1. Projection Transformation (Camera Coordinates to Viewplane Coordinates)

Let $\left(x_{c}, y_{c}, z_{c}\right)$ be a point in camera coordinates and let $\left(x_{p}, y_{p}, z_{p}\right)$ be its perspective projection onto the viewplane. Then

$$
\begin{aligned}
x_{p} & =-x_{c} / z_{c}, \\
y_{p} & =-y_{c} / z_{c}, \\
z_{p} & =-1 .
\end{aligned}
$$

2. Viewplane to Pixelplane Transformation

Let $\left(x_{p}, y_{p},-1\right)$ be a point in the viewplane and let $\left(x_{v p}, y_{v p}\right)$ be its transformation to the renderer's pixel-plane. Then

$$
\begin{aligned}
& x_{v p}=0.5+(w / 2.001)\left(x_{p}+1\right), \\
& y_{v p}=0.5+(h / 2.001)\left(y_{p}+1\right) .
\end{aligned}
$$

A point $\left(x_{p}, y_{p},-1\right)$ from the viewplane's view rectangle will transform to a point in $\left(x_{v p}, y_{v p}\right)$ in the renderer's logical viewport with coordinates that satisfy

$$
0.5 \leq x_{v p}<w+0.5 \quad \text { and } \quad 0.5 \leq y_{v p}<h+0.5
$$

where w and h are the width and height of the framebuffer's viewport. Points in the pixel-plane with integer coordinates are called logical pixels.

3. Pixelplane to Pixel Transformation

Let $\left(x_{v p}, y_{v p}\right)$ be a point in the renderer's logical viewport (in the pixel-plane). Then

$$
\text { (Math.round } \left.\left(x_{v p}\right), \text { Math.round }\left(y_{v p}\right)\right)
$$

is the logical pixel nearest to $\left(x_{v p}, y_{v p}\right)$. Let (x, y) be its equivalent (physical) pixel in the framebuffer's viewport. Then

$$
\begin{aligned}
& x=(\text { int }) \text { Math.round }\left(x_{v p}\right)-1, \\
& y=h-(\text { int }) \text { Math. } \operatorname{round}\left(y_{v p}\right) .
\end{aligned}
$$

Pixels (x, y) in a framebuffer's viewport have integer coordinates that satisfy

$$
0 \leq x \leq w-1 \quad \text { and } \quad 0 \leq y \leq h-1
$$

with the pixel $(0,0)$ being the upper left-hand corner of the viewport.

