
10C H A P T E R

493Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

GRAPHICAL
USER
INTERFACES (FX)

To implement simple graphical user interfaces

To work with buttons, text fields, and other controls

To handle events that are generated by buttons

To write programs that display simple drawings

CHAPTER GOALS

CHAPTER CONTENTS

10.1  DISPLAYING PANES AND
CONTROLS  494

10.2  EVENT HANDLING  497

10.3  PROCESSING TEXT INPUT  504

10.4  CREATING DRAWINGS  509

ST 1 	 The Text Class  517
HT 1 	 Drawing Graphical Shapes  519
WE 1 	 A Bar Chart Creator  522

© Trout55/iStockphoto.

© Trout55/iStockphoto.

494 Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

In this chapter, you will learn how to write graphical user-
interface applications using the JavaFX toolkit. You will
be able to produce applications that contain buttons, text
components, and drawings—and that react to user input.

10.1  Displaying Panes and Controls
A graphical application shows information inside a window with a title bar, as shown
in Figure 1. In the following sections, you will learn how to display such a window
and how to place user-interface components inside it.

10.1.1  Displaying an Empty Pane

When Java was first created, it came with a toolkit for graphical user interfaces called
the “abstract window toolkit” or AWT. It was abstract in the sense that it that mapped
classes such as Window, Button, and TextField to the user-interface elements of Windows,
Mac OS, and UNIX. That approach worked fine for simple applications, but com-
plex applications ran into trouble when there were subtle differences in those user
interfaces. A few years later, Java provided the “Swing” user-interface toolkit, which
solved those problems. Swing took over event handling, and it painted all pixels of
the user interface. That approach worked well for many years, but nowadays, user
interfaces are no longer painted one pixel at a time, but instead are rendered at tre-
mendous speed by dedicated graphics hardware. The JavaFX toolkit, which is now
a part of the Oracle Java distribution and should soon be a part of open-source Java
distributions, enables attractive user interfaces on modern hardware.

JavaFX uses a theatrical metaphor to describe an application. The application exe-
cutes on a stage, which represents the window in which the application runs. A stage
shows one or more scenes. Our simple applications will have only a single scene.

A JavaFX user
interface is displayed
on a stage.

Figure 1 
A Window with
an Empty Pane

Title bar

© Trout55/iStockphoto.

© Trout55/iStockphoto.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.1  Displaying Panes and Controls   495

A scene can be populated with any number of items, but they have to be placed in a
container, which for us will always be a subclass of the Pane class.

Here are the steps that you need to show a pane:

1.	Fill in the details of the start method. That method is automatically called
when a JavaFX program starts. It has a parameter of type Stage.

public class MyApplication extends Application
{
 public void start(Stage stage1)
 {
 Populate and show the stage.
 }
}

2.	Construct an empty pane. We call it the root pane because in a real application,
it will hold all items that make up the user interface of an application. When a
pane is populated with items, it becomes just large enough to hold all of them.
If you want a pane to be larger, you need to set its minimum size.

Pane root = new Pane();
final int PANE_WIDTH = 300;
final int PANE_HEIGHT = 400;
root.setMinSize(PANE_WIDTH, PANE_HEIGHT);

3.	Make a scene that displays the root pane. Set this scene as the current scene of
the stage. If you like, set the title of the window. Then show the stage.

Scene scene1 = new Scene(root);
stage.setScene(scene1);
stage.setTitle("An empty pane");
stage.show();

The simple program below shows all of these steps. It produces the empty pane
shown in Figure 1. Note that, unlike all other Java programs, JavaFX programs do
not need a main method.

sec01_01/EmptyPaneViewer.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.layout.Pane;
4 import javafx.stage.Stage;
5
6 public class EmptyPaneViewer extends Application
7 {
8 public void start(Stage stage1)
9 {

10 Pane root = new Pane();
11 final int PANE_WIDTH = 300;
12 final int PANE_HEIGHT = 400;
13 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
14
15 Scene scene1 = new Scene(root);
16 stage1.setScene(scene1);
17 stage1.setTitle("An empty pane");
18 stage1.show();
19 }
20 }

496  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.1.2  Adding User-Interface Controls to a Pane

An empty pane is not very interesting. You will want to add some user-interface con-
trols, such as buttons and text labels.

You first construct the controls, providing the text that should appear on them:
Button button1 = new Button("Click me!");
Label label1 = new Label("Hello, World!");

Then you construct a pane that holds the controls. You can specify any number of
controls in the Pane constructor. However, if you add controls to a Pane object, they
get placed on top of each other. For now, we will call the relocate method on controls
to move them away from each other. In Chapter 11, you will learn a better way of
positioning the controls, using layout panes.

Pane root = new Pane(button1, label1);
label1.relocate(0, 50);

When you call methods such as relocate, you need
to keep in mind that the coordinate system used by
JavaFX is different from the one used in mathemat-
ics. The origin (0, 0) is at the upper-left corner of the
pane, and the y-coordinate grows downward.

Now construct a scene from the root pane, and
add it to the stage, as we did in the first example.
Figure 2 shows the result. When you run the pro-
gram, you can click the button, but nothing will
happen. You will see in Section 10.2 how to attach
an action to a button.

When building
a graphical user
interface, you add
controls to the root
pane.

(0, 0)

(20, 10)

(10, 20)

 x

y

Figure 2  A Scene with Two Controls

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.2  Event Handling   497

sec01_02/FilledPaneViewer.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.layout.Pane;
6 import javafx.stage.Stage;
7
8 public class FilledPaneViewer extends Application
9 {

10 public void start(Stage stage1)
11 {
12 Button button1 = new Button("Click me!");
13 Label label1 = new Label("Hello, World!");
14 label1.relocate(0, 50);
15
16 Pane root = new Pane(button1, label1);
17 final int PANE_WIDTH = 300;
18 final int PANE_HEIGHT = 400;
19 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
20
21 Scene scene1 = new Scene(root);
22 stage1.setScene(scene1);
23 stage1.setTitle("A pane with two controls");
24 stage1.show();
25 }
26 }

1.	 How do you display a square window with a title that reads “Hello, World!”?
2.	 How can a program show a pane with two buttons labeled Yes and No?
3.	 What happens when you omit the call to the relocate method in the FilledPane­

Viewer program? Try it out!
4.	 What happens when you omit the call to the setMinSize method in the FilledPane­

Viewer program? Try it out!
5.	 What happens when you omit the call to the setScene method in the FilledPane­

Viewer program? Try it out!

Practice It	 Now you can try these exercises at the end of the chapter: R10.1, R10.4, E10.1.

10.2  Event Handling
In an application that interacts with the user through a console window, user input
is under control of the program. The program asks the user for input in a specific
order. For example, a program might ask the user to supply first a name, then a dol-
lar amount. But the programs that you use every day on your computer don’t work
like that. In a program with a modern graphical user interface, the user is in control.
The user can use both the mouse and the keyboard and can manipulate many parts of
the user interface in any desired order. For example, the user can enter information
into text fields, click buttons, pull down menus, and drag scroll bars in any order. The
program must react to the user commands in whatever order they arrive. Having to
deal with many possible inputs in random order is quite a bit harder than simply forc-
ing the user to supply input in a fixed order.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

User-interface events
include key presses,
mouse moves,
button clicks, menu
selections, and so on.

498  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

In the following sections, you will learn how to write Java programs that can react
to user-interface events.

10.2.1  Handling Events

Whenever the user of a graphical program types on
the keyboard or uses the mouse anywhere inside one
of the windows of a program, the program receives
a notification that an event has occurred. For exam-
ple, whenever the mouse moves a tiny interval over a
window, a “mouse move” event is generated. Click-
ing a button or selecting a menu item generates an
“action” event.

Most programs don’t want to be flooded by irrel-
evant events. For example, when a button is clicked
with the mouse, the mouse moves over the button,
then the mouse button is pressed, and finally the but-
ton is released. Rather than receiving all these mouse
events, a program can indicate that it only cares
about button clicks, not about the underlying mouse
events. On the other hand, if the mouse input is used
for drawing shapes on a virtual canvas, a program needs to closely track mouse events.

Every program must indicate which events it needs to receive. It does that by
installing event handler objects. These objects have one or more methods that will be
executed when the events occur.

To install a handler, you need to know the event source. The event source is the
object that generates a particular event. An event source notifies an event handler
when an event occurs by invoking a method on the handler object.

This sounds somewhat abstract, so let’s run through an extremely simple program
that prints a message whenever a button is clicked. When a button is clicked, it notifies
a handler belonging to a class that implements the EventHandler<ActionEvent> interface.

The interface EventHandler<T> has a single method, void handle(T event). It is your
job to supply a class whose handle method contains the instructions that you want
executed whenever the button is clicked. Here is a very simple example of such a
handler class:

sec02_01/ClickHandler.java

1 import javafx.event.ActionEvent;
2 import javafx.event.EventHandler;
3
4 public class ClickHandler implements EventHandler<ActionEvent>
5 {
6 public void handle(ActionEvent event)
7 {
8 System.out.println("I was clicked.");
9 }

10 }

We ignore the event parameter variable of the handle method—it contains additional
details about the event, such as the time at which it occurred.

© Seriy Tryapitsyn/iStockphoto.
In an event-driven user interface,
the program receives an event
whenever the user manipulates
an input component.

In an event-driven
user interface, the
program receives an
event whenever the
user manipulates an
input component.

An event handler
describes the actions
to be taken when an
event occurs.

Event sources report
on events. When an
event occurs, the
event source notifies
an event handler.

©
 S

er
iy

 T
ry

ap
it

sy
n/

iS
to

ck
ph

ot
o.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.2  Event Handling   499

Once the handler class has been declared, we need to construct an object of the
class and register it with the button as the handler for action events:

EventHandler<ActionEvent> handler = new ClickHandler();
button1.setOnAction(handler);

Whenever the button is clicked, the JavaFX event handling mechanism calls
handler.handle(event);

As a result, the message is printed.
You can test this program out by opening a console window, starting the Button­

Viewer1 program from that console window, clicking the button, and watching the
messages in the console window (see Figure 3).

sec02_01/ButtonViewer1.java

1 import javafx.application.Application;
2 import javafx.event.ActionEvent;
3 import javafx.event.EventHandler;
4 import javafx.scene.Scene;
5 import javafx.scene.control.Button;
6 import javafx.scene.layout.Pane;
7 import javafx.stage.Stage;
8
9 public class ButtonViewer1 extends Application

10 {
11 public void start(Stage stage1)
12 {
13 Button button1 = new Button("Click me!");

Figure 3  Implementing a Button Action Event Handler

500  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

14 EventHandler<ActionEvent> handler = new ClickHandler();
15 button1.setOnAction(handler);
16
17 Pane root = new Pane(button1);
18 final int PANE_WIDTH = 300;
19 final int PANE_HEIGHT = 400;
20 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
21
22 Scene scene1 = new Scene(root);
23 stage1.setScene(scene1);
24 stage1.setTitle("A pane with a button");
25 stage1.show();
26 }
27 }

10.2.2  Using Lambda Expressions for Handlers

In the preceding section, you saw how to specify button actions. The code for the
button action is placed into a handler class. However, it is tedious to define a new class
for each handler, particularly when a program has to handle many different events.

With lambda expressions (see Java 8 Note 9.3), you can express handlers very con-
cisely. You specify only the parameter variable and the body of the handler method.
For example, here is how you can provide the button handler from the preceding
section:

button.setOnAction(
 (ActionEvent event) ->
 {
 System.out.println("I was clicked!");
 });

The compiler knows that the setOnAction method expects an object of some class
implementing the EventHandler<ActionEvent> interface. Therefore, the compiler makes
that class, constructs an object, and passes it to the setOnAction method.

This works for any interface that has a single method. You can even omit the
parameter type because the compiler knows it from the interface declaration:

button.setOnAction(
 (event) ->
 {
 System.out.println("I was clicked!");
 });

If there is only one parameter variable, you can omit the parentheses around it. If the
body has just one method call, you can omit the braces and semicolon. The shortest
and most convenient way of denoting this event handler is as follows:

button.setOnAction(event -> System.out.println("I was clicked!"));

Note that you must specify the parameter variable of the handler method, even if you
do not use it in the method body.

There are two advantages to making a handler class into a lambda expression. First,
you can put the handler method close to where it is needed, without cluttering up the
remainder of the project. Moreover, lambda expressions have a very attractive fea-
ture: Their methods can access variables of the enclosing method, and variables and
methods of the enclosing class.

Lambda expressions
provide a concise
syntax for event
handlers.

Lambda expressions
can access variables
and methods from
the enclosing scope.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.2  Event Handling   501

Figure 4  The Button Handler Updates the Label Text

Let’s look at an example. Instead of printing the message “I was clicked!”, we want
to show it in a label, as shown in Figure 4. If we make the handler method into a
lambda expression, it can access the label1 variable and change the text of the label:

Label label1 = new Label("");
Button button1 = new Button("Click me!");
button1.setOnAction(event ->
 label1.setText(label1.getText() + "I was clicked!\n"));

Having the handler as a regular class would be unattractive––the handler would need
to be constructed with a reference to the label (see Exercise ••• E10.7).

There is a technical restriction. When a lambda expression accesses a local variable
(such as the label1 variable in this example), then the variable must be effectively final.
That means, it is either declared as final, or it could have been. In this case, the condi-
tion is fulfilled. Because label1 never changes, it could have been declared as final. If
you want to access a variable from a handler that changes its values, then you need
to make the variable into an instance variable of the enclosing class. You will see an
example in the following section.

sec02_02/ButtonViewer2.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.layout.Pane;
6 import javafx.stage.Stage;
7
8 public class ButtonViewer2 extends Application
9 {

10 public void start(Stage stage1)
11 {
12 Label label1 = new Label("");
13 label1.relocate(0, 50);
14

502  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

15 Button button1 = new Button("Click me!");
16 button1.setOnAction(event ->
17 label1.setText(label1.getText() + "I was clicked!\n"));
18
19 Pane root = new Pane(label1, button1);
20
21 final int PANE_WIDTH = 300;
22 final int PANE_HEIGHT = 400;
23 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
24
25 Scene scene1 = new Scene(root);
26 stage1.setScene(scene1);
27 stage1.setTitle("ButtonViewer2");
28 stage1.show();
29 }
30 }

10.2.3  Application: Showing Growth of an Investment

In this section, we will build a practical application with a graphical user interface.
A pane displays the amount of money in a bank account. Whenever the user clicks
a button, 5 percent interest is added, and the new balance is displayed (see Figure 5).

We need a button and a label for the user interface. We also need to store the cur-
rent balance.

public class InvestmentViewer1 extends Application
{
 private Button addInterestButton;
 private Label resultLabel;
 private double balance;

 private static final double INTEREST_RATE = 5;
 private static final double INITIAL_BALANCE = 1000;
 . . .
}

Figure 5 
Clicking the Button
Grows the Investment

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.2  Event Handling   503

Because the user interface is getting more complex, we set it up in a separate method:
private Pane createRootPane()
{
 balance = INITIAL_BALANCE;

 addInterestButton = new Button("Add interest");
 resultLabel = new Label(String.format("$%.2f", balance));
 resultLabel.relocate(0, 50);

 Pane root = new Pane(addInterestButton, resultLabel);
 . . .
 return root;
}

Now we are ready for the hard part—the event handler that processes button clicks.
Our handler method adds interest and displays the new balance:

addInterestButton.setOnAction(event ->
 {
 double interest = balance * INTEREST_RATE / 100;
 balance = balance + interest;
 resultLabel.setText(String.format("$%.2f", balance));
 });

Here is the complete program. It demonstrates how to add multiple components to a
pane, and how to implement handlers as lambda expressions.

sec02_03/InvestmentViewer1.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.layout.Pane;
6 import javafx.stage.Stage;
7
8 public class InvestmentViewer1 extends Application
9 {

10 private Button addInterestButton;
11 private Label resultLabel;
12 private double balance;
13
14 private static final double INTEREST_RATE = 5;
15 private static final double INITIAL_BALANCE = 1000;
16
17 public void start(Stage stage1)
18 {
19 Pane root = createRootPane();
20 Scene scene1 = new Scene(root);
21 stage1.setScene(scene1);
22 stage1.setTitle("InvestmentViewer1");
23 stage1.show();
24 }
25
26 private Pane createRootPane()
27 {
28 balance = INITIAL_BALANCE;
29
30 addInterestButton = new Button("Add interest");
31 resultLabel = new Label(String.format("$%.2f", balance));

504  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

32 resultLabel.relocate(0, 50);
33
34 Pane root = new Pane(addInterestButton, resultLabel);
35 final int PANE_WIDTH = 300;
36 final int PANE_HEIGHT = 400;
37 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
38
39 addInterestButton.setOnAction(event ->
40 {
41 double interest = balance * INTEREST_RATE / 100;
42 balance = balance + interest;
43 resultLabel.setText(String.format("$%.2f", balance));
44 });
45 return root;
46 }
47 }

6.	 Which objects are the event source and the event handler in the ButtonViewer1
program?

7.	 Why is it legal to assign a ClickHandler object to a variable of type
EventHandler<ActionEvent>?

8.	 When do you call the handle method?
9.	 What would happen if you declared the balance variable in the ButtonViewer2

program as a local variable of the createRootPane method?
10.	 What would happen if you declared the resultLabel variable in the ButtonViewer2

program as a local variable of the createRootPane method?

Practice It	 Now you can try these exercises at the end of the chapter: R10.7, E10.2, E10.4.

10.3  Processing Text Input
We continue our discussion with graphical user interfaces that accept text input. Most
graphical programs collect text input through text components (see Figure 6 and Fig-
ure 8). In the following two sections, you will learn how to add text components to a
graphical application, and how to read what the user types into them.

10.3.1  Text Fields

The TextField class provides a text field for reading a single line of text. You can spec-
ify an initial text in the constructor.

TextField interestRateField = new TextField("" + INITIAL_INTEREST_RATE);

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Use a TextField
component for
reading a single
line of input. Place
a Label next to each
text field.

Figure 6  An Application with a Text Field

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.3  Processing Text Input   505

You can also set the column count—the approximate number of characters that you
want to be able to show in the text field.

final int COLUMN_COUNT = 20;
interestRateField.setPrefColumnCount(COLUMN_COUNT);

Users can type additional characters, but then a part of the contents of the field
becomes invisible.

You will want to label each text field so that the user knows what to type into it.
Construct a Label object for each label:

Label rateLabel = new Label("Interest Rate: ");

You want to give the user an opportunity to enter all information into the text fields
before processing it. Therefore, you should supply a button that the user can press to
indicate that the input is ready for processing.

When that button is clicked, its handler should read the user input from each text
field, using the getText method of the TextField class. The getText method returns a
String object. In our sample program, we turn the string into a number, using the
Double.parseDouble method. After updating the account, we show the balance in
another label.

addInterestButton.setOnAction(event ->
 {
 double rate = Double.parseDouble(interestRateField.getText());
 double interest = balance * rate / 100;
 balance = balance + interest;
 resultLabel.setText(String.format("$%.2f", balance));
 });

For simplicity, this program does not try to handle input errors. It would be better to
detect invalid inputs and provide feedback to the user. Exercise •• P10.9 explores this
enhancement.

Rather than manually positioning each control, we place them all into a VBox, a
pane that arranges its contents vertically. You will see how to achieve more sophisti-
cated arrangements in Chapter 11.

Pane root = new VBox(rateLabel, interestRateField, addInterestButton, resultLabel);

The following application is a useful prototype for a graphical user-interface front
end for arbitrary calculations. You can easily modify it for your own needs. Place
input controls into the VBox. In the setOnAction method, carry out the needed calcula-
tions. Display the result in a label.

sec03_01/InvestmentViewer2.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.control.TextField;
6 import javafx.scene.layout.Pane;
7 import javafx.scene.layout.VBox;
8 import javafx.stage.Stage;
9

10 public class InvestmentViewer2 extends Application
11 {
12 private double balance;
13
14 private static final double INITIAL_INTEREST_RATE = 5;

506  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

15 private static final double INITIAL_BALANCE = 1000;
16
17 public void start(Stage stage1)
18 {
19 Pane root = createRootPane();
20 Scene scene1 = new Scene(root);
21 stage1.setScene(scene1);
22 stage1.setTitle("InvestmentViewer2");
23 stage1.show();
24 }
25
26 private Pane createRootPane()
27 {
28 balance = INITIAL_BALANCE;
29
30 Label rateLabel = new Label("Interest rate:");
31 TextField interestRateField = new TextField("" + INITIAL_INTEREST_RATE);
32 final int COLUMN_COUNT = 20;
33 interestRateField.setPrefColumnCount(COLUMN_COUNT);
34
35 Button addInterestButton = new Button("Add interest");
36 Label resultLabel = new Label(String.format("$%.2f", balance));
37
38 Pane pane1 = new VBox(rateLabel, interestRateField,
39 addInterestButton, resultLabel);
40
41 addInterestButton.setOnAction(event ->
42 {
43 double rate = Double.parseDouble(interestRateField.getText());
44 double interest = balance * rate / 100;
45 balance = balance + interest;
46 resultLabel.setText(String.format("$%.2f", balance));
47 });
48 return pane1;
49 }
50 }

10.3.2  Text Areas

In the preceding section, you saw how to construct text
fields. A text field holds a single line of text. To display
multiple lines of text, use the TextArea class.

After constructing a text area, you can specify the
number of desired rows and columns:

String initialContents = . . .;
TextArea resultsArea = new TextArea(initialContents);
final int ROW_COUNT = 10;
final int COLUMN_COUNT = 20;
resultsArea.setPrefRowCount(ROW_COUNT);
resultsArea.setPrefColumnCount(COLUMN_COUNT);

Use the setText method to set the text of a text field or text
area. The appendText method adds text to the end of a text
area. Use newline characters to separate lines, like this:

resultsArea.appendText(String.format("$%.2f%n", balance));

© Kyoungil Jeon/iStockphotoYou can use a text area for
reading or displaying
multi-line text.

Use a TextArea to
show multiple lines
of text.

©
 K

yo
un

gi
l J

eo
n/

iS
to

ck
ph

ot
o.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.3  Processing Text Input   507

Figure 7  A Part of the Hierarchy of JavaFX User-Interface Controls

Control

TextField TextArea

Button

ButtonBase Label

TextInput
Control

Labeled

If you want to use a text field or text area for display purposes only, call the set­
Editable method like this:

textArea.setEditable(false);

Now the user can no longer edit the contents of the field, but your program can still
call setText and appendText to change it. Why not just use a label instead of a text area
for displaying results? A user can copy the contents of a text area, but not that of a
label.

As shown in Figure 7, the TextField and TextArea classes are subclasses of the class
TextInputControl. The methods setText, appendText, and setEditable are declared in the
TextInputControl class and inherited by TextField and TextArea.

The following sample program puts these concepts together. A user can enter
numbers into the interest rate text field and then click the “Add Interest” button. The
interest rate is applied, and the updated balance is appended to the text area. The text
area is not editable.

Figure 8  The Investment Application with a Text Area

508  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

This program is similar to the previous investment viewer program, but it keeps
track of all the bank balances, not just the last one.

sec03_02/InvestmentViewer3

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.control.TextArea;
6 import javafx.scene.control.TextField;
7 import javafx.scene.layout.Pane;
8 import javafx.scene.layout.VBox;
9 import javafx.stage.Stage;

10
11 public class InvestmentViewer3 extends Application
12 {
13 private double balance;
14
15 private static final double INITIAL_INTEREST_RATE = 5;
16 private static final double INITIAL_BALANCE = 1000;
17
18 public void start(Stage stage1)
19 {
20 Pane root = createRootPane();
21 Scene scene1 = new Scene(root);
22 stage1.setScene(scene1);
23 stage1.setTitle("InvestmentViewer3");
24 stage1.show();
25 }
26
27 private Pane createRootPane()
28 {
29 balance = INITIAL_BALANCE;
30
31 Label rateLabel = new Label("Interest rate:");
32 TextField interestRateField = new TextField("" + INITIAL_INTEREST_RATE);
33
34 Button addInterestButton = new Button("Add interest");
35 String initialContents = String.format("$%.2f%n", balance);
36 TextArea resultsArea = new TextArea(initialContents);
37 final int ROW_COUNT = 10;
38 final int COLUMN_COUNT = 20;
39 resultsArea.setPrefRowCount(ROW_COUNT);
40 resultsArea.setPrefColumnCount(COLUMN_COUNT);
41 resultsArea.setEditable(false);
42
43 Pane pane1 = new VBox(rateLabel, interestRateField,
44 addInterestButton, resultsArea);
45
46 addInterestButton.setOnAction(event ->
47 {
48 double rate = Double.parseDouble(interestRateField.getText());
49 double interest = balance * rate / 100;
50 balance = balance + interest;
51 resultsArea.appendText(String.format("$%.2f%n", balance));
52 });
53 return pane1;
54 }
55 }

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   509

11.	 What happens if you omit the first Label object in the InvestmentViewer2 program
of Section 10.3.1?

12.	 If a text field holds an integer, what expression do you use to read its contents?
13.	 What is the difference between a text field and a text area?
14.	 Why did the InvestmentViewer3 program call resultsArea.setEditable(false)?
15.	 Could you have used a Label instead of a TextArea in the InvestmentViewer3

program?

Practice It	 Now you can try these exercises at the end of the chapter: R10.13, E10.9, E10.10.

10.4  Creating Drawings
You often want to include simple drawings such as diagrams
or charts in your programs. The following sections show how
you can produce drawings with JavaFX.

10.4.1  Drawing on a Pane

We start out with a simple bar chart (see Figure 9) that is com-
posed of three rectangles.

You construct a rectangle by giving its top-left corner, fol-
lowed by its width and height:

Rectangle rect1 = new Rectangle(0, 10, 50, 10);
 // A rectangle with top-left corner (0, 10), width 50, and height 10

Recall that in the coordinate system used by JavaFX, the origin is at the top-left cor-
ner of the frame and the y-axis grows downward.

(0, 0)

(0, 10)

 x

y

50

10

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Alexey Avdeev/iStockphoto.You can make simple
drawings out of lines,
rectangles, and circles.

You can add
rectangles and other
nodes to a pane.

Figure 9 
Drawing a Bar Chart

©
 A

le
xe

y
A

vd
ee

v/
iS

to
ck

ph
ot

o.

510  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

To display the rectangle, you can add it to a pane. Call the getChildren method, which
yields a list of nodes—the common superclass for all objects that can be added to a
pane. The Rectangle class extends the Node class, as does the Control class that is the
superclass for all JavaFX controls. Given the list of children, you add one at a time:

root.getChildren().add(rect1);
root.getChildren().add(rect2);
root.getChildren().add(rect3);

Or you can add them all together:
root.getChildren().addAll(rect1, rect2, rect3);

You add the pane to a scene in the usual way. Here is the complete program.

sec04_01/ChartViewer1.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.layout.Pane;
4 import javafx.scene.shape.Rectangle;
5 import javafx.stage.Stage;
6
7 public class ChartViewer1 extends Application
8 {
9 public void start(Stage stage1)

10 {
11 Pane root = createRootPane();
12 Scene scene1 = new Scene(root);
13 stage1.setScene(scene1);
14 stage1.setTitle("ChartViewer1");
15 stage1.show();
16 }
17
18 private Pane createRootPane()
19 {
20 Rectangle rect1 = new Rectangle(0, 10, 50, 10);
21 Rectangle rect2 = new Rectangle(0, 30, 300, 10);
22 Rectangle rect3 = new Rectangle(0, 50, 100, 10);
23
24 Pane root = new Pane();
25 root.getChildren().addAll(rect1, rect2, rect3);
26 final int PANE_WIDTH = 400;
27 final int PANE_HEIGHT = 200;
28 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
29
30 return root;
31 }
32 }

10.4.2  Shapes, Text, Images, and Colors

In the preceding section, you learned how to write a program that draws rectangles.
Now we turn to additional graphical elements that allow you to draw quite a few
interesting pictures.

To construct a circle or ellipse, you specify the center and radius, or, for an ellipse,
the major and minor radius.

Circle shape1 = new Circle(100, 100, 50);
Ellipse shape2 = new Ellipse(200, 100, 30, 50);

Circles, ellipses,
lines, text, and image
views are nodes.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   511

(0, 0) x

y

50

30

50

(100, 100)
(200, 100)

To construct a line, you provide the x- and y-coordinates of the start and end points:
Line shape3 = new Line(0, 0, 50, 100);

For drawing text, you can simply use a Label, and use the relocate method to position
it:

Label message = new Label("Message");
message.relocate(xleft, ytop);

You can set the font of the label:
Font labelFont = new Font("Serif", 36);
label.setFont(labelFont);

For finer control of text placement, or for colored text, use the Text class instead—see
Special Topic 10.1.

The ImageView class lets you add images to your drawing. Construct an image view
object from the image file location, and use the relocate method to position the image.
Exercise •• E10.17 explores options for specifying the location.

ImageView cat = new ImageView("cat.jpeg");
cat.relocate(xleft, ytop);

All of these classes extend the Node class—see Figure 10. Remember to add the Node
objects to the children of the pane.

Figure 10  Node Classes in JavaFX

Node

Shape

Text Label

ImageView Control

Rectangle Ellipse Circle Line

512  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

By default, lines and text are drawn with a black stroke. Rectangles, circles, and
ellipses have a black fill. You can use other colors, and you can also stroke the outlines
of filled shapes.

Rectangle rect = new Rectangle(5, 5, 20, 20);
rect.setStroke(Color.BLACK);
rect.setFill(Color.RED);

To draw a rectangle, circle, or ellipse with a hollow interior, set the fill to Color.
TRANSPARENT:

Rectangle hollowRect = new Rectangle(5, 5, 20, 20);
hollowRect.setStroke(Color.BLACK);
hollowRect.setFill(Color.TRANSPARENT);

You can specify a color by name, as in the preceding examples. Table 1 shows the
most common names. You can also use any of the standard HTML color names, such
as Color.LIGHTSALMON. Alternatively, you can specify a color by the amounts of the pri-
mary colors—red, green, and blue—that make up the color. The amounts are given as
integers between 0 (primary color not present) and 255 (maximum amount present).
For example,

Color magenta = Color.rgb(255, 0, 255);

constructs a Color object with maximum red, no green, and maximum blue, yielding a
purple color called magenta.

Table 1 Commonly Used Colors

Color RGB Values

Color.BLACK 0, 0, 0

Color.BLUE 0, 0, 255

Color.CYAN 0, 255, 255

Color.GRAY 128, 128, 128

Color.DARKGRAY 64, 64, 64

Color.LIGHTGRAY 192, 192, 192

Color.GREEN 0, 255, 0

Color.MAGENTA 255, 0, 255

Color.ORANGE 255, 200, 0

Color.PINK 255, 175, 175

Color.RED 255, 0, 0

Color.WHITE 255, 255, 255

Color.YELLOW 255, 255, 0

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   513

The following program puts all these shapes to work, creating a simple chart (see Fig-
ure 11).

sec04_02/ChartViewer2.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Label;
4 import javafx.scene.image.ImageView;
5 import javafx.scene.layout.Pane;
6 import javafx.scene.paint.Color;
7 import javafx.scene.shape.Ellipse;
8 import javafx.scene.shape.Line;
9 import javafx.scene.shape.Rectangle;

10 import javafx.stage.Stage;
11
12 public class ChartViewer2 extends Application
13 {
14 public void start(Stage stage1)
15 {
16 Pane root = createRootPane();
17 Scene scene1 = new Scene(root);
18 stage1.setScene(scene1);
19 stage1.setTitle("ChartViewer2");
20 stage1.show();
21 }
22
23 private Pane createRootPane()
24 {
25 Pane root = new Pane();
26 final int PANE_WIDTH = 400;
27 final int PANE_HEIGHT = 300;
28 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
29
30 // Add bars
31
32 root.getChildren().add(new Rectangle(0, 10, 50, 10));
33 root.getChildren().add(new Rectangle(0, 30, 300, 10));
34 root.getChildren().add(new Rectangle(0, 50, 100, 10));

Figure 11  A Chart Decorated with Shapes,
Text, and an Image

514  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

35
36 // Add arrow
37
38 root.getChildren().add(new Line(350, 35, 305, 35));
39 root.getChildren().add(new Line(305, 35, 310, 30));
40 root.getChildren().add(new Line(305, 35, 310, 40));
41
42 Ellipse highlight = new Ellipse(370, 35, 20, 10);
43 highlight.setFill(Color.YELLOW);
44 Label text = new Label("Best");
45 text.relocate(355, 30);
46 ImageView laurel = new ImageView("laurel.png");
47 laurel.relocate(340, 50);
48
49 root.getChildren().addAll(highlight, text, laurel);
50
51 return root;
52 }
53 }

10.4.3  Application: Visualizing the Growth of
an Investment

In this section, we will add a bar chart to the investment program of Section 10.3.
Whenever the user clicks on the “Add Interest” button, another bar is added to the
bar chart (see Figure 12).

Figure 12  Clicking on the “Add Interest”
Button Adds a Bar to the Chart

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   515

The chart program of the preceding sections produced a fixed bar chart. We will
develop an improved version that can draw a chart with any values.

Whenever you produce a complex drawing that is meaningful on its own, it is a
good idea to place it in its own class. For our application, we make a bar chart:

public class BarChart1 extends Pane
{
 . . .
 public void addValue(double value)
 {
 . . .
 }
}

The bar chart extends Pane because the Pane class knows how to manage a collection of
child nodes. When adding a new value, we add a rectangle to the children:

public void addValue(double value)
{
 final int GAP = 5;
 final int BAR_HEIGHT = 10;
 int bars = getChildren().size();
 getChildren().add(new Rectangle(0, (BAR_HEIGHT + GAP) * bars,
 value, BAR_HEIGHT));
}

We make a separate class for the application:
public class InvestmentViewer4 extends Application
{
 . . .
 private Pane createRootPane()
 {
 . . .
 }
}

In the createRootPane method, we create a label and text field for the interest rate, a
button to add the interest, and an instance of BarChart1:

private Pane createRootPane()
{
 Label rateLabel = new Label("Interest rate:");
 TextField interestRateField = new TextField();
 Button addInterestButton = new Button("Add interest");
 BarChart1 chart = new BarChart1();
 Pane root = new VBox(rateLabel, interestRateField, addInterestButton, chart);
 . . .
 return root;
}

As you can see, we treat the bar chart just like any other element that can be added to
a pane.

In the button handler, we compute the new balance and add another bar to the chart:
addInterestButton.setOnAction(event ->
 {
 double rate = Double.parseDouble(interestRateField.getText());
 double interest = balance * rate / 100;
 balance = balance + interest;
 chart.addValue(balance);
 });

Make a new class for
a drawing that can be
reused.

516  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

That’s all that is required to add a diagram to an application. Here is the code for the
chart and viewer classes.

sec04_03/BarChart1.java

1 import javafx.scene.layout.Pane;
2 import javafx.scene.shape.Rectangle;
3
4 public class BarChart1 extends Pane
5 {
6 public BarChart1()
7 {
8 final int PANE_WIDTH = 400;
9 final int PANE_HEIGHT = 400;

10 setMinSize(PANE_WIDTH, PANE_HEIGHT);
11 }
12
13 public void addValue(double value)
14 {
15 final int GAP = 5;
16 final int BAR_HEIGHT = 10;
17 int bars = getChildren().size();
18 getChildren().add(new Rectangle(0, (BAR_HEIGHT + GAP) * bars,
19 value, BAR_HEIGHT));
20 }
21 }

sec04_03/InvestmentViewer4.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.control.TextField;
6 import javafx.scene.layout.Pane;
7 import javafx.scene.layout.VBox;
8 import javafx.stage.Stage;
9

10 public class InvestmentViewer4 extends Application
11 {
12 private double balance;
13
14 private static final double INITIAL_INTEREST_RATE = 5;
15 private static final double INITIAL_BALANCE = 100;
16
17 public void start(Stage stage1)
18 {
19 Pane root = createRootPane();
20 Scene scene1 = new Scene(root);
21 stage1.setScene(scene1);
22 stage1.setTitle("InvestmentViewer4");
23 stage1.show();
24 }
25
26 private Pane createRootPane()
27 {
28 balance = INITIAL_BALANCE;
29
30 Label rateLabel = new Label("Interest rate:");
31 TextField interestRateField = new TextField();

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   517

32
33 Button addInterestButton = new Button("Add interest");
34 BarChart1 chart = new BarChart1();
35
36 Pane root = new VBox(rateLabel, interestRateField,
37 addInterestButton, chart);
38
39 interestRateField.setText("" + INITIAL_INTEREST_RATE);
40 chart.addValue(INITIAL_BALANCE);
41 addInterestButton.setOnAction(event ->
42 {
43 double rate = Double.parseDouble(interestRateField.getText());
44 double interest = balance * rate / 100;
45 balance = balance + interest;
46 chart.addValue(balance);
47 });
48 return root;
49 }
50 }

16.	 How do you modify the program in Section 10.4.1 to draw two squares?
17.	 Give instructions to draw a red circle with center (100, 100) and radius 25.
18.	 Give instructions to draw a letter “V” by drawing two line segments.
19.	 Give instructions to draw a string consisting of the letter “V”.
20.	 What are the RGB color values of Color.BLUE?

Practice It	 Now you can try these exercises at the end of the chapter: R10.21, E10.15, E10.16.

The Text Class

If you need more control over text than the Label class gives you, use the Text class instead.
You can change the color of a Text node by setting the stroke color:

Text caution = new Text("Caution");
caution.setStroke(Color.RED);

When you specify the text position, the text is placed so that its basepoint is at the given loca-
tion (see Figure 13).

Text message = new Text(xleft, ybase, "Message");

This is useful when you want to line up text in different fonts. In contrast, when you call
relocate(x, y) on a Text object, the coordinates specify the top-left corner, as they do for a
Label object.

To find the extent of a Text node, call the getBoundsInParent method. You can retrieve the
top, the width, and the total height from the Bounds object.

Bounds b = message.getBoundsInParent();
double ytop = b.getMinY();
double messageWidth = b.getWidth();
double messageHeight = b.getHeight();

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Special Topic 10.1

© Eric Isselé/iStockphoto.

Figure 13 
Basepoint and Baseline

Baseline

Basepoint

518  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

The following sample program uses these values to illustrate the extent and the baseline of a
Text node.

special_topic_1/TextViewer.java

1 import javafx.application.Application;
2 import javafx.geometry.Bounds;
3 import javafx.scene.Scene;
4 import javafx.scene.layout.Pane;
5 import javafx.scene.paint.Color;
6 import javafx.scene.shape.Line;
7 import javafx.scene.shape.Rectangle;
8 import javafx.scene.text.Font;
9 import javafx.scene.text.Text;

10 import javafx.stage.Stage;
11
12 public class TextViewer extends Application
13 {
14 public void start(Stage stage1)
15 {
16 Pane root = createRootPane();
17 Scene scene1 = new Scene(root);
18 stage1.setScene(scene1);
19 stage1.setTitle("TextViewer");
20 stage1.show();
21 }
22
23 private Pane createRootPane()
24 {
25 double xleft = 50;
26 double ybase = 100;
27 Text message = new Text(xleft, ybase, "Message");
28 message.setFont(new Font("Times New Roman", 36));
29
30 Bounds b = message.getBoundsInParent();
31 double ytop = b.getMinY();
32 double width = b.getWidth();
33 Rectangle rect = new Rectangle(xleft, ytop, width, b.getHeight());
34 rect.setFill(Color.TRANSPARENT);
35 rect.setStroke(Color.RED);
36 Line baseLine = new Line(xleft, ybase, xleft + width, ybase);
37 baseLine.setStroke(Color.RED);
38
39 Pane root = new Pane(message, rect, baseLine);
40
41 final int PANE_WIDTH = 250;
42 final int PANE_HEIGHT = 200;
43 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   519

44
45 return root;
46 }
47 }

Step 1	 Determine the shapes that you need for the drawing.

You can use the following shapes:
•	 Squares and rectangles
•	 Circles and ellipses
•	 Lines
•	 Text and images
The outlines of these shapes can be drawn in any color, and you can fill the insides of these
shapes with any color. You can use text to label parts of your drawing. You can add images
from image files, but that is only helpful if the image can be used “as is” without any changes.

Some national flag designs consist of three equally wide sections of different colors, side by
side, as in the Italian flag shown below.

Punchstock.You could draw such a flag using three rectangles. But if the middle rectangle is white, as it is
in the flag of Italy (green, white, red), it is easier and looks better to draw a line on the top and
bottom of the middle portion:

Two rectangles

Two lines

© Steve Simzer/iStockphoto.

How To 10.1	 Drawing Graphical Shapes

Suppose you want to write a program that displays graphical shapes such as cars, aliens, charts,
or any other images that can be obtained from rectangles, lines, and ellipses. These instructions
give you a step-by-step procedure for decomposing a drawing into parts and implementing a
program that produces the drawing.

Problem Statement  Create a program to draw a national flag.

P
un

ch
st

oc
k.

520  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

Step 2	 Find the coordinates for the shapes.

You now need to find the exact positions for the geometric shapes.
•	 For rectangles, you need the x- and y-position of the top-left corner, the width, and the

height.
•	 For circles, you need the center and radius; for ellipses, the center and major and minor

radii.
•	 For lines, you need the x- and y-positions of the starting point and the end point.
•	 For text labels and images, you need the top-left corner.
Many flags, such as the flag of Italy, have a width : height ratio of 3 : 2. (You can often find exact
proportions for a particular flag by doing a bit of Internet research on one of several Flags of
the World sites.) For example, if you make the flag 90 pixels wide, then it should be 60 pixels
tall. (Why not make it 100 pixels wide? Then the height would be 100 · 2 / 3 ≈ 67, which seems
more awkward.)

Because we can relocate a pane anywhere we want by calling the relocate method, we can
assume for now that the top-left corner is (0, 0).

Now you can compute the coordinates of all the important points of the shape:

(0, 0) (30, 0) (60, 0) (90, 0)

(0, 60) (30, 60) (60, 60) (90, 60)

Step 3	 Write Java statements to draw the shapes.

In our example, there are two rectangles and two lines:

Rectangle left = new Rectangle(0, 0, 30, 60);
left.setFill(Color.GREEN);
Rectangle right = new Rectangle(60, 0, 30, 60);
right.setFill(Color.RED);
Line top = new Line(30, 0, 60, 0);
Line bottom = new Line(30, 60, 60, 60);

If you are more ambitious, then you can express the coordinates in terms of a few variables.
In the case of the flag, we have arbitrarily chosen the top-left corner and the width. All other
coordinates follow from those choices. If you decide to follow the ambitious approach, then
the rectangles and lines are determined as follows:

double height = width * 2 / 3;
Rectangle left = new Rectangle(0, 0, width / 3, height);
left.setFill(Color.GREEN);
Rectangle right = new Rectangle(width * 2 / 3, 0, width / 3, height);
right.setFill(Color.RED);
Line top = new Line(width / 3, 0, width * 2 / 3, 0);
Line bottom = new Line(width / 3, height, width * 2 / 3, height);

Step 4	 Consider using methods or classes for repetitive steps.

Do you need to draw more than one flag? Perhaps with different sizes? Then it is a good idea
to design a method or class, so you won’t have to repeat the same drawing instructions.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   521

For example, you can provide a class

public class ItalianFlag extends Pane
{
 public ItalianFlag(double width)
 {
 . . .
 getChildren().addAll(left, right, top, bottom);
 }
}

Place the instructions from the preceding step into the constructor. Then you can call

ItalianFlag flag1 = new ItalianFlag(150);
ItalianFlag flag2 = new ItalianFlag(300);
flag2.relocate(100, 200);
root.getChildren().addAll(flag1, flag2);

in the startup code of your JavaFX application class.

Step 5	 Write the application class.

Provide a viewer class that extends Application, with a start method in which you construct a
stage, scene, and root pane. As always, it is a good idea to use a helper method for setting up
the root pane.

public class ItalianFlagViewer extends Application
{
 public void start(Stage stage1)
 {
 Pane root = createRootPane();
 Scene scene1 = new Scene(root);
 stage1.setScene(scene1);
 stage1.setTitle("ItalianFlagViewer");
 stage1.show();
 }

 private Pane createRootPane()
 {
 Pane root = new Pane();
 Add shapes as children.
 return root;
 }
}

how_to_1/ItalianFlag.java

1 import javafx.scene.layout.Pane;
2 import javafx.scene.paint.Color;
3 import javafx.scene.shape.Line;
4 import javafx.scene.shape.Rectangle;
5
6 public class ItalianFlag extends Pane
7 {
8 public ItalianFlag(double width)
9 {

10 double height = width * 2 / 3;
11 Rectangle left = new Rectangle(0, 0, width / 3, height);
12 left.setFill(Color.GREEN);
13 Rectangle right = new Rectangle(width * 2 / 3, 0, width / 3, height);
14 right.setFill(Color.RED);
15 Line top = new Line(width / 3, 0, width * 2 / 3, 0);
16 Line bottom = new Line(width / 3, height, width * 2 / 3, height);

522  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

17
18 getChildren().addAll(left, right, top, bottom);
19 }
20 }

how_to_1/ItalianFlagViewer.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.layout.Pane;
4 import javafx.stage.Stage;
5
6 public class ItalianFlagViewer extends Application
7 {
8 public void start(Stage stage1)
9 {

10 Pane root = createRootPane();
11 Scene scene1 = new Scene(root);
12 stage1.setScene(scene1);
13 stage1.setTitle("ItalianFlagViewer");
14 stage1.show();
15 }
16
17 private Pane createRootPane()
18 {
19 Pane root = new Pane();
20 final int PANE_WIDTH = 400;
21 final int PANE_HEIGHT = 300;
22 root.setMinSize(PANE_WIDTH, PANE_HEIGHT);
23
24 ItalianFlag flag1 = new ItalianFlag(150);
25 ItalianFlag flag2 = new ItalianFlag(300);
26 flag2.relocate(100, 200);
27 root.getChildren().addAll(flag1, flag2);
28 return root;
29 }
30 }

Our program needs the following user interface elements:
•	 A text field for entering a bar label
•	 A text field for entering a bar value
•	 A button for adding a new bar with the given label and value
•	 A button for removing the last bar
•	 A pane for drawing the chart

© Tom Horyn/iStockphoto.

Worked Example 10.1	 A Bar Chart Creator

In this Worked Example, we will develop a simple program for creating bar charts. The user
enters labels and values for the bars, and the program displays the chart. We also allow the user
to fix mistakes by removing the last bar. Admittedly, the user interface is a bit limited. Worked
Example 11.1 will improve on it, allowing users to use the mouse to edit the chart.

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   523

We will construct the controls and the chart as follows in the createRootPane method:

public class BarChartCreator extends Application
{
 . . .
 private Pane createRootPane()
 {
 TextField labelField = new TextField("");
 TextField valueField = new TextField("");
 Button addButton = new Button("Add");
 Button removeLastButton = new Button("Remove Last");
 BarChart chart = new BarChart();
 . . .
 }
}

The bar chart pane class needs to provide two methods that support the button commands:

public void append(String label, double value)
public void removeLast()

For now, let us assume that those methods have been implemented. We need to provide han-
dlers that call them:

addButton.setOnAction(event ->
 {
 chart.append(labelField.getText(), Double.parseDouble(valueField.getText()));
 });

removeLastButton.setOnAction(event ->
 {
 chart.removeLast();
 });

524  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

The remainder of the viewer class is straightforward. In the createRootPane method, we return
a VBox with all nodes:

return new VBox(
 new Label("Label:"),
 labelField,
 new Label("Value:"),
 valueField,
 addButton,
 removeLastButton,
 chart);

Then we set up the stage and scene with the same code that was used for all examples in this
chapter.

Now let us turn to the bar chart itself. Unlike the chart of Section 10.4.3, this chart draws
the labels in addition to the bars. A bar chart consists of multiple bars, each of which has a label
and a value. It is best to make a class for a bar that holds both the label and the value.

public class Bar extends Pane
{
 public static final int HEIGHT = 15;

 public Bar(String label, double value)
 {
 Rectangle barRectangle = new Rectangle(0, 0, value, HEIGHT);

 Text barText = new Text(label);
 barText.relocate(0, 0);
 barText.setStroke(Color.WHITE);

 getChildren().addAll(barRectangle, barText);
 }
}

Here, we use the Text class instead of the Label class so that we can change the text color.
Then the chart pane has as its children a list of bars. The append and removeLast methods add

and remove a bar.

public class BarChart extends Pane
{
 . . .
 public void append(String label, double value)
 {
 final int GAP = 5;
 int bars = getChildren().size();
 Bar bar1 = new Bar(label, value);
 bar1.relocate(0, (Bar.HEIGHT + GAP) * bars);
 getChildren().add(bar1);
 }

 public void removeLast()
 {
 int bars = getChildren().size();
 if (bars > 0)
 {
 getChildren().remove(bars - 1);
 }
 }
}

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

10.4  Creating Drawings   525

In the constructor, we set a minimum size, so that the chart occupies some space even if there
are no bars inside:

public BarChart()
{
 final int PANE_WIDTH = 400;
 final int PANE_HEIGHT = 400;
 setMinSize(PANE_WIDTH, PANE_HEIGHT);
}

It is worth reflecting on the division of labor between the classes of this application. The Bar­
Chart class knows how to draw a chart, and it has methods for modifying the chart data. But it
has no notion of a user interface. The same class could be used if we had a different user inter-
face, perhaps with voice recognition instead of the text fields and buttons.

The BarChartCreator class, on the other hand, is all about the user interface. It handles the
text fields and buttons. As soon as it knows what the user wants to do, it hands the work off to
the BarChart class.

This is a useful division of labor, giving you guidance if the program needs to be enhanced.
For a fancier rendering of the chart, improve the chart pane. For more control over the chart’s
appearance, add user-interface controls to the application class.

worked_example_1/BarChartCreator.java

1 import javafx.application.Application;
2 import javafx.scene.Scene;
3 import javafx.scene.control.Button;
4 import javafx.scene.control.Label;
5 import javafx.scene.control.TextField;
6 import javafx.scene.layout.Pane;
7 import javafx.scene.layout.VBox;
8 import javafx.stage.Stage;
9

10 public class BarChartCreator extends Application
11 {
12 public void start(Stage stage1)
13 {
14 Pane root = createRootPane();
15 Scene scene1 = new Scene(root);
16 stage1.setScene(scene1);
17 stage1.setTitle("BarChartCreator");
18 stage1.show();
19 }
20
21 private Pane createRootPane()
22 {
23 TextField labelField = new TextField("");
24 TextField valueField = new TextField("");
25 Button addButton = new Button("Add");
26 Button removeLastButton = new Button("Remove Last");
27 BarChart chart = new BarChart();
28 addButton.setOnAction(event ->
29 {
30 chart.append(labelField.getText(),
31 Double.parseDouble(valueField.getText()));
32 });
33 removeLastButton.setOnAction(event ->
34 {
35 chart.removeLast();
36 });
37

526  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

38 return new VBox(
39 new Label("Label:"),
40 labelField,
41 new Label("Value:"),
42 valueField,
43 addButton,
44 removeLastButton,
45 chart);
46 }
47 }

worked_example_1/BarChart.java

1 import javafx.scene.layout.Pane;
2
3 public class BarChart extends Pane
4 {
5 public BarChart()
6 {
7 final int PANE_WIDTH = 400;
8 final int PANE_HEIGHT = 400;
9 setMinSize(PANE_WIDTH, PANE_HEIGHT);

10 }
11
12 public void append(String label, double value)
13 {
14 final int GAP = 5;
15 int bars = getChildren().size();
16 Bar bar1 = new Bar(label, value);
17 bar1.relocate(0, (Bar.HEIGHT + GAP) * bars);
18 getChildren().add(bar1);
19 }
20
21 public void removeLast()
22 {
23 int bars = getChildren().size();
24 if (bars > 0)
25 {
26 getChildren().remove(bars - 1);
27 }
28 }
29 }

worked_example_1/Bar.java

1 import javafx.scene.layout.Pane;
2 import javafx.scene.paint.Color;
3 import javafx.scene.shape.Rectangle;
4 import javafx.scene.text.Text;
5
6 public class Bar extends Pane
7 {
8 public static final int HEIGHT = 15;
9

10 public Bar(String label, double value)
11 {
12 Rectangle barRectangle = new Rectangle(0, 0, value, HEIGHT);
13
14 Text barText = new Text(label);
15 barText.relocate(0, 0);

Chapter Summary  527

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

16 barText.setStroke(Color.WHITE);
17
18 getChildren().addAll(barRectangle, barText);
19 }
20 }

Display panes and add controls to panes.

•	 A JavaFX user interface is displayed on a stage.
•	 When building a graphical user interface, you add controls to the root pane.

Explain the event concept and handle button events.

•	 User-interface events include key presses, mouse moves, button clicks, menu
selections, and so on.

•	 In an event-driven user interface, the program receives an event whenever the user
manipulates an input component.

•	 An event handler describes the actions to be taken when an event occurs.
•	 Event sources report on events. When an event occurs, the event source notifies

an event handler.
•	 Lambda expressions provide a concise syntax for event handlers.
•	 Lambda expressions can access variables and methods from the enclosing scope.

Use text controls for reading text input.

•	 Use a TextField component for reading a single line of input. Place a Label next to
each text field.

•	 Use a TextArea to show multiple lines of text.

Create simple drawings with rectangles, circles, lines, and text.

•	 You can add rectangles and other nodes to a pane.
•	 Circles, ellipses, lines, text, and image views are nodes.
•	 Make a new class for a drawing that can be reused.

C H A P T E R S U M M A R Y

© Seriy Tryapitsyn/iStockphoto.

© Kyoungil Jeon/iStockphoto

© Alexey Avdeev/iStockphoto.

528  Chapter 10  Graphical User Interfaces (FX)

• R10.1	 What is the difference between a stage and a pane?

• R10.2	 From a programmer’s perspective, what is the most important difference between
the user interface of a console application and a graphical application?

• R10.3	 What happens when you don’t call setTitle on the stage object?

• R10.4	 What happens if you try adding a button directly to a scene?

• R10.5	 What is an event object? An event source? An event listener?

• R10.6	 Who calls the handle method of an event handler? When does the call to the handle
method occur?

• R10.7	 You can exit a graphical program by calling System.exit(0). Describe how to provide
an Exit button that functions in the same way as closing the window.

•• R10.8	 How would you add a counter to the program in Section 10.2.1 that prints how
often the button has been clicked? Where is the counter updated?

•• R10.9	 How would you add a counter to the program in Section 10.2.2 that shows how
often the button has been clicked? Where is the counter updated? Where is it
displayed?

javafx.application.Application
 start
javafx.collections.ObservableList<E>
 addAll
javafx.event.EventHandler<T>
 handle
javafx.geometry.Bounds
 getHeight
 getMinX
 getMinY
 getWidth
javafx.scene.Parent
 getChildren
javafx.scene.Node
 relocate
javafx.scene.Scene
javafx.scene.control.Button
javafx.scene.control.ButtonBase
 setOnAction
javafx.scene.control.Label
javafx.scene.control.Labeled
 getText
 setFont
 setText
javafx.scene.control.TextArea
 setPrefColumnCount
 setPrefRowCount
javafx.scene.control.TextField
 setPrefColumnCount

javafx.scene.control.TextInputControl
 appendText
 getText
 setText
 setEditable
javafx.scene.image.ImageView
javafx.scene.layout.Pane
javafx.scene.layout.Region
 setMinSize
javafx.scene.layout.VBox
javafx.scene.paint.Color
 rgb
javafx.scene.shape.Rectangle
javafx.scene.shape.Ellipse
javafx.scene.shape.Circle
javafx.scene.shape.Line
javafx.scene.shape.Shape
 setFill
 setStroke
javafx.scene.text.Font
javafx.scene.text.Text
 getBoundsInParent
 setFont
javafx.stage.Stage
 setScene
 setTitle
 show

S TA N D A R D L I B R A R Y I T E M S I N T R O D U C E D I N T H I S C H A P T E R

R E V I E W E X E R C I S E S

Practice Exercises  529

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

••• R10.10	 How would you reorganize the InvestmentViewer1 program in Section 10.2.3 if you
needed to make the event handler into a class (that is, not a lambda expression)?

•• R10.11	 Why are we using lambda expressions for event listeners? If Java did not have
lambda expressions, could we still implement event listeners? How?

•• R10.12	 How can you reorganize the InvestmentViewer1 program so that the root pane is a
class that inherits from the Pane class?

• R10.13	 What is the difference between a label, a text field, and a text area?

•• R10.14	 Name a method that is declared in TextArea, a method that TextArea inherits from
TextInputControl, and a method that TextArea inherits from Node.

•• R10.15	 How can you rewrite the program in Section 10.3.2 to use a label instead of a
text area to show how the interest accumulates? What is the disadvantage of that
approach?

• R10.16	 What happens in the program of Section 10.4.1 if you call relocate on the pane con-
taining the bars?

• R10.17	 In the program of Section 10.4.2, why was the ellipse added before the text?

••• R10.18	 How could you center the text precisely within the ellipse in the program of Section
10.4.2?

•• R10.19	 How would you modify the chart component in Section 10.4.3 to draw a vertical bar
chart? (Hint: The y-values grow downward.)

• R10.20	 How do you specify a text color?

•• R10.21	 How do you draw a cat inside a circle?

• R10.22	 How would you modify the ItalianFlag class in How To 10.1 to draw any flag with a
white vertical stripe in the middle and two arbitrary colors to the left and right?

• E10.1	 Write a program that shows a frame filled with 100 buttons labeled 1 to 100. Nothing
needs to happen when you press any of the buttons.

• E10.2	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it prints a message “I was
clicked n times!” whenever the button is clicked. The value n should be incremented
with each click.

•• E10.3	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons, each
of which prints a message “I was clicked n times!” whenever the button is clicked.
Each button should have a separate click count.

•• E10.4	 Enhance the ButtonViewer1 program in Section 10.2.1 so that it has two buttons
labeled A and B, each of which prints a message “Button x was clicked!”, where x is
A or B.

•• E10.5	 Implement a ButtonViewer1 program as in Exercise •• E10.4 using only a single
lambda expression that is generated by a helper method with the button label as
parameter.

P R A C T I C E E X E R C I S E S

530  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

• E10.6	 Enhance the ButtonViewer1 program so that it prints the date and time at which the
button was clicked. Hint: System.out.println(new java.util.Date()) prints the current
date and time.

••• E10.7	 Implement the event handler in the ButtonViewer2 program of Section 10.2.2 as a
regular class (that is, not a lambda expression). Hint: Store a reference to the label.
Provide a constructor in the handler class that sets the reference.

•• E10.8	 Add error handling to the program in Section 10.3.2. If the interest rate is not a
floating-point number, or if it less than 0, display an error message.

• E10.9	 Write a graphical application simulating a bank account. Supply text fields and but-
tons for depositing and withdrawing money, and for displaying the current balance
in a label.

• E10.10	 Write a graphical application describing an earthquake, as in Section 3.3. Supply a
text field and button for entering the strength of the earthquake. Display the earth-
quake description in a label.

• E10.11	 Write a graphical application for computing statistics of a data set. Supply a text
field and button for adding floating-point values, and display the current minimum,
maximum, and average in a label.

• E10.12	 Write an application with three labeled text fields, one each for the initial amount of
a savings account, the annual interest rate, and the number of years. Add a button
“Calculate” and a read-only text area to display the balance of the savings account
after the end of each year.

•• E10.13	 In the application from Exercise • E10.12, replace the text area with a bar chart that
shows the balance after the end of each year.

• E10.14	 Write a graphics program that draws your name in red, contained inside a blue
rectangle.

• E10.15	 Write a graphics program that draws 12 strings, one each for the colors in Table 1,
each in its own color. Use a black background for Color.WHITE.

• E10.16	 Write a program that draws two solid squares: one in pink and one in purple. Use a
named color for one of them and a custom color for the other.

•• E10.17	 The ImageView constructor accepts a string specifying the image location. If the string
starts with http://, the image is read from the given URL. Otherwise, the image
is read from the file system. If you just specify a file name and no directory, the
file must be located in the same directory as the class file of the program. Write a
test program that demonstrates reading an image from the web, an image from the
default directory, and an image from the download directory of your computer.

• P10.1	 Write a program to plot the following face.

P R O G R A M M I N G P R O J E C T S

Programming Projects  531

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

•• P10.2	 Draw a “bull’s eye”—a set of concentric rings in alternating black and white colors.
Hint: Fill a black circle, then fill a smaller white circle on top, and so on.

•• P10.3	 Write a program that draws a picture of a house. It could be as simple as the accom-
panying figure, or if you like, make it more elaborate (3-D, skyscraper, marble
columns in the entryway, whatever).

•• P10.4	 Extend Exercise •• P10.3 by supplying a House class, whose constructor allows you
to specify the size. Then populate your frame with a few houses of different sizes.

•• P10.5	 Extend Exercise •• P10.4 so that you can make the houses appear in different colors.

• P10.6	 Improve the output quality of the investment application in Section 10.3.2. Format
the numbers to all have the same width. Set the font of the text area to a fixed width
font (such as Courier New or Monospace).

•• P10.7	 Write a program that draws a 3D view of a cylinder.

•• P10.8	 Write a program to plot the string “HELLO”, using only lines and circles. Do not
use Text, Label, or System.out.

•• P10.9	 Enhance the InvestmentViewer2 program of Section 10.3.1 so that invalid inputs are
detected and the user is notified. Catch the exception thrown by Double.parseDouble
and place an error message next to the text field. Be sure to clear the error message
when the user provides new input.

•• P10.10	 Modify the program in How To 10.1 to draw any flag with three horizontal colored
stripes. Write a program that displays the German and Hungarian flags.

•• P10.11	 Write a program that displays the Olympic rings. Color the rings in the Olympic
colors.

532  Chapter 10  Graphical User Interfaces (FX)

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

•• P10.12	 Write a program that prompts the user to enter an integer in a text field. When a
Draw button is clicked, draw as many rectangles at random positions in a pane as the
user requested.

•• P10.13	 Write a program that asks the user to enter an integer n into a text field. When a
Draw button is clicked, draw an n-by-n grid.

••• P10.14	 Write a program that has a Draw button and a pane in which a random mixture of
rectangles, ellipses, and lines, with random positions, is displayed each time the
Draw button is clicked.

•• P10.15	 Make a bar chart to plot the following data set. Label each bar.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

Mackinac 3,800

••• P10.16	 Write a program that draws a clock face with a time that the user enters in two text
fields (one for the hours, one for the minutes).
Hint: You need to determine the angles of the hour hand and the minute hand. The
angle of the minute hand is easy; the minute hand travels 360 degrees in 60 minutes.
The angle of the hour hand is harder; it travels 360 degrees in 12 × 60 minutes.

•• Business P10.17	 Implement a graphical application that simulates a cash register. Provide a text field
for the item price and two buttons for adding the item to the sale, one for taxable
items and one for nontaxable items. In a text area, display the register tape that lists
all items (labeling the taxable items with a *), followed by the amount due. Provide
another button for starting a new sale.

•• Business P10.18	 Write a graphical application to implement a currency converter between euros and
U.S. dollars, and vice versa. Provide two text fields for the euro and dollar amounts.
Between them, place two buttons labeled > and < for updating the field on the right
or left. For this exercise, use a conversion rate of 1 euro = 1.12 U.S. dollars.

•• Business P10.19	 Write a graphical application that produces a restaurant bill.
Provide buttons for ten popular dishes or drink items. (You
decide on the items and their prices.) Provide text fields for
entering less popular items and prices. In a text area, show the
bill, including tax and a suggested tip.

© Juanmonino/iStockphoto.

©
 J

ua
nm

on
in

o/
iS

to
ck

ph
ot

o.

Answers to Self-Check Questions  533

Big Java, Late Objects, 2e, Cay Horstmann, © 2017 John Wiley & Sons, Inc. All rights reserved.

A N S W E R S T O S E L F - C H E C K Q U E S T I O N S

1.	 Pane root = new Pane();
final int PANE_SIZE = 300;
root.setMinSize(PANE_SIZE, PANE_SIZE);
Scene scene1 = new Scene(root);
stage1.setScene(scene1);
stage1.setTitle("Hello, World!");
stage1.show();

2.	 Set up the root pane like this:
Button button1 = new Button("Yes");
Button button2 = new Button("No");
button2.relocate(0, 50);
Pane root = new Pane(button1, button2);

3.	 The button and label are both in the top-left
corner.

4.	 The window is just large enough to contain the
button and the label.

5.	 You get a blank window in “landscape” orien-
tation.

6.	 The button1 object is the event source. The
lambda expression is the event handler.

7.	 The ClickHandler class implements the EventHan­
dler interface.

8.	 You don’t. The FX library calls the method
when the button is clicked.

9.	 The program would not compile because a
lambda expression can only access local vari-
ables that are effectively final.

10.	 The program would continue to work because
resultLabel is not used outside the createRoot­
Pane method and the button handler, and it is
effectively final.

11.	 Then the text field is not labeled, and the user
will not know its purpose.

12.	 Integer.parseInt(textField.getText())

13.	 A text field holds a single line of text; a text
area holds multiple lines.

14.	 The text area is intended to display the pro-
gram output. It does not collect user input.

15.	 Yes, we did just that in the ButtonViewer2
program. But the Label class doesn’t have an
appendText method, so you have to call
resultLabel.setText(resultLabel.getText() +

...).
16.	 Here is one possible solution:

Rectangle square1 = new Rectangle(
 0, 0, 50, 50);
Rectangle square2 = new Rectangle(
 0, 100, 50, 50);

17.	 Circle shape1 = new Circle(100, 100, 25);
shape1.setstroke = (Color.RED);
shape1.setfill = (Color.RED);

18.	 Line shape1 = new Line(0, 0, 10, 30);
Line shape1 = new Line(10, 30, 20, 0);

19.	 Label message = new Label("V");
20.	 0, 0, 255

