1. Model-to-Camera Transformation (Model Coordinates to Camera Coordinates)

Let $\left(x_{m}, y_{m}, z_{m}\right)$ be a point in a model's coordinate system and let $\left(x_{t}, y_{t}, z_{t}\right)$ be the translation vector that accompanies the model in a position. Then the point's camera coordinates are given by

$$
x_{c}=x_{m}+x_{t}, \quad y_{c}=y_{m}+y_{t}, \quad z_{c}=z_{m}+z_{t}
$$

2. Projection Transformation (Camera Coordinates to Image-plane Coordinates)

Let $\left(x_{c}, y_{c}, z_{c}\right)$ be a point in camera coordinates and let $\left(x_{i p}, y_{i p}, z_{i p}\right)$ be its perspective projection onto the image-plane. Then

$$
\begin{aligned}
x_{i p} & =-x_{c} / z_{c} \\
y_{i p} & =-y_{c} / z_{c} \\
z_{i p} & =-1
\end{aligned}
$$

3. Image-plane to Pixel-plane Transformation

Let $\left(x_{i p}, y_{i p},-1\right)$ be a point in the image-plane and let $\left(x_{p p}, y_{p p}\right)$ be its transformation to the renderer's pixel-plane. Then

$$
\begin{aligned}
x_{p p} & =0.5+\left(w_{v p} / 2.001\right)\left(x_{i p}+1\right), \\
y_{p p} & =0.5+\left(h_{v p} / 2.001\right)\left(y_{i p}+1\right) .
\end{aligned}
$$

where $w_{v p}$ and $h_{v p}$ are the width and height of the FrameBuffer's Viewport. A point $\left(x_{i p}, y_{i p},-1\right)$ from the image-plane's view rectangle will transform to a point $\left(x_{p p}, y_{p p}\right)$ in the renderer's logical viewport with coordinates that satisfy

$$
0.5 \leq x_{p p}<w_{v p}+0.5 \quad \text { and } \quad 0.5 \leq y_{p p}<h_{v p}+0.5
$$

Points in the pixel-plane with integer coordinates are called logical pixels.

4. Pixel-plane to Viewport Transformation

Let $\left(x_{p p}, y_{p p}\right)$ be a point in the renderer's logical viewport (in the pixel-plane). Then

$$
\text { (Math.round } \left.\left(x_{p p}\right), \text { Math.round }\left(y_{p p}\right)\right)
$$

is the logical pixel nearest to $\left(x_{p p}, y_{p p}\right)$. Let $\left(x_{v p}, y_{v p}\right)$ be its equivalent (physical) pixel in the FrameBuffer's Viewport. Then

$$
\begin{gathered}
x_{v p}=(\text { int }) \text { Math.round }\left(x_{p p}\right)-1 \\
y_{v p}=h_{v p}-(\text { int }) \text { Math.round }\left(y_{p p}\right) .
\end{gathered}
$$

Pixels $\left(x_{v p}, y_{v p}\right)$ in a Viewport have integer coordinates that should satisfy

$$
0 \leq x_{v p} \leq w_{v p}-1 \quad \text { and } \quad 0 \leq y_{v p} \leq h_{v p}-1
$$

with the pixel $(0,0)$ being the upper left-hand corner of the viewport. If a pixel does not satisfy these bounds, then that pixel should be clipped (not entered into the Viewport).

5. Viewport to FrameBuffer

Suppose that a Viewport's upper left-hand corner in the FrameBuffer is at $\left(x_{u l}, y_{u l}\right)$. Let $\left(x_{v p}, y_{v p}\right)$ be a pixel using Viewport coordinates. Then that pixel's coordinates in the FrameBuffer are given by

$$
x=x_{u l}+x_{v p}, \quad y=y_{u l}+y_{v p} .
$$

Note: The FrameBuffer will use this formula even when the pixel's Viewport coordinates are not within the Viewport's width and height.

6. FrameBuffer to pixel-array

Suppose that a FrameBuffer has width w and height h. The FrameBuffer's pixel data is stored in a one-dimensional, row-major, array int $[\mathrm{w} * \mathrm{~h}]$ that we will call the pixelarray. Let (x, y) be a pixel using FrameBuffer coordinates. Its index in the pixel-array is given by

$$
\text { index }=y * w+x
$$

Note: The FrameBuffer will use this formula even when the pixel's FrameBuffer coordinates are not within the FrameBuffer's width and height.

