
105

 II.10 RENDERING ANTI-ALIASED LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 105

II.10II.10II.10II.10II.10
RRRRRENDERINGENDERINGENDERINGENDERINGENDERINGAAAAANTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINES

Kelvin Thompson Nth Graphics, Ltd.Austin, Texas

ProblemProblemProblemProblemProblem
Render an anti-aliased line segment.

Solution ISolution ISolution ISolution ISolution I
Model the line segment as having a finite thickness and set each pixel’s
intensity according to how much it overlaps the line. We accomplish this
with an extension to the traditional Bresenham line algorithm
(Bresenham,1965). With each iteration, the usual algorithm moves by one
pixel along a major axis and by zero or one pixel along a minor axis (for
example, if the line’s slope is in the range [–1, 1], then the major axis is
X and the minor is Y). To expand the algorithm we add two loops—called
orthogonal loops—in sequence inside the traditional loop. Immediately
after the traditional algorithm chooses the central pixel of the line, the
first orthogonal loop examines adjacent pixels in the positive direction
along the minor axis, then the second orthogonal loop examines adjacent
pixels in the negative direction.

At each pixel (including the central pixel) the algorithm updates a
variable that contains the distance between the center of the pixel and the
middle of the thick line; this distance variable can be used to calculate
(usually via a look-up table) how much the pixel overlaps the thick line.

106

 II.10 RENDERING ANTI-ALIASED LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 106

Also see Gupta and Sproull (1981) for a more detailed description of the
algorithm; “Vertical Distance from a Point to a Line” (in this volume) for
the mapping between the “vertical” and true distances between a point at
a line; “Area of Intersection: Circle and a Thick Line” (in this volume) for
the overlap calculation; and subroutine Anti_Line for example code.

Solution 2Solution 2Solution 2Solution 2Solution 2
Render several slightly offset lines using the traditional Bresenham line
algorithm, but use alpha blending with progressively smaller coverage
values (for example, 1,

1
2
,

1
3
,

1
4
, , . . .; see “Alpha Blending” in this volume).

The lines should all be parallel with slightly different starting positions.
You can change the subpixel starting position in Bresenham’s line algo-
rithm by adding values in the range [0, 2 ⋅ dx] to the initial decision
variable.

See Appendix 2 for C Implementation (690)

Figure 1.

