
JAVA 2D
Objectives
■ To obtain a Graphics2D object for rendering Java 2D shapes (§44.2).

■ To use geometric models to separate modeling of shapes from rendering (§44.3).

■ To know the hierarchy of shapes (§44.3).

■ To model lines, rectangles, ellipses, arcs using Line2D, Rectangle2D,
RoundRectangle2D, Ellipse2D, and Arc2D (§44.4).

■ To perform coordinate transformation using the translate,
rotate, and scale methods (§44.5).

■ To specify the attributes of lines using
the BasicStroke class (§44.6).

■ To define a varying color using GradientPaint and
define an image paint using TexturePaint (§44.7).

■ To model quadratic curves and cubic curves using
the QuadCurve2D and CubicCurve2D classes (§44.8).

■ To model an arbitrary geometric path using Path2D and to
define interior points using the WIND_EVEN_ODD
and WIND_NON_ZERO rules (§44.9).

■ To perform constructive area geometry using the Area
class (§44.10).

CHAPTER 44

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–1

44–2 Chapter 44 Java 2D

44.1 Introduction
Using the methods in the Graphics class, you learned how to draw lines, rectangles, ovals,
arcs, and polygons. This chapter introduces Java 2D, which enables you to draw advanced and
complex two-dimensional graphics.

Note
This chapter introduces the basic and commonly used features in Java 2D. For a complete
coverage of Java 2D, please see Computer Graphics Using Java 2D and 3D by Hong Zhang
and Y. Daniel Liang, published by Prentice Hall.

44.2 Obtaining a Graphics2D Object
You used the drawing methods in the Graphics class in the text. The Graphics class is
primitive. The Java 2D API provides the java.awt.Graphics2D class, which extends
java.awt.Graphics with advanced capabilities for rendering graphics. Normally, you
write the code to draw graphics in the paintComponent method in a GUI component. The
coding template for the method is as follows:

protected void paintComponent(Graphics g) {
super.paintComponent(g);

// Use the method in Graphics to draw graphics
...

}

The parameter passed to the paintComponent method is actually an instance of
Graphics2D. So, to obtain a Graphics2D reference, you may simply cast the parameter g to
Graphics2D as follows:

protected void paintComponent(Graphics g) {
super.paintComponent(g);

// Get a Graphics2D object

// Use the method in Graphics2D to draw graphics
...

}

Since Graphics2D is a subclass of Graphics, all the methods in Graphics can be used in
Graphics2D. Additionally, you can use the methods in Graphics2D.

44.3 Geometric Models
You have used the methods in the Graphics class to draw lines, rectangles, arcs, ellipses, and
polygons. The Java 2D API uses the model-view controller architecture to separate rendering
from modeling. This approach enables you to create shapes and perform manipulations, such
as transforming and rotating, to combine shapes using models, and to use Graphics2D to
render shapes.

Java 2D provides facilities to construct basic shapes and to combine them to form more
complex shapes. Figure 44.1 shows various shapes supported in Java 2D.

The Shape interface defines the common features for shapes and provides the contains
method to test whether a point or a rectangle is inside a shape, and the intersects method
to test whether the shape overlaps with a rectangle, as shown in Figure 44.2. These methods
are often useful in geometrical programming.

Graphics2D g2d = (Graphics2D)g;

methods in Shape

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–2

44.3 Geometric Models 44–3

Classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, Ellipse2D,
QuadCurve2D, CubicCurve2D, and Path2D are abstract classes. Each contains two concrete
static inner classes named Double and Float for double and float coordinates, respectively.
For example, Line2D.Double refers to the static inner class Double defined in the Line2D
class. You can use either Line2D.Double or Line2D.Float to create an object for modeling

«interface»
Shape

Line2D

RectangularShape Rectangle2D.Double

Line2D.Double

Line2D.Float

Rectangle2D

RoundRectangle2D

Ellipse2D

Arc2D

Rectangle2D.Float

Rectangle

RoundRectangle2D.Double

Ellipse2D.Double

Ellipse2D.Float

Arc2D.Double

Arc2D.Float
QuadCurve2D.Double

QuadCurve2D.Float

CubicCurve2D.Double

CubicCurve2D.Float

Polygon

Area

GeneralPath

Path2D.Double

Path2D.Float

RoundRectangle2D.Float

Path2D

CubicCurve2D

QuadCurve2D

FIGURE 44.1 Java 2D defines various shapes.

Tests whether the specified coordinates are inside the shape.

Tests whether the specified rectangle with upper-left corner
(x, y), width w and height h is inside the shape.

Tests whether a specified Point2D is inside the shape.

Tests whether a specified Rectangle2D is inside the shape.

Tests whether the specified rectangle with upper-left corner
(x, y), width w and height h intersects this shape.

Tests whether a specified Rectangle2D intersects this shape.

Returns a bounding rectangle that encloses the shape.

«interface»
java.awt.Shape

+contains(x: double, y: double): boolean

+contains(x: double, y: double, w:
double, h: double): boolean

+contains(p: Point2D): boolean

+contains(r: Rectangle2D): boolean

+intersects(x: double, y: double, w:
double, h: double): boolean

+intersects(r: Rectangle2D): boolean

+getBounds2D(): Rectangle2D

FIGURE 44.2 Shape is the root interface for all Java 2D shapes.

concrete shape classes

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–3

44–4 Chapter 44 Java 2D

a line, depending on whether you want to use double or float for coordinates. These inner
classes are also subclasses of their respective outer classes. So Line2D.Double is a subclass of
Line2D.

A point can be modeled using the abstract Point2D class. It contains two concrete static
inner classes Point2D.Double and Point2D.Float for double and float coordinates,
respectively. Point2D.Double and Point2D.Float are also subclasses of Point2D. The
Point class was introduced in JDK 1.1 and now is included in Java 2D for backward com-
patibility. Point is now defined as a subclass of Point2D. Point2D contains the methods
for finding the distance between two points.

To create a shape, use the constructor of a concrete shape class. For example, to model a
line from (x1, y1) to (x2, y2), you may create a Line2D object with double data type using
the following constructor:

Line2D line = new Line2D.Double(x1, y1, x2, y2);

The Graphics2D class contains the draw(Shape s) method to draw the boundary of the
shape and the fill(Shape s) method to fill the interior of the shape. To render the line on
a GUI component, use

g2d.draw(line);

where g2d is a Graphics2D object for the GUI component.

44.4 Rectangle2D, RoundRectangle2D, Arc2D,
and Ellipse2D

RectangularShape is an abstract base class for Rectangle2D, RoundRectangle2D,
Arc2D, and Ellipse2D, whose geometry is defined by a rectangular frame. Figure 44.3
shows the UML diagram for RectangularShape.

Rectangle2D models a rectangle with horizontal and vertical sides. The Rectangle
class was introduced in JDK 1.1 and now is included in Java 2D for backward compatibility.
Rectangle is now defined as a subclass of Rectangle2D. It models a rectangle with integer
coordinates, while Rectangle2D.Double and Rectangle2D.Float model a rectangle
with double and float coordinates, respectively. You can construct a Rectangle using

new Rectangle(x, y, w, h)

Point2D

create a shape

create a line

render a line

RectangularShape

java.awt.geom.RectangularShape

+getCenterX(): double

+getCenterY(): double

+getWidth(): double

+getHeight(): double

+getX(): double

+getY(): double

«interface»
java.awt.Shape

Returns the x-coordinate of the center of the framing rectangle.

Returns the y-coordinate of the center of the framing rectangle.

Returns the width of the framing rectangle.

Returns the height of the framing rectangle.

Returns the x-coordinate of the upper-left corner of the framing rectangle.

Returns the y-coordinate of the upper-left corner of the framing rectangle.

FIGURE 44.3 RectangularShape defines a shape with a bounding rectangle.

Rectangle2D

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–4

44.4 Rectangle2D, RoundRectangle2D, Arc2D, and Ellipse2D 44–5

The parameters x and y represent the upper-left corner of the rectangle, and w and h are its
width and height (see Figure 44.4(a)).

The following code creates three Rectangle2D objects with integer, double, and
float coordinates, respectively. The upper-left corner of the rectangle is at (20, 40) with
width 100 and height 200.

Rectangle2D ri = new Rectangle(20, 40, 100, 200);
Rectangle2D rd = new Rectangle.Double(20D, 40D, 100D, 200D);
Rectangle2D rf = new Rectangle.Double(20F, 40F, 100F, 200F);

RoundRectangle2D models a rectangle with round corners. You can construct a
RoundRectangle using

new RoundRectangle2D.Double(x, y, w, h, aw, ah)

Parameters x, y, w, and h specify a rectangle, parameter aw is the horizontal diameter of the
arcs at the corner, and ah is the vertical diameter of the arcs at the corner (see Figure
44.4(b)). In other words, aw and ah are the width and the height of the oval that produces a
quarter-circle at each corner.

Ellipse2D models an ellipse. You can construct an Ellipse2D using

new Ellipse2D.Double(x, y, w, h)

Parameters x, y, w and h specify the bounding rectangle for the ellipse, as shown in
Figure 44.5(a).

RoundRectangle2D

Ellipse2D

(a) Rectangle (b) Round rectangle

w

(x, y)

w

hh

(x, y)
aw/2

ah/2

FIGURE 44.4 (a) A rectangle is defined in four parameters. (b) A round rectangle is defined
in six parameters.

(a) Ellipse (b) Arc

w

h

(x, y) (x, y)

h

w

arcAngle

startAngle

FIGURE 44.5 An ellipse or oval is defined by its bounding rectangle.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–5

44–6 Chapter 44 Java 2D

Arc2D models an elliptic arc. You can construct an Arc2D using

new Arc2D.Double(x, y, w, h, startAngle, arcAngle, type)

Parameters x, y, w and h specify the bounding rectangle for the arc; parameter startAngle
is the starting angle; arcAngle is the spanning angle (i.e., the angle covered by the arc).
Angles are measured in degrees and follow the usual mathematical conventions (i.e., 0
degrees is in the easterly direction, and positive angles indicate counterclockwise rotation
from the easterly direction); see Figure 44.5(b).

Parameter type is Arc2D.OPEN, Arc2D.CHORD, or Arc2D.PIE. Arc2D.OPEN specifies
that the arc is open. Arc2D.CHORD specifies that the arc is connected by drawing a line seg-
ment from the start the arc to the end of the arc. Arc2D.PIE specifies that the arc is connected
by drawing straight line segments from the start of the arc segment to the center of the full
ellipse and from that point to the end of the arc segment.

Listing 44.1 gives a program that demonstrates how to draw various shapes using
Graphics2D. Figure 44.6 shows a sample run of the program.

LISTING 44.1 Graphics2DDemo.java
1 import java.awt.*;
2
3 import javax.swing.*;
4
5 public class Graphics2DDemo extends JApplet {
6 public Graphics2DDemo() {
7 add(new ShapePanel());
8 }
9
10 static class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14
15
16
17 g2d.draw(new Rectangle2D.Double(50, 10, 30, 70));
18
19
20
21 g2d.draw(
22 new Arc2D.Double(220, 10, 30, 70, 0, 270, Arc2D.OPEN));
23 g2d.draw(new Arc2D.Double(260, 10, 30, 70, 0, 270, Arc2D.PIE));
24 g2d.draw(
25 new Arc2D.Double(300, 10, 30, 70, 0, 270, Arc2D.CHORD));
26 }
27 }
28 }

g2d.draw(new Ellipse2D.Double(170, 10, 30, 70));
g2d.fill(new RoundRectangle2D.Double(130, 10, 30, 70, 20, 30));
g2d.fill(new Rectangle2D.Double(90, 10, 30, 70));

g2d.draw(new Line2D.Double(10, 10, 40, 80));

Graphics2D g2d = (Graphics2D)g;

import java.awt.geom.*;

Arc2D

import for shape classes

applet

Graphics2D reference

FIGURE 44.6 You can draw various shapes using Java 2D.

draw a line
draw a rectangle
fill a rectangle
round rectangle
draw an ellipse
draw an arc

main method omitted

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–6

44.5 Coordinate Transformations 44–7

The shape classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, and Ellipse2D
are in the java.awt.geom package. So, they are imported in line 2.

A Graphics2D reference is obtained in line 14 in order to invoke the methods in
Graphics2D. The statement new Line2D.Double(10, 10, 40, 80) (line 16) creates an
instance of Line2D.Double, which is also an instance of Line2D and Shape. The instance
models a line from (10, 10) to (40, 80).

The statement new Rectangle2D.Double(50, 10, 30, 70) (line 17) creates an instance
of Rectangle2D.Double, which is also an instance of Rectangle2D and Shape. The instance
models a rectangle whose upper-left corner point is (50, 10) with width 30 and height 70.

The fill(Shape) method (line 18) renders a filled rectangle.
The statement new RoundRectangle2D.Double(130, 10, 30, 70, 20, 30) (line 19)

creates an instance of RoundRectangle2D.Double, which is also an instance of
RoundRectangle2D and Shape. The instance models a round-cornered rectangle whose
parameters are the same as in the drawRoundRect(int x, int y, int w, int h, int aw,
int ah) method in the Graphics class.

The statement new Ellipse2D.Double(300, 10, 30, 70) (line 20) creates an instance
of Ellipse2D.Double, which is also an instance of Ellipse2D and Shape. The instance
models an ellipse. The parameters in this constructor are the same as the parameters in the
drawOval(int x, int y, int w, int h) method in the Graphics class.

The statement new Arc2D.Double(170, 10, 30, 70, 0, 270, Arc2D.OPEN) (line 21)
creates an instance of Arc2D.Double, which is also an instance of Arc2D and Shape. The
instance models an open arc. The parameters in this constructor are similar to the parameters in
the drawArc(int x, int y, int w, int h, int startAngle, int arcAngle) method
in the Graphics class, except that the last parameter specifies whether the arc is open or
closed. The value Arc2D.OPEN specifies that the arc is open. The value Arc2D.PIE (line 23)
specifies that the arc is closed by drawing straight line segments from the start of the arc seg-
ment to the center of the full ellipse and from that point to the end of the arc segment. The value
Arc2D.CHORD (line 25) specifies that the arc is closed by drawing a straight line segment from
the start of the arc segment to the end of the arc segment.

44.5 Coordinate Transformations
Java 2D provides the classes for modeling geometric objects. It also supports coordinate
transformations using translation, rotation, and scaling.

44.5.1 Translations
You can use the translate(double x, double y) method in the Graphics class to move
the subsequent rendering by the specified distance relative to the previous position. For exam-
ple, translate(5, -10) moves subsequent rendering 5 pixels to the right and 10 pixels up
from the previous position, and translate(-5, 10) moves all shapes 5 pixels to the left
and 10 pixels down from the previous position. Figure 44.7 shows a rectangle displayed

Line2D

Rectangle2D

fill

RoundRectangle2D

Ellipse2D

Arc2D

1 2 3 4 5 6 7 8 9 10 11 12 13 140
0
1

3
4

7

5
6

2

g2d.draw(rectangle);
g2d.translate(!6, 4);
g2d.draw(rectangle);

FIGURE 44.7 (a) After applying g2d.translate(-6, 4), the subsequent rendering of the
rectangle is moved by the specified distance relative to the previous position.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–7

44–8 Chapter 44 Java 2D

before and after applying translation. After invoking g2d.translate(-6, 4), the rectangle
is displayed 6 pixels to the left and 4 pixels down from the previous position.

Listing 44.2 gives a program that demonstrates the effect of translation of coordinates.
Figure 44.8 shows a sample run of the program.

LISTING 44.2 TranslationDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class TranslateDemo extends JApplet {
6 public TranslateDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14
15
16
17 java.util.Random random = new java.util.Random();
18 for (int i = 0; i < 10; i++) {
19 g2d.setColor(new Color(random.nextInt(256),
20 random.nextInt(256), random.nextInt(256)));
21
22
23 }
24 }
25 }

Line 17 creates a Random object. The Random class was introduced in §8.6.2, “The Random
Class.” Invoking random.nextInt(256) (line 19) returns a random int value between 0
and 255. The setColor method (line 19) sets a new color for subsequent rendering. Line 21
draws a rectangle. The translate(20, 5) method in line 22 moves the subsequent render-
ing 20 pixels to the right and 5 pixels down.

44.5.2 Rotations
You can use the rotate(double theta) method in the Graphics2D class to rotate subse-
quent rendering by theta degrees from the origin clockwise, where theta is a double value
in radians. By default the origin is (0, 0). You can use the translate(x, y) method to move
the origin to a specified location. For example, rotate(Math.PI / 4) rotates subsequent
rendering 45 degrees counterclockwise along the northern direction from the origin, as shown
in Figure 44.9.

g2d.translate(20, 5);
g2d.draw(rectangle);

Rectangle2D rectangle = new Rectangle2D.Double(10, 10, 50, 60);
Graphics2D g2d = (Graphics2D)g;

import for shape classes

applet

Graphics2D reference
a rectangle

random number

set a new color

display rectangle

FIGURE 44.8 The rectangles are displayed successively in new locations.

translate

main method omitted

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–8

44.5 Coordinate Transformations 44–9

Listing 44.3 gives a program that demonstrates the effect of rotation of coordinates.
Figure 44.10 shows a sample run of the program.

LISTING 44.3 RotationDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class RotationDemo extends JApplet {
6 public RotationDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g;
15 Rectangle2D rectangle = new Rectangle2D.Double(20, 20, 50, 60);
16
17 // Move origin to the center
18 g2d.fill(new Ellipse2D.Double(-5, -5, 10, 10));
19 java.util.Random random = new java.util.Random();
20 for (int i = 0; i < 10; i++) {
21 g2d.setColor(new Color(random.nextInt(256),
22 random.nextInt(256), random.nextInt(256)));
23 g2d.draw(rectangle);
24 g2d.rotate(Math.PI / 5);

g2d.translate(150, 120);

import for shape classes

1 2 3 4 5 6 7 8 9 10 11 12 13 140
0
1

3
4

7

5
6

2

g2d.draw(rectangle);
g2d.rotate(Math.PI/4);
g2d.draw(rectangle);

FIGURE 44.9 After performing g2d.rotate(Math.PI / 4), the rectangle is rotated in 45
degrees from the origin.

This rectangle is drawn first

This rectangle is drawn next

FIGURE 44.10 After the rotate method is invoked, the rectangles are displayed succes-
sively in new locations.

applet

Graphics2D reference
a rectangle

new origin

random number

set a new color

display rectangle
rotate

draw center point

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–9

44–10 Chapter 44 Java 2D

1 2 3 4 5 6 7 8 9 10 11 12 13 140
0
1

3
4

7

5
6

2
g2d.draw(rectangle);
g2d.scale(2, 2);
g2d.draw(rectangle);

FIGURE 44.11 After performing g2d.scale(2, 2), the x- and y-coordinates in the original
rectangle are doubled.

FIGURE 44.12 After scaling is applied, the rectangles are displayed successively.

25 }
26 }
27 }
28 }

The translate(150, 120) method moves the origin from (0, 0) to (150, 120) (line 17).
The loop is repeated ten times. Each iteration sets a new color randomly (line 21), draws the
rectangle (line 23), and rotates 36 degrees from the new origin (line 24).

44.5.3 Scaling
You can use the scale(double sx, double sy) method in the Graphics2D class to resize
subsequent rendering by the specified scaling factors. For example, scale(2, 2) resizes the
object by doubling the x- and y-coordinates in the object, as shown in Figure 44.11.

Listing 44.4 gives a program that demonstrates the effect of using scaling. Figure 44.12
shows a sample run of the program.

LISTING 44.4 ScalingDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class ScalingDemo extends JApplet {
6 public ScalingDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);

main method omitted

import for shape classes

applet

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–10

44.6 Strokes 44–11

13
14 Graphics2D g2d = (Graphics2D)g;
15 Rectangle2D rectangle = new Rectangle2D.Double(10, 10, 10, 10);
16
17 for (int i = 0; i < 4; i++) {
18 g2d.draw(rectangle);
19 g2d.scale(2, 2);
20 }
21 }
22 }
23 }

The program draws four rectangles. The upper-left corner of the first rectangle is at (10, 10).
After invoking scale(2, 2) (line 19) on the Graphics2D object g2d in the first iteration of the
loop, the upper-left corner of the second rectangle is at (20, 20), since this scale method causes
the coordinates in the current object to be doubled. After invoking scale(2, 2) (line 19) on the
Graphics2D object g2d in the second iteration of the loop, the upper-left corner of the third rec-
tangle is at (40, 40). After invoking scale(2, 2) (line 19) on the Graphics2D object g2d in
the third iteration of the loop, the upper-left corner of the fourth rectangle is at (80, 80).

It is interesting to note that the thickness of line segments also doubles each time
scale(2, 2) is invoked. We will discuss the thickness of lines in the next section.

44.6 Strokes
Java 2D allows you to specify the attributes of lines, called strokes. You can specify the width
of the line, how the line ends (called end caps), how lines join together (called line joins), and
whether the line is dashed. These attributes are defined in a Stroke object. You can create a
Stroke object using the BasicStroke class, as shown in Figure 44.13.

Graphics2D reference
a rectangle

display rectangle
scale

main method omitted

The parameter width specifies the thickness of the stroke with a default value 1.0.
The parameter cap is one of three values:

■ BasicStroke.CAP_ROUND for round cap.

■ BasicStroke.CAP_SQUARE for square cap.

■ BasicStroke.CAP_BUTT for no added decorations.

+BasicStroke()

+BasicStroke(width: float)

+BasicStroke(width: float, cap: int, join: int)

+BasicStroke(width: float, cap: int, join: int,
miterlimit: float)

+BasicStroke(width: float, cap: int, join: int,
miterlimit: float, dash: float[],
dash_phase: float)

java.awt.BasicStroke

«interface»
java.awt.Stroke

Constructs a BasicStroke with default attributes.

Constructs a solid BasicStroke with the specified width.

Constructs a solid BasicStroke with the specified width, cap, and join.

Constructs a solid BasicStroke with the specified width, cap, join,
and miterlimit.

Constructs a solid BasicStroke with the specified width, cap, join,
miterlimit, dashing pattern, and the offset to start dashing pattern.

FIGURE 44.13 You can create a Stroke using the BasicStroke class.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–11

44–12 Chapter 44 Java 2D

round cap square cap butt cap bevel join miter join round join dash line

FIGURE 44.14 You can specify the attributes for strokes.

The parameter join is one of three values:

■ BasicStroke.JOIN_BEVEL for joining the outer corners of their wide outlines
with a straight segment.

■ BasicStroke.JOIN_MITER for joining path segments by extending their outside
edges until they meet.

■ BasicStroke.JOIN_ROUND for joining path segments by rounding off the corner
at a radius of half the line width.

The parameter miterlimit sets a limit for JOIN_MITER to prevent a very long join when
the angle between the two lines is small.

The parameter dash array defines a dash pattern by alternating between opaque and trans-
parent sections. The dash_phase parameter specifies the offset to start the dashing pattern.

To set a stroke in Graphics2D, use

void setStroke(Stroke stroke)

Listing 44.5 gives a program that demonstrates the effect of using basic strokes. Figure 44.14
shows a sample run of the program.

LISTING 44.5 BasicStrokeDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class BasicStrokeDemo extends JApplet {
6 public BasicStrokeDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g;
15
16
17);
18 g2d.draw(new Line2D.Double(10, 10, 40, 80));
19
20
21 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_SQUARE,
22 BasicStroke.JOIN_BEVEL));

g2d.translate(100, 0);

BasicStroke.JOIN_BEVEL)
g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_ROUND,

import for shape classes

applet

Graphics2D reference

set a stroke

draw a line

translate

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–12

44.7 Paint 44–13

23 g2d.draw(new Line2D.Double(10, 10, 40, 80));
24
25 g2d.translate(100, 0);
26 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_BUTT,
27 BasicStroke.JOIN_BEVEL));
28 g2d.draw(new Line2D.Double(10, 10, 40, 80));
29
30 g2d.translate(100, 0);
31 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));
32
33 g2d.translate(100, 0);
34 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_ROUND,
35 BasicStroke.JOIN_MITER));
36 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));
37
38 g2d.translate(100, 0);
39 g2d.setStroke(new BasicStroke(15.0f, BasicStroke.CAP_SQUARE,
40 BasicStroke.JOIN_ROUND));
41 g2d.draw(new Rectangle2D.Double(10, 10, 30, 70));
42
43 g2d.translate(100, 0);
44 g2d.setStroke(new BasicStroke(4.0f, BasicStroke.CAP_SQUARE,
45 BasicStroke.JOIN_ROUND, 1.0f, new float[]{8}, 0));
46 g2d.draw(new Line2D.Double(10, 10, 40, 80));
47 }
48 }
49 }

The statement new BasicStroke(15.0f, BasicStroke.CAP_ROUND, Basic-
Stroke.JOIN_BEVEL) (line 16) creates an instance of BasicStroke, which is also an
instance of the Stroke interface. The setStroke(Stroke) method sets a Stroke object for
the Graphics2D context. The program sets new Stroke objects in lines 21, 26, 34, 39, 44.
Line 44 sets a new Stroke object with width 4.0f, round square cap, round join, miter limit
1.0, dashing pattern 8 and dash phase 0.

44.7 Paint
You can use the setColor(Color c) method in the Graphics class to set a color. It
sets only a solid color. Graphics2D provides the setPaint(Paint p) method to set a
paint. Paint is a generalization of color. It can represent more attributes than simple
solid colors.

Paint is an interface for three concrete classes including Color, as shown in
Figure 44.15.

GradientPaint defines a varying color, specified by two points and two colors. As the
location moves from the first point to the second, the paint changes gradually from the first
color to the second. A GradientPaint can be cyclic or acyclic. A cyclic paint repeats the
same pattern periodically.

TexturePaint defines an image to fill a shape or characters. The parameter image is
specified as a BufferedImage. The anchor parameter specifies a rectangle on which
the image is anchored. The image is repeated around the anchor rectangle, as shown in
Figure 44.16.

Listing 44.6 gives a program that demonstrates the effect of using GradientPaint and
TexturePaint. Figure 44.17 shows a sample run of the program.

6,5

draw a rectangle

main method omitted

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–13

44–14 Chapter 44 Java 2D

java.awt.Color

«interface»
java.awt.Paint

java.awt.GradientPaint

+GradientPaint(x1: float, y1:
float, c1: Color, x2: float, y2:
float, c2: Color)

+GradientPaint(p1: Point2D, c1:
Color, p2: Point2D, c2: Color)

+GradientPaint(x1: float, y1:
float, c1: Color, x2: float, y2:
float, c2: Color, cycl: boolean)

+GradientPaint(p1: Point2D, c1:
Color, p2: Point2D, c2: Color,
cycl: boolean)

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2.

Creates a GradientPaint starting from p1 with color c1 to p2 with color c2.

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2. The parameter cycl specifies whether the pattern repeats
itself.

Creates a GradientPaint starting from (x1, y1) with color c1 to (x2, y2)
with color c2. The parameter cycl specifies whether the pattern repeats
itself.

java.awt.TexturePaint

+TexturePaint(image:
BufferImage, anchor:
Rectangle2D)

Creates a TexturePaint with the specified image. The anchor rectangle
specifies the position of the image in the user space.

FIGURE 44.15 A Paint object specifies colors.

Anchor
rectangle

FIGURE 44.16 A TexturePaint is specified by an image in an anchor rectangle.

FIGURE 44.17 Shapes and characters are drawn with gradient paint, solid color, and texture
paint.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–14

44.7 Paint 44–15

LISTING 44.6 PaintDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.imageio.ImageIO;
4 import javax.swing.*;
5
6 public class PaintDemo extends JApplet {
7 public PaintDemo() {
8 add(new ShapePanel());
9 }
10
11 class ShapePanel extends JPanel {
12 protected void paintComponent(Graphics g) {
13 super.paintComponent(g);
14
15 Graphics2D g2d = (Graphics2D)g;
16
17
18
19 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));
20 g2d.setFont(new Font("Serif", Font.BOLD, 50));
21 g2d.drawString("GradientPaint", 10, 120);
22
23 g2d.translate(100, 0);
24
25
26 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));
27
28 g2d.translate(100, 0);
29
30 g2d.fill(new Rectangle2D.Double(10, 10, 90, 70));
31
32 try {
33 java.net.URL url =
34 getClass().getClassLoader().getResource("image/ca.gif");
35
36
37
38 g2d.translate(130, 0);
39
40 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));
41
42 texturePaint = new TexturePaint(image,
43 new Rectangle2D.Double(10, 10, 50, 70));
44 g2d.translate(110, 0);
45 g2d.setPaint(texturePaint);
46 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));
47
48 texturePaint = new TexturePaint(image,
49 new Rectangle2D.Double(10, 10, 50, 35));
50 g2d.translate(110, 0);
51 g2d.setPaint(texturePaint);
52 g2d.fill(new Ellipse2D.Double(10, 10, 100, 70));
53 g2d.drawString("TexturePaint", -190, 120);
54 }
55 catch (java.io.IOException ex) {
56 ex.printStackTrace();
57 }
58 }

g2d.setPaint(texturePaint);

new Rectangle2D.Double(10, 10, 100, 70));
TexturePaint texturePaint = new TexturePaint(image,
java.awt.image.BufferedImage image = ImageIO.read(url);

g2d.setPaint(Color.YELLOW);

Color.BLACK));
g2d.setPaint(new GradientPaint(10, 10, Color.YELLOW, 40, 40,

Color.BLUE, true));
g2d.setPaint(new GradientPaint(10, 10, Color.RED, 40, 40, GradientPaint

solid color

get URL
TexturePaint

set paint

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–15

44–16 Chapter 44 Java 2D

Anchor
rectangle

Ellipse
shape

Anchor
rectangle

Ellipse
shape

Anchor
rectangle

Ellipse
shape

(a)

100

70

(b)

50

70

(c)

50

70

FIGURE 44.18 The anchor rectangle defines the size and position of the starting image.

59 }
60 }

The statement in lines 17–18

g2d.setPaint(new GradientPaint(10, 10, Color.RED, 40, 40,
Color.BLUE, true));

creates an instance of GradientPaint and sets the paint in g2d.
The program sets a new Paint object (lines 17, 24, 29) before drawing a filled rectangle

(lines 19, 26, 30). Note that you can use the setPaint method to set a Color object (line 29)
or use the setColor method in the Graphics class to set a color.

As you see in Figure 44.17, the gradient colors are repeated in the first rectangle, since the
GradientPaint is cyclic (lines 17–18). The gradient colors are not repeated in the second
rectangle, since the GradientPaint is acyclic (lines 24–25).

To create a TexturePaint, you need to create a BufferedImage from an image file.
The URL of the image file is created in lines 33–34. This subject was introduced in §18.10,
“Locating Resources Using the URL Class.” You can use the static method read in the
ImageIO class to obtain a BufferedImage from the URL of the image (line 35).

The statement in lines 36–37

TexturePaint texturePaint = new TexturePaint(image,
new Rectangle2D.Double(10, 10, 100, 70));

creates a TexturePaint with the image anchored in the rectangle whose upper-left corner is
(10, 10) and width and height are 100 and 70. This TexturePaint object is set in g2d in
line 39. Line 40 fills an ellipse with this TexturePaint, as shown in Figure 44.18(a).

main method

The statement in lines 42-43

texturePaint = new TexturePaint(image,
new Rectangle2D.Double(10, 10, 50, 70));

creates a TexturePaint with the image anchored in the rectangle whose upper-left corner is
(10, 10) and width and height are 50 and 70. This TexturePaint object is set in g2d in line
45. Line 46 fills an ellipse with this TexturePaint, as shown in Figure 44.18(b). As you see
in the sample output in Figure 44.17, the texture paint is repeated from the anchor rectangle.

Line 53 displays a string. The characters are filled with the paint set in line 51.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–16

44.8 QuadCurve2D and CubicCurve2D 44–17

(ctrlx, ctrly)

(x1, y1)
(x2, y2)

(ctrlx1, ctrly1)

(x1, y1) (x2, y2)

(ctrlx2, ctrly2)
(a) (b)

FIGURE 44.19 (a) A quadratic curve is specified using three points. (b) A cubic curve is
specified using four points.

44.8 QuadCurve2D and CubicCurve2D
Java 2D provides the QuadCurve2D and CubicCurve2D classes for modeling quadratic
curves and cubic curves. QuadCurve2D.Double and QuadCurve2D.Float are two con-
crete subclasses of QuadCurve2D. CubicCurve2D.Double and CubicCurve2D.Float
are two concrete subclasses of CubicCurve2D.

A quadratic curve is mathematically defined as a quadratic polynomial. To create a
QuadCurve2D.Double, use the following constructor:

QuadCurve2D.Double(double x1, double y1,
double ctrlx, double ctrly, double x2, double y2)

where (x1, y1) and (x2, y2) specify two endpoints and (ctrlx, ctrly) is a control point.
The control point is usually not on the curve instead of defining the trend of the curve, as
shown in Figure 44.19(a).

A cubic curve is mathematically defined as a cubic polynomial. To create a
CubicCurve2D.Double, use the following constructor:

CubicCurve2D.Double(double x1, double y1, double ctrlx1,
double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)

where (x1, y1) and (x2, y2) specify two endpoints and (ctrlx1, ctrly1) and (ctrlx2,
ctrly2) are two control points. The control points are usually not on the curve instead of
defining the trend of the curve, as shown in Figure 44.19(b).

Listing 44.7 gives a program that demonstrates how to draw quadratic curves and cubic
curves. Figure 44.20 shows a sample run of the program.

LISTING 44.7 CurveDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;

import for shape classes

FIGURE 44.20 You can draw quadratic and cubic curves using Java 2D.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–17

44–18 Chapter 44 Java 2D

4
5 public class CurveDemo extends JApplet {
6 public CurveDemo() {
7 add(new CurvePanel());
8 }
9
10 static class CurvePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g;
15
16 // Draw a quadratic curve
17 g2d.draw();
18 g2d.fillOval(40 + 3, 20 + 3, 6, 6);
19 g2d.drawString("Control point", 40 + 5, 20);
20
21 // Draw a cubic curve
22 g2d.draw(
23);
24 g2d.fillOval(240 + 3, 20 + 3, 6, 6);
25 g2d.drawString("Control point 1", 240 + 3, 20);
26 g2d.fillOval(350 + 3, 156 + 3, 6, 6);
27 g2d.drawString("Control point 2", 350 + 3, 156 + 3);
28 }
29 }
30 }

A Graphics2D reference is obtained in line 14 in order to invoke the methods in
Graphics2D. The statement new QuadCurve2D.Double(10, 80, 40, 20, 150, 56)
(line 17) creates an instance of QuadCurve2D.Double, which is also an instance of
QuadCurve2D and Shape. The instance models a quadratic curves with two endpoints (10,
80), (150, 56) and a control point (40, 20).

The fillOval (line 18) and drawString (line 19) methods are defined in the Graphics
class and so can be used in the Graphics2D class.

The statement new CubicCurve2D.Double(200, 80, 240, 20, 350, 156, 450,
80)) (lines 22–23) creates an instance of CubicCurve2D.Double, which is also an instance
of QuadCurve2D and Shape. The instance models a quadratic curves with two endpoints
(200, 80), (450, 80) and two control points (240, 20), (450, 80).

44.9 Path2D
The Path2D class models an arbitrary geometric path. Path2D.Double and Path2D.Float
are two concrete subclasses of Path2D. Java 2D also contains the GeneralPath class which
is now superseded by Path2D.Float.

You can construct path segments using the methods, as shown in Figure 44.21.
You may create a Path2D using a constructor from Path2D.Double and Path2D.Float.

The process of the path construction can be viewed as drawing with a pen. At any moment, the
pen has a current position. You can use the moveTo(x, y) method to move the pen to the new
position at point (x, y), use the lineTo(x, y) to add a point (x, y) to the path by drawing a
straight line from the current point to this new point, use the quadTo(ctrlx, ctrly, x, y)
method to draw a quadratic curve from the current location to (x, y) using (ctrlx, ctrly) as
the control point, use the curveTo(ctrlx1, ctrly1, ctrlx2, ctrly2, x, y) method to
draw a cubic curve from the current location to (x, y) using (ctrlx1, ctrly1) and (ctrlx2,
ctrly2) as the control points, and use the closePath() method to connect the current point
with the point in the last moveTo method.

(200, 80, 240, 20, 350, 156, 450, 80)
new CubicCurve2D.Double

new QuadCurve2D.Double(10, 80, 40, 20, 150, 56)

applet

Graphics2D reference

quadratic curve

cubic curve

main method omitted

QuadCurve2D

CubicCurve2D

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–18

44.9 Path2D 44–19

java.awt.geom.Path2D

+lineTo(x: double, y: double): void

+moveTo(x: double, y: double): void

+quadTo(x1: double, y1: double, x2:
double, y2: double): void

+curveTo(x1: double, y1: double, x2:
double, y2: double): void

+closePath(): void

+setWindingRule(rule: int): void

+getWindingRule(): int

«interface»
java.awt.Shape

Draws a line from the current position to the specified point (x,y).

Moves to the specified point (x,y).

Draws a quadratic curve from the current point to (x2,y2) using (x1,y1)
as a quadratic parametric control point.

Draws a cubic curve from the current point to (x3,y3) using (x1,y1) and
(x2, y2) as control points.

Draws a line to connect the current point with the point in the last
moveTo method.

Sets a new winding rule.

Gets the winding rule.

FIGURE 44.21 The Path2D class contains the methods for constructing path segments.

FIGURE 44.22 You can draw an arbitrary shape using the Path2D class.

Listing 44.8 gives a program that demonstrates how to draw a shape using Path2D.
Figure 44.22 shows a sample run of the program.

LISTING 44.8 Path2DDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class Path2DDemo extends JApplet {
6 public Path2DDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g;
15
16
17
18 path.moveTo(100, 100);

path.curveTo(150, 50, 250, 150, 300, 100);
path.moveTo(100, 100);
Path2D path = new Path2D.Double();

import for shape classes

applet

Graphics2D reference

new position
draw a cubic curve
new position

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–19

44–20 Chapter 44 Java 2D

CB

A

C

(a) (b)

B

A

FIGURE 44.23 The WIND_EVEN_ODD and WIND_NON_ZERO rules define interior points.

FIGURE 44.24 The winding rule defines the interior points.

19 path.curveTo(150, 150, 250, 50, 300, 100);
20 path.lineTo(200, 20);
21
22
23
24 }
25 }
26 }

The statement new Path2D.Double() (line 15) creates an empty path. The moveTo(100,
100) method (line 16) sets the current pen position at (100, 100). Invoking
path.curveTo(150, 50, 250, 150, 300, 100) (line 17) creates a cubic curve from (100,
100) to (300, 100) with control points (150, 50) and (250, 150). Invoking
path.moveTo(100, 100) (line 18) moves the pen position back to (100, 100). Invoking
path.curveTo(150, 150, 250, 50, 300, 100) (line 19) creates a cubic curve from (100,
100) to (300, 100) with control points (150, 150) and (250, 50). Now the current position is
at (300, 100). Invoking path.lineTo(200, 20) (line 20) creates a line from (300, 100) to
(200, 20). Invoking path.closePath() (line 21) draws a line connecting the current posi-
tion (i.e., (200, 20)) with the last moveTo position (i.e., (100, 100)). Finally, Invoking
g2d.draw(path) (line 23) draws the path.

For a simple shape, it is easy to decide which point is inside a shape. A path may form
many shapes. It is not easy to decide which point is inside an enclosed path. Java 2D uses the
winding rules to define the interior points. There are two winding rules: WIND_EVEN_ODD and
WIND_NON_ZERO.

The WIND_EVEN_ODD rule defines a point as inside a path if a ray from the point toward
infinity in an arbitrary direction intersects the path an odd number of times. Consider the path
in Figure 44.23(a). Points A and C are outside the path, because the ray intersects the path
twice. Point B is inside the path, because the ray intersects the path once.

g2d.draw(path);

path.closePath();

With the WIND_NON_ZERO rule, the direction of the path is taken into consideration. A
point is inside a path if a ray from the point toward infinity in an arbitrary direction intersects
the path an unequal number of opposite directions. Consider the path in Figure 44.23(b).
Point A is outside the path, because the ray intersects the path twice in opposite directions.
Point B is inside the path, because the ray intersects the path once. Point C is inside the path,
because the ray intersects the path twice in the same directions. By default, a Path2D is cre-
ated using the WIND_NON_ZERO rule. You can use the setWindingRule method to set a new
winding rule.

Listing 44.9 gives a program that demonstrates winding rules in Path2D. Figure 44.24
shows a sample run of the program.

draw a cubic curve
draw a line
close path

display path

main method omitted

WIND_EVEN_ODD

WIND_NON_ZERO

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–20

44.9 Path2D 44–21

LISTING 44.9 WindingRuleDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class WindingRuleDemo extends JApplet {
6 public WindingRuleDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g; // Get Graphics2D
15
16 // Translate to a new origin
17 g2d.draw(); // Create and draw a path
18
19 g2d.translate(160, 0); // Translate to a new origin
20 // Create a path
21 // Set a new rule
22 // Create and fill a path
23
24 g2d.translate(160, 0); // Translate to a new origin
25 Path2D path3 = createAPath(); // Create a path
26 path3.setWindingRule(Path2D.WIND_NON_ZERO); // Set a new rule
27 g2d.fill(path3); // Create and fill a path
28 }
29
30
31 // Define the outer rectangle
32 Path2D path = new Path2D.Double();
33 path.moveTo(0, 0);
34 path.lineTo(0, 100);
35 path.lineTo(100, 100);
36 path.lineTo(100, 0);
37 path.lineTo(0, 0);
38
39 // Define the inner rectangle
40 path.moveTo(30, 30);
41 path.lineTo(30, 70);
42 path.lineTo(70, 70);
43 path.lineTo(70, 30);
44 path.lineTo(30, 30);
45
46 return path;
47 }
48 }
49 }

The createAPath() method creates a path for two rectangles. The outer rectangle is created
in lines 33–37 and the inner rectangle in lines 40–44.

The program translates the coordinate’s origin to (10, 10) in line 16, invokes
createAPath to create a path, and displays it in line 17.

The program translates the coordinate’s origin to (160, 0) in line 19, creates a new
path (line 20), sets the path winding rule to WIND_EVEN_ODD (line 21), and displays it in
line 22.

private Path2D createAPath() {

g2d.fill(path2);
path2.setWindingRule(Path2D.WIND_EVEN_ODD);
Path2D path2 = createAPath();

createAPath()
g2d.translate(10, 10);

import for shape classes

applet

Graphics2D reference

new origin
draw path

new origin
create a path
new winding rule
fill path

new origin
create a path
new winding rule
fill path

create a path

main method omitted

createAPath

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–21

44–22 Chapter 44 Java 2D

java.awt.geom.Area

+Area()

+Area(s: Shape)

+add(area: Area): void

+subtract(area: Area): void

+intersect(area: Area): void

+exclusiveOr(area: Area): void

«interface»
java.awt.Shape

Creates an empty area.

Creates an Area for the specified shape.

Adds the shape in the specified area with the shape in this area.

Subtracts the shape in the specified area from the shape in this area.

Sets the shape of this area to the intersection of its current shape with the
shape in the specified area.

Same as invoking this.add(area) and then invoking this.subtract(area).

FIGURE 44.25 The Area class contains the methods for constructing new areas.

FIGURE 44.26 The Area class can be used to perform constructive geometry.

The program translates the coordinate’s origin to (160, 0) in line 24, creates a new path
(line 25), sets the path winding rule to WIND_NON_ZERO (line 26), and displays it in line 27.

Note that if a path is unclosed, the fill method implicitly closes it and draws a filled path.

44.10 Constructive Area Geometry
Shapes can be combined to create new shapes. This is known as constructive area geometry.
Java 2D provides class Area to perform constructive area geometry, as shown in Figure 44.25.

Area implements Shape and provides the methods add, subtract, intersect, and
exclusiveOr to perform set-theoretic operations union, difference, intersection, and sym-
metric difference. These operations perform on the shapes stored in the areas. The union of
two areas consists of all points that are in either area. The difference of two areas consists of
the points that are in the first area, but not in the second area. The intersection of two areas
consists of all points that are in both areas. The symmetric difference consists of the points
that are in exactly one of the two areas.

Listing 44.10 gives a program that demonstrates constructive geometry using the Area
class. Figure 44.26 shows a sample run of the program.

LISTING 44.10 AreaDemo.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import javax.swing.*;
4
5 public class AreaDemo extends JApplet {

import for shape classes

applet

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–22

Key Terms 44–23

6 public AreaDemo() {
7 add(new ShapePanel());
8 }
9
10 class ShapePanel extends JPanel {
11 protected void paintComponent(Graphics g) {
12 super.paintComponent(g);
13
14 Graphics2D g2d = (Graphics2D)g; // Get Graphics2D
15
16 // Create two shapes
17 Shape shape1 = new Ellipse2D.Double(0, 0, 50, 50);
18 Shape shape2 = new Ellipse2D.Double(25, 0, 50, 50);
19 g2d.translate(10, 10); // Translate to a new origin
20 g2d.draw(shape1); // Draw the shape
21 g2d.draw(shape2); // Draw the shape
22
23 // Create an area
24
25 // Add area2 to area1
26 g2d.translate(100, 0); // Translate to a new origin
27 g2d.draw(area1); // Draw the outline of the shape in the area
28
29 g2d.translate(100, 0); // Translate to a new origin
30 g2d.fill(area1); // Fill the shape in the area
31
32 area1 = new Area(shape1);
33 // Subtract area2 from area1
34 g2d.translate(100, 0); // Translate to a new origin
35 g2d.fill(area1); // Fill the shape in the area
36
37 area1 = new Area(shape1);
38 // Intersection of area2 with area1
39 g2d.translate(100, 0); // Translate to a new origin
40 g2d.fill(area1); // Fill the shape in the area
41
42 area1 = new Area(shape1);
43 // Exclusive or of area2 with area1
44 g2d.translate(100, 0); // Translate to a new origin
45 g2d.fill(area1); // Fill the shape in the area
46 }
47 }
48 }

The program creates two ellipses (lines 17–18) and displays them (lines 20–21). The program
creates two areas and invokes add (line 25), subtract (line 33), intersect (line 38), and
exclusiveOr (line 43) to perform constructive area geometry.

KEY TERMS

area1.exclusiveOr(area2);

area1.intersect(area2);

area1.subtract(area2);

area1.add(area2);
Area area2 = new Area(shape2);
Area area1 = new Area(shape1);

Graphics2D reference

two shapes

new origin

draw shapes

add

fill area

subtract

fill area

intersect

fill area

exclusiveOr
fill area

main method omitted

constructive area geometry 44–22
cubic curves 44–17
gradient paint 44–13
quadratic curves 44–17
rotation 44–6
scaling 44–10

stroke 44–11
texture paint 44–16
translation 44–8
WIND_EVEN_ODD 44–20
WIND_NON_ZERO 44–20

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–23

44–24 Chapter 44 Java 2D

CHAPTER SUMMARY

1. The Java 2D API provides the java.awt.Graphics2D class, which extends
java.awt.Graphics with advanced capabilities for rendering graphics.

2. The Java 2D API provides an object-oriented approach that separates rendering from
modeling. All shapes are defined under the Shape interface.

3. Classes Line2D, Rectangle2D, RoundRectangle2D, Arc2D, Ellipses2D,
QuadCurve2D, CubicCurve2D, and Path2D are abstract classes. Each contains two
concrete static inner classes named Double and Float for double and float coor-
dinates, respectively. The inner classes are subclasses of their respective abstract
classes.

4. A point can be modeled using the abstract Point2D class. It contains two concrete
static inner classes Point2D.Double and Point2D.Float, which are subclasses of
Point2D.

5. The Graphics2D class is for rendering shapes. You can invoke its draw(Shape)
method to render the boundary of the shape and fill(Shape) method to fill the
interior of the shape.

6. You can use the translate(double x, double y) method in the Graphics class
to move the subsequent rendering by the specified distance relative to the previous
position.

7. You can use the rotate(double theta) method in the Graphics2D class to rotate
subsequent rendering by theta degrees from the origin, where theta is a double
value in radians.

8. You can use the scale(double sx, double sy) method in the Graphics2D class
to resize subsequent rendering by the specified scaling factors.

9. Java 2D allows you to specify the attributes of lines, called strokes.

10. You can specify the width of the line, how the line ends (called end caps), how lines
join together (called line joins), and whether the line is dashed. These attributes are
defined in a Stroke object.

11. You can create a Stroke object using the BasicStroke class.

12. To set a stroke, use the setStroke(Stroke) method in the Graphics2D class.

13. Graphics2D provides the setPaint(Paint) method to set a paint. Paint is a
generalization of color. It has more attributes than simple solid colors.

14. GradientPaint defines a varying color, specified by two points and two colors. As
the location moves from the first point to the second, the paint changes gradually
from the first color to the second.

15. A GradientPaint can cyclic or acyclic. A cyclic paint repeats the same pattern
periodically.

16. TexturePaint defines an image to fill a shape or characters. A texture paint is
defined by an image anchored in a rectangle.

17. Java 2D provides the QuadCurve2D and CubicCurve2D classes for modeling qua-
dratic curves and cubic curves.

18. A quadratic curve is mathematically defined as a quadratic polynomial.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–24

Review Questions 44–25

19. A cubic curve is mathematically defined as a cubic polynomial.

20. The Path2D class models an arbitrary geometric path. Path2D.Double and Path
2D.Float are two concrete subclasses of Path 2D.

21. The winding rule defines interior points in a path.

22. The WIND_EVEN_ODD rule defines a point as inside a path if a ray from the point
toward infinity in an arbitrary direction intersects the path an odd number of
times.

23. With the WIND_NON_ZERO rule, the direction of the path is taken into consideration.
A point is inside a path if a ray from the point toward infinity in an arbitrary direction
intersects the path an unequal number of opposite directions.

24. Java 2D provides class Area to perform constructive area geometry.

25. Area implements Shape and provides the methods add, subtract, intersect,
and exclusiveOr to perform set-theoretic operations union, difference, intersec-
tion, and symmetric difference.

REVIEW QUESTIONS

Sections 44.2–44.3
44.1 How do you obtain a reference to a Graphics2D object?

44.2 List some methods defined in the Shape interface.

44.3 How do you create a Line2D object?

44.4 Are Line2D.Double and Line2D.Float inner classes of Line2D? Are they
also subclasses of Line2D?

44.5 How do you render a Shape object?

44.6 What are the relationships among Point2D, Point2D.Double, Point2D.Float,
and Point? Check Java API to see what methods are defined in Point2D.

Section 44.4
44.7 What are the relationships among Rectangle2D, Rectangle2D.Double,

Rectangle2D.Float, and Rectangle?

44.8 You can draw basic shapes such as lines, rectangles, ellipses, and arcs using the
drawing/filling methods in the Graphics class or create a Shape object and ren-
der them using the draw(Shape) or fill(Shape). What are the advantages of
using the latter?

Section 44.5
44.9 Suppose a rectangle is created using new Rectangle2D.Double(2, 3, 4, 5).

Where is it displayed after applying g2d.translate(10, 10) and
g2d.draw(rectangle)?

44.10 Suppose a rectangle is created using new Rectangle2D.Double(2, 3, 4, 5).
Where is it displayed after applying g2d.rotate(Math.PI / 5) and
g2d.draw(rectangle)?

44.11 Suppose a rectangle is created using new Rectangle2D.Double(2, 3, 4, 5).
Where is it displayed after applying g2d.scale(10, 10) and
g2d.draw(rectangle)?

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–25

44–26 Chapter 44 Java 2D

(a) (b) (c) (d) (e)

FIGURE 44.27 (a)–(b) Exercise 44.1 detects whether a point is inside a rectangle. (c)–(e) Exercise 44.2 detects whether a
circle contains, intersects, or is outside a rectangle.

Sections 44.6–44.7
44.12 How do you create a Stroke and set a stroke in Graphics2D?

44.13 How do you create a Paint and set a paint in Graphics2D?

44.14 What is a gradient paint? How do you create a GradientPaint?

44.15 What is a texture paint? How do you create a TexturePaint?

Sections 44.8–44.10
44.16 How do you create a QuadCurve2D? How do you create a CubicCurve2D?

44.17 Describe the methods in Path2D?

44.18 What is the winding rule? What is WIND_EVEN_ODD? What is
WIND_NON_ZERO?

44.19 How do you create an Area from a shape? Describe the add, subtract,
intersect, and exclusiveOr methods in the Area class.

PROGRAMMING EXERCISES

Section 44.4
44.1* (Inside a rectangle?) Write a program that displays a rectangle with upper-left cor-

ner point at (20, 20), width 100, and height 100. Whenever you move the mouse,
display a message indicating whether the mouse point is inside the rectangle, as
shown in Figure 44.27(a)–(b).

44.2* (Contains, intersects, or outside?) Write a program that displays a rectangle with
upper-left corner point at (40, 40), width 40, and height 60. Display a circle. The
circle’s upper-left corner of the bounding rectangle is at the mouse point. pressing
the up/down arrow key increases/decreases the circle radius by 5 pixels by. Dis-
play a message at the mouse point to indicate whether the circle contains, inter-
sects, or is outside of the rectangle, as shown in Figure 44.27(c)–(e).

44.3* (Translation) Write a program that displays a rectangle with upper-left corner
point at (40, 40), width 50, and height 40. Enter the values in the text fields x and
y and press the Translate button to translate the rectangle to a new location, as
shown in Figure 44.28(a).

44.4* (Rotation) Write a program that displays an ellipse. The center of the ellipse is at
(0, 0) with width 60 and height 40. Use the translate method to move the ori-
gin to (100, 70). Enter the value in the text field Angle and press the Rotate button
to rotate the ellipse to a new location, as shown in Figure 44.28(b).

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–26

Programming Exercises 44–27

44.5* (Scaling) Write a program that displays an ellipse. The center of the ellipse is at
(0, 0) with width 60 and height 40. Use the translate method to move the ori-
gin to (150, 50). Enter the scaling factors in the text fields and press the Scale but-
ton to scale the ellipse, as shown in Figure 44.28(c).

44.6* (Vertical strings) Write a program that displays three strings vertically, as shown
in Figure 44.29(a).

44.7* (Characters around circle) Write a program that displays a string around the cir-
cle, as shown in Figure 44.29(b).

44.8* (Plotting the sine function) Write a program that plots the sine function, as shown
in Figure 44.29(c).

44.9* (Plotting the log function) Write a program that plots the log function, as shown in
Figure 44.30(a).

(a) (b) (c)

FIGURE 44.29 (a) Exercise 44.6 displays strings vertically. (b) Exercise 4.7 displays characters around
the circle. (c) Exercise 44.8 displays a sine function.

(a) (b)

FIGURE 44.30 (a) Exercise 44.9 displays the log function. (b) Exercise 4.10 displays the function.n2

(a) (b) (c)

FIGURE 44.28 (a) Exercise 44.3 translates coordinates. (b) Exercise 44.4 rotates coordinates.
(c) Exercise 44.5 scales coordinates.

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–27

44–28 Chapter 44 Java 2D

(a) (b) (c)

FIGURE 44.31 (a) Exercise 44.11 displays several functions. (b) Exercise 4.12 displays the sun-
shine. (c) Exercise 44.13 displays a cylinder.

(a) (b) (c)

FIGURE 44.32 (a) Exercise 44.14 displays a filled cylinder. (b) Exercise 4.15 displays sym-
metric difference of two areas. (c) Exercise 4.16 displays two eyes.

44.10* (Plotting the function) Write a program that plots the function, as shown in
Figure 44.30(b).

44.11* (Plotting the log, n, nlogn, and functions) Write a program that plots the log,
n, nlogn, and functions, as shown in Figure 44.31(a).n2

n2

n2n2

44.12* (Sunshine) Write a program that displays a circle filled with a gradient color to
animate a sun and display light rays coming out from the sun using dashed lines,
as shown in Figure 44.31(b).

44.13* (Displaying a cylinder) Write a program that displays a cylinder, as shown in
Figure 44.31(c). Use dashed strokes to draw the dashed arc.

44.14* (Filled cylinder) Write a program that displays a filled cylinder, as shown in
Figure 44.32(a).

44.15* (Area geometry) Write a program that creates two areas: a circle and a path con-
sisting of two cubic curves. Draw the areas and fill the symmetric difference of
the areas, as shown in Figure 44.32(b).

44.16* (Eyes) Write a program that displays two eyes in an oval, as shown in
Figure 44.32(c).

M44_LIAN0807_08_SE_44.QXD 11/16/09 10:23 AM Page 44–28

