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METHOD 1:
1a) Draw ‘house’ at origin
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Transformations
are NOT Commutative!
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1a) Copy: new coord system
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2a) Transform new coord sys as

measured from old coord sys
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3a) Draw:in new coord system
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4a) Copy: new coord system
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METHOD 2:
6a) Draw:in new coord system
with unchanged vertex coords
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Transformations
are NOT Commutative!
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METHOD 2:
Transformations
are NOT Commutative!
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1b) Copy: new coord system
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METHOD 2:
Transformations
are NOT Commutative!
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Transformations
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METHOD 1, 2 Inverse?

« Yep, that’s right....

« Method 1:
[M] = [Mnew][MoId]

« Method 2:
[M] = [Mgq][Mpew]



How Can We Organize MANY
Geometric Transformations (T,R,S)
To Build Jointed Objects?

An “s composed of “ hierarchy

| ROBOT - transformation
upper body lower body
stanchion base

head trunk
arms

Answer:

A TREE of TRANSFORMATIONS,
SHAPES, & ATTRIBUTES

An “is-composed-of” hierarchy,
arranged as a DAG (Directed Acyclic Graph)

that performs a ‘coarse-to-fine’ decomposition of a jointed
object made of individual parts, such as this robot...

The completed tree we will devise is called a

“SceneGraph”



Scene Graphs Assembly (1/4)

« A scene graph is a directed acyclic graph (DAG)
that describes a complete 3D scene + cameras

« Examples:
— Open Scene Graph (used in the Cave)
— Sun’s Java3D™
— X3D ™ (VRML ™ was a precursor to X3D)

Typical scene graph node types:

— Object Nodes (cubes, sphere, cone, triangle etc.)
describe re-usable shapes as fixed sets of connected
vertices (default: unit size, centered at origin)

— Drawing Attribute Nodes (Apply a new color, line
width, shading type, texture map, etc.)
Describe how to render the nodes below us...

— Transformation Nodes describe parameterized
T,R,S matrices used to ‘pose’ the nodes below it

— Group Nodes describe collections that share all the
attributes & transforms above it in the scene graph
Helps with ‘instancing’: modified copies of objects



Scene Graph Assembly (2/4)

How to Draw the Robot:

5. To get final scene

N\ \

4. Transform subgroups

3. To make sub-groups Upper body lower body
2. We transform them uln
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1. Leaves of tree are standard size object primitives




Scene Graph Assembly (3/4)

« Group Nodes:

— Defines one shared coordinate system
used by multiple child nodes below

group3...

obj5



Scene Graph Assembly (3/4)

« Group Nodes:

— Defines one shared coordinate system
used by multiple child nodes below

— enables ‘instancing’ - easy object re-use

— Depicts complex graphs in smaller pieces

— EXAMPLE: group3 used three times below:
in the world group, in group2 and in group4

obj5



Scene Graph Assembly (4/4)

« Rendering with WebGL commands:

— Traverse graph from root (top)
to leaf (bottom)
in depth-first order

— Drop into Group Node? Call glPushMatrix()
— Rise above Group Node? Call glPopMatrix().
— Arrive at Object Node? Call it’s ‘drawMe () fcn.

object nodes (geometry)
g transformation nodes
CVV @ oroup nodes

obj5



Scene Graph Duality:

« WebGL commands traverse top->bottom
Vertex coordinates traverse bottom->top

« from memory to screen; through matrices
(GL_MODELVIEW->GL_PROJECTION ->CVV clip
—2>viewport-> display window pixels.

object nodes (geometry)
‘ transformation nodes
CVV @ oroup nodes

obj5



Scene Graph Duality:

« Example:

g: group nodes
m: matrices of transform nodes
0: object nodes

CTM: composed transform. matrix

- for object 01, CTM = [m1]
- for object 02, CTM = [m2][m3]
- for object 03, CTM = [m2][m4][m5]

03

To convert vertex coordinate values v in 03
to its ‘world’ or ‘root’ coordinates values r:

r=[m2][m4][m5]v

To build that matrix in WebGL:
glMatrixMode (GL _MODELVIEW) ;
glLoadInd- 1




