
 GRAPHICS PROGRAMMING

Section B – Java 2D

20 - Graphics2D: Introduction

21 - Graphics2D: Shapes

22 - Graphics 2D: Coordinates

23 - Graphics 2D: Screen Resolution

24 - Graphics 2D: AffineTransform

25 - Graphics 2D: AffineTransform Rotation

26 - Graphics 2D: GeneralPath

27 - Graphics 2D: Curves

28 - Graphics 2D: General Path Curves

29 - Graphics 2D: Constructive Area Geometry

Gary Hill December 2003 Java 2-D 1 of 1

 GRAPHICS PROGRAMMING

20 Graphics2D: Introduction

Graphics evolved and developed within Java initially through the Abstract Window Toolkit,
which was extended to include swing, shortly followed by Java 2D and then finally Java 3D.

Abstract Window Toolkit

The Abstract Window Toolkit (AWT) which is part of the Java Foundation Classes (JFC)
was developed to support Graphical User Interface (GUI) programming for windows
applications and applets.

A number of graphics and imaging tools, including shape, color, and font classes were also
incorporated.

Swing

Swing which is also part of the Java Foundation Classes (JFC) introduced to further enhance
support for and extend the Graphical User Interface (GUI) components with a pluggable look
and feel (Macintosh, Microsoft, Solaris).

Swing improved numerous AWT components such as Button, Scrollbar, Label, etc. which
became JButton, JScrollbar, JLabel respectively. New components were also introduced
e.g. tree view, list box, and tabbed panes etc.

Java 2D

The Java 2D API is covered in the j2sdk documentation, which should be installed in your
j2sdk directory. The main resources for 2D comprise of Sun's Java Tutorial - Trail:
2DGraphics and the Programmer's Guide to the JavaTM 2D API although it will also be
discussed here. Other tutorials include The Java 2D API from the 1998 Java One conference,
 Java2D: An Introduction and Tutorial, Johns Hopkins University. Also the Sun's Java 2D
API FAQ's.

The key packages for enabling graphics (including line drawing, text and images) are from
the Abstract Windows Toolkit (awt) package:

• java.awt.image
• java.awt.color
• java.awt.font
• java.awt.geom
• java.awt.print
• java.awt.image.renderable

To be able to draw/render onto components, an application will use the Graphics Class, for
all graphics contexts. To enable this the paint() method is called by Java when an application
needs to draw/render itself to the screen. The paint() method has one parameter/argument, a
Graphics object (sometimes called a graphics context) that is defined by the Graphics class,
imported from java.awt.Graphics.

Gary Hill December 2003 Java 2-D 2 of 2

http://java.sun.com/j2se/1.4.2/docs/guide/2d/index.html
http://java.sun.com/docs/books/tutorial/2d/index.html
http://java.sun.com/docs/books/tutorial/2d/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/2d/spec/j2d-bookTOC.html
http://java.sun.com/javaone/javaone98/sessions/T311/index.htm
http://www.apl.jhu.edu/%7Ehall/java/Java2D-Tutorial.html
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html
http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html

 GRAPHICS PROGRAMMING

Graphics methods for drawing geometric primatives

• draw3DRect()
• drawArc()
• drawLine()
• drawOval()
• drawPolygon()
• drawPolyline()
• drawRect()
• drawRoundRect()
• drawString()

draw3DRect(int x, int y, int width, int height, boolean raised)
drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
drawLine(int x1, int y1, int x2, int y2)
drawOval(int x, int y, int width, int height)
drawPolygon(int[] xPoints, int[] yPoints, int nPoints)
drawPolyline(int[] xPoints, int[] yPoints, int nPoints)
drawRect(int x, int y, int width, int height)
drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight)
drawString(String str, int x, int y)

The Graphics2D class extends the Graphics class enabling greater functionality for
geometry, coordinate transformations, colour management and text layout.

java.lang.Object
 |
 +--java.awt.Graphics
 |
 +--java.awt.Graphics2D

The Graphics2D class inherits from the Graphics class and in a java program the Graphics
object is cast to a Graphics2D object as follows:

paint(Graphics g)
{
 Graphics2D g2D = (Graphics2D) g;

Gary Hill December 2003 Java 2-D 3 of 3

 GRAPHICS PROGRAMMING

21 Graphics2D: Shapes

The key classes that enable the drawing/rendering of shapes are contained within in the
java.awt.geom package as follows:

• Arc2D
• Area
• CubicCurve2D
• Dimension2D
• Ellipse2D
• GeneralPath
• Line2D
• Point2D
• QuadCurve2D
• Rectangle2D
• RectangularShape
• RoundRectangle2D

These classes allow the creation of most geometric shapes, which can then be
drawn/rendered using Graphics2D by calling the draw()/ fill() methods. Java 2D allows the
specifcation of coordinates using floating-point numbers and supports integer, double, and
floating arithmetic in many places.

The example below (and subsequent exercises) will illustrate the use of some of classes
available i.e. Ellipse2D, Line2D, Point2D, Rectangle2D.

Gary Hill December 2003 Java 2-D 4 of 4

 GRAPHICS PROGRAMMING

Example 2D.1a: 2D circle & square.

Draw and label a circle and square to look like the one below using the Graphics drawX()
methods, attempt to use similar screen positioning.

Hint: The objects circle and square do not exist in java, but ellipse and rectangle do!

Gary Hill December 2003 Java 2-D 5 of 5

 GRAPHICS PROGRAMMING

Figure 2D.1: 2D circle & square.

Example 2D.1b: 2D circle & square.

Adapt 1a above, to draw and label a circle and square using the Graphics2D draw() method,
use the java.awt.geom.* shapes. java.awt.geom.* will also need to be imported.

Example 2D.1c: 2D java.awt.geom.*.

Use the Graphics2D draw() & fill() methods on some of the remaining java.awt.geom.*
shapes.

Example 2D.2: 2D squares within a square.

Using Line2D.Float and Point2D.Float, draw a series of 7 squares within a square to look
like the one below.

Each of the squares should be drawn from the mid point of the side of the previous square.

The original co-ordinates for rectangle should be (50.0F, 50.0F) (150.0F, 50.0F) (150.0F,
50.0F) (50.0F, 150.0F).

Use System.out.println to check the calculations for the new points, similar to:

Point 0 x1 50.0 x2 150.0 Xmidpoint 100.0 Y1 50.0 Y2 50.0 Ymidpoint 50.0
Point 1 x1 150.0 x2 150.0 Xmidpoint 150.0 Y1 50.0 Y2 150.0 Ymidpoint 100.0
Point 2 x1 150.0 x2 50.0 Xmidpoint 100.0 Y1 150.0 Y2 150.0 Ymidpoint 150.0
Point 3 x1 50.0 x2 100.0 Xmidpoint 75.0 Y1 150.0 Y2 50.0 Ymidpoint 100.0

New Point 0 Xmidpoint 100.0 Ymidpoint 50.0

Gary Hill December 2003 Java 2-D 6 of 6

 GRAPHICS PROGRAMMING

New Point 1 Xmidpoint 150.0 Ymidpoint 100.0
New Point 2 Xmidpoint 100.0 Ymidpoint 150.0
New Point 3 Xmidpoint 75.0 Ymidpoint 100.0

Hint: Methods that will be needed include setLine(), setLocation() for Line2D and
getX()/getY() for Point2D. A 'midPoints' function should be used to determine the mid-
point co-ordinate of each side. The function will be used recursively for the 7 iterations.

Figure 2D.2: 2D squares within a square.

Example 2D.3: Triangles within a triangle

Adapt the application developed in Exercise 2 above to draw a series of 4 triangles within a
triangle to look like the one below.

Each of the triangle should be drawn from the mid point of the side of the previous triangle.

The original co-ordinates for triangle should be (50.0F, 50.0F) (250.0F, 50.0F) (150.0F,
250.0F).

Gary Hill December 2003 Java 2-D 7 of 7

 GRAPHICS PROGRAMMING

Figure 2D.3: 2D Triangles wiithin a triangle.

Gary Hill December 2003 Java 2-D 8 of 8

 GRAPHICS PROGRAMMING

22 Graphics 2D: Coordinates

There are two coordinate spaces used in java graphics. These are Device Coordinate Space
and User Coordinate Space.

Device Space and User Space coordinate systems are initially the same, with the origin (x=0,
y=0) in the top-left corner of the screen.

(javaworld (1998))
The coordinates are represented by whole (integer) pixels where a positive x value is to the
right of the origin and a positive y value is moves down.

The range of x and y available will depend on the resolution of the screen being used. Most
commonly this will be 1024 * 768 pixels.

The Device Space is that area of the screen onto which the graphics will be rendered on the
screen. Whereas, UserSpace can be modified by a transform and/or a rotation (see
AffineTransforms later).

(javaworld (1998))

Example 2D.4: Squares within a square (variation).

Adapt the application developed in Exercise 2 above to draw a series of 30 squares within a
square to look like the one below.

Gary Hill December 2003 Java 2-D 9 of 9

 GRAPHICS PROGRAMMING

Each of the square should be drawn offset from the previous square.

The initial square should be 200 by 200.

Hint: If the coordinate of a vertex a (say the top left hand corner) is (aX, aY) the new vertex
(a1X, a1Y) to create the next square would be as follows:
 a1X = ((1- u) * aX) + (u*bX)
 a1Y = ((1- u) * aY) + (u*bY)
Where b is the vertex for the top right hand corner. Try u = 0.1.

Figure 2D.4: 2D Squares wiithin a square.

Example 2D.5: Triangles within a triangle (variation).

Adapt the application developed in Exercise 3 above to draw a series of 30 triangles within a
triangle to look like the one below.

Each of the triangle should be drawn offset from the previous square.

The initial triangle should have sides of 200.

Hint: If the coordinate of a vertex a (say the top center corner) is (aX, aY) the new vertex
(a1X, a1Y) to create the next triangle would be as follows:
 a1X = (p * aX) + (q * bX)
 a1Y = (p * aY) + (q * bY)
Where b is the vertex for the bottom right hand corner. Try q = 0.05F & p = 1-q.

Gary Hill December 2003 Java 2-D 10 of 10

 GRAPHICS PROGRAMMING

Figure 2D.5: 2D Triangles wiithin a triangle.

Gary Hill December 2003 Java 2-D 11 of 11

 GRAPHICS PROGRAMMING

23 Graphics 2D: Screen Resolution

Screen resolutions can vary alot from 640x480, 800x600, 1024x768, 1280x1024 to
1600x1200. The most common being 1024 pixels in the x-axis and 768 pixels in the y-axis.
The screen resolution will obviously affect, not only the quality of graphics
displayed/rendered, but the size.

In the GraphicsJFrame.java application the default screen size was set and checked to make
sure it was not too large. The JFrame was then centered as follows:

 setSize(500, 350); //set default size of JFrame to width=500
height=350
 //Center the window
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = getSize(); //set above as 500 * 350
 if (frameSize.height > screenSize.height) //if the frame height set is
too big
 {
 frameSize.height = screenSize.height; //set frame size to the
screen size
 }
 if (frameSize.width > screenSize.width)
 {
 frameSize.width = screenSize.width;
 }
 setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);
 setVisible(true); //display the JFrame

In some application it may be preferable to set the JFrame to the maximum size. This is
possible by using the setBounds or setSize methods.
 //determine screen resolution and set to full size
 Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();
 setBounds(0, 0, screenSize.width, screenSize.height);
 //setSize(screenSize.width, screenSize.height); //setSize will
also work
 setVisible(true); //display the JFrame

Most of the methods used here are inherited from class java.awt.Component i.e. setSize,
setLocation, setVisible, setBounds. The class java.awt.Dimension uses the abstract class
Toolkit to access the sceen size via its' methods i.e. getDefaultToolkit, getScreenSize etc.

Full-Screen Exclusive Mode API

It is possible to develop full screen applications where it is possible to suspend the
windowing system (JFrame and the usual GUI components i.e. Buttons, MenuBar) so that
drawing can be done directly to the screen. This has benefits in games programming where
the player may feel completely immersed in the game. Additionally, a full-screen exclusive
application is able to control the bit depth and size (display mode) of the screen (not be
limited to the users choice).

Gary Hill December 2003 Java 2-D 12 of 12

 GRAPHICS PROGRAMMING

To find out more, see the Sun Java Tutorial, Trail: Bonus; Lesson: Full-Screen Exclusive
Mode API (in particular DisplayModeTest.java) and Brackeen (2003).

Example 2D.4: 2D circle within a square.

Draw a circle within a square, where the centre of the circle and square are at the centre of
the screen. The side lengths of the square and the diameter of the circle should equal half the
screen height. The finished program should look like the one below.

Figure 2D.4: Circle within a Square using the Dimension class.

Gary Hill December 2003 Java 2-D 13 of 13

http://java.sun.com/docs/books/tutorial/extra/fullscreen/exclusivemode.html
http://java.sun.com/docs/books/tutorial/extra/fullscreen/exclusivemode.html

 GRAPHICS PROGRAMMING

Example 2D.5-2D: 2D Drawing grid with coloured rectangles.

Draw a grid of 10 pixels by 10 pixels onto the 'DrawingArea' making use of the Dimension
class. Then place 3 coloured rectangles (180 * 90) with the top left hand corner of the green
rectangle at 100, 50.

Figure 2D.5: 2D drawing grid with coloured rectangles.

Gary Hill December 2003 Java 2-D 14 of 14

 GRAPHICS PROGRAMMING

24 Graphics 2D: AffineTransform

AffineTransform are briefly covered in Sun's Java Tutorial - Trail: 2DGraphics, Lesson:
Displaying Graphics with Graphics2D: Transforming Shapes, Text and Images, although
AffineTransform will also be discussed here. The AffineTransform class comes from the
java.awt.geom package, so remember to to import this package at the start of your code (
import java.awt.geom.*;)

AffineTransform manipulates graphics within the 'User Space' before finally rendering the
tranformed graphic to the 'Device Space'.

AffineTransform offers the ability to translate, rotate, scale, shear or perform a
combination (concatenate) of these manipulations on graphics.

• translate: specify a translation offset in the x and y directions
• rotate: specify an angle of rotation in radians
• scale: specify a scaling factor in the x and y directions
• shear: specify a shearing factor in the x and y directions (parallel lines remain

parallel).

To use AffineTransform an instance must be created, then the various methods of
setToRotation, setToTranslation etc. are invoked first before the transform method
invokes the transformation, for example:

 AffineTransform at = new AffineTransform();//create (instantiate) a transform object
(instance) at
 at.setToRotation(-Math.PI/2.0); //invoke the setToRotation method on at
 g2d.transform(at); //invoke the transform method to finish carry-
out the transformation.

 AffineTransform at = new AffineTransform(); //create (instantiate) a transform object
(instance) at
 at.setToTranslation(25.0, 25.0); //invoke the setToTranslation method on at
 at.transform(p,0,p,0,5); //invoke the transform method to finish carry-
out the transformation.

AffineTranform methods

setToTranslation , translate

setToTranslation and translate takes 2 arguments the translation (offset) for all x co-
ordinates and the corresponding translation for all y co-ordinates.
setToTranslation(double translateX, double translateY)

setToRotation, rotate

setToRotation and rotate takes 1 or 3 arguments. The angle of rotation in radians (theta) is
the first argument and the centre of rotation (the x and y co-ordinate about which rotation is

Gary Hill December 2003 Java 2-D 15 of 15

http://java.sun.com/docs/books/tutorial/2d/display/transforming.html

 GRAPHICS PROGRAMMING

to take place) as follows:
setToRotation(double theta) or setToRotation(double theta, double x, double y)

setToScale, scale

setToScale and scale take arguments
setToScale(double scaleX, double scaleY)

setToShear, shear

setToShear and shear take arguments
setToShear(double shearX, double shearY)

setTransform, transform

setTransform and transform take 1 or 5 arguments. The 1 arguments, and default, would
be the AffineTransform object itself i.e. transform(AffineTransform at); The 5 argument
method take the following:

• double array of original/source points (x,y) to be transformed
• integer of source off, the offset to the first point to be transformed in the source array,

usually zero.
• double array of new/destination transformed points
• integer of destination off, the offset to the location of the first transformed point that

is stored in the destination array, usually zero.
• integer number of points (x,y) in the array

Combining AffineTransform

To combine (concatenate) more than one AffineTransform use the non-set methods
(translate, rotate, scale, shear) followed by transform. The reason for this is that the
AffineTransform methods beginning with 'set' clear any previous AffineTransform. If only
one transform is being undertaken it is safest to use 'set' (also use 'set' for the first
AffineTransform of a series).

Beware, it is advisable, never to use setTransform to concatenate a coordinate transform onto
an existing transform. The setTransform method overwrites the Graphics2D object's current
transform, which might be needed for other reasons, such as positioning Swing and
lightweight components in a window (See Transforming Shapes, Text and Images).

Rotation

Degrees and radians. When working with graphics objects, angles are often used. Whether
for rotation of an object or the angle of a line.

Radians are used within java and it is useful to know how to covert from, the more familiar,
degrees to radians.
360 degrees = 2 PI radians, therefore 180 degrees = 1 PI radians, 90 degrees = PI/2 radians
etc.

Gary Hill December 2003 Java 2-D 16 of 16

http://java.sun.com/docs/books/tutorial/2d/display/transforming.html

 GRAPHICS PROGRAMMING

(Note: Alternatively, 1 degree = 0.01745 radians. Therefore 30 degrees = 30*0.01745F. This
will not be as acurate as using Math.PI/6.0)

Whilst it is possible to carry out your own conversions from degrees to radians (radians =
Math.PI/180*degrees) and vice versa, java includes two conversion methods within
java.awt.geom.ARC. Using a known relationship from above we could convert angles as
follows:

 double radians = java.awt.geom.ARC.toRadians(90.0);

and

 double degrees = java.awt.geom.ARC.toDegrees(Math.PI / 2.0);

A clockwise rotation of 90 degress would be positive (Math.PI/2.0) and a corresponding anti-
clockwise rotation would be negative (-(Math.PI/2.0)).

Degrees Radians
360 2 PI
270 2PI/3.0
180 PI
90 PI/2.0
60 PI/3.0
45 PI/4.0
30 PI/6.0
1 0.01745F

Table 2D.1: Radian to degree conversion.

Example 1: drawline used to draw shape and position on screen - simple offset

To conduct a transformation a simple shape is needed. This example creates a simple arrow-
type shape, using 4 lines with the following co-ordinates starting at (0.0,0.0), (-10.0,10.0),
(0.0,-15.0), (10.0,10.0) and closing at (0.0,0.0).

The shape is then translated/offset from the origin using a simple addition to its original line
co-ordinates. The translation is needed because 0, 0 is the centre of the shape. A more
appropriate way of producing this shape would use GeneralPath. See later.

Gary Hill December 2003 Java 2-D 17 of 17

 GRAPHICS PROGRAMMING

Example 2a: drawline used to draw shape and position on screen - AffineTransform
offset/translation

Gary Hill December 2003 Java 2-D 18 of 18

 GRAPHICS PROGRAMMING

The same drawing would be achieved using the code below, only an AffineTransform using
the setToTranslataion and transform methods are used. Notice, also, that the co-ordinates are
now given as a single array of type double.

Example 2b: Rectangle2D used to draw a rectangle - AffineTransform
offset/translation

By creating an AffineTransform and then using the setToTranslataion and transform methods
the same type of translation can be achieved. Notice that the co-ordinates for (x, y) are given
as the centroid of the shape, therefore the translation is about the centroid of the shape. This
is useful in most rendering/drawing situations. The use of a grid (shown in green) illustrates
that the 'user space' has been translated, not just the rectangle. The use of a grid can be very
helpful when rendering and debugging transformations.

Gary Hill December 2003 Java 2-D 19 of 19

 GRAPHICS PROGRAMMING

A 45 degree positive rotation would give the following:

Gary Hill December 2003 Java 2-D 20 of 20

 GRAPHICS PROGRAMMING

Attempt the following exercises:

Example 3a: AffineTransform move shape down and right

Offset the initial shape as before, then draw two others shapes that are down and to the right
as below.

Example 3b: AffineTransform move shape down and right

Now use the Rectangle2D from 2b.

Gary Hill December 2003 Java 2-D 21 of 21

 GRAPHICS PROGRAMMING

Example 4: AffineTransform move shape down, right and rotate

Attempt to offset the initial shape as before (by 75, 25 pixels) then draw/render the shape.
Next attempt to rotate the shape through 45 degrees clockwise about it axis at the same
position. It is likely that the following will happen:

The desired outcomes is as follows:

Gary Hill December 2003 Java 2-D 22 of 22

 GRAPHICS PROGRAMMING

25 Graphics 2D: AffineTransform Rotation

AffineTransform Examples Continued

To rotate the shape about the origin requires an initial translate (setToTranslation) of the
shape from the origin, then rotate the shape by the required amount (rotate 90 degrees or PI/2
clockwise in this case) then finally carry-out the tranformation (transform). Next the shape
(in its translated and rotated form) is again rotated anticlockwise (setToRotation) drawn and
transformed, drawn and transformed etc. to give the desired circular rotation. See the
example below and corresponding code.

Gary Hill December 2003 Java 2-D 23 of 23

 GRAPHICS PROGRAMMING

Example 5: AffineTransform rotation about any point.

Attempt to emulate the figure below, by rotating the arrow through 90 degrees as before, but
then rotate about an axis other than the origin.

Hint: setToRotation and rotate take 1 or 3 arguments. The angle of rotation in radians (theta)
is the first argument and the centre of rotation (the x and y co-ordinate about which rotation
is to take place) as follows:
setToRotation(double theta) or setToRotation(double theta,double x, double y).

Gary Hill December 2003 Java 2-D 24 of 24

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 25 of 25

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 26 of 26

 GRAPHICS PROGRAMMING

26 Graphics 2D: GeneralPath

Whilst java includes a number of default shapes: rectangles; polygons; 2D lines etc. The
most versitile shape/class available within the java.awt.geom package is GeneralPath
(java.awt.geom.GeneralPath).

GeneralPath has the flexibility to enable the description of a path with any number of edges
to create a complex/non-default shape. The edges can comprise of straight lines, and
quadratic and cubic (Bézier) curves.

To use GeneralPath an instance must be created, then the various methods e.g. moveTo,
lineTo, closePath are invoked before the object is drawn/rendered.

Example GP1: Shape using GeneralPath

To demonstrate the drawing/rendering of a shape using GeneralPath the arrow, previously
used, is created using a new method of GeneralPath class called getShape().

Gary Hill December 2003 Java 2-D 27 of 27

 GRAPHICS PROGRAMMING

GeneralPath Winding Rules

The two parameters of (static int) GeneralPath.WIND_EVEN_ODD or
GeneralPath.WIND_NON_ZERO can be passed into the GeneralPath() constructor.
These parameters represents the winding rules that tells the renderer how to determine the
inside of the shape specified by the path. For standard polygons and other simple shapes the
winding rules will give the same result, but with complex shapes the way that interior and
exterior regions are determined can be different.

An WIND_EVEN_ODD winding rule means that if a drawn shape overlaps/covers a region
of the shape an odd number of times the region will be filled (relates to the number of times
the path lines cross). If the regions overlap an even number of times they will not be filled.

A WIND_NON_ZERO winding rule means that enclosed regions within a shape are filled.
This is the default rule if one is not specified.

The above definitions may still seem confusing, but the two figures below show (from left to
right) a shape drawn as an outline, next using the WIND_NON_ZERO/default rule and
finally, the WIND_EVEN_RULE. These figures illustrate the differences in the two rules.
The winding rule of the GenerPath can be altered using setWindingRule e.g.
gPath.setWindingRule(GeneralPath.WIND_EVEN_ODD);

Gary Hill December 2003 Java 2-D 28 of 28

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 29 of 29

 GRAPHICS PROGRAMMING

27 Graphics 2D: Curves

Curves are used in mathematics and computer graphics to approximate complex shapes using
a finite number of mathematical points. Java 2D supports first, second and third order
curves. The curves can be drawn with two end points and zero, one or two control points.
zero control points are required for a straight line, one control point for a quadratic (second-
order) and, finally, two control points for a cubic (third-order) Bezier curves.

When drawn/rendered the curves are pulled out toward the control point. If the control point
is further away from the endpoint, the curve is pulled further toward the endpoint.
Mathematically, the tangent of the curve at each endpoint is determined by a line drawn from
the control point to the endpoint.

Figure 2D.20: quadratic (second-order) curve (Sun)

Figure 2D.21: cubic (third-order) curve (Sun)

Bezier curves are a type of parametric polynomial curve that have some very desirable
properties related to computation of closed curves and surfaces.

QuadCurve2D and CubicCurve2D

This section will consider the two of classes contained within in the java.awt.geom package
for drawing curves:

• QuadCurve2D
• CubicCurve2D

QuadCurve2D

The class QuadCurve2D and its associated subclasses QuadCurve2D.Double,
QuadCurve2D.Float are used to define a quadratic parametric curve segment in (x, y)
coordinate space.

Gary Hill December 2003 Java 2-D 30 of 30

http://java.sun.com/docs/books/tutorial/2d/overview/shapes.html
http://java.sun.com/docs/books/tutorial/2d/overview/shapes.html

 GRAPHICS PROGRAMMING

The constructors for QuadCurve2D.Float and QuadCurve2D.Double take the following
form:

• QuadCurve2D.Float(float x1, float y1, float ctrlx, float ctrly, float x2, float y2)
• QuadCurve2D.Double(double x1, double y1, double ctrlx, double ctrly, double x2,

double y2)

Where (x1, y1) and (x2, y2) are the two end points and (ctrlx, ctrly) is the one control points.

Example QC1: Four Quadratic Curves using QuadCurve2D

To demonstrate the drawing/rendering of quadratic curves the following snippet of code is
used.

Gary Hill December 2003 Java 2-D 31 of 31

 GRAPHICS PROGRAMMING

Figure 2D.22: QuadCurve2D (second-order) curve application

The remaining code is shown below:

Gary Hill December 2003 Java 2-D 32 of 32

 GRAPHICS PROGRAMMING

CubicCurve2D

The class CubicCurve2D and its associated subclasses
CubicCurve2D.Double, CubicCurve2D.Float are used to define a cubic parametric curve
segment in (x, y) coordinate space.

The constructors for CubicCurve2D.Float and CubicCurve2D.Double take the following
form:

• CubicCurve2D.Float(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float
ctrly2, float x2, float y2)

• CubicCurve2D.Double(double x1, double y1, double ctrlx1, double ctrly1, double
ctrlx2, double ctrly2, double x2, double y2)

Gary Hill December 2003 Java 2-D 33 of 33

 GRAPHICS PROGRAMMING

Where (x1, y1) and (x2, y2) are the two end points and (ctrlx1, ctrly1) and (ctrlx2, ctrly2) are
the two control points.

Example CC1: Four Cubic Curves using CubicCurve2D

To demonstrate the drawing/rendering of cubic curves the following snippet of code is used.

Gary Hill December 2003 Java 2-D 34 of 34

 GRAPHICS PROGRAMMING

Figure 2D.23: CubicCurve2D (third-order) curve application

The remaining code is shown below:

Gary Hill December 2003 Java 2-D 35 of 35

 GRAPHICS PROGRAMMING

28 Graphics 2D: General Path Curves

This section will consider the two of methods available within in the GeneralPath class for
drawing curves:

• quadTo()
• curveTo()

Previously the .moveTo();, .lineTo(); and .closePath(); methods of GeneralPath were
introduced:

• moveTo() for start position of a path (start coordinates required)
• lineTo() for straight line (end coordinates required)
• closePath() close the subpath (no coordinates required as it closes the path to the

previous moveTo coordinates)

Now for curves:

• quadTo() for second-order quadratic curve (one control coordinate and end
coordinates)

• curveTo() for third-ordered cubic Bezier curve (two control coordinates and end
coordinates)

The methods quadTo() and curveTo() take the following form:

• quadTo(float ctrlx, float ctrly, float x2, float y2)

quadTo adds a curved segment, defined by two new points, to the path by drawing a
Quadratic (second order) curve that intersects
both the current coordinates and the coordinates (x2, y2), using the specified point (ctrlx,
ctrly) as a quadratic parametric control point.

• curveTo(float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2)

curveTo adds a curved segment, defined by three new points, to the path by drawing a Cubic
(Bézier / third order) curve that intersects both the current coordinates and the coordinates
(x2, y2), using the specified points (ctrlx1, ctrly1) and (ctrlx2, ctrly2) as Cubic / Bézier
control points.

Example QTCT1: quadTo and cubeTo Curves

To demonstrate the drawing/rendering of quadratic and cubic curves the following snippet of
code is used.

Gary Hill December 2003 Java 2-D 36 of 36

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 37 of 37

 GRAPHICS PROGRAMMING

Figure 2D.24: quadTo (second-order) & cubeTo (third-order) curve application

The code above is verbose, to assist with the understanding of the quadTo and cubeTo
methods. Concise code demonstrating the above shape can be seen below:

class DrawingArea extends JPanel
{
 public void paint(Graphics g)
 {
 Graphics2D g2d = (Graphics2D)g;
 GeneralPath gPath = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
 gPath.moveTo(0.0f, 0.0f);
 gPath.lineTo(0.0f, 125.0f);
 gPath.quadTo(100.0f, 100.0f, 225.0f, 125.0f);
 gPath.curveTo(230.0f, 100.0f, 130.0f, 50.0f, 225.0f, 0.0f);
 gPath.closePath();

 AffineTransform at = new AffineTransform();
 at.setToTranslation(100.0f, 50.0f);
 g2d.transform(at);
 g2d.setColor(Color.blue);
 g2d.fill(gPath);
 }
}

Gary Hill December 2003 Java 2-D 38 of 38

 GRAPHICS PROGRAMMING

29 Graphics 2D: Constructive Area Geometry

Constructive Area Geometry (CAG) is briefly covered in Sun's Java Tutorial - Trail:
2DGraphics, Lesson: Displaying Graphics with Graphics2D: Constructing Complex Shapes
from Geometry Primitives, although CAG will briefly be discussed here.

Constructive area geometry (CAG) enables the creation of complex geometric shapes by
performing boolean operations on standard shapes (e.g. rectangles, ellipses, and polygons).
The Shape that supports boolean operations is Area from the java.awt.geom package.

The Area class enables the CAG operations of add (union), subtract, intersect and
exclusiveOr. First the shape objects need to be created, then the Area constructor is used to
create an Area instance for each shape i.e:

 Ellipse2D shape1 = new Ellipse2D.Float(30f, 0f, 60f, 60f);
 circle = new Area(shape1); // Area circle previously declared

 Ellipse2D shape2 = new Ellipse2D.Float(0f, 20f, 120f, 20f);
 ellipse = new Area(shape2); // Area ellipse previously declared

The concept of CAG is best illustrated by the following example.

Example CAG1: add, subtract, intersect and exclusiveOr: ellipse with circle

To demonstrate the drawing/rendering of CAG shapes the following code is used.

Gary Hill December 2003 Java 2-D 39 of 39

http://java.sun.com/docs/books/tutorial/2d/display/complexshapes.html
http://java.sun.com/docs/books/tutorial/2d/display/complexshapes.html

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 40 of 40

 GRAPHICS PROGRAMMING

Gary Hill December 2003 Java 2-D 41 of 41

 GRAPHICS PROGRAMMING

Figure 2D.25: Constructive Area Geometry application (add, subtract, intersect &
exclusiveOr)

Gary Hill December 2003 Java 2-D 42 of 42

	Section B – Java 2D
	20 - Graphics2D: Introduction
	21 - Graphics2D: Shapes
	22 - Graphics 2D: Coordinates
	23 - Graphics 2D: Screen Resolution
	24 - Graphics 2D: AffineTransform
	25 - Graphics 2D: AffineTransform Rotation
	26 - Graphics 2D: GeneralPath
	27 - Graphics 2D: Curves
	28 - Graphics 2D: General Path Curves
	29 - Graphics 2D: Constructive Area Geometry

	20 Graphics2D: Introduction
	Abstract Window Toolkit
	Swing
	Java 2D

	21 Graphics2D: Shapes
	Example 2D.1a: 2D circle & square.
	Example 2D.1b: 2D circle & square.
	Example 2D.1c: 2D java.awt.geom.*.
	Example 2D.2: 2D squares within a square.
	Example 2D.3: Triangles within a triangle

	22 Graphics 2D: Coordinates
	Example 2D.4: Squares within a square (variation).
	Example 2D.5: Triangles within a triangle (variation).

	23 Graphics 2D: Screen Resolution
	Full-Screen Exclusive Mode API
	Example 2D.4: 2D circle within a square.
	Example 2D.5-2D: 2D Drawing grid with coloured rectangles.

	24 Graphics 2D: AffineTransform
	AffineTranform methods
	setToTranslation , translate
	setToRotation, rotate
	setToScale, scale
	setToShear, shear
	setTransform, transform
	Combining AffineTransform
	Rotation
	Example 1: drawline used to draw shape and position on scree
	Example 2a: drawline used to draw shape and position on scre
	Example 2b: Rectangle2D used to draw a rectangle - AffineTra
	Attempt the following exercises:
	Example 3a: AffineTransform move shape down and right
	Example 3b: AffineTransform move shape down and right
	Example 4: AffineTransform move shape down, right and rotate

	25 Graphics 2D: AffineTransform Rotation
	AffineTransform Examples Continued
	Example 5: AffineTransform rotation about any point.

	26 Graphics 2D: GeneralPath
	Example GP1: Shape using GeneralPath

	GeneralPath Winding Rules
	27 Graphics 2D: Curves
	QuadCurve2D and CubicCurve2D
	QuadCurve2D
	Example QC1: Four Quadratic Curves using QuadCurve2D
	CubicCurve2D
	Example CC1: Four Cubic Curves using CubicCurve2D

	28 Graphics 2D: General Path Curves
	Example QTCT1: quadTo and cubeTo Curves

	29 Graphics 2D: Constructive Area Geometry
	Example CAG1: add, subtract, intersect and exclusiveOr: elli

