1. Projection Transformation (Camera Coordinates to Viewplane Coordinates)

Let $\left(x_{c}, y_{c}, z_{c}\right)$ be a point in camera coordinates and let $\left(x_{p}, y_{p}, z_{p}\right)$ be its perspective projection onto the viewplane. Then

$$
x_{p}=-x_{c} / z_{c}, \quad y_{p}=-y_{c} / z_{c}, \quad z_{p}=-1
$$

2. Clipping Equations

Let v_{0} and v_{1} be the endpoints of a line segment in the viewplane $z=-1$. If the line segment crosses the line $x=1$, or $x=-1$, or $y=1$, or $y=-1$ (respectively), then we solve for t in the equation

$$
\begin{gathered}
(1-t) v_{0}+t v_{1}=\left(1, y_{c}\right) \\
(1-t) v_{0}+t v_{1}=\left(-1, y_{c}\right) \\
(1-t) v_{0}+t v_{1}=\left(x_{c}, 1\right) \\
(1-t) v_{0}+t v_{1}=\left(x_{c},-1\right)
\end{gathered}
$$

(respectively) to find the point v_{c} where the line segment should be clipped. Then use that value of t to interpolate color from v_{0} and v_{1} to v_{c},

$$
(r(t), g(t), b(t))=(1-t)(r(0), g(0), b(0))+t(r(1), g(1), b(1))
$$

3. Viewplane to Pixelplane Transformation

Let $\left(x_{p}, y_{p},-1\right)$ be a point within the viewplane's view rectangle and let $\left(x_{v p}, y_{v p}\right)$ be its transformation to the logical viewport in the renderer's pixelplane. Then

$$
\begin{aligned}
x_{v p} & =0.5+(w / 2.001)\left(x_{p}+1\right), \\
y_{v p} & =0.5+(h / 2.001)\left(y_{p}+1\right) .
\end{aligned}
$$

Points $\left(x_{v p}, y_{v p}\right)$ in the renderer's logical viewport have coordinates that satisfy

$$
0.5 \leq x_{v p}<w+0.5 \quad \text { and } \quad 0.5 \leq y_{v p}<h+0.5
$$

4. Pixelplane to Pixel Transformation

Let $\left(x_{v p}, y_{v p}\right)$ be a point in the renderer's logical viewport (in the pixelplane) and let (x, y) be the equivalent pixel in the framebuffer's viewport. Then

$$
\begin{aligned}
& x=(\text { int }) \text { Math.round }\left(x_{v p}\right)-1 \\
& y=h-(\text { int }) M a t h . r o u n d\left(y_{v p}\right)
\end{aligned}
$$

Pixels (x, y) in a framebuffer's viewport have integer coordinates that satisfy

$$
0 \leq x \leq w-1 \quad \text { and } \quad 0 \leq y \leq h-1
$$

with the pixel $(0,0)$ being in the upper left hand corner.

