
© 2007 Matt Welsh – Harvard University 1

CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

Lecture 14: Filesystem Organization
April 5, 2007

© 2007 Matt Welsh – Harvard University 3

Filesystems
A filesystem provides a high-level application access to disk

● As well as CD, DVD, tape, floppy, etc...
● Masks the details of low-level sector-based I/O operations
● Provides structured access to data (files and directories)
● Caches recently-accessed data in memory

Hierarchical filesystems: Most common type
● Organized as a tree of directories and files

Byte-oriented vs. record-oriented files
● UNIX, Windows, etc. all provide byte-oriented file access

● May read and write files a byte at a time
● Many older OS's provided only record-oriented files

● File composed of a set of records; may only read and write a record at a time

Versioning filesystems
● Keep track of older versions of files
● e.g., VMS filesystem: Could refer to specific file versions:foo.txt;1, foo.txt;2

© 2007 Matt Welsh – Harvard University 4

Filesystem Operations
Filesystems provide a standard interface to files and directories:

● Create a file or directory
● Delete a file or directory
● Open a file or directory – allows subsequent access
● Read, write, append to file contents
● Add or remove directory entries
● Close a file or directory – terminates access

What other features do filesystems provide?
● Accounting and quotas – prevent your classmates from hogging the disks
● Backup – some filesystems have a “$HOME/.backup” containing automatic snapshots
● Indexing and search capabilities
● File versioning
● Encryption
● Automatic compression of infrequently-used files

Should this functionality be part of the filesystem or built on top?
● Classic OS community debate: Where is the best place to put functionality?

© 2007 Matt Welsh – Harvard University 5

Basic Filesystem Structures
Every file and directory is represented by an inode

● Stands for “index node”

Contains two kinds of information:
● 1) Metadata describing the file's owner, access rights, etc.
● 2) Location of the file's blocks on disk

What's one obvious thing missing from the inode metadata?

metadata

size in bytes
owner of file
group ID of file
permission bits
creation time
modified time
access time
...

disk blocks with file data

© 2007 Matt Welsh – Harvard University 6

A word on blocks vs. sectors...
Filesystems generally access data on disk in terms of blocks

But, recall the disk can only be accessed one sector at a time

Generally, the FS wants to access multiple sectors at once ...
● Why??

Say sector size is 512 bytes, but filesystem block size is 4 KB.
● This means the block consists of 8 contiguous sectors on disk
● Translating from block ID to set of sector IDs is pretty trivial:

● sectors(block_id) = { block_id*8 , (block_id*8)+1, ... (block_id*8)+7 }

© 2007 Matt Welsh – Harvard University 7

Directories
A directory is a special kind of file that contains a list of

(filename, inode number) pairs

● These are the contents of the directory “file data” itself – NOT the directory's inode!
● Filenames (in UNIX) are not stored in the inode at all!

Two open questions:
● How do we find the root directory (“ / “ on UNIX systems)?
● How do we get from an inode number to the location of the inode on disk?

aliases 45686
appletalk.cfg 3206854
authorization 631239
bashrc 41131
crontab 27961
passwd 2859

Filename inode number
metadata

© 2007 Matt Welsh – Harvard University 8

Pathname resolution
● The root directory is a special inode (usually numbered 0 or 1)

bin 2755
dev 3
etc 2801
home 2126948
usr 10699

Filename inode number
inode

0

© 2007 Matt Welsh – Harvard University 9

Pathname resolution
● To look up a pathname “/etc/passwd”, start at root directory and walk down chain of

inodes...

bin 2755
dev 3
etc 2801
home 2126948
usr 10699

Filename inode number
inode

0

aliases 45686
appletalk.cfg 3206854
authorization 631239
bashrc 41131
crontab 27961
passwd 2859

Filename inode number
inode
2801

root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false
uucp:*:4:4:Unix to Unix Copy Protocol:/var/spool/uucp:/usr/sbin/uucico

lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

inode
2859

© 2007 Matt Welsh – Harvard University 10

Locating inodes on disk
All right, so directories tell us the inode number of a file.

How the heck do we find the inode itself on disk?

Basic idea: Top part of filesystem contains all of the inodes!

● inode number is just the “index” of the inode
● Easy to compute the block address of a given inode:

● block_addr(inode_num) = block_offset_of_first_inode + (inode_num * inode_size)
● This implies that a filesystem has a fixed number of potential inodes

● This number is generally set when the filesystem is created

● The superblock stores important metadata on filesystem layout, list of free blocks, etc.

File and directory data blocksinodessuperblock

© 2007 Matt Welsh – Harvard University 11

Stupid directory tricks
Directories map filenames to inode numbers. What does this imply?

We can create multiple pointers to the same inode in
different directories

● Or even the same directory with different filenames

In UNIX this is called a “hard link” and can be done using “ln”

● “/home/foo” and “/tmp/foo” now refer to the same file on disk
● Not a copy! You will always see identical data no matter which filename

you use to read or write the file.
● Note: This is not the same as a “symbolic link”, which only links one filename to another.

bash$ ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)

bash$ ln /home/foo /tmp/foo

bash$ ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo

© 2007 Matt Welsh – Harvard University 12

How should we organize blocks on disk?
Very simple policy: A file consists of linked blocks

● inode points to the first block of the file
● Each block points to the next block in the file (just a linked list on disk)

● What are the advantages and disadvantages??

Indexed files
● inode contains a list of block numbers containing the file
● Array is allocated when the file is created

● What are the advantages and disadvantages??

inode

inode

© 2007 Matt Welsh – Harvard University 13

Multilevel Indexed Files
inode contains a list of 10-15 direct block pointers

● First few blocks of file can be referred to by the inode itself

inode also contains a pointer to a single indirect, double indirect, and
triple indirect blocks

● Allows file to grow to be incredibly large!!!

inode

direct blocks

single-indirect blocks

double-indirect blocks

