
1

Some slides from BarbCutler &
Jaakko Lehtinen

Wojciech Matusik, MIT EECS

1

6.837 Computer Graphics
Hierarchical Modeling

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:Floral_matryoshka_set_2.JPG
http://ocw.mit.edu/help/faq-fair-use/

Hierarchical Modeling
• Triangles, parametric curves and surfaces

are the building blocks from which more
complex real-world objects are modeled.

• Hierarchical modeling creates complex real-
world objects by combining simple primitive
shapes into more complex aggregate
objects.

21
Image courtesy of Nostalgic dave on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:-1959_wip_-_deepRasberryWithScalsRT.jpg
http://ocw.mit.edu/help/faq-fair-use/

Hierarchical models

22
Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

23 Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

24

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

25

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

26

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

27

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical Grouping of Objects
• The “scene graph” represents

the logical organization of scene

6.837 - Durand

chair table

table fruits

ground

scene

28

Scene Graph

• Convenient Data structure
for scene representation

• Geometry (meshes, etc.)

• Transformations

• Materials, color

• Multiple instances

• Basic idea: Hierarchical Tree

• Useful for manipulation/animation

• Also for articulated figures

• Useful for rendering, too

• Ray tracing acceleration,
occlusion culling

• But note that two things that are close to
each other in the tree are NOT necessarily
spatially near each other 29

This image is in the public domain.

Source: Wikimedia Commons.

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons.

License: CC-BY-SA. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Human_skeleton_diagram_trace.svg
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Scene Graph Representation

30

• Basic idea: Tree

• Comprised of several node types

• Shape: 3D geometric objects

• Transform: Affect current transformation

• Property: Color, texture

• Group: Collection of subgraphs

• C++ implementation

• base class Object

• children, parent

• derived classes for each
node type (group, transform)

Scene Graph Representation

Group

Trsfrm Trsfrm Trsfrm Trsfrm

Group

31

• In fact, generalization of a tree: Directed Acyclic Graph (DAG)

• Means a node can have multiple parents, but cycles are not allowed

• Why? Allows multiple instantiations

• Reuse complex hierarchies many times in the scene using different
transformations (example: a tree)

• Of course, if you only want to reuse meshes, just load the mesh once and make
several geometry nodes point to the same data

6.837 - Durand

Simple Example with Groups

Text format is fictitious, better to use XML in real applications
32

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

6.837 - Durand

Simple Example with Groups

Text format is fictitious, better to use XML in real applications
33

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

6.837 - Durand

Simple Example with Groups

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

Here we have only simple shapes, but easy to add a “Mesh”
node whose parameters specify an .OBJ to load (say)

34

Adding Attributes (Material, etc.)
Group {

 numObjects 3

 Material { <BLUE> }

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Material { <BROWN> }

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Material { <GREEN> }

 Box { <BOX PARAMS> }

 Material { <RED> }

 Sphere { <SPHERE PARAMS> }

 Material { <ORANGE> }

 Sphere { <SPHERE PARAMS> } } }

 Material { <BLACK> }

 Plane { <PLANE PARAMS> } }

35

Adding Transformations

36

Questions?

37

Scene Graph Traversal

• Depth first recursion

• Visit node, then visit subtrees (top to bottom, left to right)

• When visiting a geometry node: Draw it!

• How to handle transformations?

• Remember, transformations are always specified
in coordinate system of the parent

38

Scene Graph Traversal

• How to handle transformations?

• Traversal algorithm keeps a transformation state S (a 4x4 matrix)

• from world coordinates

• Initialized to identity in the beginning

• Geometry nodes always drawn using current S

• When visiting a transformation node T:
multiply current state S with T,
then visit child nodes

• Has the effect that nodes below
will have new transformation

• When all children have been
visited, undo the effect of T!

39

Recall frames

• An object frame has coordinates O in the world
(of course O is also our 4x4 matrix)

• Then we are given coordinates c in the object frame

• Indeed we need to apply matrix O to all objects

40

Frames and hierarchy

• Matrix M1 to go from world to torso

• Matrix M2 to go from torso to arm

• How do you go from arm coordinates to world?

• We can concatenate the matrices

• Matrices for the lower hierarchy nodes go to the right

41

Recap: Scene Graph Traversal

• How to handle transformations?

• Traversal algorithm keeps a transformation state S (a 4x4 matrix)

• from world coordinates

• Initialized to identity in the beginning

• Geometry nodes always drawn using current S

• When visiting a transformation node T:
multiply current state S with T,
then visit child nodes

• Has the effect that nodes below
will have new transformation

• When all children have been
visited, undo the effect of T!

42

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

43

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = I

44

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

45

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

46

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

47

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

48

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

49

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

50

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

51

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

52

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

53

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

54

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

55

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = I

56

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

57

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

58

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

59

.....

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

60

At each node, the current object-to-world transformation is the

matrix product of all transformations found on the way from the

node to the root.

S = T1R1

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix (Why?)

61

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

62

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

Can you think of a data structure suited for this?

63

Traversal State – Stack

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

• Solution: Keep state variables in a stack

• Push current state when entering node, update current state

• Pop stack when leaving state-changing node

• See what the stack looks like in the previous example!
64

