Matrix Duality

+
Scene Graphs:

How to Build Trees of
Transformations

Jack Tumblin

used a few re-worked slides
by Andries van Dam

Transformations
are NOT Commutative!

Y 4
Translate() .
then]
Rotate() by 45° y
L3 5 45 6 1 8 8 w0y
Translation — Rotation
Y1
Rotate() by 45°] START!
then 3+
Translate() by j
X=6, y=0

| | | | | | | | |
| | | | | | | | |
2 3 4 5 6 7 8 9 1OX

Rotation — Translation

METHOD 1:
1a) Draw ‘house’ at origin

v 4
Translate() 1
by x=6, y=0
then
Rotate() by 45°

5 v or e e

1 | | 1 1 | | 1 1 —>
1 2 3 4 5 6 7 8 9 10 X

Translation — Rotation

METHOD 1.:
1b) Add 6 to all its x coords

Y 6_‘

Translate() ;.
by x=6, y=0 4t
then 7

» B

\trI:Ik“‘

notalcy) .
| | | | | | | | L
1 1 1 1 1 1 1 1 —>
1 2 3 4 5 7 8 9 10 X

Translation — Rotation

METHOD 1:
1c) All new X,y coords again

Y1

Translate() by ;.

X=6, y=0 T !>
then 3j

Rotate() by 45° 1

S ————

1 2 3 4 5 7 8 9 10X

Translation — Rotation

N7

METHOD 1:
1a) Draw ‘house’ at origin

Rotate() by 45° ot
then 3
Translate() by
X=6,y=0 | A,

1 2 3 4 5 6 7 8 9 10 Yy

Rotation — Translation

METHOD 1:
b) Rotate all x,y coords,

Y]
Rotate() by 45° .
then 3

Translate() by
X=6, y=0 >
2 3 4 5 6 7 8 9 10 X

Rotation — Translation

METHOD 1.:

“ its x coord

=
PN

Y 1
Rotate() by 45° ad
then T
Translate() 9\
by x=6, y=0 é ——— ——t—
1 2 3 4 5 8 9 10 X

Rotation — Translation

METHOD 1.:

Transformations
are NOT Commutative!

A
Y (]

Translate() by 5|

X=6, y=0 T !>
then T

Rotate() by 45° 1

e

[I N B
R R R
1 2 3 4 5 78910X

Translation — Rotation

Rotate() by 45° ad
then T

»
>

Translate() 1
by x=6, y=0 é ———

Rotation — Translation

| | |
| | |
8 9 10X

METHOD 2:

Y1
Translate() ol
by x=6, y=0 i START!
then T
Rotate() by 45° 1
L3 5 45 6 1 8 8 w0y
Translation — Rotation
Y o1
Rotate() by 45°] START!
then 3+
Translate() by j
X=6, y=0

| | | | | | | | | |
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 1OX

Rotation — Translation

METHOD 2:
1a) Copy: new coord system

v 4
Translate() 1
by x=6, y=0
then
Rotate() by 45°

5 v or e e

1 | | 1 1 | | 1 1 —>
1 2 3 4 5 6 7 8 9 10 X

Translation — Rotation

METHOD 2:
2a) Transform new coord sys as

measured from old coord sys

Yot Yt

Translate() g sl

by x=6, y=0 4t 4

then > T

N 2

cotate() . L
6123456;5'9;02)('6

Translation — Rotation

METHOD 2:
3a) Draw:in new coord system

with unchanged vertex coords

Y 61 Y 6A—
Translate() g sl
by x=6, y=0 4t i
then 3 T
21 21
=\~‘7u|,.'77|¢‘“) . 1
612345;5'9;02)(6

Translation — Rotation

METHOD 2:
4a) Copy: new coord system

A

Y sl Y 6L

JI | J (E1) 51 51

41 44

then T T

: ‘ Y 21 21

rRotal) al

o—H—t+—+—H+ ——t——t+—
1 2 3 4 5 1 2 8 4 !‘9(6

Translation — Rotation

METHOD 2:
5a) Transform new c

rd sys as
coord sys

then

| | | | |
01 1 1 1 9 |1
5

Translation — Rotation

METHOD 2:
6a) Draw:in new coord system
with unchanged vertex coords

Y 6 Y 6—‘
JJ [J-ﬂ.‘.‘_') 5 5]
4 0© T
then 3 o 3
2 ~ 24
Rotate() by 45° 1 KA X
L2 3 % s /\”a o Lo‘lsxle

Translation —>\I{otation

METHOD 2:
Transformations
are NOT Commutative!

Yot

Translate() by]
X=6, y=0 4t
then z

Rotate() by 45°

1
| | | | !j | | |5
||||| | | —
1 2 3 4 5 8 9 10 X

Translation — Rotation

METHOD 2:
Transformations
are NOT Commutative!

Rotate() by 45°
then
Translate() by
X=6, y=0

T T T T T 1T 1T 1T 1T »
1234567891OX

Rotation — Translation

METHOD 2:
1b) Copy: new coord system

Translation — Rotation

Rotate() by 45° ot
then 3+
Translate() by
X=6,y=0 | A,

1 2 3 4 5 6 7 8 9 10 Y

Rotation — Translation

METHOD 2:
2b) Transform new coord sys as
micasured from old coord sys

Rotate() by 45°
then
Translate() by

7N Uy y_u

A | | | | | | | | | »
I | | | | | | | | gl
/2/ 3 4 5 6 7 8 9 10 y

Rotation — Translation

METHOD 2:
3b) Draw:in new coord system
witir.unchanged vertex coords

Rotate() by 45°
then
Translate() by

7N Uy y_-\l

N I I I R R R R
234567891OX

Rotation — Translation

METHOD 2:
4b) Copy: new coord system

Rotate() by 45°
then
Translate() by

Rotation — Translation

METHOD 2:
5b) Transform new coord sys as
nyeasured from old coord sys

Rotate() by 45° / +
then : /

anslate0by >

7T T T T T T T 1T »
2345678910X

Rotation — Translation

METHOD 2:
6b) Draw:in new coord system
with.unchanged vertex coords

Rotate() by 45° / ?
then < /
(>

ANTOy y U ﬁ-r

7T T T T T T T 1T »
2345678910X

Rotation — Translation

METHOD 2:
Transformations
are NOT Commutative!

Yot
Translate by 5
X=6, y=0 4t
then T
21
Rotate by 45° 1
L2 03 4 s s o w0y
Translation — Rotation
Y 4

Rotate by 45° .|
then 3+

Translate by
E>; e s 6 7 8 0 1oy

X=6, y=0
Rotation — Translation

METHOD 1.:

Transformations
are NOT Commutative!

A
Y (]

Translate() by 5|

X=6, y=0 T !>
then T

Rotate() by 45° 1

e

[I N B
R R R
1 2 3 4 5 78910X

Translation — Rotation

Rotate() by 45° ad
then T

»
>

Translate() 1
by x=6, y=0 é ———

Rotation — Translation

| | |
| | |
8 9 10X

METHOD 1, 2 Inverse?

« Yep, that’s right....

« Method 1:
[M] = [Mnew][MoId]

« Method 2:
[M] = [Mgq][Mpew]

How Can We Organize MANY
Geometric Transformations (T,R,S)
To Build Jointed Objects?

An “s composed of “ hierarchy

| ROBOT - transformation
upper body lower body
stanchion base

head trunk
arms

Answer:

A TREE of TRANSFORMATIONS,
SHAPES, & ATTRIBUTES

An “is-composed-of” hierarchy,
arranged as a DAG (Directed Acyclic Graph)

that performs a ‘coarse-to-fine’ decomposition of a jointed
object made of individual parts, such as this robot...

The completed tree we will devise is called a

“SceneGraph”

Scene Graphs Assembly (1/4)

« A scene graph is a directed acyclic graph (DAG)
that describes a complete 3D scene + cameras

« Examples:
— Open Scene Graph (used in the Cave)
— Sun’s Java3D™
— X3D ™ (VRML ™ was a precursor to X3D)

Typical scene graph node types:

— Object Nodes (cubes, sphere, cone, triangle etc.)
describe re-usable shapes as fixed sets of connected
vertices (default: unit size, centered at origin)

— Drawing Attribute Nodes (Apply a new color, line
width, shading type, texture map, etc.)
Describe how to render the nodes below us...

— Transformation Nodes describe parameterized
T,R,S matrices used to ‘pose’ the nodes below it

— Group Nodes describe collections that share all the
attributes & transforms above it in the scene graph
Helps with ‘instancing’: modified copies of objects

Scene Graph Assembly (2/4)

How to Draw the Robot:

5. To get final scene

N\ \

4. Transform subgroups

3. To make sub-groups Upper body lower body
2. We transform them uln

stanchion base

head trunk arm |

— | +— |

1. Leaves of tree are standard size object primitives

Scene Graph Assembly (3/4)

« Group Nodes:

— Defines one shared coordinate system
used by multiple child nodes below

group3...

obj5

Scene Graph Assembly (3/4)

« Group Nodes:

— Defines one shared coordinate system
used by multiple child nodes below

— enables ‘instancing’ - easy object re-use

— Depicts complex graphs in smaller pieces

— EXAMPLE: group3 used three times below:
in the world group, in group2 and in group4

obj5

Scene Graph Assembly (4/4)

« Rendering with WebGL commands:

— Traverse graph from root (top)
to leaf (bottom)
in depth-first order

— Drop into Group Node? Call glPushMatrix()
— Rise above Group Node? Call glPopMatrix().
— Arrive at Object Node? Call it’s ‘drawMe () fcn.

object nodes (geometry)
g transformation nodes
CVV @ oroup nodes

obj5

Scene Graph Duality:

« WebGL commands traverse top->bottom
Vertex coordinates traverse bottom->top

« from memory to screen; through matrices
(GL_MODELVIEW->GL_PROJECTION ->CVV clip
—2>viewport-> display window pixels.

object nodes (geometry)
‘ transformation nodes
CVV @ oroup nodes

obj5

Scene Graph Duality:

« Example:

g: group nodes
m: matrices of transform nodes
0: object nodes

CTM: composed transform. matrix

- for object 01, CTM = [m1]
- for object 02, CTM = [m2][m3]
- for object 03, CTM = [m2][m4][m5]

03

To convert vertex coordinate values v in 03
to its ‘world’ or ‘root’ coordinates values r:

r=[m2][m4][m5]v

To build that matrix in WebGL:
glMatrixMode (GL _MODELVIEW) ;
glLoadInd- 1

