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6.837 Computer Graphics 
Hierarchical Modeling 
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Hierarchical Modeling 
• Triangles, parametric curves and surfaces 

are the building blocks from which more 
complex real-world objects are modeled. 

 

• Hierarchical modeling creates complex real-
world objects by combining simple primitive 
shapes into more complex aggregate 
objects.  
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical Grouping of Objects 
• The “scene graph” represents 

the logical organization of scene 

6.837 -  Durand 

chair table 

table fruits 

ground 

scene 
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Scene Graph 

• Convenient Data structure  
for scene representation 

• Geometry (meshes, etc.) 

• Transformations 

• Materials, color 

• Multiple instances 

• Basic idea: Hierarchical Tree 

• Useful for manipulation/animation 

• Also for articulated figures 

• Useful for rendering, too 

• Ray tracing acceleration,  
occlusion culling 

• But note that two things that are close to 
each other in the tree are NOT necessarily 
spatially near each other 29 
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Scene Graph Representation 
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• Basic idea: Tree 

• Comprised of several node types 

• Shape: 3D geometric objects 

• Transform: Affect current transformation 

• Property: Color, texture 

• Group: Collection of subgraphs 
 

 

• C++ implementation 

• base class Object 

• children, parent 

• derived classes for each                                
node type (group, transform) 



Scene Graph Representation 

Group 

Trsfrm Trsfrm Trsfrm Trsfrm 

Group 
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• In fact, generalization of a tree: Directed Acyclic Graph (DAG) 

• Means a node can have multiple parents, but cycles are not allowed 

• Why? Allows multiple instantiations 

• Reuse complex hierarchies many times in the scene using different 
transformations (example: a tree) 

• Of course, if you only want to reuse meshes, just load the mesh once and make 
several geometry nodes point to the same data 
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Simple Example with Groups 

Text format is fictitious, better to use XML in real applications 
32 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 



6.837 -  Durand 

Simple Example with Groups 

Text format is fictitious, better to use XML in real applications 
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Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 
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Simple Example with Groups 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 

Here we have only simple shapes, but easy to add a “Mesh” 
node whose parameters specify an .OBJ to load (say) 
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Adding Attributes (Material, etc.) 
Group {   

    numObjects 3 

    Material { <BLUE> } 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Material { <BROWN> } 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Material { <GREEN> } 

            Box { <BOX PARAMS> } 

            Material { <RED> } 

            Sphere { <SPHERE PARAMS> } 

            Material { <ORANGE> } 

            Sphere { <SPHERE PARAMS> } } } 

            Material { <BLACK> } 

    Plane { <PLANE PARAMS> } } 
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Adding Transformations 
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Questions? 
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Scene Graph Traversal 

• Depth first recursion 

• Visit node, then visit subtrees (top to bottom, left to right) 

• When visiting a geometry node: Draw it! 
 

• How to handle transformations? 

• Remember, transformations are always specified 
in coordinate system of the parent 
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Scene Graph Traversal 

• How to handle transformations? 

• Traversal algorithm keeps a transformation state S (a 4x4 matrix) 

• from world coordinates 

• Initialized to identity in the beginning 

• Geometry nodes always drawn using current S  

• When visiting a transformation node T: 
multiply current state S with T, 
then visit child nodes 

• Has the effect that nodes below 
will have new transformation 

• When all children have been 
visited, undo the effect of T! 
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Recall frames 

• An object frame has coordinates O in the world 
(of course O is also our 4x4 matrix) 

 

 

• Then we are given coordinates c in the object frame 

 

 

 

• Indeed we need to apply matrix O to all objects 
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Frames and hierarchy 

• Matrix M1 to go from world to torso 

• Matrix M2 to go from torso to arm  

 

• How do you go from arm coordinates to world? 

 

 

 

 

• We can concatenate the matrices 

• Matrices for the lower hierarchy nodes go to the right 
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Recap: Scene Graph Traversal 

• How to handle transformations? 

• Traversal algorithm keeps a transformation state S (a 4x4 matrix) 

• from world coordinates 

• Initialized to identity in the beginning 

• Geometry nodes always drawn using current S  

• When visiting a transformation node T: 
multiply current state S with T, 
then visit child nodes 

• Has the effect that nodes below 
will have new transformation 

• When all children have been 
visited, undo the effect of T! 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 

44 



Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 
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At each node, the current object-to-world transformation is the 

matrix product of all transformations found on the way from the 

node to the root. 

S = T1R1 



Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix (Why?) 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

Can you think of a data structure suited for this? 
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Traversal State – Stack 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

 

• Solution: Keep state variables in a stack 

• Push current state when entering node, update current state
 

• Pop stack when leaving state-changing node 

• See what the stack looks like in the previous example! 
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