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Abstract

The scene graph, as defined in VRML and Java3D, is a powerful tool for modeling a
scene. The ideas contained in the scene graph are fundamental principlesin modeling.
They give beginning computer graphics students the toolsto understand and apply the
techniques of hierarchical modeling in scene design and can be directly applied to graphics
programming in severa graphics APIs, including OpenGL. This note outlines the
approach to modeling with scene graphs and describes how students in a first computer
graphics course can build their modeling designs with this approach.

Introduction

We define modeling as the process of defining and organizing a set of geometry that
represents a particular scene. While modern graphics APIs can provide students with a
great deal of assistance in rendering their images, modeling is usually supported less well
and causes students difficulty in beginning computer graphics courses. Organizing a scene
with transformations, particularly when that scene involves hierarchies of components and
when some of those components are moving, involves relatively complex concepts that
should be presented to students systematically to make them more understandable.
Hierarchical modeling has long been done—and taught—by using trees or treelike
structures to organize the components of the model. Thiswas done in some presentations
of PHIGS [3] and is presented in textbooks such as [4] and [2]. However, the treatment in
textbooks has been casual and often sketchy, leaving instructors or students to work out the
implementation for themselves.

More recent graphics systems, such as Java3D [6], [5] and VRML 2 [1], have extended the
initial concept of scene graphs in Inventor [7] and other systems, and have formalized the
scene graph as a powerful tool for both modeling scenes and organizing the rendering
process for those scenes. By understanding and adapting the structure of this more
sophisticated scene graph, we can organize a careful and formal tree approach to teaching
both the design and the implementation of hierarchical models. This can give studentstools
to manage not only modeling the geometry of such models, but aso animation and
interactive control of these models and their components.

In this paper we will lay out a graph structure very much like the formal scene graph that
students can use to design a scene and derive the three key transformations that go into
creating a scene. the projection transformation, the viewing transformation, and the
modeling transformation(s) for the scene' s content. This structureis very general and lets
the student manage all the fundamental principlesin defining a scene and trandating it into a
graphics API.

A brief summary of scene graphs

We begin by reviewing the current state of the art in scene graphs based on the
specifications of Java3D [6][5]. The scene graph has many different aspects and can be



complex to understand fully, but it gives us an excellent model of thinking about scenes
that we can use in teaching modeling. A brief outline of the Java3D scene graph in
Figure 1 will give us a basis to discuss the general approach to graph-structured modeling

asit can be applied to teaching.
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Figure 1: the structure of the scene graph as defined in Java3D

A virtual universe holds one or more (usually one) locales, positionsin the universe to put
scene graphs. Scene graphs have two kinds of branches: content branches, containing
shapes, lights, and other content, and view branches, containing viewing information.
This division is somewhat flexible, but we will focus on a standardized approach to give
students a framework to build their work upon.

The content branch is organized as a collection of nodes that contains group nodes,
transform groups, and shape nodes. A group node is a grouping structure that can have
any number of children; besides simply organizing its children, a group can include a
switch that selects which children to present in ascene. A transformgroup is a collection
of standard transformations that define a new coordinate system relative to its parent. The
transformations will be applied to any of the transform group’s children with the
convention that transforms “closer” to the geometry (as defined in shape nodes lower in the
graph) are applied first. A shape node includes both geometry and appearance data for an
individual graphic unit. The geometry dataincludes standard 3D coordinates, normals, and
texture coordinates, and can include points, lines, triangles, and quadrilaterals, as well as
triangle strips and fans and quadrilateral strips. The appearance data includes color,
shading, or texture information. Lights and eye points are included in the content branch as
aparticular kind of geometry, having position, direction, and other appropriate parameters.
Scene graphs also include shared groups, or groups that are included in more than one
branch of the graph. In Java3D these are groups of shapes that are included indirectly
through link leaf nodes, and any change to a shared group affects all references to that
group. This allows scene graphs to include the kind of template-based modeling that is
common in graphics applications.



The view branch of the scene graph includes the specification of the display device, and
thus the projection appropriate for that device. It also specifies the user’s position and
orientation in the scene and includes a wide range of abstractions of the different kinds of
viewing devices that can be used by the viewer. It isintended to permit viewing the same
scene on atraditional computer monitor, on a synchronized stereo screen, with a head-
mounted display unit, or on multi-screen portals such as CAVES, and to support awide
range of positional devices including head tracking. Thisisamuch more sophisticated
approach than we need for the ssmple modeling in a beginning computer graphics course,
where we need only the viewpoint from which the user will view the scene. In our
approach, we consider the eye point as part of the geometry of the scene, so we set the
view by including the eye point in the content branch and extract the transformation
information for the eye point to create the view transformationsin the view branch.

In addition to the modeling aspect of the scene graph, it is also used by the Java3D runtime
system to organize the processing as the scene isrendered. Recalling that the scene graph
IS processed from the bottom up, the content branch is processed first, followed by the
viewing transformation and then the projection transformation. For our purpose below, it
Is productive to think of the viewing transformation as if it were placed at the top of the
content branch with the actua view being simply the default. An explicit feature of
grouping nodes is that the system does not guarantee any particular sequence in processing
the node' s branches. Instead, the system can optimize processing by selecting a processing
order for efficiency, or can distribute the computations over a networked or multiprocessor
system. Thus the programmer must be careful to make no assumptions about the state of
the system when any shape node is processed.

The anaogue of scene graphs for hierarchical design

We propose a graph structure for designing a scene that is organized very closely aong the
lines of the scene graph. The scene graph is avery strong structure and we will useit asa
reference model for design rather than as a strong structure model, but this reference model
will suffice for our teaching purposes. We describe our approach by developing a graph
organization for an example scene. Consider the scene of Figure 2, with a small green
helicopter flying above alandscape, viewed from afixed eye point.

Figure 2: ascene that we will describe with a scene graph



This scene contains two principal objects. ahelicopter and the ground. The helicopter is
made up of a body and two rotors, and the ground is modeled as a single set of geometry
with atexture map. In addition, the scene contains a light and an eye point, both at fixed
locations. Thefirst task in modeling such a scene is now complete: to identify all the parts
of the scene, organize the partsinto a hierarchical set of objects, and put this set of objects
into aviewing context. We must next identify the relationship among these parts so we
may create the tree that represents the scene. Finally, we must put thisinformation into a
graph form.

Theinitial analysis of the scene in Figure 2, organized along the lines of view and content
branches, leads to an initial graph structure shown in Figure 3. The content branch of this
graph captures the organization of the components for the modeling process. This
describes how content is assembled to form the image, and the hierarchical structure of this
branch helps us organize our modeling components. The view branch of this graph
corresponds roughly to projection and viewing. It specifies the projection to be used and
develops the projection transformation, as well as the eye position and orientation to
develop the viewing transformation.
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Figure 3: ascene graph that organizes the modeling of our simple scene

Thisinitial structure is compatible with the approach beginners usually learn in OpenGL,
where the view isimplemented by using the gl uLookAt (. . .) function. This approach
does not extend well to an eye point that is located with respect to moving objects,
however, because it can be difficult to compute the parameters of this function when the
eye point is embedded in the scene and moves with the other content.

Thisinitial scene graph isincomplete because it merely includes the parts of the scene and

describes which parts are associated with what other parts. To expand this to a more

compl ete graph, we must add several things as shown in Figure 4:
the transformation information that describes the relationship among itemsin a group
node, to be applied separately on each branch asindicated,

» the appearance information for each shape node, indi cated by the shaded portion of
those nodes,

» thelight and eye position, either absolute (as shown in Figure 4) or relative to other
components of the model, and

» the specification of the projection and view in the view branch.
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Figure 4: the more complete graph including transformations and appearance

The content branch of this graph handles all the scene modeling and is very much like the
content branch of the scene graph. It includes all the geometry nodes of the graph in
Figure 3 as well as appearance information; includes explicit transformation nodes to place
the geometry into correct sizes, positions, and orientations; includes group nodes to
assembl e content into logical groupings; and includes lights and the eye point, shown here
in fixed positions without excluding the possibility that alight or the eye might be attached
to agroup instead of being positioned independently. In thisexample, it specifies that the
geometry of the rotor shape nodesis shared. This might be implemented, for example, by
defining the geometry of the rotor in afunction that is called from each of the rotor nodes.

The view branch of this graph is similar to the view branch of the Java3D scene graph but
Is treated much more simply, containing only projection and view components. The
projection component includes the definition of the projection (orthogonal or perspective)
for the scene and the definition of the window and viewport for the viewing. The view
component includes the information needed to create the viewing transformation, which is
simply acopy of the set of transformations that position the eye point in the content branch.

The scene graph for a particular image is not unique because there are many ways to
organize ascene. When you have awell-defined transformation for the eye point, you can
take advantage of that information to organize the scene graph in away that can replace the
gl uLookAt () functionality. Thereal effect of gl uLookAt () isto create aviewing
transformation that is the inverse of the transformation that placed the eye. So aswe noted
when we discussed scene graphs initialy, we can compute the inverse transformation
ourselves and place that at the top of the scene graph. Thus we can restructure the scene
graph of Figure 4 as shown in Figure 5 to use any arbitrary eye position. Thisisthe key
point when we want to manage the eyepoint as a dynamic part of a scene.
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Figure 5: the scene graph with the viewing transformation figured in

Because the viewing transformation is performed before the modeling transformations, the
student should be shown that the inverse transformations for the eye are to be applied
before the content branch is analyzed and its operations are placed in the code. This hasthe
effect of moving the eye to the top of the content branch and placing the inverse of the eye
path at the front of each set of transformations for each shape node, and this explanation
may help some students understand the viewing transformation.

It is very important to note that the scene graph need not describe a static geometry. The
graph may be designed to have some components with external control provided by event
callback functions. This can permit a single graph to describe an animated scene or even
alternate views of the scene, as noted in the guidelines later in this paper for writing
modeling code based on the graph.

Aswe said in the introduction, we need to extract three key transformations from this
graph. The projection transformation is simply built from the projection information in the
view branch. The viewing transformation is built from the transformation information in
the view, and the modeling transformations for the various components are built by
working with the various transformations in the content branch as the components are
drawn. These operations are al straightforward; we begin with the viewing transformation
and move on to the modeling transformations.

Theviewing transformation

In a scene graph with no view specified, we assume that the default view puts the eye at the
origin looking in the negative z-direction with the y-axis upward. If we use a set of
transformations to position the eye differently, then the viewing transformation is built by
inverting those transformations to restore the eye to the default position. Thisinversion
takes the sequence of transformations that positioned the eye and inverts the primitive
transformations in reverse order, so if T;T,T3... T istheoriginal transformation sequence,



the inverse is TKU...T3UT2UT1u where the superscript * indicates the transformation
inversion, or “undo” as we might say to a beginning student. Because each of the primitive
scaling, rotation, and translation transformationsis easily inverted, it is simple to present
transformation inversion to students.

Deriving the eye transformations from the tree is straightforward. When the eyeis defined
to be one of the content components of the scene, it can be placed at any position relative to
any other components of the scene. When we do so, we can follow the path from the root
of the content branch to the eye to obtain the sequence of transformations that define the eye
point. That sequence isthe eye transformation.

In Figure 6 we show the change that results in the view of Figure 2 when we define the
eye to be immediately behind the helicopter looking toward it, and in Figure 7 we show the
change in the scene graph of Figure 4 that implements the changed eye point. The eye
transform consists of the transforms that places the helicopter in the scene, followed by the
transforms that place the eye relative to the helicopter. Then as we noted earlier, the
viewing transformation is the inverse of the eye positioning transformation, which in this
case isthe inverse of the transformations that placed the eye relative to the helicopter,
followed by the inverse of the transformations that placed the helicopter in the scene.

Figure 6: the same scene asin Figure 2 but with the eye point following directly behind the
helicopter

This change in the position of the eye means that the set of transformations that lead to the
eye point in the view branch must be changed, but the mechanism of writing the inverse of
these transformationsin the di spl ay() function before beginning to write the definition
of the scene graph still applies; only the actual transformationsto be inverted will change.
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Figure 7: the change in the scene graph of Figure 2 to implement the view in Figure 6

Inverting a Mechanism

Another application of setting a viewpoint in a scene comes from mechanica CAD
(MCAD). A common technique in multi-body animation isto “ground” or freeze one of the
moving bodies and then let the other bodies continue their relative motion with respect to
the frozen body. In this way, the reative relationships among all the bodies are
maintained, but the chosen part is seen as being stationary. This allows a user to zoom in
on one of the bodies and examine its relationship to the universe around it in more detail.
This process is known as “inverting the mechanism,” and it is often desired to let a user
select and freeze a part asthe CAD model is being animated. At the moment of the
selection, the chosen part is now “grounded,” and all other parts of the mechanism are now
moving with respect to the grounded part.

Inverting the mechanism is very similar to the eye placement we discussed in the previous
section. We must identify the transformations that place the part to be grounded, and we
then must invert them so the rest of the mechanism will be seen to move relative to the new
now-grounded part. In order to identify the transformations that placed the part to be fixed,
we must capture the path from the root to that part at the moment of selection in order to
compute the actual transformations for the part at that moment. This essentially means that
an observer sitting on that part now provides the overall scene eye position. Then using the
techniques we developed earlier in order to establish an eye position in a scene graph, we
compute the inverse of the grounded part’ s transformation and place it at the top of the
scene graph. We could call this mechanism an “AimAt” mechanism, because we aim the
view at the part being grounded.

The two parts of Figure 8 show time-exposures of a mechanical four-bar linkage. The left-
hand image image of the figure shows how the mechanism was originally intended to
function, with the bottom piece being grounded. (The position of the corner of the top
pieceistraced out in the figure.) In contrast, the right-hand image in the figure shows the
same mechanism in motion with the top piece grounded.



Figure 8: animated mechanisms with different parts fixed

The moddling transformation

Each shape node is built using whatever geometry is convenient for that part of the model,
and the modeling transformation places that particular geometry appropriately in the scene.
The actual transformation that is applied to each part will vary because of the individual
nature of the particular shape node. In aflat model, each modeling transformation is built
from the simple modeling that instantiates an object in a scene, but in a hierarchical mode,
this transformation is built by composing the transformations that build the successive
levels for the shape node.

The modeling transformation can be managed as it changes throughout the scene graph by
using the concept of a stack of transformations. This concept is built into the OpenGL API
but is straightforward to implement in any graphics system. The code for the sceneis
written by traversing the graph, starting at the root. The modeling transformation must
start with the identity and must be pushed onto the stack whenever the graph traversal goes
downward. As each transformation in the graph is encountered it must be multiplied into
the modeling transformation, and when a shape node is met the modeling transformation
must be applied to all the geometry of the node. Each time the graph traversal goes upward
one level, the modeling transformation must be replaced by the transformation that is
popped from the stack. The contents of the stack at any point are the states of the modeling
transformations at each node from the root to the current position, so it issimpleto explain
to the student why this process works.

Using the scene graph analogue for coding

With this structure in place, the actual use of the scene graph to develop code for asceneis
straightforward. We do not want to use any kind of automatic parsing of the modeling
graph to create the scene, because the scene graph can be used for beginning students who
may not be computer science speciaists and, even if they are, may not yet have the
experience to build agraph traverser. We only use the graph to help organize the structure
and the relationships in the model so that student programmers can organize their code to
implement the kind of dynamic, hierarchical modeling that is very hard to understand
without the graph.

Once the student knows how to organize all the components of the model in the modeling
graph, he or she next needs to write the code to implement the model. This is quite
straightforward, and a simple set of guidelines allows the student to re-write the graph as
code. In these guidelines, we assume that transformations are applied in the reverse of the



order they are declared, as they arein OpenGL, for example. Thisis consistent with most
students’ early experience with tree handling. It is also consistent with the Java3D
convention that transformsthat are “ closer” to the geometry (nested more deeply in the
scene graph) are applied first.

The fundamental components of the scene graph are asfollows:

shape node containing two components
- geometry content

- @ppearance content

transformation node

group node

projection node

view node

The informal re-write guidelines for these components, including the re-writes for the view
branch as well as the content branch, are:

Nodes in the view branch involve only the window, viewport, projection, and
viewing transformations. The window, viewport, and projection are handled by
simple functionsin the API and should be at the top of the display function.
The viewing transformation is built from the transformations of the eye point within
the content branch by copying those transformations and inverting them to place the
eye at the top of the content branch. Because of the simple nature of each
transformation primitive, it is straightforward to invert each as needed to create the
viewing transformation. This sequence should be next in the display function.
The content branch of the modeling graph is usually maintained fully within the
display function, but parts of it may be handled by other functions caled from
within the display, depending on the design of the scene. A function that defines
the geometry of an object may be used by one or more shape nodes. The modeling
may be affected by parameters set by event callbacks, including selections of the
eye point, lights, or objects to be displayed in the view.
Group nodes are points where severa elements are assembled into a single object.
Each separate object is a different branch from the group node. Before writing the
code for a branch that includes a transformation group, the student should push the
modeling transformation onto the transformation stack; when returning from the
branch, the student should pop the transformation stack.
Transformation nodes include the familiar translations, rotations, and scaling that
are used in the norma ways, including any transformations that are part of
animation or user control. In writing code from the modeling graph, students write
the transformations in the same sequence as they appear in the tree, because the
bottom-up nature of the design work corresponds to the last-defined, first-used
order of transformations.

Shape nodes involve both geometry and appearance, and the appearance must be

donefirst because the current appearance is applied when geometry is defined.

- An appearance node can contain texture, color, blending, or materia
information that will make control how the geometry is rendered and thus how
it will appear in the scene.

- A geometry node will contain vertex information, normal information, and
geometry structure information such as strip or fan organization.

Most of the nodes in the content branch can be affected by any interaction or other

event-driven activity. This can be done by defining the content by parameters that

are modified by the event callbacks. These parameters can control location (by
parametrizing rotations or trandlations), size (by parametrizing scaling), appearance

(by parametrizing appearance details), or even content (by parametrizing switchesin

the group nodes).

In the example above, we would use the tree to write code as shown in skeleton form in
Figure 9, which uses some OpenGL-like conventions to express operations. Most of the



details, such as the parameters for the transformations and the details of the appearance of
individual objects, have been omitted, but we have used indentation to show the push/pop
pairs for the modelview matrix and to be able to see the operations between these pairs
easily. Thisisstraightforward for a student to understand and to learn to organize for
himself or herself.

di spl ay()
set the viewport and projection as needed
initialize nodelview matrix to identity
define viewi ng transformati on by undoi ng eye | ocation
set eye through gl uLookAt with default val ues

define light position /'l note absolute |ocation
pushMat ri x() /1 ground

transl ate

rotate

scal e

define ground appearance (texture)
draw ground
popMat ri x()
pushMat ri x() /'l helicopter
transl ate
rotate
scal e
pushMatri x() /1 top rotor
transl ate
rotate
scal e
define top rotor appearance
draw top rotor
popMat ri x()
pushMatri x() /1 back rotor
transl ate
rotate
scal e
define back rotor appearance
draw back rotor
pushMat ri x()
/1 assume no transformation for the body
define body appearance
dr aw body
popMat ri x()
swap buffers

Figure 9: code sketch to implement the modeling in Figure 4

Animation is simple to add to this example. The rotors can be animated by adding an extra
rotation in their definition plane immediately after they are scaled and before the
transformations that orient them to be placed on the helicopter body, and by updating angle
of the extrarotation each time the idle event callback executes. The helicopter’s behavior
itself can be animated by updating the parameters of transformations that are used to
position it, again with the updates coming from the idle callback. The helicopter’s behavior
may be controlled by the user if the positioning transformation parameters are updated by
callbacks of user interaction events. So there are ample opportunities to have this graph
represent a dynamic environment and to include the dynamics in creating the model from
the beginning.

Other variations in this scene could by developed by changing the position of the light from
its current absolute position to a position relative to the ground (by placing the light as a
part of the branch group containing the ground) or to a position relative to the helicopter (by



placing the light as a part of the branch group containing the helicopter). The eye point
could similarly be placed relative to another part of the scene, or either or both could be
placed with transformations that are controlled by user interaction with the interaction event
callbacks setting the transformation parameters.

We emphasize that the student should include appearance content with each shape node.
Many of the appearance parameters involve a saved state in APIs such as OpenGL [8] and
so parameters set for one shape will be retained unless they are re-set for the new shape. It
Is possible to design your scene so that shared appearances will be generated consecutively
in order to increase the efficiency of rendering the scene, but this is a speciaized
organization that is inconsistent with more advanced APIs such as Java3D. Thusin order
to give students the best general background, re-setting the appearance with each shapeis
better than relying on saved state, but students can be given information on state so they
can focus on efficiency if they wish.

Conclusions

The modeling graph presented in this paper is a natural analogue of the VRML or Java3D
scene graph that isitself a development of previous graph-oriented modeling, and we have
shown that it has many applications in modeling outside those original systems. We
believe that the modeling graph can give students assistance in structuring their modeling
that allows them to grasp modeling concepts more easily and to create models that include
both animation and interactive control of their components. This kind of modeling and
control is becoming particularly important as the increasing power of low-cost computers
and the ease of developing graphics applications with APIs such as OpenGL lead to an
increasing study of computer graphics among students outside computer science.
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