
11C H A P T E R

535Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

ADVANCED
USER
INTERFACES (FX)

To arrange user‑interface controls

To become familiar with common user-interface controls, such as
radio buttons, check boxes, and menus

To understand how to update user interfaces with properties and bindings

To build programs that show animations and handle mouse events

CHAPTER GOALS

CHAPTER CONTENTS

11.1  LAYOUT MANAGEMENT  536

PT 1 	 Use a GUI Builder  542
ST 1 	 Styling with CSS  546

11.2  CHOICES  548

PT 2 	 Use Chart Controls  552
WE 1 	 Programming a Working Calculator  550

11.3  MENUS  563

11.4  PROPERTIES AND BINDINGS  567

ST 2 	 Custom Properties  571

11.5  ANIMATIONS  573

11.6  MOUSE EVENTS  577

ST 3 	 Keyboard Events  580
WE 2 	 Adding Mouse and Keyboard Support to

the Bar Chart Creator  580

© Carlos Santa Maria/iStockphoto.

© Carlos Santa Maria/iStockphoto.

536 Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

© Carlos Santa Maria/iStockphoto.

The graphical applications with which you are familiar
have many visual gadgets for information entry: buttons,
scroll bars, menus, and so on. In this chapter, you will learn
how to use the most common user-interface components
in the JavaFX toolkit. You will also learn more about event
handling, so you can use timer events in animations and
process mouse events in interactive graphical programs.

11.1  Layout Management
Up to now, you have had limited control over the layout of user-interface compo-
nents. You learned how to add controls to a pane and relocate them, and also how to
add them to a VBox pane that arranges objects from top to bottom. However, in many
applications, you need more sophisticated arrangements.

11.1.1  Horizontal and Vertical Boxes

In JavaFX, you build up user interfaces by
adding controls into layout panes. You have
already seen the VBox that arranges its children
vertically. There is an analogous HBox for hori-
zontal arrangement.

When we used the VBox pane in the preceding
chapter, you may have noticed that there was
no gap between the controls, and none between
the controls and the window holding them.
The same is true for the HBox pane. Consider this
code:

Button button1 = new Button("Yes");
Button button2 = new Button("No");
Button button3 = new Button("Maybe");
HBox buttons = new HBox(button1, button2, button3);
Scene scene1 = new Scene(buttons);
stage1.setScene(scene1);
stage1.show();

The result looks like this:

That is not very attractive. First, set a gap between controls in the HBox constructor:
HBox buttons = new HBox(10, button1, button2, button3);

Now the buttons are separated by ten pixels.

© Felix Mockel/iStockphoto.
A layout pane arranges user-interface
components.

In JavaFX, you
use layout panes
to arrange user-
interface controls.

© Carlos Santa Maria/iStockphoto.

©
 F

el
ix

 M
oc

ke
l/i

St
oc

kp
ho

to
.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   537

To add space around the controls, set the padding like this:
buttons.setPadding(new Insets(10));

With these settings, the appearance is much improved:

You can nest HBox and VBox panes to produce more complex layouts. For example, here
we have a VBox with a label and an HBox holding three buttons:

These buttons are
contained in an HBox

A VBox contains
the label and the HBox holding

the buttons

This layout is achieved with the following code:
Label question = new Label("Do you like JavaFX?");
Button button1 = new Button("Yes");
Button button2 = new Button("No");
Button button3 = new Button("Maybe");
HBox buttons = new HBox(10, button1, button2, button3);
VBox root = new VBox(10, question, buttons);
root.setPadding(new Insets(10));
Scene scene1 = new Scene(root);

Nesting horizontal panels inside vertical panels works fine as long as you are not con-
cerned about alignment between columns. The next section shows you how to realize
more complex layouts. Here is the code for creating the nested boxes.

sec01_01/BoxDemo.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;
3 import javafx.scene.Scene;
4 import javafx.scene.control.Button;
5 import javafx.scene.control.Label;
6 import javafx.scene.layout.HBox;
7 import javafx.scene.layout.Pane;
8 import javafx.scene.layout.VBox;
9 import javafx.stage.Stage;

10
11 public class BoxDemo extends Application
12 {
13 public void start(Stage stage1)
14 {
15 Pane root = createRootPane();
16 Scene scene1 = new Scene(root);
17 stage1.setScene(scene1);
18 stage1.setTitle(" ");
19 stage1.show();
20 }
21
22 public Pane createRootPane()
23 {
24 Button button1 = new Button("Yes");
25 Button button2 = new Button("No");

You can arrange
controls by placing
them in nested HBox
and VBox panes.

538  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

26 Button button3 = new Button("Maybe");
27 Pane buttons = new HBox(10, button1, button2, button3);
28 Label question = new Label("Do you like JavaFX?");
29
30 VBox root = new VBox(10, question, buttons);
31
32 root.setPadding(new Insets(10));
33 return root;
34 }
35 }

11.1.2  The Grid Pane

The GridPane arranges controls in a grid of rows and columns. A good example is a
calculator keypad, such as this:

When you add a control to a GridPane, you specify the column and row position. (The
column position comes first because it is the x-position in a mathematical coordinate
system, which comes traditionally before the y-position that indicates the row.)

GridPane pane = new GridPane();
pane.add(new Button("7"), 0, 0);
pane.add(new Button("8"), 1, 0);
pane.add(new Button("9"), 2, 0);
pane.add(new Button("4"), 0, 1);
. . .

To add some space between the rows and columns, and around the edges, use these
statements:

pane.setHgap(10);
pane.setVgap(10);
pane.setPadding(new Insets(10));

Here is the result:

If you want to center a component within its column, you have to work a bit harder:
Button button7 = new Button("7");
pane.add(button7, 0, 0);
GridPane.setHalignment(button7, HPos.CENTER);

Use a GridPane to lay
out controls in a grid
of rows and columns.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   539

Here is how the calculator looks when all buttons have been centered:

A pocket calculator also has a display that shows the value of the last calculation.
That display spans all columns. When you add a control to a grid pane that should
span multiple columns or rows, you indicate those column and row counts in the add
method:

TextField display = new TextField();
pane.add(display, 0, 0, 3, 1); // Spans 3 columns and one row

The text field now spans three columns:

By default, the columns don’t have equal size. Instead, each column is as narrow as
possible to hold its children, and the last column receives any remaining space. You
can adjust the column widths like this:

ColumnConstraints col1 = new ColumnConstraints();
col1.setPercentWidth(33.33);
ColumnConstraints col2 = new ColumnConstraints();
col2.setPercentWidth(33.33);
ColumnConstraints col3 = new ColumnConstraints();
col3.setPercentWidth(33.33);
pane.getColumnConstraints().addAll(col1,col2,col3);

With these statements, all columns have the same size:

540  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

If you look carefully at the buttons, you will note that their sizes differ slightly. By
default, buttons don’t grow beyond their preferred size. You can fix that by setting
their maximum width. If you want the button to grow as much as possible to fill a
column, you can set the maximum width to a very large value, such as 1,000, or even
better, to the largest possible floating-point value:

button7.setMaxWidth(Double.MAX_VALUE);

If you do that with all buttons, each of them grows to fill the column. Now we have a
calculator with a nice layout of its child components:

Here is the complete program. To keep the code from being repetitive, the buttons
are set up in a loop. This program just shows how to achieve the layout. Worked
Example 11.1 makes the buttons active.

sec01_02/Calculator.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;
3 import javafx.scene.Scene;
4 import javafx.scene.control.Button;
5 import javafx.scene.control.TextField;
6 import javafx.scene.layout.ColumnConstraints;
7 import javafx.scene.layout.GridPane;
8 import javafx.scene.layout.Pane;
9 import javafx.stage.Stage;

10
11 public class Calculator extends Application
12 {
13 public void start(Stage stage1)
14 {
15 Pane root = createRootPane();
16 Scene scene1 = new Scene(root);
17 stage1.setScene(scene1);
18 stage1.setTitle(" ");
19 stage1.show();
20 }
21
22 public Pane createRootPane()
23 {
24 GridPane pane = new GridPane();
25 pane.setHgap(10);
26 pane.setVgap(10);
27 pane.setPadding(new Insets(10));
28
29 TextField display = new TextField("");
30 pane.add(display, 0, 0, 3, 1);
31

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   541

32 String[] labels =
33 { "7", "8", "9", "4", "5", "6", "1", "2", "3", "0", ".", "CE" };
34 int r = 1;
35 int c = 0;
36 for (String label : labels)
37 {
38 Button b = new Button(label);
39 b.setMaxWidth(Double.MAX_VALUE);
40 pane.add(b, c, r);
41 c++;
42 if (c == 3) { c = 0; r++; }
43 }
44 ColumnConstraints col1 = new ColumnConstraints();
45 col1.setPercentWidth(33.33);
46 ColumnConstraints col2 = new ColumnConstraints();
47 col2.setPercentWidth(33.33);
48 ColumnConstraints col3 = new ColumnConstraints();
49 col3.setPercentWidth(33.33);
50 pane.getColumnConstraints().addAll(col1, col2, col3);
51 return pane;
52 }
53 }

1.	 How can you arrange the “Yes”, “No”, and “Maybe” buttons vertically instead
of horizontally?

2.	 How can you create a calculator using only HBox and VBox panes?
3.	 What happens if you place two buttons in the same position of a grid pane? Try

it out with a small program.
4.	 Some calculators have a double-wide 0 button, as shown below. How can you

achieve that?

5.	 The BorderPane arranges five components in the following configuration:

North

West Center East

South

How can you achieve the same effect with a GridPane?

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

542  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Practice It	 Now you can try these exercises at the end of the chapter: R11.3, E11.1, E11.2.

Use a GUI Builder

As you have seen, implementing even a simple graphical user interface in Java is quite tedious.
You have to write a lot of code for using layout panes and fine-tuning the layout of controls.

A GUI builder takes away much of the tedium. You simply drag and drop controls, and
pick their layout properties from a set of choices. (To understand the offered choices, it helps
to know how to write the user interface programmatically.)

The standard GUI builder for JavaFX is called Scene Builder. You can download it from
http://gluonhq.com/labs/scene-builder/. To produce the layout for the calculator, drag a grid
pane to the center area. Right-click and select the options to add rows and columns. Then drag
a text field and the buttons to their desired locations, and set their properties (see Figure 1).

When you are satisfied with the layout, save your work as a file calc.fxml and place it into
the same directory as the Java classes of your program. You can peek inside the file—it contains
your layout instructions in a format called FXML.

Then you can load the layout with the following code:

public class Calculator extends Application
{
 public void start(Stage stage1)
 {
 Parent root = null;
 try
 {
 root = FXMLLoader.load(getClass().getResource("calc.fxml"));
 Scene scene1 = new Scene(root);

Programming Tip 11.1

© Eric Isselé/iStockphoto.

Figure 1  The JavaFX Scene Builder

Set control
properties here

Set control
names here

Drag controls
from this palette

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   543

 stage1.setScene(scene1);
 stage1.setTitle(" ");
 stage1.show();
 }
 catch (IOException e)
 {
 System.out.println("Couldn’t load calc.fxml");
 }
 }
}

Now the user interface is displayed, just as with the program of the preceding section. Note
that you do not have to program any layout commands.

However, you still need to attach handlers to the buttons. Therefore, you need to be able to
access them in your program. First, provide a controller class that attaches the handlers. Pro-
vide an instance variable for each control that you’d like to access from your controller class,
and annotate it with the annotation @FXML:

public class CalculatorController implements Initializable
{
 @FXML private TextField display;
 @FXML private Button button0;
 @FXML private Button button1;
 . . .
 public void initialize(URL url, ResourceBundle rb)
 {
 . . .
 }
}

In the initialize method, set the event handlers;

public void initialize(URL url, ResourceBundle rb)
{
 button0.setOnAction(event -> display.appendText("0"));
 button1.setOnAction(event -> display.appendText("1"));
 . . .
}

In Scene Builder, you need to set the fx:id attribute of every control to the same name as the
instance variable that is annotated with @FXML. You find the setting in the “Code” pane in the
right-hand side of the Scene Builder program. You also need to set the controller class in the
“Controller” pane in the bottom-left corner.

When the FXML file is loaded, the annotated instance variables are initialized with the
controls. If there is a problem with the initialization, look into the FXML and check the fx:id
and fx:controller attributes.

By using FXML, the layout and code are separated. A professional user interface designer,
who need not be a programmer, can provide attractive and functional user interfaces.

programming_tip_1/CalculatorController.java

1 import javafx.fxml.FXML;
2 import javafx.fxml.Initializable;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.TextField;
5
6 import java.net.URL;
7 import java.util.ResourceBundle;
8
9 public class CalculatorController implements Initializable

10 {

544  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11 @FXML private TextField display;
12 @FXML private Button button0;
13 @FXML private Button button1;
14 @FXML private Button button2;
15 @FXML private Button button3;
16 @FXML private Button button4;
17 @FXML private Button button5;
18 @FXML private Button button6;
19 @FXML private Button button7;
20 @FXML private Button button8;
21 @FXML private Button button9;
22 @FXML private Button buttonDP;
23 @FXML private Button buttonCE;
24
25 public void initialize(URL url, ResourceBundle rb)
26 {
27 button0.setOnAction(event -> display.appendText("0"));
28 button1.setOnAction(event -> display.appendText("1"));
29 button2.setOnAction(event -> display.appendText("2"));
30 button3.setOnAction(event -> display.appendText("3"));
31 button4.setOnAction(event -> display.appendText("4"));
32 button5.setOnAction(event -> display.appendText("5"));
33 button6.setOnAction(event -> display.appendText("6"));
34 button7.setOnAction(event -> display.appendText("7"));
35 button8.setOnAction(event -> display.appendText("8"));
36 button9.setOnAction(event -> display.appendText("9"));
37 buttonDP.setOnAction(event -> display.appendText("."));
38 buttonCE.setOnAction(event -> display.setText(""));
39 }
40 }

programming_tip_1/Calculator.java

1 import java.io.IOException;
2
3 import javafx.application.Application;
4 import javafx.fxml.FXMLLoader;
5 import javafx.scene.Parent;
6 import javafx.scene.Scene;
7 import javafx.stage.Stage;
8
9 public class Calculator extends Application

10 {
11 public void start(Stage stage1)
12 {
13 Parent root = null;
14 try
15 {
16 root = FXMLLoader.load(getClass().getResource("calc.fxml"));
17 Scene scene1 = new Scene(root);
18 stage1.setScene(scene1);
19 stage1.setTitle(" ");
20 stage1.show();
21 }
22 catch (IOException e)
23 {
24 System.out.println("Couldn't load calc.fxml");
25 }

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   545

26 }
27 }

programming_tip_1/calc.fxml

1 <?xml version="1.0" encoding="UTF-8"?>
2
3 <?import javafx.geometry.Insets?>
4 <?import javafx.scene.control.Button?>
5 <?import javafx.scene.control.TextField?>
6 <?import javafx.scene.layout.ColumnConstraints?>
7 <?import javafx.scene.layout.GridPane?>
8
9 <GridPane hgap="10.0" vgap="10.0" xmlns="http://javafx.com/javafx/8.0.102"

10 xmlns:fx="http://javafx.com/fxml/1" fx:controller="CalculatorController">
11 <columnConstraints>
12 <ColumnConstraints hgrow="SOMETIMES" minWidth="10.0" percentWidth="33.0" />
13 <ColumnConstraints hgrow="SOMETIMES" minWidth="10.0" percentWidth="33.0" />
14 <ColumnConstraints hgrow="SOMETIMES" minWidth="10.0" percentWidth="33.0" />
15 </columnConstraints>
16 <children>
17 <TextField fx:id="display" GridPane.columnSpan="3" />
18 <Button fx:id="button7" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="7"
19 GridPane.rowIndex="1" />
20 <Button fx:id="button8" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="8"
21 GridPane.columnIndex="1" GridPane.rowIndex="1" />
22 <Button fx:id="button4" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="4"
23 GridPane.rowIndex="2" />
24 <Button fx:id="button5" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="5"
25 GridPane.columnIndex="1" GridPane.rowIndex="2" />
26 <Button fx:id="button9" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="9"
27 GridPane.columnIndex="2" GridPane.rowIndex="1" />
28 <Button fx:id="button6" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="6"
29 GridPane.columnIndex="2" GridPane.rowIndex="2" />
30 <Button fx:id="button1" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="1"
31 GridPane.rowIndex="3" />
32 <Button fx:id="button2" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="2"
33 GridPane.columnIndex="1" GridPane.rowIndex="3" />
34 <Button fx:id="button3" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="3"
35 GridPane.columnIndex="2" GridPane.rowIndex="3" />
36 <Button fx:id="button0" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="0"
37 GridPane.rowIndex="4" />
38 <Button fx:id="buttonDP" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="."
39 GridPane.columnIndex="1" GridPane.rowIndex="4" />
40 <Button fx:id="buttonCE" maxWidth="1.7976931348623157E308" mnemonicParsing="false" text="CE"
41 GridPane.columnIndex="2" GridPane.rowIndex="4" />
42 </children>
43 <padding>
44 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />
45 </padding>
46 </GridPane>

546  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Styling with CSS

Instead of programming user interface details such as

pane.setHgap(10);
pane.setVgap(10);
pane.setPadding(new Insets(10));

you can use cascading style sheets (CSS), a technology for describing the appearance of web
pages. JavaFX uses an adaptation of the CSS standard.

Put formatting instructions into a separate file, using the CSS syntax:

GridPane {
 -fx-hgap: 0.5em;
 -fx-vgap: 0.5em;
 -fx-padding: 0.5em;
}

GridPane Button {
 -fx-max-width: 100em;
}

We won’t cover the CSS syntax here, but it is pretty easy to understand. These statements
indicate how to set the gaps and padding of a GridPane, and the maximum width of all buttons
inside a grid pane. The “em” measurement means “the width of a lowercase letter m.” Using
em is better than using pixels because some users have very high resolution displays, in which
each individual pixel is tiny.

If you want to provide a style for a specific control (not all controls of a given type), set the
control’s ID in the JavaFX code:

button.setId("buttonCE");

Then you can reference the specific control in the style sheet like this:

#buttonCE {
 -fx-background-color: lightpink;
}

To use the style sheet, add it to the scene:

scene1.getStylesheets().add("calc.css");

If you like, you can use an FXML file and a style sheet. In Scene Builder, select the root pane,
then the Properties tab, and add the style sheet. Use the id property of individual controls to
assign CSS IDs to them.

You can also apply CSS styles without a style sheet. Sometimes, it is easier to create an
effect with CSS than with JavaFX features. For example, this command adds a dotted blue
border around a pane:

pane.setStyle("-fx-border-style: dotted;"
 + " -fx-border-width: 1px;"
 + " -fx-border-color: blue;");

That is easier than using the Border class:

pane.setBorder(
 new Border(
 new BorderStroke(Color.BLUE,
 BorderStrokeStyle.DOTTED,
 CornerRadii.EMPTY,
 BorderStroke.THIN)));

Here is the code for a calculator styled with CSS.

Special Topic 11.1

© Eric Isselé/iStockphoto.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.1  Layout Management   547

special_topic_1/Calculator.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.TextField;
5 import javafx.scene.layout.ColumnConstraints;
6 import javafx.scene.layout.GridPane;
7 import javafx.scene.layout.Pane;
8 import javafx.stage.Stage;
9

10 public class Calculator extends Application
11 {
12 public void start(Stage stage1)
13 {
14 Pane root = createRootPane();
15 Scene scene1 = new Scene(root);
16 scene1.getStylesheets().add("calc.css");
17 stage1.setScene(scene1);
18 stage1.setTitle(" ");
19 stage1.show();
20 }
21
22 public Pane createRootPane()
23 {
24 GridPane pane = new GridPane();
25
26 TextField display = new TextField("");
27 pane.add(display, 0, 0, 3, 1);
28
29 String[] labels = { "7", "8", "9", "4", "5", "6", "1", "2", "3",
30 "0", ".", "CE" };
31 int r = 1;
32 int c = 0;
33 for (String label : labels)
34 {
35 Button b = new Button(label);
36 pane.add(b, c, r);
37 c++;
38 if (c == 3) { c = 0; r++; }
39 b.setId("button" + label);
40 }
41 // This can’t be done with CSS
42 ColumnConstraints col1 = new ColumnConstraints();
43 col1.setPercentWidth(33.33);
44 ColumnConstraints col2 = new ColumnConstraints();
45 col2.setPercentWidth(33.33);
46 ColumnConstraints col3 = new ColumnConstraints();
47 col3.setPercentWidth(33.33);
48 pane.getColumnConstraints().addAll(col1, col2, col3);
49 return pane;
50 }
51 }

special_topic_1/calc.css

1 GridPane {
2 -fx-hgap: 0.5em;
3 -fx-vgap: 0.5em;
4 -fx-padding: 0.5em;

548  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

5 }
6
7 GridPane Button {
8 -fx-max-width: 100em;
9 }

10
11 #buttonCE {
12 -fx-background-color: lightpink;
13 }

11.2  Choices
In the following sections, you will see how to present a finite set of choices to the
user. Which FX control you use depends on whether the choices are mutually exclu-
sive or not, and on the amount of space you have for displaying the choices.

11.2.1  Radio Buttons

If the choices are mutually exclusive, use a set
of radio buttons. In a radio button set, only
one button can be selected at a time. When the
user selects another button in the same set, the
previously selected button is automatically
turned off. (These buttons are called radio but-
tons because they work like the station selector
buttons on a car radio: If you select a new sta-
tion, the old station is automatically dese-
lected.) For example, in Figure 2, the font sizes are mutually exclusive. You can select
small, medium, or large, but not a combination of them.

To create a set of radio buttons, create each button individually, and add all buttons
in the set to a ToggleGroup object:

RadioButton smallButton = new RadioButton("Small");
RadioButton mediumButton = new RadioButton("Medium");
RadioButton largeButton = new RadioButton("Large");

© Michele Cornelius/iStockphoto.In an old fashioned radio, pushing down
one station button released the others.

For a small set of
mutually exclusive
choices, use a group
of radio buttons or a
choice box.

Figure 2  Check Boxes, a Choice
Box, and Radio Buttons

©
 M

ic
he

le
 C

or
ne

liu
s/

iS

to
ck

ph
ot

o.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   549

ToggleGroup group = new ToggleGroup();
smallButton.setToggleGroup(group);
mediumButton.setToggleGroup(group);
largeButton.setToggleGroup(group);

Note that the toggle group does not place the buttons close to each other in the con-
tainer. The purpose of the toggle group is simply to find out which buttons to turn off
when one of them is turned on. It is still your job to arrange the buttons on the screen.

The isSelected method is called to find out whether a button is currently selected
or not. For example,

if (largeButton.isSelected()) { size = LARGE_SIZE; }

Because users will expect one radio button in a radio button group to be selected, you
should call setSelected(true) on one of the radio buttons when you set up the user
interface.

11.2.2  Check Boxes

A check box is a user-interface component with two states: checked and unchecked.
You use a group of check boxes when one selection does not exclude another. For
example, the choices for “Bold” and “Italic” in Figure 2 are not exclusive. You can
choose either, both, or neither. Therefore, they are implemented as a set of separate
check boxes. Radio buttons and check boxes have different visual appearances. Radio
buttons are round and have a black dot when selected. Check boxes are square and
have a check mark when selected.

You construct a check box by providing the name in the constructor:
CheckBox italicCheckBox = new CheckBox("Italic");

Because check box settings do not exclude each other, you do not place a set of check
boxes inside a toggle group.

As with radio buttons, you use the isSelected method to find out whether a check
box is currently checked or not.

11.2.3  Choice Boxes

If you have a large number of choices, you don’t want to make a set of radio buttons,
because that would take up a lot of space. Instead, you can use a choice box. When
you click on the arrow icon to the right of the text field of a choice box, a list of selec-
tions drops down, and you can choose one of the items in the list (see Figure 3).

Add strings to a choice box like this:
ChoiceBox<String> fontChoice = new ChoiceBox<>();
fontChoice.getItems().addAll("Serif", "SansSerif", "Monospaced");

Add radio buttons to
a ToggleGroup so that
only one button in
the group is selected
at any time.

For a binary choice,
use a check box.

For a large set
of choices, use a
choice box.

Figure 3  Opening a Choice Box

550  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

You get the item that the user has selected by calling the getSelectedItem method on
the object that the getSelectionModel method returns.

String facename = fontChoice.getSelectionModel().getSelectedItem();

You can select an item for the user by invoking the select method on the object
returned by the getSelectionModel method:

fontChoice.getSelectionModel().select("Serif");

Radio buttons, check boxes, and choice boxes generate an ActionEvent whenever the
user selects an item. In the following program, we don’t care which component was
clicked—all components notify the same listener object. Whenever the user clicks on
any one of them, we simply ask each control for its current content. We then update
the font of the label.

sec02/FontViewer.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;
3 import javafx.scene.Scene;
4 import javafx.scene.control.*;
5 import javafx.scene.control.Label;
6 import javafx.scene.layout.GridPane;
7 import javafx.scene.layout.Pane;
8 import javafx.scene.text.Font;
9 import javafx.scene.text.FontPosture;

10 import javafx.scene.text.FontWeight;
11 import javafx.stage.Stage;
12
13 public class FontViewer extends Application
14 {
15 private Label sample;
16 private CheckBox italicCheckbox;
17 private CheckBox boldCheckbox;
18 private RadioButton smallButton;
19 private RadioButton mediumButton;
20 private RadioButton largeButton;
21 private ChoiceBox<String> fontChoice;
22
23 public void start(Stage primaryStage)
24 {
25 Pane root = createRootPane();
26 Scene scene1 = new Scene(root);
27 primaryStage.setScene(scene1);
28 primaryStage.setTitle("FontViewer");
29 primaryStage.show();
30 }
31
32 private Pane createRootPane()
33 {
34 sample = new Label("Big Java");
35 italicCheckbox = new CheckBox("Italic");
36 italicCheckbox.setOnAction(event -> updateSample());
37
38 boldCheckbox = new CheckBox("Bold");
39 boldCheckbox.setOnAction(event -> updateSample());
40
41 ToggleGroup group = new ToggleGroup();
42 smallButton = new RadioButton("Small");
43 smallButton.setToggleGroup(group);

Radio buttons, check
boxes, and choice
boxes generate
action events, just as
buttons do.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   551

44 smallButton.setOnAction(event -> updateSample());
45 mediumButton = new RadioButton("Medium");
46 mediumButton.setToggleGroup(group);
47 mediumButton.setOnAction(event -> updateSample());
48 largeButton = new RadioButton("Large");
49 largeButton.setToggleGroup(group);
50 largeButton.setOnAction(event -> updateSample());
51 largeButton.setSelected(true);
52 fontChoice = new ChoiceBox<>();
53 fontChoice.getItems().addAll("Serif", "SansSerif", "Monospaced");
54 fontChoice.getSelectionModel().select("Serif");
55 fontChoice.setOnAction(event -> updateSample());
56
57 GridPane pane = new GridPane();
58
59 pane.add(sample, 0, 0, 3, 1);
60 pane.add(italicCheckbox, 0, 1);
61 pane.add(boldCheckbox, 1, 1);
62 pane.add(smallButton, 0, 2);
63 pane.add(mediumButton, 1, 2);
64 pane.add(largeButton, 2, 2);
65 pane.add(fontChoice, 2, 1);
66
67 pane.setHgap(10);
68 pane.setVgap(10);
69
70 pane.setPadding(new Insets(10, 10, 10, 10));
71 sample.setMinHeight(100);
72
73 updateSample();
74 return pane;
75 }
76
77 private void updateSample()
78 {
79 String facename = fontChoice.getSelectionModel().getSelectedItem();
80 FontPosture posture;
81 if (italicCheckbox.isSelected())
82 {
83 posture = FontPosture.ITALIC;
84 }
85 else
86 {
87 posture = FontPosture.REGULAR;
88 }
89 FontWeight weight;
90 if (boldCheckbox.isSelected())
91 {
92 weight = FontWeight.BOLD;
93 }
94 else
95 {
96 weight = FontWeight.NORMAL;
97 }
98 // Get font size
99

100 int size = 0;
101 final int SMALL_SIZE = 24;
102 final int MEDIUM_SIZE = 36;
103 final int LARGE_SIZE = 48;

552  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

104
105 if (smallButton.isSelected()) { size = SMALL_SIZE; }
106 else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
107 else if (largeButton.isSelected()) { size = LARGE_SIZE; }
108
109 // Set font of label
110
111 sample.setFont(Font.font(facename, weight, posture, size));
112 }
113 }

6.	 What is the advantage of a ChoiceBox over a set of radio buttons? What is the
disadvantage?

7.	 What happens when you put two check boxes into a toggle group? Try it out if
you are not sure.

8.	 How could the following user interface be improved?

9.	 Why do all user-interface controls in the FontViewer class share the same listener?
10.	 The static method Font.getFamilies yields a List<String> with the names of all font

families on the user’s computer. How should you modify the FontViewer program
so that the user can choose among all of them?

Practice It	 Now you can try these exercises at the end of the chapter: E11.4, E11.5, E11.6.

Use Chart Controls

Worked Example 10.1 showed how to write a program that creates bar charts. That program
is useful for learning about user-interface programming, but if you want to draw a chart, you
should use one of the chart controls that comes with JavaFX.

JavaFX has controls for bar charts, pie charts, line charts, and several other chart types. The
results look attractive and can be customized in many ways. We don’t want to go into the chart
classes in detail. To give you a flavor, here are instructions for making a line chart (see Figure 4).
You define the x- and y-axis and then create a chart object:

NumberAxis xAxis = new NumberAxis();
xAxis.setLabel("Period");
NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Balance");
LineChart<Number, Number> chart = new LineChart<>(xAxis, yAxis);

Now you assemble a series of data points:

XYChart.Series<Number, Number> balances = new XYChart.Series<>();
balances.setName("5%");
for (int i = 0; i <= PERIODS; i++)
{
 balances.getData().add(new XYChart.Data<>(i, balance));
 Update balance.
}

Add the series to the chart:

chart.getData().add(balances);

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 11.2

© Eric Isselé/iStockphoto.

Figure 4  A JavaFX Line Chart

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   553

104
105 if (smallButton.isSelected()) { size = SMALL_SIZE; }
106 else if (mediumButton.isSelected()) { size = MEDIUM_SIZE; }
107 else if (largeButton.isSelected()) { size = LARGE_SIZE; }
108
109 // Set font of label
110
111 sample.setFont(Font.font(facename, weight, posture, size));
112 }
113 }

6.	 What is the advantage of a ChoiceBox over a set of radio buttons? What is the
disadvantage?

7.	 What happens when you put two check boxes into a toggle group? Try it out if
you are not sure.

8.	 How could the following user interface be improved?

9.	 Why do all user-interface controls in the FontViewer class share the same listener?
10.	 The static method Font.getFamilies yields a List<String> with the names of all font

families on the user’s computer. How should you modify the FontViewer program
so that the user can choose among all of them?

Practice It	 Now you can try these exercises at the end of the chapter: E11.4, E11.5, E11.6.

Use Chart Controls

Worked Example 10.1 showed how to write a program that creates bar charts. That program
is useful for learning about user-interface programming, but if you want to draw a chart, you
should use one of the chart controls that comes with JavaFX.

JavaFX has controls for bar charts, pie charts, line charts, and several other chart types. The
results look attractive and can be customized in many ways. We don’t want to go into the chart
classes in detail. To give you a flavor, here are instructions for making a line chart (see Figure 4).
You define the x- and y-axis and then create a chart object:

NumberAxis xAxis = new NumberAxis();
xAxis.setLabel("Period");
NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Balance");
LineChart<Number, Number> chart = new LineChart<>(xAxis, yAxis);

Now you assemble a series of data points:

XYChart.Series<Number, Number> balances = new XYChart.Series<>();
balances.setName("5%");
for (int i = 0; i <= PERIODS; i++)
{
 balances.getData().add(new XYChart.Data<>(i, balance));
 Update balance.
}

Add the series to the chart:

chart.getData().add(balances);

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Programming Tip 11.2

© Eric Isselé/iStockphoto.

Figure 4  A JavaFX Line Chart

You can add as many series as you like. Figure 4 has one series for compound interest at 5 per-
cent and another for 6 percent.

If you look carefully, you can see that the data points in each series are joined by lines. If
you don’t want the lines, use a ScatterChart instead.

programming_tip_2/Chart.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.chart.LineChart;
4 import javafx.scene.chart.NumberAxis;
5 import javafx.scene.chart.XYChart;
6 import javafx.scene.layout.GridPane;
7 import javafx.scene.layout.Pane;
8 import javafx.stage.Stage;
9

10 public class Chart extends Application
11 {
12 public void start(Stage primaryStage)
13 {
14 Pane root = createRootPane();
15 Scene scene1 = new Scene(root);
16 primaryStage.setScene(scene1);
17 primaryStage.setTitle("Chart");
18 primaryStage.show();
19 }
20
21 public Pane createRootPane()
22 {
23 GridPane pane = new GridPane();
24 NumberAxis xAxis = new NumberAxis();
25 xAxis.setLabel("Period");
26 NumberAxis yAxis = new NumberAxis();
27 yAxis.setLabel("Balance");
28

554  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

29 LineChart<Number, Number> chart = new LineChart<>(xAxis, yAxis);
30 XYChart.Series<Number, Number> balances1 = new XYChart.Series<>();
31 balances1.setName("5%");
32 final double INITIAL_BALANCE = 10000;
33 final double PERIODS = 60;
34 double rate = 5;
35 double balance = INITIAL_BALANCE;
36 for (int i = 0; i <= PERIODS; i++)
37 {
38 balances1.getData().add(new XYChart.Data<>(i, balance));
39 balance = balance + balance * rate / 100;
40 }
41 chart.getData().add(balances1);
42
43 XYChart.Series<Number, Number> balances2 = new XYChart.Series<>();
44 balances2.setName("6%");
45 rate = 6;
46 balance = INITIAL_BALANCE;
47 for (int i = 0; i <= PERIODS; i++)
48 {
49 balances2.getData().add(new XYChart.Data<>(i, balance));
50 balance = balance + balance * rate / 100;
51 }
52 chart.getData().add(balances2);
53
54 pane.add(chart, 0, 0);
55
56 return pane;
57 }
58 }

Layout
Here is how our calculator will look:

© Tom Horyn/iStockphoto.

Worked Example 11.1	 Programming a Working Calculator

In this Worked Example, we implement arithmetic and scientific operations for a calculator.
We use the sample program from Section 11.1 as a starting point.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   555

The user interface is a bit different from that in Section 11.1. As you can see, the button grid
has buttons + - * / for arithmetic operations. There is also a pane at the bottom that holds
a checkbox, radio buttons, and a choice box for specifying a mathematical function and its
behavior. The “Apply” button is clicked to apply the selected function.

We use a grid pane layout, as in Section 11.1. However, now the grid has four columns, and
the display field spans all four:

GridPane pane = new GridPane();
pane.setHgap(10);
pane.setVgap(10);
pane.setPadding(new Insets(10));

ColumnConstraints col1 = new ColumnConstraints();
col1.setPercentWidth(25);
ColumnConstraints col2 = new ColumnConstraints();
col2.setPercentWidth(25);
ColumnConstraints col3 = new ColumnConstraints();
col3.setPercentWidth(25);
ColumnConstraints col4 = new ColumnConstraints();
col4.setPercentWidth(25);
pane.getColumnConstraints().addAll(col1, col2, col3, col4);

display = new TextField("");
pane.add(display, 0, 0, 4, 1);

We then loop over the button labels and add each button:

String[] labels = { "7", "8", "9", "/", "4", "5", "6", "*",
 "1", "2", "3", "-", "0", ".", "=", "+" };
int row = 1;
int column = 0;
for (String label : labels)
{
 Button b = new Button(label);
 b.setMaxWidth(Double.MAX_VALUE);
 pane.add(b, column, row);
 GridPane.setHalignment(b, HPos.CENTER);
 column++;
 if (column == 4) { column = 0; row++; }
 . . .
}

We add the remaining controls into an HBox that also spans four colums. We use an HBox rather
than placing the controls directly into the grid because we don’t want each of them to have the
same size as the buttons above them.

HBox bottomBox = new HBox(
 radianCheckBox,
 new Label("Log base"),
 baseeButton,
 base10Button,
 base2Button,
 mathOpChoice,
 mathOpButton);
 pane.add(bottomBox, 0, 5, 4, 1);

Arithmetic
First, we need to add button actions to the calculator pane for the arithmetic operations.

It is actually a bit subtle to implement the behavior of a calculator. Imagine the user who
has just entered 3 +. At this point, we can’t yet perform the addition because we don’t have the

556  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

second operand. We need to store the value (3) and the operator (+) and keep on going. Now
the user continues:

3 + 4 *

As soon as the * button is clicked, we can get to work and add 3 and 4. That is, we take the
saved value and the newly entered value, and combine them with the saved operator. Then we
save the * so that it can be executed later.

(Here, we implement a common household calculator in which multiplication and addition
have the same precedence. With additional effort, it is possible to implement a calculator in
which multiplication has a higher precedence, as it does in mathematics.)

There is another subtlety, concerning the update of the calculator display. Consider the
input

1 3 + 4 * 2 =

which arrives one button click at a time:

Button Clicked Action Display

1 Show 1 in display. 1

3 Add 3 to end of display. 13

+ Store 13 and + for later use. 13

4 Clear display, add 4. 4

* Replace display with result of 13 + 4.
Store 17 and * for later use.

17

2 Clear display, add 2. 2

= Replace display with result of 17 * 2. 34

You may want to try this out with an actual calculator. Note the following:
•	 When an operator button is clicked and two operands are available, the display is updated

with the result of the saved operation.
•	 The first digit button clicked after an operator clears the display. The other digit buttons

append to the display. The display can’t be cleared by the operator; it must be cleared by
the first digit. (Otherwise, there would be no way for the user to see the result.)

•	 The = button puts the calculator into the same state as it was at the beginning, clearing the
saved operation.

Now we have enough information to implement the arithmetic operator buttons. The calcula-
tor needs to remember
•	 the last value and operator.
•	 whether we are at the beginning or in the middle of entering a value.
We also need to remember the value that is currently being built up, but we can just take that
from the display field.

public class Calculator extends Application
{
 private double lastValue;
 private String lastOperator;
 private boolean startNewValue;
 private TextField display;
 . . .

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   557

 public void start(Stage stage1)
 {
 lastValue = 0;
 lastOperator = "=";
 startNewValue = true;
 . . .
 }
 . . .
}

The event handler of the digit buttons calls the following method which appends the digit to
the display. However, the display is cleared first if this was the first digit after an operator:

public void addToValue(String ch)
{
 if (startNewValue)
 {
 display.setText(ch);
 startNewValue = false;
 }
 else
 {
 display.setText(display.getText() + ch);
 }
}

The handler is set in the loop that constructs the buttons:

for (String label : labels)
{
 Button b = new Button(label);
 . . .
 if ("+-*/=".contains(label))
 {
 . . .
 }
 else
 {
 b.setOnAction(event -> addToValue(label));
 }
}

Handling the operator buttons is a bit more complex. We need to use the last operator for
combining the values, remember the current operator, and remember that the next digit but-
ton should start a new value:

if ("+-*/=".contains(label))
{
 b.setOnAction(event ->
 {
 calculate(lastOperator);
 lastOperator = label;
 startNewValue = true;
 });
}

Here is the calculate method that computes the result and updates the display:

public void calculate(String op)
{
 if (!startNewValue)
 {
 double value = Double.parseDouble(display.getText());
 double result = value;

558  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

 if (op.equals("+"))
 {
 result = lastValue + value;
 }
 else if (op.equals("-"))
 {
 result = lastValue - value;
 }
 else if (op.equals("*"))
 {
 result = lastValue * value;
 }
 else if (op.equals("/"))
 {
 result = lastValue / value;
 }
 setValue(result);
 }
}

In this method, we first check whether the operator follows a value. If a user clicked two
operators in a row, as in 3 + * 4, we assume that the intent was to replace an incorrectly entered
operator.

Here is the setValue method for updating the display:

public void setValue(double value)
{
 display.setText("" + value);
 lastValue = value;
 startNewValue = true;
}

To understand the behavior for the = operator, think through an input 3 + 4 = followed by
5 * 6 =. When the = button is clicked for the first time, the last operator (+) is executed, and =
becomes the last operator. When the * button is clicked, the calculate method should simply
return the second operand (5), which will later be combined with the 6.

This completes the implementation of the arithmetic operators.

Mathematical Functions
In order to practice working with user-interface controls, the calculator supports a few math-
ematical functions. The trigonometric functions sin, cos, and tan take an argument that can be
interpreted as radians or degrees. We provide a check box to select radians. (Perhaps two radio
buttons for radians and degrees would be clearer, but we want to practice using a checkbox.)
For the log and exp functions, we provide radio buttons to select one of three bases: e, 10, and 2.
We place the functions themselves into a choice box.

Clicking the “Apply” button applies the selected function with the selected options. Here
is the button handler:

mathOpButton.setOnAction(event ->
 {
 boolean radian = radianCheckBox.isSelected();
 double base = Math.E;
 if (base10Button.isSelected()) { base = 10; }
 else if (base2Button.isSelected()) { base = 2; }
 String functionName = mathOpChoice.getSelectionModel().getSelectedItem();
 computeMathFunction(functionName, radian, base);
 });

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   559

Here is the method for computing the result of the function. If we need to call a trigonomet-
ric function with degrees, we convert the argument to radians. That is what the Java library
expects.

public void computeMathFunction(String functionName, boolean radian, double base)
{
 double value = Double.parseDouble(display.getText());
 if (!radian && (functionName.equals("sin")
 || functionName.equals("cos") || functionName.equals("tan")))
 {
 value = Math.toRadians(value);
 }

 double result = value;
 if (functionName.equals("sin"))
 {
 result = Math.sin(value);
 }
 else if (functionName.equals("cos"))
 {
 result = Math.cos(value);
 }
 else if (functionName.equals("tan"))
 {
 result = Math.tan(value);
 }
 else if (functionName.equals("log"))
 {
 result = Math.log(value) / Math.log(base);
 }
 else if (functionName.equals("exp"))
 {
 result = Math.pow(base, value);
 }
 setValue(result);
}

Here is the complete source code. Note that the display text field is an instance variable—
we need to query and update its contents in several methods. However, the check box, radio
buttons, and choice box are local variables that are read only in the handler for the “Apply”
button.

worked_example_1/Calculator.java

1 import javafx.application.Application;
2 import javafx.geometry.HPos;
3 import javafx.geometry.Insets;
4 import javafx.scene.Scene;
5 import javafx.scene.control.*;
6 import javafx.scene.layout.ColumnConstraints;
7 import javafx.scene.layout.GridPane;
8 import javafx.scene.layout.HBox;
9 import javafx.scene.layout.Pane;

10 import javafx.stage.Stage;
11
12 public class Calculator extends Application
13 {
14 private double lastValue;
15 private String lastOperator;
16 private boolean startNewValue;

560  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

17 private TextField display;
18
19 public void start(Stage stage1)
20 {
21 lastValue = 0;
22 lastOperator = "=";
23 startNewValue = true;
24
25 Pane root = createRootPane();
26 Scene scene1 = new Scene(root);
27 stage1.setScene(scene1);
28 stage1.setTitle(" ");
29 stage1.show();
30 }
31
32 public Pane createRootPane()
33 {
34 GridPane pane = new GridPane();
35 pane.setHgap(10);
36 pane.setVgap(10);
37 pane.setPadding(new Insets(10));
38
39 ColumnConstraints col1 = new ColumnConstraints();
40 col1.setPercentWidth(25);
41 ColumnConstraints col2 = new ColumnConstraints();
42 col2.setPercentWidth(25);
43 ColumnConstraints col3 = new ColumnConstraints();
44 col3.setPercentWidth(25);
45 ColumnConstraints col4 = new ColumnConstraints();
46 col4.setPercentWidth(25);
47 pane.getColumnConstraints().addAll(col1, col2, col3, col4);
48
49 display = new TextField("");
50 pane.add(display, 0, 0, 4, 1);
51
52 String[] labels = { "7", "8", "9", "/", "4", "5", "6", "*",
53 "1", "2", "3", "-", "0", ".", "=", "+" };
54 int row = 1;
55 int column = 0;
56 for (String label : labels)
57 {
58 Button b = new Button(label);
59 b.setMaxWidth(Double.MAX_VALUE);
60 pane.add(b, column, row);
61 GridPane.setHalignment(b, HPos.CENTER);
62 column++;
63 if (column == 4) { column = 0; row++; }
64
65 if ("+-*/=".contains(label))
66 {
67 b.setOnAction(event ->
68 {
69 calculate(lastOperator);
70 lastOperator = label;
71 startNewValue = true;
72 });
73 }
74 else
75 {
76 b.setOnAction(event -> addToValue(label));

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.2  Choices   561

77 }
78 }
79
80 CheckBox radianCheckBox = new CheckBox("Radian");
81
82 RadioButton baseeButton = new RadioButton("e");
83 RadioButton base10Button = new RadioButton("10");
84 RadioButton base2Button = new RadioButton("2");
85
86 ToggleGroup baseButtonGroup = new ToggleGroup();
87 baseeButton.setToggleGroup(baseButtonGroup);
88 base10Button.setToggleGroup(baseButtonGroup);
89 base2Button.setToggleGroup(baseButtonGroup);
90 baseeButton.setSelected(true);
91
92 ChoiceBox<String> mathOpChoice = new ChoiceBox<>();
93 mathOpChoice.getItems().addAll("sin", "cos", "tan", "log", "exp");
94 mathOpChoice.getSelectionModel().select(0);
95 Button mathOpButton = new Button("Apply");
96
97 HBox bottomBox = new HBox(
98 radianCheckBox,
99 new Label("Log base"),

100 baseeButton,
101 base10Button,
102 base2Button,
103 mathOpChoice,
104 mathOpButton);
105 pane.add(bottomBox, 0, 5, 4, 1);
106
107 mathOpButton.setOnAction(event ->
108 {
109 boolean radian = radianCheckBox.isSelected();
110 double base = Math.E;
111 if (base10Button.isSelected()) { base = 10; }
112 else if (base2Button.isSelected()) { base = 2; }
113 String functionName =
114 mathOpChoice.getSelectionModel().getSelectedItem();
115 computeMathFunction(functionName, radian, base);
116 });
117
118 return pane;
119 }
120
121 /**
122 Sets the display to a new value.
123 @param value the new value
124 */
125 public void setValue(double value)
126 {
127 display.setText("" + value);
128 lastValue = value;
129 startNewValue = true;
130 }
131
132 /**
133 Adds a character to the display value.
134 @param ch the character to add
135 */

562  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

136 public void addToValue(String ch)
137 {
138 if (startNewValue)
139 {
140 display.setText(ch);
141 startNewValue = false;
142 }
143 else
144 {
145 display.setText(display.getText() + ch);
146 }
147 }
148
149 /**
150 Calculates an arithmetic operation.
151 @param op the arithmetic operation for the next step
152 */
153 public void calculate(String op)
154 {
155 if (!startNewValue)
156 {
157 double value = Double.parseDouble(display.getText());
158 double result = value;
159 if (op.equals("+"))
160 {
161 result = lastValue + value;
162 }
163 else if (op.equals("-"))
164 {
165 result = lastValue - value;
166 }
167 else if (op.equals("*"))
168 {
169 result = lastValue * value;
170 }
171 else if (op.equals("/"))
172 {
173 result = lastValue / value;
174 }
175 setValue(result);
176 }
177 }
178
179 /**
180 Calculates a mathematical function.
181 @param functionName the name of the function
182 @param radian true if trigonometric functions use radian
183 @param base the base for log and exp
184 */
185 public void computeMathFunction(String functionName,
186 boolean radian, double base)
187 {
188 double value = Double.parseDouble(display.getText());
189
190 if (!radian && (functionName.equals("sin")
191 || functionName.equals("cos") || functionName.equals("tan")))
192 {
193 value = Math.toRadians(value);
194 }

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.3  Menus   563

195
196 double result = value;
197 if (functionName.equals("sin"))
198 {
199 result = Math.sin(value);
200 }
201 else if (functionName.equals("cos"))
202 {
203 result = Math.cos(value);
204 }
205 else if (functionName.equals("tan"))
206 {
207 result = Math.tan(value);
208 }
209 else if (functionName.equals("log"))
210 {
211 result = Math.log(value) / Math.log(base);
212 }
213 else if (functionName.equals("exp"))
214 {
215 result = Math.pow(base, value);
216 }
217 setValue(result);
218 }
219 }

11.3  Menus
Anyone who has ever used a graphical user interface is
familiar with pull-down menus (see Figure 5). A menu
bar contains the top-level menus. Each menu is a collec-
tion of menu items and submenus.

The sample program for this section builds up a small
but typical menu and handles the events from the menu
items. The program allows the user to specify the font for
a label by selecting a face name, font size, and font style.
In JavaFX, it is easy to create these menus.

© lillisphotography/iStockphoto.

A menu provides a list of
available choices.

The menu bar
contains menus.
A menu contains
submenus and menu
items.

Figure 5  Pull-Down Menus

Menu bar

Submenu

Menu item

Menu
©

 li
lli

sp
ho

to
gr

ap
hy

/iS
to

ck
ph

ot
o.

564  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

You add the menu bar to the top of the root pane:
private Pane createRootPane()
{
 MenuBar bar = new MenuBar();
 . . .
 VBox pane = new VBox(bar, . . .);
 return pane;
}

Add menus to the menu bar:
Menu fileMenu = new Menu("File");
Menu fontMenu = new Menu("Font");
bar.getMenus().addAll(fileMenu, fontMenu);

Add menu items and submenus to the menus:
MenuItem exitItem = new MenuItem("Exit");
fileMenu.getItems().add(exitItem);
Menu styleMenu = new Menu("Style");
fontMenu.getItems().add(styleMenu); // A submenu

A menu item has no further submenus. When the user selects a menu item, the menu
item sends an action event. Therefore, you want to add a handler to each menu item:

exitItem.setOnAction(event -> System.exit(0));

You add action event handlers only to menu items, not to menus or the menu bar.
When the user clicks on a menu name and a submenu opens, no action event is sent.

To keep the program readable, it is a good idea to use methods for constructing
menu items with similar actions. For example,

private MenuItem createFaceItem(String newFacename)
{
 MenuItem item = new MenuItem(newFacename);
 item.setOnAction(event -> { facename = newFacename; updateSample(); });
 return item;
}

Here, facename is an instance variable of the FontViewer class, and the updateSample
method uses the face name and other font information to update the font sample:

public class FontViewer extends Application
{
 private Label sample;
 private String facename = "Serif";
 . . .
 private void updateSample()
 {
 sample.setFont(Font.font(facename, . . .));
 }
}

Here is the complete program:

sec03/FontViewer.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Label;
4 import javafx.scene.control.Menu;
5 import javafx.scene.control.MenuBar;
6 import javafx.scene.control.MenuItem;

A menu provides
a list of available
choices.

Menu items generate
action events.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.3  Menus   565

7 import javafx.scene.layout.Pane;
8 import javafx.scene.layout.VBox;
9 import javafx.scene.text.Font;

10 import javafx.scene.text.FontPosture;
11 import javafx.scene.text.FontWeight;
12 import javafx.stage.Stage;
13
14 public class FontViewer extends Application
15 {
16 private static final int SMALL_SIZE = 24;
17 private static final int MEDIUM_SIZE = 36;
18 private static final int LARGE_SIZE = 48;
19
20 private Label sample;
21 private String facename = "Serif";
22 private int size = LARGE_SIZE;
23 private FontPosture posture = FontPosture.REGULAR;
24 private FontWeight weight = FontWeight.NORMAL;
25
26 public void start(Stage primaryStage)
27 {
28 Pane root = createRootPane();
29 Scene scene1 = new Scene(root);
30 primaryStage.setScene(scene1);
31 primaryStage.setTitle("FontViewer");
32 primaryStage.show();
33 }
34
35 private MenuItem createFaceItem(String newFacename)
36 {
37 MenuItem item = new MenuItem(newFacename);
38 item.setOnAction(event -> { facename = newFacename; updateSample(); });
39 return item;
40 }
41
42 private MenuItem createSizeItem(String name, int newSize)
43 {
44 MenuItem item = new MenuItem(name);
45 item.setOnAction(event -> { size = newSize; updateSample(); });
46 return item;
47 }
48
49 private MenuItem createStyleItem(String name,
50 FontPosture newPosture, FontWeight newWeight)
51 {
52 MenuItem item = new MenuItem(name);
53 item.setOnAction(event ->
54 {
55 posture = newPosture;
56 weight = newWeight;
57 updateSample();
58 });
59 return item;
60 }
61
62 private Pane createRootPane()
63 {
64 MenuBar bar = new MenuBar();
65 sample = new Label("Big Java");
66 sample.setMinSize(300, 200);

566  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

67 VBox pane = new VBox(bar, sample);
68 Menu fileMenu = new Menu("File");
69 MenuItem exitItem = new MenuItem("Exit");
70 exitItem.setOnAction(event -> System.exit(0));
71 fileMenu.getItems().add(exitItem);
72
73 Menu fontMenu = new Menu("Font");
74 bar.getMenus().addAll(fileMenu, fontMenu);
75
76 Menu faceMenu = new Menu("Face");
77 faceMenu.getItems().addAll(
78 createFaceItem("Serif"),
79 createFaceItem("SansSerif"),
80 createFaceItem("Monospaced"));
81
82 Menu sizeMenu = new Menu("Size");
83 sizeMenu.getItems().addAll(
84 createSizeItem("Small", SMALL_SIZE),
85 createSizeItem("Medium", MEDIUM_SIZE),
86 createSizeItem("Large", LARGE_SIZE));
87
88 Menu styleMenu = new Menu("Style");
89 styleMenu.getItems().addAll(
90 createStyleItem("Plain", FontPosture.REGULAR, FontWeight.NORMAL),
91 createStyleItem("Bold", FontPosture.REGULAR, FontWeight.BOLD),
92 createStyleItem("Italic", FontPosture.ITALIC, FontWeight.NORMAL),
93 createStyleItem("Bold Italic", FontPosture.ITALIC,
94 FontWeight.BOLD));
95
96 fontMenu.getItems().addAll(faceMenu, sizeMenu, styleMenu);
97
98 updateSample();
99 return pane;

100 }
101
102 private void updateSample()
103 {
104 sample.setFont(Font.font(facename, weight, posture, size));
105 }
106 }

11.	 Why do Menu objects not generate action events?
12.	 Can you add a menu item directly to the menu bar? Try it out. What happens?
13.	 Can you add a menu to itself as child menu?
14.	 Why can’t the createFaceItem method simply set the faceName instance variable,

like this:
private MenuItem createFaceItem(String newFacename)
{
 MenuItem item = new MenuItem(newFacename);
 facename = newFacename;
 item.setOnAction(event -> { updateSample(); });
 return item;
}

15.	 In this program, the font specification (name, size, and style) is stored in instance
variables. Why was this not necessary in the program of the previous section?

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.4  Properties and Bindings   567

Practice It	 Now you can try these exercises at the end of the chapter: R11.13, E11.7, E11.8.

11.4  Properties and Bindings
A property is a named attribute of a class that you can read or write. For example, the
Label class has a property named text that you can read and write with the methods

String getText()
void setText(String value)

Does that mean that the Label has an instance variable text? Not necessarily. The Label
is free to store that information any way it chooses, perhaps inside another object.
For a property, all that matters are the getter and setter methods.

Each property has a type, namely the return type of the getter and the parameter
type of the setter. For example, the text property of the Label class has type String
because the getText method returns String values, and the setText method accepts
String values. If the property has type boolean, the getter method starts with is. For
example, you call the isSelected getter method for the selected property of a Checkbox.

A property is observable if you can add a handler that is notified whenever the
property value changes. Many properties of JavaFX controls are observable, includ-
ing the text property of the Label class. Admittedly, it is not so interesting to install a
handler to find out when the label text changes. You know when that happens: when
you call the setText method. However, consider a Slider (see Figure 6). It has a value
property that changes when the user adjusts the slider position.

To be notified of the changes, get the property object and attach an event handler:
Slider positionSlider = new Slider(50, 150, 100);
 // Values range from 50 to 150, starting with 100
positionSlider.valueProperty().addListener(
 obs -> positionLabel.setText("" + positionSlider.getValue()));

Now the label changes whenever the slider is moved.
The event handler receives the observable that has changed, but you don’t nor-

mally need it. Just ignore it and get the changed value with the property getter.
You always attach the handler to a property object, which is returned by calling a

method whose name starts with the property name and is followed by Property. For
example, the valueProperty method yields an object representing the value property.

A property is
accessed by getter
and setter methods.

Each property has a
name and a type.

An observable
property notifies its
listeners when its
value changes.

Figure 6  When the Slider is Moved,
the Label and Circle are Updated

Attach property
change handlers to
Property objects.

568  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

When the types of two properties match, you can bind them together. Then a
change in one property automatically changes the other. Consider this example:

Circle ball = new Circle(100, 50, 25);
ball.centerXProperty().bind(positionSlider.valueProperty());

When the user moves the slider, the circle moves with it. You could have achieved the
same effect with a listener:

positionSlider.valueProperty().addListener(
 obs -> ball.setCenterX(positionSlider.getValue()));

But the bind syntax is more compact.
Note that a property can only be bound to one other property. There is also an

unbind method to remove the binding.
You can only bind properties together that have the same type. For example, we

cannot directly bind the slider’s value property (of type double) to the text property of
a label (which has type String). You can convert a numeric property to a string prop-
erty with the asString method. Call the method with a format specifier of the style
used by String.format:

positionLabel.textProperty().bind(positionSlider.valueProperty().asString("%.2f"));

sec04/BindingDemo.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Label;
4 import javafx.scene.control.Slider;
5 import javafx.scene.layout.Pane;
6 import javafx.scene.shape.Circle;
7 import javafx.stage.Stage;
8
9 public class BindingDemo extends Application

10 {
11 public void start(Stage primaryStage)
12 {
13 Pane root = createRootPane();
14 Scene scene1 = new Scene(root);
15 primaryStage.setScene(scene1);
16 primaryStage.setTitle("BindingDemo");
17 primaryStage.show();
18 }
19
20 public Pane createRootPane()
21 {
22 Circle ball = new Circle(100, 50, 25);
23 Slider positionSlider = new Slider(50, 150, 100);
24 Label positionLabel = new Label("");
25
26 Pane pane = new Pane(ball, positionSlider, positionLabel);
27 pane.setMinSize(200, 200);
28 positionSlider.relocate(50, 150);
29 positionLabel.relocate(0, 150);
30
31 ball.centerXProperty().bind(positionSlider.valueProperty());
32 positionSlider.valueProperty().addListener(
33 obs -> positionLabel.setText("" + positionSlider.getValue()));
34 // This also works:
35 // positionLabel.textProperty().bind(

When a property is
bound to another, it
tracks the changes of
the other property.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.4  Properties and Bindings   569

36 // positionSlider.valueProperty().asString("%.2f"));
37
38 return pane;
39 }
40 }

If you want to bind a property to the result of a complex computation, use the static
Bindings.createObjectBinding method. You supply a lambda expression for comput-
ing the desired result, followed by one or more properties. If any of the properties
change their value, the lambda expression is executed, and the target property is set to
the result. For example, suppose you have three sliders, one each for the red, green,
and blue values of a color. Then you can bind the background color property of a
circle like this:

ball.fillProperty().bind(// This property is set ...
 Bindings.createObjectBinding(
 () ->
 Color.rgb((int) redSlider.getValue(), // ... to the result of this expression ...
 (int) greenSlider.getValue(),
 (int) blueSlider.getValue()),
 redSlider.valueProperty(), // ... when one of these properties changes.
 greenSlider.valueProperty(),
 blueSlider.valueProperty()));

Here is the complete color viewer program. For the layout, we use a grid layout with
two columns. In this example, we do not want the columns to have equal size. The
circle spans both columns. Its color changes as the sliders are adjusted.

sec04/ColorViewer.java

1 import javafx.application.Application;
2 import javafx.beans.binding.Bindings;
3 import javafx.geometry.Insets;
4 import javafx.scene.Scene;
5 import javafx.scene.control.*;
6 import javafx.scene.layout.GridPane;
7 import javafx.scene.layout.Pane;
8 import javafx.scene.paint.Color;

Figure 7  A Color Viewer with Sliders

©
 C

or
on

a
L

ab
s,

In
c.

570  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

9 import javafx.scene.shape.Circle;
10 import javafx.stage.Stage;
11
12 public class ColorViewer extends Application
13 {
14 public void start(Stage primaryStage)
15 {
16 Pane root = createRootPane();
17 Scene scene1 = new Scene(root);
18 primaryStage.setScene(scene1);
19 primaryStage.setTitle("ColorViewer");
20 primaryStage.show();
21 }
22
23 public Pane createRootPane()
24 {
25 Circle ball = new Circle(150, 150, 100);
26 GridPane pane = new GridPane();
27 pane.setHgap(10);
28 pane.setVgap(10);
29 pane.setPadding(new Insets(10));
30
31 pane.add(ball, 0, 0, 2, 1);
32 pane.add(new Label("Red"), 0, 1);
33 pane.add(new Label("Green"), 0, 2);
34 pane.add(new Label("Blue"), 0, 3);
35 Slider redSlider = new Slider(0, 255, 0);
36 Slider greenSlider = new Slider(0, 255, 0);
37 Slider blueSlider = new Slider(0, 255, 0);
38 pane.add(redSlider, 1, 1);
39 pane.add(greenSlider, 1, 2);
40 pane.add(blueSlider, 1, 3);
41
42 ball.fillProperty().bind(
43 Bindings.createObjectBinding(// A computed property
44 () -> Color.rgb((int) redSlider.getValue(), // Call this ...
45 (int) greenSlider.getValue(),
46 (int) blueSlider.getValue()),
47 redSlider.valueProperty(), // ... when one of these changes
48 greenSlider.valueProperty(),
49 blueSlider.valueProperty()));
50
51 return pane;
52 }
53 }

16.	 A Font object has a size. Is that a property?
17.	 A Label has a font. Is that a property? Is it observable?
18.	 Why doesn’t a slider emit action events?
19.	 What do you need to change in the BindingDemo program to make the slider

change the size of the circle?
20.	 Suppose we want to replace sliders with text fields in the ColorViewer program, so

that a user can enter the red, green, and blue values, and the background color is
updated as the text changes. How do you set up the binding?

Practice It	 Now you can try these exercises at the end of the chapter: R11.14, E11.10, E11.11.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.4  Properties and Bindings   571

Custom Properties

JavaFX controls have many properties, and you can use them without knowing how they are
implemented. However, for advanced user interfaces, as well as for animations (which we will
discuss in the following section), you may want to expose properties of your own classes.

Consider the Bar class in Worked Example 10.1. You may want to adjust the size of a bar by
binding it to a slider. Then you need to supply a size property. That property has type double.

Therefore, you need to provide methods

public double getSize()
public void setSize(double value)

as well as a method sizeProperty that returns a property object.
You need to choose a class for the property. The most commonly used ones are:

•	 IntegerProperty, DoubleProperty, BooleanProperty for properties whose type is a primitive
type.

•	 StringProperty for properties whose type is String.
•	 ObjectProperty<T> for properties of any other type T.
In our case, the sizeProperty method should return a DoubleProperty object:

public DoubleProperty sizeProperty()

The JavaFX API provides classes SimpleIntegerProperty, SimpleDoubleProperty, and so on, that
provide a simple mechanism for implementing any property. Here is how to do that:

public class Bar
{
 private Rectangle rect1;
 private DoubleProperty size;

 public Bar(String label, double initialSize)
 {
 size = new SimpleDoubleProperty(initialSize);
 . . .
 }
 . . .
 public double getSize() { return size.get(); }
 public void setSize(double value) { size.set(value); }
 public DoubleProperty sizeProperty() { return size; }
 . . .
}

The DoubleProperty object contains a double value, which you can get and set. It also provides
the mechanism for adding listeners.

Now you can bind the property:

Bar bar1 = new Bar(. . .);
bar1.sizeProperty().bind(positionSlider.valueProperty());

There is just one problem. The rectangle that makes up the bar isn’t changing yet. You need to
add a listener to the property object that updates the rectangle width whenever the property
value changes. As it happens, the rectangle width is a property of the same type, so you can just
bind it:

public Bar(String label, double initialSize)
{
 . . .
 rect1.widthProperty().bind(size);
}

If there was a more complicated relationship, you would install a listener or create an object
binding.

Special Topic 11.2

© Eric Isselé/iStockphoto.

572  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Also, any other methods that affect the rectangle width must update the property, not the
rectangle. For example, suppose we have a growSize method:

public void growSize(double dx)
{
 rect1.setWidth(rect1.getWidth() + dx);
}

Change it to:

public void growSize(double dx)
{
 setSize(getSize() + dx);
}

special_topic_2/CustomPropertyDemo.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;
3 import javafx.scene.Scene;
4 import javafx.scene.control.Slider;
5 import javafx.scene.layout.Pane;
6 import javafx.scene.layout.VBox;
7 import javafx.stage.Stage;
8
9 public class CustomPropertyDemo extends Application

10 {
11 public void start(Stage primaryStage)
12 {
13 Pane root = createRootPane();
14 Scene scene1 = new Scene(root);
15 primaryStage.setScene(scene1);
16 primaryStage.setTitle("CustomPropertyDemo");
17 primaryStage.show();
18 }
19
20 public Pane createRootPane()
21 {
22 Slider slider1 = new Slider(0, 200, 100);
23 Bar bar1 = new Bar("January Sales", 100);
24
25 VBox pane = new VBox(10, slider1, bar1);
26 pane.setPadding(new Insets(10));
27 pane.setMinWidth(300);
28
29 bar1.sizeProperty().bind(slider1.valueProperty());
30
31 return pane;
32 }
33 }

special_topic_2/Bar.java

1 import javafx.beans.property.DoubleProperty;
2 import javafx.beans.property.SimpleDoubleProperty;
3 import javafx.scene.layout.Pane;
4 import javafx.scene.paint.Color;
5 import javafx.scene.shape.Rectangle;
6 import javafx.scene.text.Text;
7
8 public class Bar extends Pane
9 {

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.5  Animations   573

10 public static final int HEIGHT = 15;
11 private Rectangle rect1;
12
13 private DoubleProperty size;
14 public DoubleProperty sizeProperty() { return size; }
15 public double getSize() { return size.get(); }
16 public void setSize(double value) { size.set(value); }
17
18 public Bar(String label, double initialSize)
19 {
20 rect1 = new Rectangle(0, 0, initialSize, HEIGHT);
21 size = new SimpleDoubleProperty(initialSize);
22 rect1.widthProperty().bind(size);
23
24 Text text1 = new Text(label);
25 text1.relocate(0, 0);
26 text1.setStroke(Color.WHITE);
27
28 getChildren().addAll(rect1, text1);
29 }
30
31 public void growSize(double dx)
32 {
33 setSize(getSize() + dx);
34 }
35 }

11.5  Animations
The “FX” in JavaFX stands for “effects”, and one design goal for the JavaFX library
was to simplify programming of special effects such as animations.

When planning an animation, the designer produces a sequence of “key frames”
that specify when actions begin and end. The movie frames that come in between can
be interpolated from the two key frames that surround it.

Key frames specify
actions whose
intermediate steps
can be interpolated.

E
. M

uy
br

id
ge

’s
 S

al
lie

 G
ar

dn
er

 a
t a

 G
al

lo
p

574  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

JavaFX uses a similar terminology. A KeyFrame has a given duration, plus one or more
properties with their target values. Here is an example:

KeyFrame frame1 = new KeyFrame(Duration.seconds(5),
 new KeyValue(ball.centerXProperty(), 175),
 new KeyValue(ball.centerYProperty(), 175));

Over five seconds, both the centerX and centerY property of ball change from their
initial value to 175. That will make the circle move smoothly from its initial position
toward the bottom-right of the pane, as shown below.

0 sec

1 sec

2 sec

3 sec

4 sec

5 sec

(25, 25)

(55, 55)

(85, 85)

(115, 115)

(145, 145)

(175, 175)

You add KeyFrame objects to a Timeline, and then you invoke the play method:
Timeline animation = new Timeline(frame1, frame2, frame3);
animation.play();

All key frames are played in parallel. Each frame may have a different duration. The
animation ends when the one with the longest duration has finished.

To play multiple timelines in sequence, join them to a SequentialTransition, and
play it:

SequentialTransition animation =
 new SequentialTransition(timeline1, timeline2, timeline3);
animation.play();

By default, the play method plays an animation once. To repeat the animation, call:
animation.setCycleCount(n);

If you set n to Animation.INDEFINITE, then the animation repeats until it is stopped by a
call to the stop method.

You can set the autoReverse property of an animation to run it backwards in every
second cycle. For example, if an animation moves a circle from one place to another,
then the following statements make the circle move back and forth five times:

animation.setCycleCount(10);
animation.setAutoReverse(true);
animation.play();

The key frames that you have seen here work well for a linear interpolation of prop-
erties, such as moving an object from one position to another at a constant speed.
However, they are not as well suited for modeling nonlinear phenomena, such as
accelerating objects, pendulums, or springs.

In those cases, you need to provide a mathematical formula that tells how to update
objects, and you apply it many times per second.

You achieve that with a key frame that has a very short duration and no properties
to update. Add an action event handler that is called when the key frame has com-
pleted. Put the key frame into a timeline that is repeated many times:

A timeline plays key
frames in parallel.

Use a Sequential
Transition to play
one timeline after
another.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.5  Animations   575

long start = System.currentTimeMillis();
KeyFrame frame1 = new KeyFrame(Duration.millis(10),
 e ->
 {
 double t = System.currentTimeMillis() - start;
 Update your objects.
 });
Timeline animation = new Timeline(frame1);
animation.setCycleCount(n);
animation.play();

In the action event handler, use the elapsed time t to compute the new position of the
objects in motion. You can see an example in the following program. Clicking the
“Nonlinear” button shows an animation that simulates a falling ball, accelerated by
gravity. The program also demonstrates linear interpolation, sequential transitions,
and cycles.

sec05/AnimationDemo.java

1 import javafx.animation.KeyFrame;
2 import javafx.animation.KeyValue;
3 import javafx.animation.SequentialTransition;
4 import javafx.animation.Timeline;
5 import javafx.application.Application;
6 import javafx.geometry.Insets;
7 import javafx.scene.Scene;
8 import javafx.scene.control.Button;
9 import javafx.scene.layout.Pane;

10 import javafx.scene.layout.VBox;
11 import javafx.scene.shape.Circle;
12 import javafx.stage.Stage;
13 import javafx.util.Duration;
14
15 public class AnimationDemo extends Application
16 {
17 public void start(Stage primaryStage)
18 {
19 Pane root = createRootPane();
20 Scene scene1 = new Scene(root);
21 primaryStage.setScene(scene1);
22 primaryStage.setTitle("AnimationDemo");
23 primaryStage.show();
24 }
25
26 public Pane createRootPane()
27 {
28 Circle ball = new Circle(25, 50, 25);
29
30 Pane ballPane = new Pane(ball);
31 ballPane.setMinSize(200, 200);
32
33 Button keyFrames = new Button("Key frames");
34 Button sequential = new Button("Sequential");
35 Button cycling = new Button("Cycling");
36 Button nonlinear = new Button("Nonlinear");
37
38 VBox root = new VBox(10, ballPane, keyFrames, sequential,
39 cycling, nonlinear);
40 root.setPadding(new Insets(10));
41

576  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

42 /*
43 This animation simultaneously moves the circle diagonally
44 within 5 seconds and shrinks the circle within 10 seconds.
45 */
46 keyFrames.setOnAction(event ->
47 {
48 ball.setCenterX(25);
49 ball.setCenterY(50);
50 ball.setRadius(25);
51
52 KeyFrame frame1 = new KeyFrame(Duration.seconds(5),
53 new KeyValue(ball.centerXProperty(), 175),
54 new KeyValue(ball.centerYProperty(), 175));
55 KeyFrame frame2 = new KeyFrame(Duration.seconds(10),
56 new KeyValue(ball.radiusProperty(), 5));
57 Timeline animation = new Timeline(frame1, frame2);
58 animation.play();
59 });
60
61 /*
62 This animation moves the circle diagonally within 5 seconds
63 and then shrinks the circle within 10 seconds.
64 */
65 sequential.setOnAction(event ->
66 {
67 ball.setCenterX(25);
68 ball.setCenterY(50);
69 ball.setRadius(25);
70 KeyFrame frame1 = new KeyFrame(Duration.seconds(5),
71 new KeyValue(ball.centerXProperty(), 175),
72 new KeyValue(ball.centerYProperty(), 175));
73 KeyFrame frame2 = new KeyFrame(Duration.seconds(10),
74 new KeyValue(ball.radiusProperty(), 5));
75 Timeline timeline1 = new Timeline(frame1);
76 Timeline timeline2 = new Timeline(frame2);
77 SequentialTransition animation =
78 new SequentialTransition(timeline1, timeline2);
79 animation.play();
80 });
81
82 /*
83 This animation moves the circle to the right, then reverses
84 so that it moves back to the left, for a total of ten cycles.
85 */
86 cycling.setOnAction(event ->
87 {
88 ball.setCenterX(25);
89 ball.setCenterY(50);
90 ball.setRadius(25);
91 KeyFrame frame1 = new KeyFrame(Duration.seconds(1),
92 new KeyValue(ball.centerXProperty(), 175));
93 Timeline animation = new Timeline(frame1);
94 animation.setCycleCount(10);
95 animation.setAutoReverse(true);
96 animation.play();
97 });
98
99 /*

100 This animation simulates a ball falling under gravity.
101 */

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   577

102 nonlinear.setOnAction(event ->
103 {
104 ball.setCenterX(25);
105 ball.setCenterY(50);
106 ball.setRadius(25);
107
108 long start = System.currentTimeMillis();
109 KeyFrame frame1 = new KeyFrame(Duration.millis(10),
110 e -> {
111 double t = System.currentTimeMillis() - start;
112 ball.setCenterY(50 + t * t / 100000);
113 });
114 Timeline animation = new Timeline(frame1);
115 animation.setCycleCount(500);
116 animation.play();
117 });
118
119 return root;
120 }
121 }

21.	 How do you animate a circle whose radius grows from 100 to 200 in 2 seconds?
22.	 How do you animate a square whose side length grows from 100 to 200 in 2

seconds?
23.	 How do you animate a circle whose radius grows from 100 to 200 in 2 seconds

and then shrinks to zero in the next four seconds?
24.	 How do you animate a circle that pulsates indefinitely, with radius growing

from 100 to 110 and then shrinking back?
25.	 The motion of a heavy ball that is suspended from a bungee cord is described by

the equation y = y0 + m sin(f t), where y is the vertical position, y0 is the point at
rest, m is the maximum displacement, and f is a constant depending on the cord
material. How can you implement an animation of the ball?

Practice It	 Now you can try these exercises at the end of the chapter: E11.14, E11.15, E11.16.

11.6  Mouse Events
If you write programs that show drawings, and
you want users to manipulate the drawings with
a mouse, then you need to handle mouse events.
You can install handlers into any nodes, such as
geometric shapes, buttons, or panes. There are
handlers for different kinds of events. Let us
start with the simplest kind: pressing the mouse
button.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© james Brey/iStockphoto.In JavaFX, a mouse event isn’t a gath-
ering of rodents; it’s notification of a
mouse click by the program user.

You use a mouse
event handler to
capture mouse
events.

©
 ja

m
es

 B
re

y/
iS

to
ck

ph
ot

o.

578  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Suppose you want to move a circle to the position where a user pressed a mouse
button. In the pane where you listen to mouse events, add a handler:

pane.setOnMousePressed(event ->
 {
 ball.setCenterX(event.getX());
 ball.setCenterY(event.getY());
 });

When the mouse is pressed, the handler is invoked. The handler receives a MouseEvent.
You can get the mouse position by calling the getX and getY methods.

There are other events that you can capture. The setOnMouseEntered and setOnMouse-
Exited methods install handlers that are called whenever the mouse enters or exits the
node. You can use those handlers to highlight a node that rests under the mouse cur-
sor, and to turn off highlighting when the mouse moves away.

You can install a handler with the setOnMouseMoved method that tracks whether the
mouse has moved without any button presses. It is more common to use the setOn-
MouseDragged method to install a handler that is notified when the mouse is moved as a
button is pressed. Such a handler can update the position of a node to show how it is
being dragged.

In the following program, the user can click anywhere in a pane, and a circle is
moved to the position of the mouse click. Alternatively, the user can drag the circle to
a new location. As the circle is dragged, its color is changed to blue, as shown in Fig-
ure 8. When the mouse is released, the color reverts to black.

sec06/MouseDemo.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.layout.Pane;
4 import javafx.scene.paint.Color;
5 import javafx.scene.shape.Circle;
6 import javafx.stage.Stage;
7
8 public class MouseDemo extends Application
9 {

10 public void start(Stage primaryStage)
11 {
12 Pane root = createRootPane();
13 Scene scene1 = new Scene(root);
14 primaryStage.setScene(scene1);
15 primaryStage.setTitle("MouseDemo");
16 primaryStage.show();

Figure 8  When the Ball is Dragged, It Turns Blue

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   579

17 }
18
19 public Pane createRootPane()
20 {
21 Circle ball = new Circle(100, 50, 25);
22
23 Pane root = new Pane(ball);
24 root.setMinSize(200, 200);
25 root.setOnMousePressed(event ->
26 {
27 ball.setCenterX(event.getX());
28 ball.setCenterY(event.getY());
29 });
30
31 root.setOnMouseDragged(event ->
32 {
33 ball.setFill(Color.BLUE);
34 ball.setCenterX(event.getX());
35 ball.setCenterY(event.getY());
36 });
37
38 root.setOnMouseReleased(event ->
39 {
40 ball.setFill(Color.BLACK);
41 });
42
43 return root;
44 }
45 }

26.	 Suppose you want to add a new circle to a pane whenever the user presses the
mouse button. How do you do that?

27.	 Suppose you want the circle in the MouseDemo program to light up in yellow when-
ever the mouse hovers over it. How do you achieve that?

28.	 The MouseDemo program has a circle that is moved to the mouse position. What
changes do you have to make if you want to move a square instead?

29.	 Suppose you change the statement
root.setOnMouseDragged(. . .)

to
ball.setOnMouseDragged(. . .)

in the MouseDemo program. What is the effect? Try it out if you are not sure.
30.	 Suppose you change the statement

root.setOnMouseReleased(. . .)

to
ball.setOnMouseReleased(. . .)

in the MouseDemo program. What is the effect? Try it out if you are not sure.

Practice It	 Now you can try these exercises at the end of the chapter: R11.24, E11.22, E11.26.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

580  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Keyboard Events

In some programs, you need to process keystrokes. For
example, you may want to allow users to move a game
character with the arrow keys. In the same way that you
use a mouse event handler to track mouse events, you can
set a key event handler to receive key event notifications.
However, there is a twist. A mouse event is sent to the
control under the mouse pointer. But which control
should receive key events? It does not make sense to send
key events to all controls—this would clearly not work if
you have two text fields in your application. Instead, at
most one control at a time has focus. A program user can
change the focus by clicking with the mouse, or by using the Tab and Shift+Tab keys. The
focused control is highlighted—in this case, with a blue outline; see the text field in Figure 9.

Suppose a game displays shapes in a pane. For the pane to be able to receive key events, it
must declare that it can have focus, and then it should request focus:

chart.setFocusTraversable(true);
chart.requestFocus();

Next, add a key press handler to the pane. The handler receives a KeyEvent. Call its getCode
method to find out which key was pressed. The KeyCode enumeration has constants for each
key on the keyboard.

If you decide to handle a particular key event, you should consume it, so that the keystroke
is not used for other purposes. This is particularly important for the cursor and tab keys that
can be used to change the focus. Follow this outline for a key pressed handler:

pane.setOnKeyPressed(event ->
 {
 if (event.getKeyCode() == KeyCode.UP)
 {
 Handle the up arrow key.
 event.consume();
 }
 else if (event.getKeyCode == . . .)
 {
 . . .
 }
 });

The program in Worked Example 11.2 demonstrates how to handle keyboard events.

Special Topic 11.3

© Eric Isselé/iStockphoto. © Dmitry Shironosov/iStockphoto.
Whenever the program user presses
a key, a key event is generated.

Figure 9  The Focused Control Receives Key Events

©
 D

m
it

ry
 S

hi
ro

no
so

v/

iS
to

ck
ph

ot
o.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   581

We will implement the following user interface for modifying the chart:
•	 If the user selects one of the bars by clicking on it, the selected bar is displayed in red.
•	 If the user clicks and drags inside the row of a bar, the bar is resized so that it extends to the

location of the mouse click.
•	 Users can also use the arrow keys. The left and right arrow keys resize the selected bar.

The up and down arrow keys move to select the bar immediately above or below.

You may want to run the example program to get a feel for these operations. You have to pay
close attention when you execute the keyboard commands. The chart must have focus in order
to receive them. The application is made up of five controls: a label, a text field, two buttons,
and the chart. When the application first starts, the text field has focus. That is, if you type keys
on the keyboard, they are directed to the text field. Try it out: Type a few letters, then the left
and right arrow keys. The arrow keys move the cursor. Now press the Tab key. The focus is
transferred to the first button.

Press the space bar. That’s the same as clicking the button. A bar is added to the chart. Now
press Tab again to shift focus to the next button. Then press Tab one more time. Now the focus
is on the chart, and you can use the arrow keys to adjust the bar widths.

© Tom Horyn/iStockphoto.

Worked Example 11.2	 Adding Mouse and Keyboard Support to the
Bar Chart Creator

In this Worked Example, we enhance the bar chart creator of Worked Example 10.1 and add
support for mouse and keyboard operations.

582  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

This may seem like a tedious way of navigating a user interface. However, there are many
people with a disability that prevents them from using a mouse effectively. These people rely
on keyboard navigation. The JavaFX library provides the focus mechanism—you need not
worry about handling Tab key presses. In this worked example, we add the keyboard short-
cuts to the chart so that all users have a convenient way of editing the chart.

Updating the BarChartCreator Class
To implement these enhancements, we first modify the BarChartCreator and add mouse and
key handlers. (See Special Topic 11.3 for handling key events.)

public class BarChartCreator extends Application
{
 . . .
 private Pane createRootPane()
 {
 . . .
 chart.setOnMousePressed(event ->
 {
 chart.selectBarAt(event.getY());
 chart.requestFocus();
 });

 chart.setOnMouseDragged(event ->
 {
 chart.setSelectedSize(event.getX());
 });

 chart.setOnKeyPressed(event -> {
 if (event.getCode() == KeyCode.RIGHT)
 {
 chart.growSelectedSize(1);
 event.consume();
 }
 else if (event.getCode() == KeyCode.LEFT)
 {
 chart.growSelectedSize(-1);
 event.consume();
 }
 else if (event.getCode() == KeyCode.UP)
 {
 chart.moveSelection(-1);
 event.consume();
 }
 else if (event.getCode() == KeyCode.DOWN)
 {
 chart.moveSelection(1);
 event.consume();
 }
 });
 . . .
 }
}

As you can see, we keep these handlers as simple as possible, and leave it to the BarChart class
to carry out the work. On the other hand, the BarChart class is not concerned at all with event
handling. This is a good separation of labor that you should employ in your own programs.

Now we need to implement focus handling. First, the chart should be focus traversable:

chart.setFocusTraversable(true);

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   583

Otherwise, program users won’t be able to use the Tab key to give focus to the chart.
The chart should request focus when the mouse is pressed on it. We added that to the mouse

event handler that you just saw.
Moreover, when a user adds a new bar, it is nice to give focus to the chart so that the user can

adjust the bar width with the arrow keys. This is done in the handler for the add button:

addButton.setOnAction(event ->
 {
 chart.append(labelField.getText(), DEFAULT_VALUE);
 chart.requestFocus();
 });

Finally, we want to provide a visual indication when the chart has focus. We set a dotted bor-
der when the chart becomes focused, and turn it off when the focus is lost:

chart.focusedProperty().addListener(obs ->
 {
 if (chart.isFocused())
 {
 chart.setStyle("-fx-border-style: dotted;"
 + " -fx-border-width: 1px;"
 + " -fx-border-color: blue;");
 }
 else
 {
 chart.setStyle("-fx-border-style: none");
 }
 });

See Special Topic 11.1 for an explanation of CSS styles.

Updating the Bar and BarChart Classes
In Worked Example 10.1, a bar never changed. Now bars can be selected and unselected, and
the width can be adjusted.

A selected bar is drawn in red. We provide a method that updates the bar color:

public void setSelected(boolean selected)
{
 if (selected)
 {
 rect1.setFill(Color.RED);
 }
 else
 {
 rect1.setFill(Color.BLACK);
 }
}

The bar width can be adjusted. We provide a setter as well as a method to grow or shrink the
bar by a given amount. The latter method is called when the arrow keys are used to adjust the
bar width.

public void setSize(double x)
{
 rect1.setWidth(x);
}

public void growSize(double dx)
{
 rect1.setWidth(rect1.getWidth() + dx);
}

584  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

The BarChart class must remember the index of the selected bar. We provide helper methods to
yield the selected bar, and to move the selected bar to a new index. Note that no bar is selected
when the index is –1.

public class BarChart extends Pane
{
 private int selectedIndex;
 . . .
 public BarChart()
 {
 selectedIndex = -1;
 . . .
 }

 private Bar getSelectedBar()
 {
 if (selectedIndex >= 0)
 {
 return (Bar) getChildren().get(selectedIndex);
 }
 else
 {
 return null;
 }
 }

 private void setSelectedIndex(int value)
 {
 int bars = getChildren().size();
 if (0 <= selectedIndex && selectedIndex < bars)
 {
 getSelectedBar().setSelected(false);
 }

 selectedIndex = value;
 if (selectedIndex < -1) { selectedIndex = -1; }
 else if (selectedIndex >= bars) { selectedIndex = bars - 1; }

 if (selectedIndex != -1)
 {
 getSelectedBar().setSelected(true);
 }
 }
 . . .
}

When a user clicks on the chart with the mouse, then we want to select the bar that falls on the
y-position of the mouse. The BarChartCreator has no knowledge of the bar positions. It simply
passes the y-position to the selectBarAt method, which determines the correct bar index:

public void selectBarAt(double y)
{
 setSelectedIndex((int) (y / (Bar.HEIGHT + GAP)));
}

The moveSelection method is used by the keyboard interface to change the selected index to a
bar above or below, as indicated by the number of times the up or down arrow is pressed:

public void moveSelection(int by)
{
 setSelectedIndex(selectedIndex + by);
}

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   585

The setSelectedSize and growSelectedSize methods adjust the size of the selected bar. These
methods are called when using the mouse or arrow keys to update the bar size. The methods
call the corresponding methods on the selected Bar object.

public void setSelectedSize(double x)
{
 if (selectedIndex >= 0)
 {
 getSelectedBar().setSize(x);
 }
}

public void growSelectedSize(int dx)
{
 if (selectedIndex >= 0)
 {
 getSelectedBar().growSize(dx);
 }
}

The append method changes slightly to select the newly added bar:

public void append(String label, double value)
{
 . . .
 setSelectedIndex(bars);
}

In Worked Example 10.1, the removeLast method removed the last bar. Now we remove the
selected bar, and we need to shift the remaining bars up.

public void remove()
{
 if (selectedIndex >= 0)
 {
 getChildren().remove(selectedIndex);

 int bars = getChildren().size();
 for (int i = selectedIndex; i < bars; i++)
 {
 getChildren().get(i).relocate(0, (Bar.HEIGHT + GAP) * i);
 }
 setSelectedIndex(selectedIndex);
 }
}

That completes the implementation of the program.
Again, it is instructive to consider the division of labor between the BarChartCreator and

BarChart classes. The chart class manages the bars, and it knows about the current selection
state. The chart creator class has no knowledge of these details. It simply collects the user input
and passes it to the chart.

worked_example_2/BarChartCreator.java

1 import javafx.application.Application;
2 import javafx.geometry.Insets;
3 import javafx.scene.Scene;
4 import javafx.scene.control.Button;
5 import javafx.scene.control.Label;
6 import javafx.scene.control.TextField;
7 import javafx.scene.input.KeyCode;
8 import javafx.scene.layout.Pane;

586  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

9 import javafx.scene.layout.VBox;
10 import javafx.stage.Stage;
11
12 public class BarChartCreator extends Application
13 {
14 private static final int DEFAULT_VALUE = 100;
15
16 public void start(Stage primaryStage)
17 {
18 Pane root = createRootPane();
19 Scene scene1 = new Scene(root);
20 primaryStage.setScene(scene1);
21 primaryStage.setTitle("BarChartCreator");
22 primaryStage.show();
23 }
24
25 private Pane createRootPane()
26 {
27 TextField labelField = new TextField("");
28 Button addButton = new Button("Add");
29 Button removeButton = new Button("Remove");
30 BarChart chart = new BarChart();
31 addButton.setOnAction(event ->
32 {
33 chart.append(labelField.getText(), DEFAULT_VALUE);
34 chart.requestFocus();
35 });
36 removeButton.setOnAction(event ->
37 {
38 chart.remove();
39 });
40
41 chart.setFocusTraversable(true);
42 chart.setOnMousePressed(event ->
43 {
44 chart.selectBarAt(event.getY());
45 chart.requestFocus();
46 });
47
48 chart.setOnMouseDragged(event ->
49 {
50 chart.setSelectedSize(event.getX());
51 });
52
53 chart.setOnKeyPressed(event -> {
54 if (event.getCode() == KeyCode.RIGHT)
55 {
56 chart.growSelectedSize(1);
57 event.consume();
58 }
59 else if (event.getCode() == KeyCode.LEFT)
60 {
61 chart.growSelectedSize(-1);
62 event.consume();
63 }
64 else if (event.getCode() == KeyCode.UP)
65 {
66 chart.moveSelection(-1);
67 event.consume();
68 }

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   587

69 else if (event.getCode() == KeyCode.DOWN)
70 {
71 chart.moveSelection(1);
72 event.consume();
73 }
74 });
75
76 chart.focusedProperty().addListener(obs ->
77 {
78 if (chart.isFocused())
79 {
80 chart.setStyle("-fx-border-style: dotted;"
81 + " -fx-border-width: 1px;"
82 + " -fx-border-color: blue;");
83 }
84 else
85 {
86 chart.setStyle("-fx-border-style: none");
87 }
88 });
89
90 Pane pane1 = new VBox(10,
91 new Label("Label:"),
92 labelField,
93 addButton,
94 removeButton,
95 chart);
96 pane1.setPadding(new Insets(10));
97 return pane1;
98 }
99 }

worked_example_2/BarChart.java

1 import javafx.scene.layout.Pane;
2
3 public class BarChart extends Pane
4 {
5 private int selectedIndex;
6
7 private static final int PANE_WIDTH = 400;
8 private static final int PANE_HEIGHT = 400;
9 private static final int GAP = 5;

10
11 public BarChart()
12 {
13 selectedIndex = -1;
14 setMinSize(PANE_WIDTH, PANE_HEIGHT);
15 }
16
17 private Bar getSelectedBar()
18 {
19 if (selectedIndex >= 0)
20 {
21 return (Bar) getChildren().get(selectedIndex);
22 }
23 else
24 {
25 return null;
26 }

588  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

27 }
28
29 private void setSelectedIndex(int value)
30 {
31 int bars = getChildren().size();
32 if (0 <= selectedIndex && selectedIndex < bars)
33 {
34 getSelectedBar().setSelected(false);
35 }
36
37 selectedIndex = value;
38 if (selectedIndex < -1) { selectedIndex = -1; }
39 else if (selectedIndex >= bars) { selectedIndex = bars - 1; }
40
41 if (selectedIndex != -1)
42 {
43 getSelectedBar().setSelected(true);
44 }
45 }
46
47 public void selectBarAt(double y)
48 {
49 setSelectedIndex((int) (y / (Bar.HEIGHT + GAP)));
50 }
51
52 public void moveSelection(int by)
53 {
54 setSelectedIndex(selectedIndex + by);
55 }
56
57 public void setSelectedSize(double x)
58 {
59 if (selectedIndex >= 0)
60 {
61 getSelectedBar().setSize(x);
62 }
63 }
64
65 public void growSelectedSize(int dx)
66 {
67 if (selectedIndex >= 0)
68 {
69 getSelectedBar().growSize(dx);
70 }
71 }
72
73 public void append(String label, double value)
74 {
75 Bar bar1 = new Bar(label, value);
76 int bars = getChildren().size();
77 bar1.relocate(0, (Bar.HEIGHT + GAP) * bars);
78 getChildren().add(bar1);
79 setSelectedIndex(bars);
80 }
81
82 public void remove()
83 {
84 if (selectedIndex >= 0)
85 {

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

11.6  Mouse Events   589

86 getChildren().remove(selectedIndex);
87
88 int bars = getChildren().size();
89 for (int i = selectedIndex; i < bars; i++)
90 {
91 getChildren().get(i).relocate(0, (Bar.HEIGHT + GAP) * i);
92 }
93 setSelectedIndex(selectedIndex);
94 }
95 }
96 }

worked_example_2/Bar.java

1 import javafx.scene.layout.Pane;
2 import javafx.scene.paint.Color;
3 import javafx.scene.shape.Rectangle;
4 import javafx.scene.text.Text;
5
6 public class Bar extends Pane
7 {
8 public static final int HEIGHT = 15;
9 private Rectangle rect1;

10
11 public Bar(String label, double initialSize)
12 {
13 rect1 = new Rectangle(0, 0, initialSize, HEIGHT);
14
15 Text text1 = new Text(label);
16 text1.relocate(0, 0);
17 text1.setStroke(Color.WHITE);
18
19 getChildren().addAll(rect1, text1);
20 }
21
22 public void setSize(double x)
23 {
24 rect1.setWidth(x);
25 }
26
27 public void growSize(double dx)
28 {
29 rect1.setWidth(rect1.getWidth() + dx);
30 }
31
32 public void setSelected(boolean selected)
33 {
34 if (selected)
35 {
36 rect1.setFill(Color.RED);
37 }
38 else
39 {
40 rect1.setFill(Color.BLACK);
41 }
42 }
43 }

590  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Learn how to arrange multiple controls in a container.

•	 In JavaFX, you use layout panes to arrange user-interface controls.
•	 You can arrange controls by placing them in nested HBox and VBox panes.
•	 Use a GridPane to lay out controls in a grid of rows and columns.

Select among the JavaFX controls for presenting choices to the user.

•	 For a small set of mutually exclusive choices, use a group of radio buttons or a
choice box.

•	 Add radio buttons to a ToggleGroup so that only one button in the group is selected
at any time.

•	 For a binary choice, use a check box.
•	 For a large set of choices, use a choice box.
•	 Radio buttons, check boxes, and choice boxes generate action events, just as

buttons do.

Implement menus in a JavaFX program.

•	 A menu bar contains menus. A menu contains submenus and
menu items.

•	 A menu provides a list of available choices.
•	 Menu items generate action events.

Use properties and bindings.

•	 A property is accessed by getter and setter methods.
•	 Each property has a name and a type.
•	 An observable property notifies its listeners when its value changes.
•	 Attach property change handlers to Property objects.
•	 When a property is bound to another, it tracks the changes of the other property.

Implement animations in JavaFX.

•	 Key frames specify actions whose intermediate steps can be interpolated.
•	 A timeline plays key frames in parallel.
•	 Use a SequentialTransition to play one timeline after another.

Write programs that process mouse events.

•	 You use a mouse event handler to capture mouse events.

C H A P T E R S U M M A R Y

© Felix Mockel/iStockphoto.

© Michele Cornelius/iStockphoto.

© lillisphotography/iStockphoto.

© james Brey/iStockphoto.

Review Exercises  591

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

• R11.1	 What is the difference between the gaps and the padding in an HBox or VBox?

• R11.2	 What is the advantage of using nested boxes or a grid pane over using the relocate
method that places controls at specific pixel positions?

••• R11.3	 Consider the last pane in Section 11.1.1. How can you center the label?

•• R11.4	 What happens when you place two buttons in the same cell of a GridPane? Try it out
by writing a sample program that adds two buttons of different sizes.

javafx.animation.Animation
 play
 stop
 setCycleCount
 setAutoReverse
javafx.animation.KeyFrame
javafx.animation.KeyValue
javafx.animation.Timeline
javafx.beans.Observable
 addListener
javafx.beans.Property
 bind
 get
 set
 unbind
javafx.beans.binding.Bindings
 createObjectBinding
javafx.beans.binding.NumberExpression
 asString
javafx.beans.property.BooleanProperty
javafx.beans.property.DoubleProperty
javafx.beans.property.IntegerProperty
javafx.beans.property.ObjectProperty
javafx.beans.property.SimpleDoubleProperty
javafx.beans.property.StringProperty
javafx.fxml.FXMLLoader
 load
javafx.fxml.Initializable
 initialize
javafx.scene.Node
 focusedProperty
 requestFocus
 setFocusTraverable
 setId
 setOnKeyPressed
 setOnMouseDragged
 setOnMouseEntered
 setOnMouseExited
 setOnMouseMoved
 setOnMousePressed
 setOnMouseReleased
 setStyle
javafx.scene.chart.NumberAxis
 setLabel

javafx.scene.chart.LineChart
javafx.scene.chart.XYChart.Series
 getData
 setName
javafx.scene.control.ChoiceBox
 getItems
 getSelectionModel
javafx.scene.control.Menu
 getMenus
javafx.scene.control.MenuBar
javafx.scene.control.MenuItem
 getItems
javafx.scene.control.RadioButton
 isSelected
 setSelected
 setToggleGroup
javafx.scene.control.SelectionModel
 getSelectedItem
 select
javafx.scene.control.ToggleGroup
javafx.scene.input.KeyEvent
 getKeyCode
javafx.scene.input.KeyCode
 UP
 DOWN
 LEFT
 RIGHT
javafx.scene.input.MouseEvent
 getX
 getY
javafx.scene.layout.ColumnConstraints
 setPercentWidth
javafx.scene.layout.GridPane
 add
 getColumnConstraints
 setHalignment
 setHgap
 setPadding
 setVgap
javafx.scene.layout.HBox
javafx.util.Duration
 seconds
 millis

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

592  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

•• R11.5	 What happens if you place a text field into the (0, 0) cell of a grid pane and make
it span multiple rows, and then you place another text field into the (0, 0) cell that
spans multiple columns? Try it out by writing a sample program.

• R11.6	 Can you add a grid pane to a grid pane? Why why not?

•• R11.7	 Can you add a button to a button? Why or why not?

•• R11.8	 Build the last pane in Section 11.1.1 with the SceneBuilder and describe the steps that
you carried out.

• R11.9	 What is the difference between radio buttons and check boxes?

• R11.10	 Why do you need a toggle group for radio buttons but not for check boxes?

••• R11.11	 Look up the JavaFX documentation for the BarChart class. How can you change the
program in Programming Tip 11.2 to show a bar chart?

••• R11.12	 Suppose that we want to draw a box around the “Log base” label and the three radio
buttons in Worked Example 11.1. How can you achieve that? (Hint: Special Topic
11.1.)

• R11.13	 What is the difference between a menu bar, a menu, and a menu item?

•• R11.14	 List the names and types of five properties of the Circle class, including one whose
type is String and one whose type is some other class.

• R11.15	 Is prefSize a property of the Region class? Why or why not?

• R11.16	 Is border a property of the Region class? Why or why not?

•• R11.17	 Is userData a property of the Menu class? Is it observable? Why or why not?

••• R11.18	 Suppose you want to change the font size of a label with a slider. Show how to
accomplish that task by using a listener and by using a binding.

• R11.19	 How can you show an animation of a rectangle that gets longer and longer, until it
fills the width of the entire pane?

• R11.20	 How can you show an animation of two balls that move toward each other until
they touch?

•• R11.21	 How can you show an animation of a ball that moves to trace the sides of a square?

•• R11.22	 Suppose you want to show an animation of a swinging pendulum. Why can’t you
use key frames and key values?

• R11.23	 What is the difference between an ActionEvent and a MouseEvent?

•• R11.24	 How can you write a program that allows a user to click on two points, then draws
the line segment joining them?

• E11.1	 Write an application with three buttons labeled “Red”, “Green”, and “Blue” that
changes the background color of a pane to red, green, or blue.

•• E11.2	 Add icons to the buttons of Exercise • E11.1. Consult the JavaFX API documenta-
tion for adding a “graphic”.

P R A C T I C E E X E R C I S E S

Practice Exercises  593

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

• E11.3	 Write a program that displays a login dialog with labeled text fields for the user name
and password, a login button, and a label for messages. Simply display the message
“Invalid attempt” whenever the button is pressed.

• E11.4	 Write an application with three radio buttons labeled “Red”, “Green”, and “Blue”
that changes the background color of a pane to red, green, or blue.

• E11.5	 Write an application with three check boxes labeled “Red”, “Green”, and “Blue”
that adds a red, green, or blue component to the background color of a pane. This
application can display a total of eight color combinations.

• E11.6	 Write an application with a choice box containing three items labeled “Red”,
“Green”, and “Blue” that change the background color of a pane in the center of the
stage to red, green, or blue.

• E11.7	 Write an application with a Color menu and menu items labeled “Red”, “Green”,
and “Blue” that change the background color of a pane in the center of the stage to
red, green, or blue.

• E11.8	 Write a program that displays a number of rectangles at random positions. Supply
menu items “Fewer” and “More” that generate fewer or more random rectangles.
Each time the user selects “Fewer”, the count should be halved. Each time the user
selects “More”, the count should be doubled.

•• E11.9	 Modify the program of Exercise • E11.8 to replace the buttons with a slider for gen-
erating more or fewer random rectangles.

•• E11.10	 Write a program with a horizontal and a vertical slider that can move a circle any-
where inside a pane.

• E11.11	 Add labels to the color viewer of Section 11.4 that show the color values.

••• E11.12	 Write a program that simulates a signup form with fields for first name, last name,
and user name. By default, the user name consists of the first letter of the first name,
followed by the last name, in lowercase. For example, if the first and last name are
Joanne Smith, the user name is jsmith. Update the user name field as the contents
of the first and last name fields change. Also allow the user to change the user name
explicitly. Hint: bind, unbind.

••• E11.13	 Write a program that simulates an order form with shipping and billing addresses.
When a check box “same as shipping” is clicked, any changes to the shipping address
automatically update the billing address. Hint: bind, unbind.

•• E11.14	 Write a program that simulates the volume sliders for the left and right speakers of a
stereo player. When a check box “mono” is clicked, adjusting either slider should set
the other one to the same value. Hint: bind, unbind.

• E11.15	 Write a program that makes a circle gradually fade away as it moves toward the right
of a pane. Hint: Change the opacity.

•• E11.16	 Write a program that makes a ball bounce up and down indefinitely.

••• E11.17	 When a real ball bounces up and down, it loses a bit of energy each time. Write a
program that simulates this, by reducing the maximum height by 5 percent in each
bounce.

• E11.18	 Write a program that makes a car move along the screen. Use an image.

594  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

• E11.19	 Write a program that animates two cars moving across a pane in opposite directions
(but at different heights so that they don’t collide).

•• E11.20	 Write a program that makes two cars move toward each other, until they meet. Then
make them reverse.

•• E11.21	 Write a program that simulates a digital clock, showing the current time once per
second. You can get the current time by calling Instant.now().toString(). The Instant
class is in the java.time package.

•• E11.22	 Change the MouseDemo program in Section 11.6 so that a new circle is added to the pane
whenever the mouse is clicked on an empty area.

•• E11.23	 Write a program with a button “Click me” that moves away as the mouse
approaches it.

• E11.24	 Write a program that prompts the user to enter the x- and y-positions of a center
point and a radius, using text fields. When the user clicks a “Draw” button, draw a
circle with that center and radius in a component.

• E11.25	 Write a program that allows the user to specify a circle by typing the radius in a text
field and then clicking on the center. Note that you don’t need a “Draw” button.

• E11.26	 Write a program that allows the user to specify a circle with two mouse presses: the
first one indicates the center point and the second one a point on the periphery. Hint:
In the mouse press handler, you must keep track of whether you already received the
center point in a previous mouse press.

•• E11.27	 Write a program that allows the user to specify a triangle with three mouse presses.
After the first mouse press, draw a small dot. After the second mouse press, draw a
line joining the first two points. After the third mouse press, draw the entire triangle.
The fourth mouse press erases the old triangle and starts a new one.

••• E11.28	 Write a program that allows the user to specify a circle with three mouse presses.
After the first mouse press, draw a small dot. After the second mouse press, draw a
second dot. After the third mouse press, draw the circle that passes through the three
points. The fourth mouse press erases the old circle and starts a new one.

• E11.29	 In the program of Worked Example 11.2, allow users to press the “Delete” key on
the keyboard to remove the currently selected bar.

•• P11.1	 Enhance the font viewer program to allow the user to select different font faces.
Research the API documentation to find out how to locate the available fonts on the
user’s system.

•• P11.2	 Add a width property to the ItalianFlag class of Worked Example 10.1. Write a pro-
gram with a slider that changes the width of a flag.

••• P11.3	 Make a class StripedFlag with Color-valued properties color1, color2, and color3, and a
boolean-valued property horizontal. Provide a user interface for setting the colors and
the orientation, and for updating the flag according to the user choices.

P R O G R A M M I N G P R O J E C T S

Programming Projects  595

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

••• P11.4	 Implement a TextLabel class with properties for the font name and font size, as well as
boolean-valued properties italic and bold. Use that class to reimplement the program
of Section 11.2, but use a slider for the font size.

••• P11.5	 Write a program that models a ball bouncing in a rectangle. When the ball meets the
rectangle boundary, it should bounce properly, so that the incoming and outgoing
angle are the same.

••• P11.6	 Write a program that models the motion of an object that is attached to a spring. At
time t, the displacement is m sin(f t), where m is the maximum displacement and f
depends on the stiffness of the spring.

••• P11.7	 Write a program that displays a scrolling message in a pane. When the message has
left the window, reset the starting position to the other corner. Provide a user
interface to customize the message text, font, foreground and background colors,
and the scrolling speed.

••• P11.8	 Implement a program that allows two players to play
tic-tac-toe. Draw the game grid and an indication of
whose turn it is (X or O). Upon the next click, check
that the mouse click falls into an empty location, fill the
location with the mark of the current player, and give
the other player a turn. If the game is won, indicate the
winner. Also supply a button for starting over.

•• P11.9	 Write a program that lets users design charts such as the
following:

Use appropriate controls to ask for the x- and y-positions of the points, and to
redraw the chart when the user adds an item.

•• P11.10	 Write a program that lets users design line charts with a mouse. When the user drags
an existing point, the point is moved. (Allow for a few pixels of tolerance.) When the
user clicks elsewhere, a point is added to the chart. When the user clicks on an exist-
ing point, and then clicks a “Delete” button, the point is removed.

•• P11.11	 Write a program that lets users design pie charts, using the JavaFX pie chart control.
Provide a text area for the data points and a “Draw” button that draws the chart.

•• Business P11.12	 Write a program with a graphical interface that allows the user to convert an amount
of money between U.S. dollars (USD), Japanese yen (JPY), euros (EUR), and British
pounds (GBP). The user interface should have the following elements: a text box to
enter the amount to be converted, two choice boxes to allow the user to select the
currencies, a button to make the conversion, and a label to show the result. Display a
warning if the user does not choose different currencies.
You can get up-to-date exchange rates from http://www.ecb.europa.eu/stats/exchange/
eurofxref/html/index.en.html, or download them from http://www.ecb.europa.eu/stats/
eurofxref/eurofxref-daily.xml in a format that is easier to parse.

© KathyMuller/iStockphoto.

©
 K

at
hy

 M
ul

le
r/

iS
to

ck
ph

ot
o.

596  Chapter 11  Advanced User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

•• Business P11.13	 Write a program with a graphical interface that implements a login window with text
fields for the user name and password. When the login is successful, hide the login
window and open a new window with a welcome message. Follow these rules for
validating the password:

•	 The user name is not case sensitive.
•	 The password is case sensitive.
•	 The user has three opportunities to enter valid credentials.

Otherwise, display an error message and terminate the program. When the program
starts, read the file users.txt. Each line in that file contains a user name and password,
separated by a space.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 Place them inside a VBox, not an HBox. You can
just put them into the same VBox that contains
the label, as we did in the preceding chapter.

2.	 Use a VBox that contains:
•	 A TextField
•	 An HBox holding the buttons 7, 8, 9
•	 Three more HBox panes, each holding three

buttons.
Unfortunately, the buttons won’t line up per-
fectly because the “.” button is smaller than the
others, and the “CE” button is larger.

3.	 The second button is placed on top of the first
one.

4.	 pane.add(button0, 0, 4, 2, 1);

5.	 In the first and third row of the GridPane, add a
single control and have it span three columns.

6.	 If you have many options, a set of radio but-
tons takes up a large area. A choice box can
show many options without using up much
space. But the user cannot see the options as
easily.

7.	 If one of them is checked, the other one is
unchecked. You should use radio buttons if
that is the behavior you want.

8.	 Instead of using radio buttons with two
choices, use a check box.

9.	 When any of the component settings is
changed, the program simply queries all of
them and updates the label.

10.	 Simply call
fontChoice.getItems().addAll(
 Font.getFamilies());

No other change is necessary.
11.	 When you open a menu, you have not yet

made a selection. Only MenuItem objects corre-
spond to selections.

12.	 The compiler reports an error. You can only
add menus to a menu bar.

13.	 The program will compile, but there will be a
warning when the program runs, and the child
menu will not actually be added.

14.	 Then the faceName variable is set when the menu
item is added to the menu, not when the user
selects the menu.

15.	 In the previous program, the user-interface
components effectively served as storage for
the font specification. Their current settings
were used to construct the font. But a menu
doesn’t save settings; it just generates an action.

16.	 No. There is a getSize method, but not a set-
Size method.

17.	 Yes, font is a property. There are getter and set-
ter methods
Font getFont()
void setFont(Font value)

It is an observable property. The method font-
Property() yields a property object to which
you can attach a listener.

18.	 Action events describe one-time changes, such
as button clicks. Sliders emit property change
events whenever the slider position changes.

19.	 Call
ball.radiusProperty().bind(
 positionSlider.valueProperty());

Answers to Self-Check Questions  597

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

20.	 Now the circle’s fill property depends on
the three text properties. In the computation,
convert strings to integers.
ball.fillProperty().bind(
 Bindings.createObjectBinding(
 () -> Color.rgb(
 Integer.parseInt(redSlider.getText()),
 Integer.parseInt(
 greenSlider.getText()),
 Integer.parseInt(
 blueSlider.getText())),
 redField.textProperty(),
 greenField.textProperty(),
 blueField.textProperty()));

21.	 Construct a circle with radius 100, then play
a timeline that grows the radius to the desired
value:
KeyFrame frame1 = new KeyFrame(
 Duration.seconds(2),
 new KeyValue(ball.radiusProperty(), 200));
Timeline animation = new Timeline(frame1);

22.	 Construct a rectangle with width and height
100, then play a timeline that grows both the
width and the height:
KeyFrame frame1 = new KeyFrame(
 Duration.seconds(2),
 new KeyValue(rect.widthProperty(), 200),
 new KeyValue(rect.heightProperty(), 200));
Timeline animation = new Timeline(frame1);

23.	 Join two timelines by a sequential transition:
KeyFrame frame1 = new KeyFrame(
 Duration.seconds(2),
 new KeyValue(ball.radiusProperty(), 200));
KeyFrame frame2 = new KeyFrame(
 Duration.seconds(4),
 new KeyValue(ball.radiusProperty(), 0));
SequentialTransition animation =
 new SequentialTransition(
 new Timeline(frame1),
 new Timeline(frame2));

24.	 Set the timeline to cycle and autoreverse, like
this:
KeyFrame frame1 = new KeyFrame(
 Duration.seconds(1),
 new KeyValue(ball.radiusProperty(), 110));
Timeline timeline1 = new Timeline(frame1);
animation.setCycleCount(Animation.INDEFINITE);
animation.setAutoReverse(true);

25.	 Construct a circle whose centerY is initially y0.
Make a key frame with a short duration that

calls a handler upon completion to update the
ball position, like this:
long start = System.currentTimeMillis();
Circle ball = new Circle(radius, y0, radius);
KeyFrame frame1 = new KeyFrame(
 Duration.millis(10),
 e ->
 {
 double t =
 System.currentTimeMillis() - start;
 ball.setCenterY(y0 + m
 * Math.sin(f * t));
 });

Then repeat the timeline indefinitely and play
it.

26.	 Provide a handler that adds the circle whose
center is the mouse position:
pane.setOnMousePressed(event ->
 pane.getChildren().add(new Circle(
 event.getX(), event.getY(), radius)));

27.	 Add handlers to the circle, like this:
ball.setOnMouseEntered(
 event -> ball.setFill(Color.YELLOW));
ball.setOnMouseExited(
 event -> ball.setFill(Color.BLACK));

28.	 First, provide a square:
Rectangle square =
 new Rectangle(75, 25, 50, 50);

The Rectangle class doesn’t have centerX and
centerY properties. If you want the center of
the square to be at the mouse pointer position,
you need to make an adjustment:
root.setOnMousePressed(event ->
 {
 square.setX(event.getX()
 - square. getWidth() / 2);
 square.setY(event.getY()
 - square. getHeight() / 2);
 });

29.	 If you press the mouse button inside the circle,
the program works as before. But if you press
the mouse button outside the circle and drag
the mouse, the circle will not follow.

30.	 There is no difference in behavior. The handler
turns the circle back to black when dragging is
finished. At that time, the mouse pointer will
be inside the circle.

