a special way. Any data written to file_descriptor[1]
can be read back from file_descriptor[0]. The data is processed in a first in, first out basis, usually 
abbreviated to FIFO. This means that if you write the bytes 1, 2, 3 to file_descriptor[1], reading from
file_descriptor[0] will produce 1, 2, 3. This is different from a stack, which operates on a last in, first out
basis, usually abbreviated to LIFO.

It’s important to realize that these are file descriptors, not file streams, so you must use the lower-
level read and write system calls to access the data, rather than the stream library functions
fread and fwrite.

Here’s a program, pipe1.c, that uses pipe to create a pipe.

Try It Out The pipe Function
The following example is pipe1.c. Note the file_pipes array, the address of which is passed to the
pipe function as a parameter.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
data_processed = write(file_pipes[1], some_data, strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);
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exit(EXIT_SUCCESS);
}
exit(EXIT_FAILURE);

}

When you run this program, the output is

$ ./pipe1
Wrote 3 bytes
Read 3 bytes: 123

How It Works
The program creates a pipe using the two file descriptors in the array file_pipes[]. It then writes data
into the pipe using the file descriptor file_pipes[1] and reads it back from file_pipes[0]. Notice
that the pipe has some internal buffering that stores the data in between the calls to write and read.

You should be aware that the effect of trying to write using file_descriptor[0], or read using
file_descriptor[1], is undefined, so the behavior could be very strange and may change without
warning. On the authors’ systems, such calls fail with a –1 return value, which at least ensures that it’s
easy to catch this mistake.

At first glance, this example of a pipe doesn’t seem to offer us anything that we couldn’t have done with
a simple file. The real advantage of pipes comes when you want to pass data between two processes. As
you saw in Chapter 12, when a program creates a new process using the fork call, file descriptors that
were previously open remain open. By creating a pipe in the original process and then forking to create
a new process, you can pass data from one process to the other down the pipe.

Try It Out Pipes across a fork
1. This is pipe2.c. It starts rather like the first example, up until you make the call to fork.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == -1) {
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fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

2. You’ve made sure the fork worked, so if fork_result equals zero, you’re in the child process:

if (fork_result == 0) {
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);
exit(EXIT_SUCCESS);

}

3. Otherwise, you must be in the parent process:

else {
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);

}
}
exit(EXIT_SUCCESS);

}

When you run this program, the output is, as before,

$ ./pipe2
Wrote 3 bytes
Read 3 bytes: 123

You may find that in practice the command prompt reappears before the last part of the output because
the parent will finish before the child, so we have tidied the output here to make it easier to read.

How It Works
First, the program creates a pipe with the pipe call. It then uses the fork call to create a new process. 
If the fork was successful, the parent writes data into the pipe, while the child reads data from the pipe.
Both parent and child exit after a single write and read. If the parent exits before the child, you might
see the shell prompt between the two outputs.

Although the program is superficially very similar to the first pipe example, we’ve taken a big step for-
ward by being able to use separate processes for the reading and writing, as illustrated in Figure 13-2.

Figure 13-2

Parent
process

file_pipes[1] file_pipes[0]

Child
processPipe
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Parent and Child Processes
The next logical step in our investigation of the pipe call is to allow the child process to be a different
program from its parent, rather than just a different process running the same program. You do this
using the exec call. One difficulty is that the new execed process needs to know which file descriptor 
to access. In the previous example, this wasn’t a problem because the child had access to its copy of the
file_pipes data. After an exec call, this will no longer be the case, because the old process has been
replaced by the new child process. You can get around this by passing the file descriptor (which is, after
all, just a number) as a parameter to the newly execed program.

To show how this works, you need two programs. The first is the data producer. It creates the pipe and
then invokes the child, the data consumer.

Try It Out Pipes and exec
1. For the first program, you adapt pipe2.c to pipe3.c. The changed lines are shown shaded:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == 0) {
sprintf(buffer, “%d”, file_pipes[0]);
(void)execl(“pipe4”, “pipe4”, buffer, (char *)0);
exit(EXIT_FAILURE);

}
else {

data_processed = write(file_pipes[1], some_data,
strlen(some_data));

printf(“%d - wrote %d bytes\n”, getpid(), data_processed);
}

}
exit(EXIT_SUCCESS);

}
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2. The consumer program, pipe4.c, which reads the data, is much simpler: 

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

int data_processed;
char buffer[BUFSIZ + 1];
int file_descriptor;

memset(buffer, ‘\0’, sizeof(buffer));
sscanf(argv[1], “%d”, &file_descriptor);
data_processed = read(file_descriptor, buffer, BUFSIZ);

printf(“%d - read %d bytes: %s\n”, getpid(), data_processed, buffer);
exit(EXIT_SUCCESS);

}

Remembering that pipe3 invokes the pipe4 program, you get something similar to the following out-
put when you run pipe3:

$ ./pipe3
22460 - wrote 3 bytes
22461 - read 3 bytes: 123

How It Works
The pipe3 program starts like the previous example, using the pipe call to create a pipe and then using 
the fork call to create a new process. It then uses sprintf to store the “read” file descriptor number of the
pipe in a buffer that will form an argument of pipe4.

A call to execl is used to invoke the pipe4 program. The arguments to execl are

❑ The program to invoke

❑ argv[0], which takes the program name

❑ argv[1], which contains the file descriptor number you want the program to read from

❑ (char *)0, which terminates the parameters

The pipe4 program extracts the file descriptor number from the argument string and then reads from
that file descriptor to obtain the data.

Reading Closed Pipes
Before we move on, we need to look a little more carefully at the file descriptors that are open. Up to this
point you have allowed the reading process simply to read some data and then exit, assuming that Linux
will clean up the files as part of the process termination.
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Most programs that read data from the standard input do so differently than the examples you’ve seen
so far. They don’t usually know how much data they have to read, so they will normally loop — reading
data, processing it, and then reading more data until there’s no more data to read.

A read call will normally block; that is, it will cause the process to wait until data becomes available. If
the other end of the pipe has been closed, then no process has the pipe open for writing, and the read
blocks. Because this isn’t very helpful, a read on a pipe that isn’t open for writing returns zero rather
than blocking. This allows the reading process to detect the pipe equivalent of end of file and act appro-
priately. Notice that this isn’t the same as reading an invalid file descriptor, which read considers an
error and indicates by returning –1.

If you use a pipe across a fork call, there are two different file descriptors that you can use to write to
the pipe: one in the parent and one in the child. You must close the write file descriptors of the pipe in
both parent and child processes before the pipe is considered closed and a read call on the pipe will fail.
You’ll see an example of this later when we return to this subject in more detail to look at the O_NON-
BLOCK flag and FIFOs.

Pipes Used as Standard Input and Output
Now that you know how to make a read on an empty pipe fail, you can look at a much cleaner method
of connecting two processes with a pipe. You arrange for one of the pipe file descriptors to have a known
value, usually the standard input, 0, or the standard output, 1. This is slightly more complex to set up in
the parent, but it allows the child program to be much simpler.

The one big advantage is that you can invoke standard programs, ones that don’t expect a file descriptor
as a parameter. In order to do this, you need to use the dup function, which you met in Chapter 3. There
are two closely related versions of dup that have the following prototypes:

#include <unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_one, int file_descriptor_two);

The purpose of the dup call is to open a new file descriptor, a little like the open call. The difference is
that the new file descriptor created by dup refers to the same file (or pipe) as an existing file descriptor.
In the case of dup, the new file descriptor is always the lowest number available, and in the case of dup2
it’s the same as, or the first available descriptor greater than, the parameter file_descriptor_two.

You can get the same effect as dup and dup2 by using the more general fcntl call, with a command
F_DUPFD. Having said that, the dup call is easier to use because it’s tailored specifically to the needs 
of creating duplicate file descriptors. It’s also very commonly used, so you’ll find it more frequently in
existing programs than fcntl and F_DUPFD.

So how does dup help in passing data between processes? The trick is knowing that the standard input file
descriptor is always 0 and that dup always returns a new file descriptor using the lowest available number.
By first closing file descriptor 0 and then calling dup, the new file descriptor will have the number 0. Because
the new descriptor is a duplicate of an existing one, standard input will have been changed to access the file
or pipe whose file descriptor you passed to dup. You will have created two file descriptors that refer to the
same file or pipe, and one of them will be the standard input.
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File Descriptor Manipulation by close and dup
The easiest way to understand what happens when you close file descriptor 0, and then call dup, is to
look at how the state of the first four file descriptors changes during the sequence. This is shown in the
following table.

Try It Out Pipes and dup
Let’s return to the previous example, but this time you’ll arrange for the child program to have its stdin
file descriptor replaced with the read end of the pipe you create. You’ll also do some tidying up of file
descriptors so the child program can correctly detect the end of the data in the pipe. As usual, we’ll omit
some error checking for the sake of brevity.

Modify pipe3.c to pipe5.c using the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
pid_t fork_result;

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == (pid_t)0) {
close(0);
dup(file_pipes[0]);
close(file_pipes[0]);
close(file_pipes[1]);

File Descriptor
Number

Initially After close of File
Descriptor 0

After dup

0 Standard input {closed} Pipe file descriptor

1 Standard output Standard output Standard output

2 Standard error Standard error Standard error

3 Pipe file descriptor Pipe file descriptor Pipe file descriptor
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execlp(“od”, “od”, “-c”, (char *)0);
exit(EXIT_FAILURE);

}
else {

close(file_pipes[0]);
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
close(file_pipes[1]);
printf(“%d - wrote %d bytes\n”, (int)getpid(), data_processed);

}
}
exit(EXIT_SUCCESS);

}

The output from this program is

$ ./pipe5
22495 - wrote 3 bytes
0000000   1   2   3
0000003

How It Works
As before, the program creates a pipe and then forks, creating a child process. At this point, both the parent
and child have file descriptors that access the pipe, one each for reading and writing, so there are four open
file descriptors in total.

Let’s look at the child process first. The child closes its standard input with close(0) and then calls
dup(file_pipes[0]). This duplicates the file descriptor associated with the read end of the pipe as 
file descriptor 0, the standard input. The child then closes the original file descriptor for reading from the
pipe, file_pipes[0]. Because the child will never write to the pipe, it also closes the write file descrip-
tor associated with the pipe, file_pipes[1]. It now has a single file descriptor associated with the pipe:
file descriptor 0, its standard input. 

The child can then use exec to invoke any program that reads standard input. In this case, you use the
od command. The od command will wait for data to be available to it as if it were waiting for input from
a user terminal. In fact, without some special code to explicitly detect the difference, it won’t know that
the input is from a pipe rather than a terminal.

The parent starts by closing the read end of the pipe file_pipes[0], because it will never read the
pipe. It then writes data to the pipe. When all the data has been written, the parent closes the write end
of the pipe and exits. Because there are now no file descriptors open that could write to the pipe, the od
program will be able to read the three bytes written to the pipe, but subsequent reads will then return 0
bytes, indicating an end of file. When the read returns 0, the od program exits. This is analogous to run-
ning the od command on a terminal, then pressing Ctrl+D to send end of file to the od command.

Figure 13-3 shows the sequence after the call to the pipe, Figure 13-4 shows the sequence after the call to
fork, and Figure 13-5 represents the program when it’s ready to transfer data.
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Figure 13-3

Figure 13-4

Figure 13-5

Named Pipes: FIFOs
So far, you have only been able to pass data between related programs, that is, programs that have been
started from a common ancestor process. Often this isn’t very convenient, because you would like unre-
lated processes to be able to exchange data. 

You do this with FIFOs, often referred to as named pipes. A named pipe is a special type of file (remember
that everything in Linux is a file!) that exists as a name in the file system but behaves like the unnamed
pipes that you’ve met already.
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You can create named pipes from the command line and from within a program. Historically, the com-
mand-line program for creating them was mknod:

$ mknod filename p

However, the mknod command is not in the X/Open command list, so it may not be available on all
UNIX-like systems. The preferred command-line method is to use

$ mkfifo filename

Some older versions of UNIX only had the mknod command. X/Open Issue 4 Version 2 has the 
mknod function call, but not the command-line program. Linux, friendly as ever, supplies both 
mknod and mkfifo.

From inside a program, you can use two different calls:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *filename, mode_t mode);
int mknod(const char *filename, mode_t mode | S_IFIFO, (dev_t) 0);

Like the mknod command, you can use the mknod function for making many special types of files. Using
a dev_t value of 0 and ORing the file access mode with S_IFIFO is the only portable use of this function
that creates a named pipe. We’ll use the simpler mkfifo function in the examples.

Try It Out Creating a Named Pipe
The following example is fifo1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main()
{

int res = mkfifo(“/tmp/my_fifo”, 0777);
if (res == 0) printf(“FIFO created\n”);
exit(EXIT_SUCCESS);

}

You can create and look for the pipe with 

$ ./fifo1
FIFO created
$ ls -lF /tmp/my_fifo
prwxr-xr-x   1 rick     users           0 2007-06-16 17:18 /tmp/my_fifo|
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Notice that the first character of output is a p, indicating a pipe. The | symbol at the end is added by the
ls command’s -F option and also indicates a pipe.

How It Works
The program uses the mkfifo function to create a special file. Although you ask for a mode of 0777, this 
is altered by the user mask (umask) setting (in this case 022), just as in normal file creation, so the resulting
file has mode 755. If your umask is set differently, for example to 0002, you will see different permissions
on the created file.

You can remove the FIFO just like a conventional file by using the rm command, or from within a program
by using the unlink system call.

Accessing a FIFO
One very useful feature of named pipes is that, because they appear in the file system, you can use them
in commands where you would normally use a filename. Before you do more programming using the
FIFO file you created, let’s investigate the behavior of the FIFO file using normal file commands.

Try It Out Accessing a FIFO File
1. First, try reading the (empty) FIFO:

$ cat < /tmp/my_fifo

2. Now try writing to the FIFO. You will have to use a different terminal because the first com-
mand will now be hanging, waiting for some data to appear in the FIFO.

$ echo “Hello World” > /tmp/my_fifo

You will see the output appear from the cat command. If you don’t send any data down the
FIFO, the cat command will hang until you interrupt it, conventionally with Ctrl+C.

3. You can do both at once by putting the first command in the background:

$ cat < /tmp/my_fifo &
[1] 1316
$ echo “Hello World” > /tmp/my_fifo
Hello World

[1]+  Done                    cat </tmp/my_fifo
$

How It Works
Because there was no data in the FIFO, the cat and echo programs both block, waiting for some data to
arrive and some other process to read the data, respectively.

Looking at the third stage, the cat process is initially blocked in the background. When echo makes
some data available, the cat command reads the data and prints it to the standard output. Notice that
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the cat program then exits without waiting for more data. It doesn’t block because the pipe will have
been closed when the second command putting data in the FIFO completed, so calls to read in the cat
program will return 0 bytes, indicating the end of file.

Now that you’ve seen how the FIFO behaves when you access it using command-line programs, let’s
look in more detail at the program interface, which allows you more control over how reads and writes
behave when you’re accessing a FIFO.

Unlike a pipe created with the pipe call, a FIFO exists as a named file, not as an open file descriptor,
and it must be opened before it can be read from or written to. You open and close a FIFO using the
same open and close functions that you saw used earlier for files, with some additional functionality.
The open call is passed the path name of the FIFO, rather than that of a regular file.

Opening a FIFO with open
The main restriction on opening FIFOs is that a program may not open a FIFO for reading and writing
with the mode O_RDWR. If a program violates this restriction, the result is undefined. This is quite a sensi-
ble restriction because, normally, you use a FIFO only for passing data in a single direction, so there is 
no need for an O_RDWR mode. A process would read its own output back from a pipe if it were opened
read/write.

If you do want to pass data in both directions between programs, it’s much better to use either a pair of
FIFOs or pipes, one for each direction, or (unusually) explicitly change the direction of the data flow by
closing and reopening the FIFO. We return to bidirectional data exchange using FIFOs later in the chapter.

The other difference between opening a FIFO and a regular file is the use of the open_flag (the second
parameter to open) with the option O_NONBLOCK. Using this open mode not only changes how the open call
is processed, but also changes how read and write requests are processed on the returned file descriptor.

There are four legal combinations of O_RDONLY, O_WRONLY, and the O_NONBLOCK flag. We’ll consider
each in turn.

open(const char *path, O_RDONLY);

In this case, the open call will block; it will not return until a process opens the same FIFO for writing.
This is like the first cat example. 

open(const char *path, O_RDONLY | O_NONBLOCK);

The open call will now succeed and return immediately, even if the FIFO has not been opened for writing
by any process.

open(const char *path, O_WRONLY);

In this case, the open call will block until a process opens the same FIFO for reading.

open(const char *path, O_WRONLY | O_NONBLOCK);
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This will always return immediately, but if no process has the FIFO open for reading, open will return
an error, –1, and the FIFO won’t be opened. If a process does have the FIFO open for reading, the file
descriptor returned can be used for writing to the FIFO.

Notice the asymmetry between the use of O_NONBLOCK with O_RDONLY and O_WRONLY, in that a non-
blocking open for writing fails if no process has the pipe open for reading, but a nonblocking read
doesn’t fail. The behavior of the close call isn’t affected by the O_NONBLOCK flag.

Try It Out Opening FIFO Files
Now look at how you can use the behavior of open with the O_NONBLOCK flag to synchronize two
processes. Rather than use a number of example programs, you’ll write a single test program, fifo2.c,
which allows you to investigate the behavior of FIFOs by passing in different parameters.

1. Start with the header files, a #define, and the check that the correct number of command-line
arguments has been supplied:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”

int main(int argc, char *argv[])
{

int res;
int open_mode = 0;
int i;

if (argc < 2) {
fprintf(stderr, “Usage: %s <some combination of\

O_RDONLY O_WRONLY O_NONBLOCK>\n”, *argv);
exit(EXIT_FAILURE);

}

2. Assuming that the program passed the test, you now set the value of open_mode from those
arguments:

for(i = 1; i <argc; i++) {
if (strncmp(*++argv, “O_RDONLY”, 8) == 0) 

open_mode |= O_RDONLY;
if (strncmp(*argv, “O_WRONLY”, 8) == 0) 

open_mode |= O_WRONLY;
if (strncmp(*argv, “O_NONBLOCK”, 10) == 0) 

open_mode |= O_NONBLOCK;
}
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3. Next check whether the FIFO exists, and create it if necessary. Then the FIFO is opened and out-
put given to that effect while the program catches forty winks. Last of all, the FIFO is closed.

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO\n”, getpid());
res = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), res);
sleep(5);
if (res != -1) (void)close(res);
printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

How It Works
This program allows you to specify on the command line the combinations of O_RDONLY, O_WRONLY, and
O_NONBLOCK that you want to use. It does this by comparing known strings with command-line parame-
ters and setting (with |=) the appropriate flag if the string matches. The program uses the access func-
tion to check whether the FIFO file already exists and will create it if required.

You never destroy the FIFO, because you have no way of telling if another program already has the FIFO
in use. 

O_RDONLY and O_WRONLY without O_NONBLOCK
You now have your test program, so you can try out a couple of combinations. Notice that the first pro-
gram, the reader, has been put in the background:

$ ./fifo2 O_RDONLY &
[1] 152
Process 152 opening FIFO
$ ./fifo2 O_WRONLY
Process 153 opening FIFO
Process 152 result 3
Process 153 result 3
Process 152 finished
Process 153 finished

This is probably the most common use of named pipes. It allows the reader process to start and wait in
the open call and then allows both programs to continue when the second program opens the FIFO.
Notice that both the reader and writer processes have synchronized at the open call.

When a Linux process is blocked, it doesn’t consume CPU resources, so this method of process synchro-
nization is very CPU-efficient.
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O_RDONLY with O_NONBLOCK and O_WRONLY
In the following example, the reader process executes the open call and continues immediately, even
though no writer process is present. The writer also immediately continues past the open call, because
the FIFO is already open for reading.

$ ./fifo2 O_RDONLY O_NONBLOCK &
[1] 160
Process 160 opening FIFO
$ ./fifo2 O_WRONLY
Process 161 opening FIFO
Process 160 result 3
Process 161 result 3
Process 160 finished
Process 161 finished
[1]+  Done                    ./fifo2 O_RDONLY O_NONBLOCK

These two examples are probably the most common combinations of open modes. Feel free to use the
example program to experiment with some other combinations.

Reading and Writing FIFOs
Using the O_NONBLOCK mode affects how read and write calls behave on FIFOs.

A read on an empty blocking FIFO (that is, one not opened with O_NONBLOCK) will wait until some data
can be read. Conversely, a read on a nonblocking FIFO with no data will return 0 bytes.

A write on a full blocking FIFO will wait until the data can be written. A write on a FIFO that can’t
accept all of the bytes being written will either: 

❑ Fail, if the request is for PIPE_BUF bytes or less and the data can’t be written.

❑ Write part of the data, if the request is for more than PIPE_BUF bytes, returning the number of
bytes actually written, which could be 0.

The size of a FIFO is an important consideration. There is a system-imposed limit on how much data can
be “in” a FIFO at any one time. This is the #define PIPE_BUF, usually found in limits.h. On Linux
and many other UNIX-like systems, this is commonly 4,096 bytes, but it could be as low as 512 bytes on
some systems. The system guarantees that writes of PIPE_BUF or fewer bytes on a FIFO that has been
opened O_WRONLY (that is, blocking) will either write all or none of the bytes.

Although this limit is not very important in the simple case of a single FIFO writer and a single FIFO
reader, it’s quite common to use a single FIFO to allow many different programs to send requests to a
single FIFO reader. If several different programs try to write to the FIFO at the same time, it’s usually
vital that the blocks of data from different programs don’t get interleaved — that is, each write must 
be “atomic.” How do you do this?

Well, if you ensure that all your write requests are to a blocking FIFO and are less than PIPE_BUF bytes
in size, the system will ensure that data never gets interleaved. In general, it’s a good idea to restrict the
data transferred via a FIFO to blocks of PIPE_BUF bytes, unless you’re using only a single-writer and a
single-reader process.
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Try It Out Inter-Process Communication with FIFOs
To show how unrelated processes can communicate using named pipes, you need two separate pro-
grams, fifo3.c and fifo4.c.

1. The first program is the producer program. It creates the pipe if required, and then writes data
to it as quickly as possible.

Note that, for illustration purposes, we don’t mind what the data is, so we don’t bother to initialize a
buffer. In both listings, shaded lines show the changes from fifo2.c, with all the command-line argu-
ment code removed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()
{

int pipe_fd;
int res;
int open_mode = O_WRONLY;
int bytes_sent = 0;
char buffer[BUFFER_SIZE + 1];

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO O_WRONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
while(bytes_sent < TEN_MEG) {

res = write(pipe_fd, buffer, BUFFER_SIZE);
if (res == -1) {

fprintf(stderr, “Write error on pipe\n”);
exit(EXIT_FAILURE);

}
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bytes_sent += res;
}
(void)close(pipe_fd); 

}
else {

exit(EXIT_FAILURE);        
}

printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

2. The second program, the consumer, is much simpler. It reads and discards data from the FIFO.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”
#define BUFFER_SIZE PIPE_BUF

int main()
{

int pipe_fd;
int res;
int open_mode = O_RDONLY;
char buffer[BUFFER_SIZE + 1];
int bytes_read = 0;

memset(buffer, ‘\0’, sizeof(buffer));

printf(“Process %d opening FIFO O_RDONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
do {

res = read(pipe_fd, buffer, BUFFER_SIZE);
bytes_read += res;

} while (res > 0);
(void)close(pipe_fd);

}
else {

exit(EXIT_FAILURE);
}

printf(“Process %d finished, %d bytes read\n”, getpid(), bytes_read);
exit(EXIT_SUCCESS);

}
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When you run these programs at the same time, using the time command to time the reader, the output
you get (with some tidying for clarity) is

$ ./fifo3 &
[1] 375
Process 375 opening FIFO O_WRONLY
$ time ./fifo4
Process 377 opening FIFO O_RDONLY
Process 375 result 3
Process 377 result 3
Process 375 finished
Process 377 finished, 10485760 bytes read

real    0m0.053s
user    0m0.020s
sys     0m0.040s

[1]+  Done                    ./fifo3

How It Works
Both programs use the FIFO in blocking mode. You start fifo3 (the writer/producer) first, which blocks,
waiting for a reader to open the FIFO. When fifo4 (the consumer) is started, the writer is then unblocked
and starts writing data to the pipe. At the same time, the reader starts reading data from the pipe.

Linux arranges the scheduling of the two processes so that they both run when they can and are blocked
when they can’t. Thus, the writer is blocked when the pipe is full, and the reader is blocked when the
pipe is empty.

The output from the time command shows that it took the reader well under one-tenth of a second to 
run, reading 10 megabytes of data in the process. This shows that pipes, at least as implemented in modern
versions of Linux, can be an efficient way of transferring data between programs.

Advanced Topic: Client/Server Using FIFOs
For your final look at FIFOs, let’s consider how you might build a very simple client/server application
using named pipes. You want to have a single-server process that accepts requests, processes them, and
returns the resulting data to the requesting party: the client.

You want to allow multiple client processes to send data to the server. In the interests of simplicity, we’ll
assume that the data to be processed can be broken into blocks, each smaller than PIPE_BUF bytes. Of
course, you could implement this system in many ways, but we’ll consider only one method as an illus-
tration of how named pipes can be used.

Because the server will process only one block of information at a time, it seems logical to have a single
FIFO that is read by the server and written to by each of the clients. By opening the FIFO in blocking
mode, the server and the clients will be automatically blocked as required.
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Returning the processed data to the clients is slightly more difficult. You need to arrange a second pipe,
one per client, for the returned data. By passing the process identifier (PID) of the client in the original
data sent to the server, both parties can use this to generate the unique name for the return pipe.

Try It Out An Example Client/Server Application
1. First, you need a header file, client.h, that defines the data common to both client and server

programs. It also includes the required system headers, for convenience.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define SERVER_FIFO_NAME “/tmp/serv_fifo”
#define CLIENT_FIFO_NAME “/tmp/cli_%d_fifo”

#define BUFFER_SIZE 20

struct data_to_pass_st {
pid_t  client_pid;
char   some_data[BUFFER_SIZE - 1];

};

2. Now for the server program, server.c. In this section, you create and then open the server
pipe. It’s set to be read-only, with blocking. After sleeping (for demonstration purposes), the
server reads in any data from the client, which has the data_to_pass_st structure.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int read_res;
char client_fifo[256];
char *tmp_char_ptr;

mkfifo(SERVER_FIFO_NAME, 0777);
server_fifo_fd = open(SERVER_FIFO_NAME, O_RDONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Server fifo failure\n”);
exit(EXIT_FAILURE);

}

sleep(10); /* lets clients queue for demo purposes */

do {
read_res = read(server_fifo_fd, &my_data, sizeof(my_data));
if (read_res > 0) {
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3. In this next stage, you perform some processing on the data just read from the client: Convert 
all the characters in some_data to uppercase and combine the CLIENT_FIFO_NAME with the
received client_pid.

tmp_char_ptr = my_data.some_data;
while (*tmp_char_ptr) {

*tmp_char_ptr = toupper(*tmp_char_ptr);
tmp_char_ptr++;

}
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);

4. Then send the processed data back, opening the client pipe in write-only, blocking mode.
Finally, shut down the server FIFO by closing the file and then unlinking the FIFO.

client_fifo_fd = open(client_fifo, O_WRONLY);
if (client_fifo_fd != -1) {

write(client_fifo_fd, &my_data, sizeof(my_data));
close(client_fifo_fd);

}
}

} while (read_res > 0);
close(server_fifo_fd);
unlink(SERVER_FIFO_NAME);
exit(EXIT_SUCCESS);

}

5. Here’s the client, client.c. The first part of this program opens the server FIFO, if it already
exists, as a file. It then gets its own process ID, which forms some of the data that will be sent to
the server. The client FIFO is created, ready for the next section.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int times_to_send;
char client_fifo[256];

server_fifo_fd = open(SERVER_FIFO_NAME, O_WRONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Sorry, no server\n”);
exit(EXIT_FAILURE);

}

my_data.client_pid = getpid();
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);
if (mkfifo(client_fifo, 0777) == -1) {

fprintf(stderr, “Sorry, can’t make %s\n”, client_fifo);
exit(EXIT_FAILURE);

}
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6. For each of the five loops, the client data is sent to the server. Then the client FIFO is opened
(read-only, blocking mode) and the data read back. Finally, the server FIFO is closed and the
client FIFO removed from the file system.

for (times_to_send = 0; times_to_send < 5; times_to_send++) {
sprintf(my_data.some_data, “Hello from %d”, my_data.client_pid); 
printf(“%d sent %s, “, my_data.client_pid, my_data.some_data);
write(server_fifo_fd, &my_data, sizeof(my_data));
client_fifo_fd = open(client_fifo, O_RDONLY);
if (client_fifo_fd != -1) {

if (read(client_fifo_fd, &my_data, sizeof(my_data)) > 0) {
printf(“received: %s\n”, my_data.some_data);

}
close(client_fifo_fd);

}
}
close(server_fifo_fd);
unlink(client_fifo);
exit(EXIT_SUCCESS);

}

To test this application, you need to run a single copy of the server and several clients. To get them all
started at close to the same time, use the following shell commands:

$ ./server &
$ for i in 1 2 3 4 5
do
./client &
done
$

This starts one server process and five client processes. The output from the clients, edited for brevity,
looks like this:

531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532
529 sent Hello from 529, received: HELLO FROM 529
530 sent Hello from 530, received: HELLO FROM 530
531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532

As you can see in this output, different client requests are being interleaved, but each client is getting
the suitably processed data returned to it. Note that you may or may not see this interleaving; the order
in which client requests are received may vary between machines and possibly between runs on the
same machine.

How It Works
Now we’ll cover the sequence of client and server operations as they interact, something that we haven’t
covered so far.
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The server creates its FIFO in read-only mode and blocks. It does this until the first client connects by open-
ing the same FIFO for writing. At that point, the server process is unblocked and the sleep is executed, 
so the writes from the clients queue up. (In a real application, the sleep would be removed; we’re only
using it to demonstrate the correct operation of the program with multiple simultaneous clients.)

In the meantime, after the client has opened the server FIFO, it creates its own uniquely named FIFO for
reading data back from the server. Only then does the client write data to the server (blocking if the pipe
is full or the server’s still sleeping) and then blocks on a read of its own FIFO, waiting for the reply.

On receiving the data from the client, the server processes it, opens the client pipe for writing, and writes
the data back, which unblocks the client. When the client is unblocked, it can read from its pipe the data
written to it by the server.

The whole process repeats until the last client closes the server pipe, causing the server’s read to fail
(returning 0) because no process has the server pipe open for writing. If this were a real server process
that needed to wait for further clients, you would need to modify it to either

❑ Open a file descriptor to its own server pipe, so read always blocks rather than returning 0.

❑ Close and reopen the server pipe when read returns 0 bytes, so the server process blocks in the
open waiting for a client, just as it did when it first started.

Both of these techniques are illustrated in the rewrite of the CD database application to use named pipes.

The CD Database Application
Now that you’ve seen how you can use named pipes to implement a simple client/server system, you
can revisit the CD database application and convert it accordingly. You’ll also incorporate some signal
handling to allow you to perform some tidy-up actions when the process is interrupted. You will use the
earlier dbm version of the application that had a command-line interface to see the code as straightfor-
wardly as possible.

Before you get to look in detail at this new version, you must compile the application. If you have the
source code from the website, use the makefile to compile it into the server and client programs.

As you saw early in Chapter 7, different distributions name and install the dbm files in slightly differ-
ent ways. If the provided files do not compile on your distribution, check back to Chapter 7 for further
advice on the naming and location of the dbm files.

Running server -i allows the program to initialize a new CD database.

Needless to say, the client won’t run unless the server is up and running. Here’s the makefile to show
how the programs fit together:

all:     server client
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CC=cc
CFLAGS= -pedantic -Wall

# For debugging un-comment the next line
# DFLAGS=-DDEBUG_TRACE=1 -g

# Where, and which version, of dbm are we using.
# This assumes gdbm is pre-installed in a standard place, but we are
# going to use the gdbm compatibility routines, that make it emulate ndbm.
# We do this because ndbm is the ‘most standard’ of the dbm versions.
# Depending on your distribution, these may need changing.
DBM_INC_PATH=/usr/include/gdbm
DBM_LIB_PATH=/usr/lib
DBM_LIB_FILE=-lgdbm
# On some distributions you may need to change the above line to include
# the compatibility library, as shown below.
# DBM_LIB_FILE=-lgdbm_compat -lgdbm

.c.o:
$(CC) $(CFLAGS) -I$(DBM_INC_PATH) $(DFLAGS) -c $<

app_ui.o: app_ui.c cd_data.h
cd_dbm.o: cd_dbm.c cd_data.h
client_f.o: clientif.c cd_data.h cliserv.h
pipe_imp.o: pipe_imp.c cd_data.h cliserv.h
server.o: server.c cd_data.h cliserv.h

client: app_ui.o clientif.o pipe_imp.o
$(CC) -o client  $(DFLAGS) app_ui.o clientif.o pipe_imp.o

server:  server.o cd_dbm.o pipe_imp.o
$(CC) -o server -L$(DBM_LIB_PATH) $(DFLAGS) server.o cd_dbm.o pipe_imp.o -

l$(DBM_LIB_FILE)

clean:
rm -f server client_app *.o *~

Aims
The aim is to split the part of the application that deals with the database away from the user inter-
face part of the application. You also want to run a single-server process, but allow many simultane-
ous clients, and to minimize changes to the existing code. Wherever possible, you will leave existing
code unchanged.

To keep things simple, you also want to be able to create (and delete) pipes within the application, so
there’s no need for a system administrator to create named pipes before you can use them.

It’s also important to ensure that you never “busy wait,” wasting CPU time, for an event. As you’ve
seen, Linux allows you to block, waiting for events without using significant resources. You should use
the blocking nature of pipes to ensure that you use the CPU efficiently. After all, the server could, in the-
ory, wait for many hours for a request to arrive.
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Implementation
The earlier, single-process version of the application that you saw in Chapter 7 used a set of data access
routines for manipulating the data. These were

int database_initialize(const int new_database);
void database_close(void);
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);
cdc_entry search_cdc_entry(const char *cd_catalog_ptr,

int *first_call_ptr);

These functions provide a convenient place to make a clean separation between client and server. 

In the single-process implementation, you can view the application as having two parts, even though it
was compiled as a single program, as shown in Figure 13-6.

Figure 13-6

In the client-server implementation, you want to insert some named pipes and supporting code between
the two major parts of the application. Figure 13-7 shows the structure you need.

In the implementation, both the client and server interface routines are put in the same file, pipe_imp.c.
This keeps all the code that depends on the use of named pipes for the client/server implementation in a
single file. The formatting and packaging of the data being passed is kept separate from the routines that
implement the named pipes. You end up with more source files, but a better logical division between
them. The calling structure in the application is illustrated in Figure 13-8.

The files app_ui.c, client_if.c, and pipe_imp.c are compiled and linked together to give a client pro-
gram. The files cd_dbm.c, server.c, and pipe_imp.c are compiled and linked together to give a server
program. A header file, cliserv.h, acts as a common definitions header file to tie the two together.

The files app_ui.c and cd_dbm.c have only very minor changes, principally to allow for the split into two
programs. Because the application is now quite large and a significant proportion of the code is unchanged
from that previously seen, we show here only the files cliserv.h, client_if.c, and pipe_imp.c.

Data access
routines

User Interface Database access
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Some parts of this file are dependent on the specific client/server implementation, in this case named
pipes. We’ll be changing to a different client/server model at the end of Chapter 14.

Figure 13-7

Figure 13-8

Connecting pipe(s)

Client Server

pipe_imp.c pipe_imp.c

client_if.c server.c

app_ui.c cd_dbm.c

Connecting pipe(s)

User Interface Database access

Client Server

Client Interface Server Interface
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The Header File, cliserv.h
First look at cliserv.h. This file defines the client/server interface. It’s required by both client and
server implementations.

1. Following are the required #include headers:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

2. You then define the named pipes. Use one pipe for the server and one pipe for each client.
Because there may be multiple clients, the client incorporates a process ID into the name to
ensure that its pipe is unique:

#define SERVER_PIPE “/tmp/server_pipe”
#define CLIENT_PIPE “/tmp/client_%d_pipe”

#define ERR_TEXT_LEN 80

3. Implement the commands as enumerated types, rather than #defines. 

This is a good way of allowing the compiler to do more type checking and also helps in debugging the
application, because many debuggers are able to show the name of enumerated constants, but not 
the name defined by a #define directive.

The first typedef gives the type of request being sent to the server; the second gives the server
response to the client:

typedef enum {
s_create_new_database = 0,
s_get_cdc_entry,
s_get_cdt_entry,
s_add_cdc_entry,
s_add_cdt_entry,
s_del_cdc_entry,
s_del_cdt_entry,
s_find_cdc_entry

} client_request_e;

typedef enum {
r_success = 0,
r_failure,
r_find_no_more

} server_response_e;
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4. Next, declare a structure that will form the message passed in both directions between the 
two processes. 

Because you don’t actually need to return both a cdc_entry and cdt_entry in the same response,
you could have combined them in a union. However, for simplicity you can keep them separate. This
also makes the code easier to maintain.

typedef struct {
pid_t               client_pid;
client_request_e    request;
server_response_e   response;
cdc_entry           cdc_entry_data;
cdt_entry           cdt_entry_data;
char                error_text[ERR_TEXT_LEN + 1];

} message_db_t;

5. Finally, here are the pipe interface functions that perform data transfer, implemented in
pipe_imp.c. These divide into server- and client-side functions, in the first and second
blocks, respectively:

int server_starting(void);
void server_ending(void);
int read_request_from_client(message_db_t *rec_ptr);
int start_resp_to_client(const message_db_t mess_to_send);
int send_resp_to_client(const message_db_t mess_to_send);
void end_resp_to_client(void);

int client_starting(void);
void client_ending(void);
int send_mess_to_server(message_db_t mess_to_send);
int start_resp_from_server(void);
int read_resp_from_server(message_db_t *rec_ptr);
void end_resp_from_server(void);

We split the rest of the discussion into the client interface functions and details of the server- and client-
side functions found in pipe_imp.c, and we look at the source code as necessary.

Client Interface Functions
Now look at clientif.c. This provides “fake” versions of the database access routines. These encode the
request in a message_db_t structure and then use the routines in pipe_imp.c to transfer the request to
the server. This allows you to make minimal changes to the original app_ui.c.

The Client’s Interpreter
1. This file implements the nine database functions prototyped in cd_data.h. It does so by pass-

ing requests to the server and then returning the server response from the function, acting as an
intermediary. The file starts with #include files and constants:

#define _POSIX_SOURCE
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#include “cd_data.h”
#include “cliserv.h”

2. The static variable mypid reduces the number of calls to getpid that would otherwise be
required. We use a local function, read_one_response, to eliminate duplicated code:

static pid_t mypid;

static int read_one_response(message_db_t *rec_ptr);

3. The database_initialize and close routines are still called, but are now used, respectively,
for initializing the client side of the pipes interface and for removing redundant named pipes
when the client exits:

int database_initialize(const int new_database)
{

if (!client_starting()) return(0);
mypid = getpid();
return(1);

} /* database_initialize */

void database_close(void) {
client_ending();

}

4. The get_cdc_entry routine is called to get a catalog entry from the database, given a CD cata-
log title. Here you encode the request in a message_db_t structure and pass it to the server. You
then read the response back into a different message_db_t structure. If an entry is found, it’s
included inside the message_db_t structure as a cdc_entry structure, so you pass back the
appropriate part of the structure:

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{

cdc_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {
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if (read_one_response(&mess_ret)) {
if (mess_ret.response == r_success) {

ret_val = mess_ret.cdc_entry_data;
} else {

fprintf(stderr, “%s”, mess_ret.error_text);
}

} else {
fprintf(stderr, “Server failed to respond\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}
return(ret_val);

}

5. Here’s the source for the function read_one_response that you use to avoid duplicating code:

static int read_one_response(message_db_t *rec_ptr) {

int return_code = 0;
if (!rec_ptr) return(0);

if (start_resp_from_server()) {
if (read_resp_from_server(rec_ptr)) {

return_code = 1;
}
end_resp_from_server();

}
return(return_code);

}

6. The other get_xxx, del_xxx, and add_xxx routines are implemented in a similar way to the
get_cdc_entry function and are reproduced here for completeness. First, the function for
retrieving CD tracks:

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

cdt_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
ret_val = mess_ret.cdt_entry_data;

} else {
fprintf(stderr, “%s”, mess_ret.error_text);
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}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(ret_val);

}

7. Next, two functions for adding data, first to the catalog and then to the tracks database:

int add_cdc_entry(const cdc_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdc_entry;
mess_send.cdc_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

int add_cdt_entry(const cdt_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdt_entry;
mess_send.cdt_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {
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fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

8. Last, two functions for data deletion:

int del_cdc_entry(const char *cd_catalog_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}
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} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

Searching the Database
The function for the search on the CD key is more complex. The user of this function expects to call it
once to start a search. We catered to this expectation in Chapter 7 by setting *first_call_ptr to true
on this first call and the function then to return the first match. On subsequent calls to the search func-
tion, *first_call_ptr is false and further matches are returned, one per call. 

Now that you’ve split the application across two processes, you can no longer allow the search to proceed
one entry at a time in the server, because a different client may request a different search from the server
while your search is in progress. You can’t make the server side store the context (how far the search has
gotten) for each client search separately, because the client side can simply stop searching part of the way
through a search, when a user finds the CD he is looking for or if the client “falls over.”

You can either change the way the search is performed or, as in the following code, hide the complexity
in the interface routine. This code arranges for the server to return all the possible matches to a search
and then store them in a temporary file until the client requests them. 

1. This function looks more complicated than it is because it calls three pipe functions that you’ll
be looking at in the next section: send_mess_to_server, start_resp_from_server, and
read_resp_from_server.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

static FILE *work_file = (FILE *)0;
static int entries_matching = 0;
cdc_entry ret_val;

ret_val.catalog[0] = ‘\0’;

if (!work_file && (*first_call_ptr == 0)) return(ret_val);

2. Here’s the first call to search, that is, with *first_call_ptr set to true. It’s set to false
immediately, in case you forget. A work_file is created and the client message structure initial-
ized.

if (*first_call_ptr) {
*first_call_ptr = 0;
if (work_file) fclose(work_file);
work_file = tmpfile();
if (!work_file) return(ret_val);

mess_send.client_pid = mypid;
mess_send.request = s_find_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);
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3. Next, there’s this three-deep condition test, which makes calls to functions in pipe_imp.c. If
the message is successfully sent to the server, the client waits for the server’s response. While
reads from the server are successful, the search matches are returned to the client’s work_file
and the entries_matching counter is incremented.

if (send_mess_to_server(mess_send)) {
if (start_resp_from_server()) {

while (read_resp_from_server(&mess_ret)) {
if (mess_ret.response == r_success) {

fwrite(&mess_ret.cdc_entry_data, sizeof(cdc_entry), 1, work_file);
entries_matching++;

} else {
break;

}
} /* while */

} else {
fprintf(stderr, “Server not responding\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}

4. The next test checks whether the search had any luck. Then the fseek call sets the work_file
to the next place for data to be written.

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;
return(ret_val);

}      
(void)fseek(work_file, 0L, SEEK_SET);

5. If this is not the first call to the search function with this particular search term, the code checks
whether there are any matches left. Finally, the next matching entry is read to the ret_val
structure. The previous checks guarantee that a matching entry exists.

} else {
/* not *first_call_ptr */

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;            
return(ret_val);

}
}

fread(&ret_val, sizeof(cdc_entry), 1, work_file);    
entries_matching--;

return(ret_val);
}
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The Server Interface, server.c
Just as the client side has an interface to the app_ui.c program, so the server side needs a program to
control the (renamed) cd_access.c, now cd_dbm.c. The server’s main function is listed here.

1. Start by declaring some global variables, a prototype for the process_command function, and a
signal-catcher function to ensure a clean exit:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

#include “cd_data.h”
#include “cliserv.h”

int save_errno;
static int server_running = 1;

static void process_command(const message_db_t mess_command);

void catch_signals()
{

server_running = 0;
}

2. Now you come to the main function. After checking that the signal-catching routines are all
right, the program checks to see whether you passed -i on the command line. If you did, it will
create a new database. If the call to the database_initialize routine in cd_dbm.c fails, an
error message is shown. If all is well and the server is running, any requests from the client are
fed to the process_command function, which you’ll see in a moment.

int main(int argc, char *argv[]) {
struct sigaction new_action, old_action;
message_db_t mess_command;
int database_init_type = 0;

new_action.sa_handler = catch_signals;
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
if ((sigaction(SIGINT, &new_action, &old_action) != 0) ||

(sigaction(SIGHUP, &new_action, &old_action) != 0) ||
(sigaction(SIGTERM, &new_action, &old_action) != 0)) {
fprintf(stderr, “Server startup error, signal catching failed\n”);
exit(EXIT_FAILURE);

}    
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if (argc > 1) {
argv++;
if (strncmp(“-i”, *argv, 2) == 0) database_init_type = 1;

}
if (!database_initialize(database_init_type)) {

fprintf(stderr, “Server error:-\
could not initialize database\n”);

exit(EXIT_FAILURE);
}

if (!server_starting()) exit(EXIT_FAILURE);

while(server_running) {
if (read_request_from_client(&mess_command)) {

process_command(mess_command);
} else {

if(server_running) fprintf(stderr, “Server ended - can not \
read pipe\n”);

server_running = 0;
}

} /* while */
server_ending();
exit(EXIT_SUCCESS);

}

3. Any client messages are fed to the process_command function, where they are fed into a case
statement that makes the appropriate calls to cd_dbm.c:

static void process_command(const message_db_t comm)
{

message_db_t resp;
int first_time = 1;

resp = comm; /* copy command back, then change resp as required */

if (!start_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

start_resp_to_client %d failed\n”, resp.client_pid);
return;

}

resp.response = r_success;
memset(resp.error_text, ‘\0’, sizeof(resp.error_text));
save_errno = 0;

switch(resp.request) {
case s_create_new_database:

if (!database_initialize(1)) resp.response = r_failure;
break;

case s_get_cdc_entry:
resp.cdc_entry_data = 

get_cdc_entry(comm.cdc_entry_data.catalog);
break;

case s_get_cdt_entry:
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resp.cdt_entry_data = 
get_cdt_entry(comm.cdt_entry_data.catalog, 

comm.cdt_entry_data.track_no);
break;

case s_add_cdc_entry:
if (!add_cdc_entry(comm.cdc_entry_data)) resp.response = 

r_failure;
break;

case s_add_cdt_entry:
if (!add_cdt_entry(comm.cdt_entry_data)) resp.response = 

r_failure;
break;            

case s_del_cdc_entry:
if (!del_cdc_entry(comm.cdc_entry_data.catalog)) resp.response

= r_failure;
break;            

case s_del_cdt_entry:
if (!del_cdt_entry(comm.cdt_entry_data.catalog, 

comm.cdt_entry_data.track_no)) resp.response = r_failure;
break;

case s_find_cdc_entry:
do {

resp.cdc_entry_data =
search_cdc_entry(comm.cdc_entry_data.catalog,

&first_time);
if (resp.cdc_entry_data.catalog[0] != 0) {

resp.response = r_success;
if (!send_resp_to_client(resp)) {

fprintf(stderr, “Server Warning:-\
failed to respond to %d\n”, resp.client_pid);

break;
}

} else {
resp.response = r_find_no_more;

}
} while (resp.response == r_success);

break;
default:

resp.response = r_failure;
break;

} /* switch */

sprintf(resp.error_text, “Command failed:\n\t%s\n”, 
strerror(save_errno));

if (!send_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

failed to respond to %d\n”, resp.client_pid);
}

end_resp_to_client();
return;

}
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Before you look at the actual pipe implementation, let’s discuss the sequence of events that needs to
occur to pass data between the client and server processes. Figure 13-9 shows both client and server
processes starting and how both parties loop while processing commands and responses.

Figure 13-9

In this implementation, the situation is slightly more difficult, because, for a search request, the client
passes a single command to the server and then expects to receive one or more responses from the
server. This leads to some additional complexity, mainly in the client.
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The Pipe
Here’s the pipes implementation file, pipe_imp.c, which has both the client- and server-side functions. 

As you saw in Chapter 10, the symbol DEBUG_TRACE can be defined to show the sequence of calls as
the client and server processes pass messages to each other.

Pipes Implementation Header
1. First the #includes:

#include “cd_data.h”
#include “cliserv.h”

2. You also define some values that you need in different functions within the file:

static int server_fd = -1;
static pid_t mypid = 0;
static char client_pipe_name[PATH_MAX + 1] = {‘\0’};
static int client_fd = -1;
static int client_write_fd = -1;

Server-Side Functions
Next, you need to look at the server-side functions. The next section shows the functions that open and
close the named pipe and read messages from the clients. The following section shows the code that
opens, sends, and closes the client pipes based on the process ID the client includes in its message.

Server Functions
1. The server_starting routine creates the named pipe from which the server will read com-

mands. It then opens that pipe for reading. This open will block until a client opens the pipe for
writing. Use a blocking mode so that the server can perform blocking reads on the pipe while
waiting for commands to be sent to it.

int server_starting(void)
{

#if DEBUG_TRACE    
printf(“%d :- server_starting()\n”,  getpid());

#endif

unlink(SERVER_PIPE);
if (mkfifo(SERVER_PIPE, 0777) == -1) {

fprintf(stderr, “Server startup error, no FIFO created\n”);
return(0);

}

if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {
if (errno == EINTR) return(0);
fprintf(stderr, “Server startup error, no FIFO opened\n”);
return(0);

}
return(1);

}
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2. When the server ends, it removes the named pipe so that clients can detect that no server 
is running:

void server_ending(void)
{

#if DEBUG_TRACE    
printf(“%d :- server_ending()\n”,  getpid());

#endif

(void)close(server_fd);
(void)unlink(SERVER_PIPE);

}

3. The read_request_from_client function shown in the following example will block reading
in the server pipe until a client writes a message into it:

int read_request_from_client(message_db_t *rec_ptr)
{

int return_code = 0;
int read_bytes;

#if DEBUG_TRACE    
printf(“%d :- read_request_from_client()\n”,  getpid());

#endif

if (server_fd != -1) {
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr)); 

...

}
return(return_code);

}

4. In the special case where no clients have the pipe open for writing, the read will return 0; that
is, it detects an EOF. Then the server closes the pipe and opens it again, so that it blocks until a
client also opens the pipe. This is just the same as when the server first starts; you have reinitial-
ized the server. Insert this code into the preceding function:

if (read_bytes == 0) {
(void)close(server_fd);
if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {

if (errno != EINTR) {
fprintf(stderr, “Server error, FIFO open failed\n”);

}
return(0);

}
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));

}
if (read_bytes == sizeof(*rec_ptr)) return_code = 1;
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The server is a single process that may be serving many clients simultaneously. Because each client uses
a different pipe to receive its responses, the server needs to write to a different pipe to send responses to
different clients. Because file descriptors are a limited resource, the server opens a client pipe for writing
only when it has data to send.

The code splits the opening, writing, and closing of the client pipe into three separate functions. You
need to do this when you’re returning multiple results to a search, so you can open the pipe once, write
many responses, and close it again.

Plumbing the Pipes
1. First open the client pipe:

int start_resp_to_client(const message_db_t mess_to_send)
{

#if DEBUG_TRACE
printf(“%d :- start_resp_to_client()\n”, getpid());

#endif

(void)sprintf(client_pipe_name, CLIENT_PIPE, mess_to_send.client_pid);
if ((client_fd = open(client_pipe_name, O_WRONLY)) == -1) return(0);
return(1);

}

2. The messages are all sent using calls to this function. You’ll see the corresponding client-side
functions that field the message later.

int send_resp_to_client(const message_db_t mess_to_send)
{

int write_bytes;

#if DEBUG_TRACE
printf(“%d :- send_resp_to_client()\n”, getpid());

#endif

if (client_fd == -1) return(0);
write_bytes = write(client_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

3. Finally, close the client pipe:

void end_resp_to_client(void)
{

#if DEBUG_TRACE
printf(“%d :- end_resp_to_client()\n”,  getpid());

#endif

if (client_fd != -1) {
(void)close(client_fd);
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client_fd = -1;
}

}

Client-Side Functions
Complementing the server are the client functions in pipe_imp.c. They are very similar to the server-
side functions, except for the worryingly named send_mess_to_server function.

Client Functions
1. After checking that a server is accessible, the client_starting function initializes the client-

side pipe:

int client_starting(void)
{

#if DEBUG_TRACE
printf(“%d :- client_starting\n”,  getpid());

#endif

mypid = getpid();
if ((server_fd = open(SERVER_PIPE, O_WRONLY)) == -1) {

fprintf(stderr, “Server not running\n”);
return(0);

}

(void)sprintf(client_pipe_name, CLIENT_PIPE, mypid);
(void)unlink(client_pipe_name);
if (mkfifo(client_pipe_name, 0777) == -1) {

fprintf(stderr, “Unable to create client pipe %s\n”, 
client_pipe_name);

return(0);
}
return(1);

}

2. The client_ending function closes file descriptors and deletes the now-redundant named pipe:

void client_ending(void)
{

#if DEBUG_TRACE    
printf(“%d :- client_ending()\n”,  getpid()); 

#endif

if (client_write_fd != -1) (void)close(client_write_fd);
if (client_fd != -1) (void)close(client_fd);
if (server_fd != -1) (void)close(server_fd);
(void)unlink(client_pipe_name);

}

3. The send_mess_to_server function passes the request through the server pipe:

int send_mess_to_server(message_db_t mess_to_send)
{
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int write_bytes;

#if DEBUG_TRACE    
printf(“%d :- send_mess_to_server()\n”,  getpid());

#endif

if (server_fd == -1) return(0);
mess_to_send.client_pid = mypid;
write_bytes = write(server_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

As with the server-side functions you saw earlier, the client gets results back from the server using three
functions, to cater to multiple search results.

Getting Server Results
1. This client function starts to listen for the server response. It opens a client pipe as read-only

and then reopens this pipe’s file as write-only. You’ll see why a bit later in the section.

int start_resp_from_server(void)
{

#if DEBUG_TRACE    
printf(“%d :- start_resp_from_server()\n”,  getpid());    

#endif

if (client_pipe_name[0] == ‘\0’) return(0);
if (client_fd != -1) return(1);

client_fd = open(client_pipe_name, O_RDONLY);
if (client_fd != -1) {

client_write_fd = open(client_pipe_name, O_WRONLY);
if (client_write_fd != -1) return(1);
(void)close(client_fd);
client_fd = -1;

}
return(0);

}

2. Here’s the main read from the server that gets the matching database entries:

int read_resp_from_server(message_db_t *rec_ptr)
{

int read_bytes;
int return_code = 0;

#if DEBUG_TRACE    
printf(“%d :- read_resp_from_server()\n”,  getpid());    

#endif

if (!rec_ptr) return(0);
if (client_fd == -1) return(0);

read_bytes = read(client_fd, rec_ptr, sizeof(*rec_ptr));
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if (read_bytes == sizeof(*rec_ptr)) return_code = 1;
return(return_code);

}

3. And finally, here’s the client function that marks the end of the server response:

void end_resp_from_server(void)
{

#if DEBUG_TRACE    
printf(“%d :- end_resp_from_server()\n”,  getpid());        

#endif

/* This function is empty in the pipe implementation */
}

The second, additional open of the client pipe for writing in start_resp_from_server,

client_write_fd = open(client_pipe_name, O_WRONLY); 

is used to prevent a race condition when the server needs to respond to several requests from the client
in quick succession.

To explain this a little more, consider the following sequence of events:

1. The client writes a request to the server.

2. The server reads the request, opens the client pipe, and sends the response back, but is sus-
pended before it gets as far as closing the client pipe.

3. The client opens its pipe for reading, reads the first response, and closes its pipe.

4. The client then sends a new command and opens the client pipe for reading.

5. The server then resumes running, closing its end of the client pipe.

Unfortunately, at this point the client is trying to read the pipe, looking for a response to its next request,
but the read will return with 0 bytes because no process has the client pipe open for writing.

By allowing the client to open its pipe for both reading and writing, thus removing the need for repeat-
edly reopening the pipe, you avoid this race condition. Note that the client never writes to the pipe, so
there’s no danger of reading erroneous data.

Application Summary
You’ve now separated the CD database application into a client and a server, enabling you to develop the
user interface and the underlying database technology independently. You can see that a well-defined data-
base interface allows each major element of the application to make the best use of computer resources. If
you took things a little further, you could change the pipes implementation to a networked one and use a
dedicated database server machine. You learn more about networking in Chapter 15.
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Summary
In this chapter, you looked at passing data between processes using pipes. First, you looked at unnamed
pipes, created with the popen or the pipe call, and saw how, using a pipe and the dup call, you can pass
data from one program to the standard input of another. You then looked at named pipes and showed
how you can pass data between unrelated programs. Finally, you implemented a simple client/server
example, using FIFOs to provide not only for process synchronization, but also bidirectional data flow.
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