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Primitive rasterization
■ Rasterization converts vertex representation to pixel 

representation
° Coverage determination – Computes which pixels (samples) belong to an “ideal”

analytical primitive 

° Parameter interpolation – Computes parameters at covered pixels from 
parameters associated with primitive vertices

■ Coverage is a 2-D sampling problem

■ Possible coverage criteria:
° distance of the primitive 

to sample point
(often used with lines)

° Percent coverage of 
a pixel (used to be popular)

° Sample is inside the primitive
(assuming it is closed)
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Why triangles?
■ Triangles are simple

° minimal representation for a surface element
(3 points or 3 edge equations)

° triangles are linear (makes computations easier)
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Why triangles?
■ Triangles are convex

■ What does it mean to be a convex?

An object is convex if and only if any line segment connecting two points on
its boundary is contained entirely within the object or one of its boundaries.

■ Why is convexity important? 
Regardless of a triangle’s orientation on the screen a given scan line 
will contain only a single segment or span of that triangle.
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Why triangles?
■ Arbitrary polygons can be decomposed into triangles

■ Decomposing a convex n-sided polygon is trivial
° Suppose the polygon has ordered vertices {v0, v1, ... vn}

° It can be decomposed into triangles {(v0,v1,v2), {v0,v2,v3), (v0,vi,vi+1), ... (v0,vn-1,vn)}.

■ Decomposing a non-convex polygon is non-trivial
° sometimes have to introduce new vertices
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Why triangles?
■ Triangles can approximate any 2-dimensional shape 

(or 3D surface)

■ Polygons are a locally linear (planar) approximation. 

■ Improve the quality of fit by increasing the number 
edges or faces.
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Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges
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Fractional offsets

offset from edge
to pixel center

■ Straightforward to interpolate values (e.g. colors) along the 
edges, but  must be careful when offsetting from the edge to 
the pixel’s center.
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Scanline rasterizing entire scenes

■ Sort all edges by start scanline into the Inactive Edge Table (IET)

■ Move edges intersected by current scanline
from IET to Active Edge Table (AET)

■ Compute spans between active edges

■ Sort spans by starting x

■ Rasterize visible span segments

■ Remove edges from AET when they no
longer intersect the current scanline
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Scanline rasterization
■ Advantages:

° Can be made quite fast

° Low memory usage for smallish scenes

° Don’t need full 2D z-buffer (can use 1D z-buffer on the scanline)

■ Disadvantages:
° Doesn’t scale well to large scenes  

° Have to worry about fractional offsets

° Lots of special cases
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Rasterizing with edge equations
■ Compute edge equations from vertices 

■ Compute interpolation equations from vertex parameters

■ Traverse pixels evaluating the edge equations 

■ Draw pixels for which all edge equations are positive

■ Interpolate parameters at pixels
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Edge equation coefficients
■ The cross product between 2 homogeneous points 

generates the line between them

■ A pixel at (x,y) is “inside” an edge if E(x,y)>0
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Numerical precision
■ Subtraction of two nearly equal floating point 

numbers results in catastophic cancellation which 
leaves only a few significant bits

■ When x0y1 ≈ x1y0 computing C = x0y1 − x1y0 can result in 
loss of precision

■ Reformulate C coefficent: 
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Triangle area
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■ Area = 0 means that the triangle is not visible

■ Area < 0 means the triangle is back facing:
° Reject triangle if performing back-face culling

° Otherwise, flip edge equations by multiplying by -1
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Shared edges
■ Suppose two triangles share an edge.

Which covers the pixel when the edge
passes through the sample (E(x,y)=0)?

■ Both
° pixel color becomes dependent on order of 

triangle rendering

° creates problems when rendering transparent objects -
“double hitting”

■ Neither
° Missing pixels create holes in otherwise solid surface

■ We need a consistent tie-breaker!

triangle 1

triangle 2
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Shared edges
■ A common tie-breaker:

■ Coverage determination becomes

if( E(x,y) >0 || (E(x,y)==0 && t))

pixel is covered

triangle 1

triangle 2

(A,B)

A 0 if A 0
bool t

B 0 otherwise
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Shared vertices
■ Use “inclusion direction” as a tie 

breaker. 

■ Any direction can be used

■ Snap vertices to subpixel grid and 
displace so that no vertex can be at 
the pixel center
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Other benefits of snapping to 
subpixel grid
■ Simplicity

° can use fixed-point arithmetic can be used (integer 
operations)

■ Robustness
° With sufficient bits, edge equations and areas can be 

computed exactly

■ Quality
° Smoother animation than if we snapped to the pixel grid
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Interpolating parameters

■ Specify a parameter, say redness (r) at each vertex 
of the triangle. 

■ Linear interpolation creates a planar function
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Solving for interpolation 
equation
■ Given the redness of the three vertices, we can set up the following linear 

system:

with the solution:
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Interpolation equation
■ The parameter plane equation is just a linear 

combination of the edge equations

Extra work to interpolate a parameter:
° Transform parameter vector

° Compute one interpolation equation per pixel per parameter

[ ] [ ]
0

r r r 0 1 2 1

2

e
1

A B C r r r e
2 area

e

⎡ ⎤
⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥⎣ ⎦



2/07/07 30

Z-Buffering
■ When rendering multiple triangles we 

need to determine which triangles are 
visible

■ Use z-buffer to resolve visibility
° stores the depth `at each pixel

■ Initialize z-buffer to 1
° Post-perspective z values lie between 0 and 1 

■ Linearly interpolate depth (ztri) 
across triangles
° Why can we do this?

■ If ztri(x,y) < zBuffer[x][y] 
write to pixel at (x,y)
zBuffer[x][y] = ztri(x,y) im
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Traversing pixels
■ Free to traverse pixels how we 

please
° Edge and interpolation equations can be 

computed at any point

■ Try to minimize work
° Restrict traversal to primitive bounding box

° Zig-zag traversal avoids empty pixels

° Hierarchical traversal

- Knock out tiles of pixels (say 4x4) at a time

- Test corners of tiles against equations

- Test individual pixels of tiles not entirely
inside or outside
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Incremental update of linear equations

■ Some computation can be saved by updating the 
edge and interpolation equations incrementally:

■ Equations can be updated with a single addition!

E(x, y) Ax By C

E(x , y) A(x ) By C

E(x, y) A

E(x, y ) Ax B(y ) C

E(x, y) B

= + +
+ ∆ = + ∆ + +

= + ⋅∆
+ ∆ = + + ∆ +

= + ⋅∆
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Triangle setup
■ Compute edge equations

° 3 cross products

■ Compute triangle area
° A few additions 

■ Cull zero area and back-facing triangles and/or flip 
edge equations

■ Compute interpolation equations
° Matrix/vector product per parameter


