Class TorusSector
- java.lang.Object
-
- renderer.scene.Model
-
- renderer.models_L.TorusSector
-
- All Implemented Interfaces:
MeshMaker
public class TorusSector extends Model implements MeshMaker
Create a wireframe model of a partial torus.See https://en.wikipedia.org/wiki/Torus
This partial torus is the surface of revolution generated by revolving a sector of the circle in the xy-plane with radius
r2and center(r1,0,0)part way around the y-axis. We are assuming thatr1 > r2.The whole torus is the surface of revolution generated by revolving the whole circle in the xy-plane with radius
r2and center(r1,0,0)all the way around the y-axis.Here are parametric equations for the circle in the xy-plane with radius
r2and center(r1,0,0)and parameterized starting from the top, with parameter0 <= phi <= 2*PI.
Here is the 3D rotation matrix that rotates around the y-axis byx(phi) = r1 + r2 * sin(phi) y(phi) = r2 * cos(phi) z(phi) = 0thetaradians with0 <= theta <= 2*PI.
If we multiply the rotation matrix with the circle parameterization, we get a parameterization of the torus.[ cos(theta) 0 sin(theta)] [ 0 1 0 ] [-sin(theta) 0 cos(theta)]
See https://en.wikipedia.org/wiki/Torus#Geometry[ cos(theta) 0 sin(theta)] [r1 + r2 * sin(phi)] [ 0 1 0 ] * [ r2 * cos(phi)] [-sin(theta) 0 cos(theta)] [ 0 ] = ( r1*cos(theta) + r2*cos(theta)*sin(phi). r2*cos(phi), -r1*sin(theta) - r2*sin(theta)*sin(phi) ) = ( (r1 + r2*sin(phi)) * cos(theta), r2*cos(phi), -(r1 + r2*sin(phi)) * sin(theta) )- See Also:
Torus
-
-
Field Summary
Fields Modifier and Type Field Description intkintndoubler1doubler2-
Fields inherited from class renderer.scene.Model
colorList, name, primitiveList, vertexList, visible
-
-
Constructor Summary
Constructors Constructor Description TorusSector()Create a partial torus with half the circle of revolution with radius 3/4 and a cross section that is half the circle of longitude with radius 1/4.TorusSector(double r1, double r2, double theta1, double theta2, double phi1, double phi2, int n, int k)Create a partial torus with a partial circle of revolution with radiusr1and a partial cross section circle with radiusr2.TorusSector(double r1, double r2, double theta1, double theta2, int n, int k)Create a partial torus with a partial circle of revolution with radiusr1and a cross section circle (circle of longitude) with radiusr2.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description intgetHorzCount()intgetVertCount()TorusSectorremake(int n, int k)Build an instance of theModelwith new values for the number of lines of latitude and longitude while keeping all the other model parameters the same.-
Methods inherited from class renderer.scene.Model
addColor, addPrimitive, addVertex, getPrimitive, toString
-
-
-
-
Constructor Detail
-
TorusSector
public TorusSector()
Create a partial torus with half the circle of revolution with radius 3/4 and a cross section that is half the circle of longitude with radius 1/4.
-
TorusSector
public TorusSector(double r1, double r2, double theta1, double theta2, int n, int k)
Create a partial torus with a partial circle of revolution with radiusr1and a cross section circle (circle of longitude) with radiusr2.If
theta1 > 0ortheta2 < 2*PI, then the (partial) circle of revolution is the circular sector from angletheta1to angletheta2. In other words, the (partial) circles of latitude in the model extend from angletheta1to angletheta2.The last two parameters determine the number of circles of longitude and the number of (partial) circles of latitude in the model.
If there are
kcircles of longitude, then each (partial) circle of latitude will havek-1line segments. If there aren(partial) circles of latitude, then each circle of longitude will havenline segments.There must be at least four circles of longitude and at least three circles of latitude.
- Parameters:
r1- radius of the circle of revolutionr2- radius of the cross section circle (circle of longitude)theta1- beginning longitude angle for the circle of revolutiontheta2- ending longitude angle for the circle of revolutionn- number of circles of latitudek- number of circles of longitude- Throws:
IllegalArgumentException- ifnis less than 4IllegalArgumentException- ifkis less than 4
-
TorusSector
public TorusSector(double r1, double r2, double theta1, double theta2, double phi1, double phi2, int n, int k)
Create a partial torus with a partial circle of revolution with radiusr1and a partial cross section circle with radiusr2.If
phi1 > 0orphi2 < 2*PI, then the (partial) cross section circle is the circular sector from anglephi1to anglephi2. In other words, the (partial) circles of longitude in the model extend from anglephi1to anglephi2.If
theta1 > 0ortheta2 < 2*PI, then the (partial) circle of revolution is the circular sector from angletheta1to angletheta2. In other words, the (partial) circles of latitude in the model extend from angletheta1to angletheta2.The last two parameters determine the number of (partial) circles of longitude and the number of (partial) circles of latitude in the model.
If there are
kcircles of longitude, then each (partial) circle of latitude will havek-1line segments. If there aren(partial) circles of latitude, then each circle of longitude will haven-1line segments.There must be at least four circles of longitude and at least four circles of latitude.
- Parameters:
r1- radius of the circle of revolutionr2- radius of the cross section circle (circle of longitude)theta1- beginning longitude angle for the circle of revolutiontheta2- ending longitude angle for the circle of revolutionphi1- beginning latitude angle for the cross section circlephi2- ending latitude angle for the cross section circlen- number of circles of latitudek- number of circles of longitude- Throws:
IllegalArgumentException- ifnis less than 4IllegalArgumentException- ifkis less than 4
-
-
Method Detail
-
getHorzCount
public int getHorzCount()
- Specified by:
getHorzCountin interfaceMeshMaker- Returns:
- the number of lines of latitude that the
Modelcontains
-
getVertCount
public int getVertCount()
- Specified by:
getVertCountin interfaceMeshMaker- Returns:
- the number of lines of longitude that the
Modelcontains
-
remake
public TorusSector remake(int n, int k)
Description copied from interface:MeshMakerBuild an instance of theModelwith new values for the number of lines of latitude and longitude while keeping all the other model parameters the same.
-
-