
ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

24

//ui tools /

Scene Builder is a popular tool that enables developers to
create Java user interfaces (UIs) using an intuitive drag-

and-drop approach. It was initially created and maintained
by Oracle and open-sourced. Since March 2015, Gluon has
distributed the releases of Scene Builder for Mac, Linux, and
Windows systems. In that time, there have been more than
400,000 downloads of the tool. Gluon continues to develop
Scene Builder. In this article, I discuss how to use the tool.
For readers familiar with Scene Builder from the days when
Oracle distributed it, this will serve as both a refresher and
an update.

About Scene Builder

UIs for Java client applications can be created programmati-
cally using JavaFX code, or declaratively, using FXML code.
The declarative approach requires FXML, which is a for-
mat based on XML and well documented by Oracle. While
it is possible to create complete UIs writing directly FXML
code, it is a tedious process. Fortunately, you can design a
UI interactively using Scene Builder, which then translates
your UI into FXML that can be used together with other
JavaFX code.

In practice, many applications contain both JavaFX code
and FXML code. The JavaFX APIs and the FXML constructs are
designed to work together.

How It Works

On the JavaFX code side, the FXMLLoader class loads an FXML
ile from the JAR containing the application ile or from the
classpath:

FXMLLoader.load(getClass().getResource("FXML.fxml"));

The connection between your Java code and the UI elements
that are declared in the FXML ile is made by a controller
class. This is a regular Java class that may contain annota-
tions linking the UI elements to Java classes. This approach
separates the UI declaration from the behavior of the applica-
tion, while still allowing the application to access the UI ele-
ments directly.

The loader will ind the name of the controller class, as
speciied by fx:controller="your.package.name.FXML
Controller" in the FXML ile. Then the loader creates an
instance of that class, in which it tries to inject all the objects
that have an fx:id tag in the FXML ile and are marked with
the @FXML annotation in the controller class. Finally, when the
whole FXML ile has been loaded, the FXMLLoader will call the
controller’s initialize method.

Although the FXML ile can be edited within any IDE as a
regular XML ile, this practice is not recommended, because
the IDE provides only basic syntax checking and autocomple-

JOHAN VOS

PHOTOGRAPH BY

TON HENDRIKS

Scene Builder:
The JavaFX UI Design Tool
The interactive UI design tool originally developed by Oracle continues to
advance in the open source community.

ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

25

//ui tools /

tion but not visual guidance. A better approach is to open the
FXML ile with Scene Builder.

Installing Scene Builder

You can install Scene Builder by downloading it. Make sure to
download the right version for your operating system. Then
follow the platform-speciic instructions for installing it in
the default location, or select a custom location if you are

installing it on Windows. (This is a new feature available in
Scene Builder 8.3.0.) Once you have installed Scene Builder,
open your IDE so you can set its location and you can open
any FXML ile from your IDE:

■■ On NetBeans, select Tools -> Options (or Preferences on
Mac) -> Java -> JavaFX, and click Browse to ind the main
Scene Builder folder.

■■ On IntelliJ, select File -> Settings (or Preferences on Mac)

Figure 1. Adding containers and controls

ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

26

//ui tools /

-> Languages & Frameworks -> JavaFX, and browse for the
application path.

■■ On Eclipse, select Window -> Preferences (or Preferences on
Mac) -> JavaFX, and browse for the application path.

Whenever you have an FXML ile, you will be able to edit it
with Scene Builder simply by right-clicking it and selecting
Open with Scene Builder.

Creating a Basic Interface

You can open an existing FXML ile with Scene Builder, or
you can open the Scene Builder application and create a new
FXML ile.

Creating a UI with Scene Builder is easy. You can drag and
drop containers and controls to your view. Let’s step through
an example.

To begin with, open Scene Builder, and select Start New
Project from the Welcome menu. For mobile projects, a built-
in Gluon Mobile theme is set. If you want to create a regular
JavaFX project, you can do this by selecting the Modena
theme from Preview -> JavaFX theme -> Modena (FX8).

Add a main container for your scene. In this example, I
will add a BorderPane. You can drag a BorderPane from the
Containers left panel to the middle of the screen or to the
hierarchy panel.

In a similar way, you can drag and drop any JavaFX built-
in container or control (see Figure 1, previous page). You can
use the Library Manager to include libraries containing cus-
tom controls. The online documentation can help with any-
thing that’s not intuitive.

A Hierarchy panel is available. It shows the hierarchy
of containers and controls. If you want to use containers
and controls in your Java code, you need to tag them with
fx:id. This can be done in the Code right panel. This fx:id
tag is a very important concept, because it bridges the world
of the designer using Scene Builder with the developer code
in an IDE.

If you want to have interactions between the FXML ile
and your Java code, you need to specify the name of the con-
troller class. This name should be added to the FXML ile in
the Controller panel. You open the Controller panel by click-
ing the widget in the lower left corner.

If you want to access UI elements from your Java code (via
the controller class), you need to make sure the value provided
in the fx:id tag is exactly the same as the value of the @FXML
annotation for the corresponding ield in the controller class.

To make this easier for the developer, and to avoid typos,
Scene Builder can generate a sample controller skeleton for
you. This sample controller is auto-generated Java code that
contains FXML-annotated ields for all UI elements that are
tagged with fx:id.

You can easily copy the diferent nodes to the controller
by selecting View -> Show Sample Controller Skeleton. Click
the Copy button, and on your IDE paste the content into the
controller class.

Typical code will look like Listing 1.

Listing 1. Sample Skeleton

import com.gluonhq.charm.glisten.control.AppBar;

import com.gluonhq.charm.glisten.control.Avatar;

import javafx.fxml.FXML;

import javafx.scene.control.ScrollPane;

import javafx.scene.layout.StackPane;

public class GluonFXMLSampe {

 @FXML

 private AppBar appBar;

 @FXML

 private StackPane stackPane;

 @FXML

ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

27

//ui tools /

 private ScrollPane scrollPane;

 @FXML

 private Avatar avatar;

}

You can easily add CSS to the scene by providing a CSS ile
that can be included using the Stylesheets option in the
Properties panel on the right. You can add inline styling also,
by providing style rules to any node on the scene. You can
apply new or existing style classes to any node as well.

Features related to layout, such as position, dimensions,
margin, padding, and transforms (translation, rotation,

Figure 2. Defining anchor pane constraints in the Layout panel

ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

28

//ui tools /

scaling, and so forth), can be set in the Layout right panel, as
shown in Figure 2.

At any moment, you can preview the created scene by
clicking Preview -> Show Preview in Window. A resizable
dialog box with the designed scene will be shown. By resizing
it, you can make sure every node behaves as expected.

Integrate the Basic Interface in a Java App and Show It

Once the FXML is ready, you can integrate it into your Java
application by calling FXMLLoader to load it. Here’s how:

public class GluonSceneBuilder extends Application {

 @Override

 public void start(Stage stage) throws Exception {

 Parent root = FXMLLoader.load(getClass()

 .getResource("GluonFXML.fxml"));

 Scene scene = new Scene(root);

 stage.setScene(scene);

 stage.show();

 }

}

In the controller class, you can add the required action han-
dlers and the response to the user interaction. You can create
new controls as well, and combine them with those injected
by the FXMLLoader. Notice that for the controls you add pro-
grammatically, you need to create new instances. This is
not needed for controls that are declared in the FXML ile,
because the FXMLLoader already creates them for you. The
code snippet below shows a piece of a controller class that
works with two controls: an HBox control deined in the FXML
ile, and a Label that is not created in the FXML ile. The HBox
instance does not need to be created in the controller class,
but the Label instance does.

@FXML

private HBox hBox;

private Label label;

public void initialize() {

 label = new Label();

 hBox.getChildren().add(label);

 titledPane1.expandedProperty()

 .addListener((obs, ov, nv) -> {

 if (nv) {

 label.setText("TitledPane1");

 }

 });

 . . .

}

In a controller class, you can annotate not only ields repre-
senting controls with the @FXML annotation, but also meth-
ods. As an example, I deine the following event handler in
the controller:

@FXML

void buttonClicked(ActionEvent event) {

 label.setText("Button");

}

This event handler simply sets the text of the Label to
"Button". Because the event handler annotated it with @FXML,
Scene Builder will ind it and can assign it to a corresponding
action for a node.

Integrate the Interface with Your Favorite IDE

Scene Builder is a standalone application. When FXML is
being edited outside Scene Builder (by directly modifying it
in your IDE, for example), Scene Builder reacts to the changes

ORACLE.COM/JAVAMAGAZINE /// MARCH/APRIL 2017

29

//ui tools /

made in the FXML itself or in the CSS iles after those
changes are saved. Scene Builder also manages to ind the
controller and the diferent nodes annotated with @FXML.

If you prefer to use Scene Builder fully integrated with
your preferred IDE, IntelliJ ofers this option by using the ver-
sion of Scene Builder installed in your system. Note that not
all options are supported. For example, there is no support for
menus, and custom controls are not allowed.

For Eclipse, there is no built-in integration, but there is
a Preview option. On Window -> Show View -> Other select
JavaFX -> JavaFX Preview. That option works like the Preview
option on Scene Builder, and you can interact with it. In addi-
tion, by toggling the Load controller button, it applies the
controller and works as if you were running the application
embedded in the Preview panel. However, it doesn’t work
with custom controls.

Community Enhancements in Scene Builder

Although most of the Scene Builder code was contributed by
Oracle, the end product is really a synergy between Oracle
and the JavaFX community. The code for Scene Builder is
now being maintained by Gluon, but it contains contributions

from many individuals and companies in
the JavaFX community.

As a consequence, many major and
minor bug ixes have been applied in Scene
Builder, and new functionality has been
added. As with any open source project,
anyone can report a bug or submit a pull
request with a proposed feature or ix.

Among the most recent improvements
to Scene Builder are that it now works with
an optimized set of imports, and other
new features such as a design-time lag.
The design-time lag allows developers to
provide diferent behavior for their con-

trols during design time. This ability makes it much easier to
work on complex controls, such as controls that at runtime
require connections to external resources and databases that
are not available at design time. One of the most commonly
requested functionalities is better integration with third-
party libraries that are available via public repositories. In
the past, developers had to manually upload those libraries
in Scene Builder. Starting with Gluon Scene Builder 8.2, the
Maven Central repository is fully supported, allowing search-
ing, downloading, and installing for any third-party library
available in Maven Central or even private repositories. You
can access these features by selecting the JAR/FXML Manager
option, as shown in Figure 3.

Scene Builder then inspects those libraries, and the
controls it inds in the libraries are added to the Custom left
panel so they can be easily included in the FXML ile.

Conclusion

Scene Builder is a tool originally developed by Oracle that
enables developers to create UIs using an intuitive drag-and-
drop interface. Thanks to the @FXML annotation and the ability
to assign identiiers and event handlers to controls in Scene
Builder, the worklow between Scene Builder and your JavaFX
application code is easy. </article>

Johan Vos (@johanvos) started working with Java in 1995. He

was part of the Blackdown team, porting Java to Linux. In 2015, he

cofounded Gluon, which enables enterprises to create mobile Java

client applications leveraging their existing back-end infrastruc-

ture. Gluon received a Duke’s Choice Award in 2015. Vos is a Java

Champion and a member of the BeJUG steering group, the Devoxx

steering group, and the JCP. He is the lead author of Pro JavaFX 8

(Apress, 2014).

Figure 3. The JAR/FXML Manager menu

