
2/07/07 1

Triangle Rasterization

Computer Graphics
COMP 770 (236)
Spring 2007

Instructor: Brandon Lloyd

2/07/07 5

Primitive rasterization
■ Rasterization converts vertex representation to pixel

representation
° Coverage determination – Computes which pixels (samples) belong to an “ideal”

analytical primitive

° Parameter interpolation – Computes parameters at covered pixels from
parameters associated with primitive vertices

■ Coverage is a 2-D sampling problem

■ Possible coverage criteria:
° distance of the primitive

to sample point
(often used with lines)

° Percent coverage of
a pixel (used to be popular)

° Sample is inside the primitive
(assuming it is closed)

2/07/07 6

Why triangles?
■ Triangles are simple

° minimal representation for a surface element
(3 points or 3 edge equations)

° triangles are linear (makes computations easier)

0v
1v

2v

1e 0e

2e

0 1 2

0 1 2

T (v , v , v)

T (e , e , e)

=
=

2/07/07 7

Why triangles?
■ Triangles are convex

■ What does it mean to be a convex?

An object is convex if and only if any line segment connecting two points on
its boundary is contained entirely within the object or one of its boundaries.

■ Why is convexity important?
Regardless of a triangle’s orientation on the screen a given scan line
will contain only a single segment or span of that triangle.

2/07/07 8

Why triangles?
■ Arbitrary polygons can be decomposed into triangles

■ Decomposing a convex n-sided polygon is trivial
° Suppose the polygon has ordered vertices {v0, v1, ... vn}

° It can be decomposed into triangles {(v0,v1,v2), {v0,v2,v3), (v0,vi,vi+1), ... (v0,vn-1,vn)}.

■ Decomposing a non-convex polygon is non-trivial
° sometimes have to introduce new vertices

2/07/07 9

Why triangles?
■ Triangles can approximate any 2-dimensional shape

(or 3D surface)

■ Polygons are a locally linear (planar) approximation.

■ Improve the quality of fit by increasing the number
edges or faces.

2/07/07 10

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 11

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 12

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 13

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 14

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 15

Scanline triangle rasterizer
■ Walk along edges one scanline at a time

■ Rasterize spans between edges

2/07/07 16

Fractional offsets

offset from edge
to pixel center

■ Straightforward to interpolate values (e.g. colors) along the
edges, but must be careful when offsetting from the edge to
the pixel’s center.

2/07/07 17

Scanline rasterizing entire scenes

■ Sort all edges by start scanline into the Inactive Edge Table (IET)

■ Move edges intersected by current scanline
from IET to Active Edge Table (AET)

■ Compute spans between active edges

■ Sort spans by starting x

■ Rasterize visible span segments

■ Remove edges from AET when they no
longer intersect the current scanline

processed
active
inactive

current
scanline

scanline

d
ep

th

spans

spans

2/07/07 18

Scanline rasterization
■ Advantages:

° Can be made quite fast

° Low memory usage for smallish scenes

° Don’t need full 2D z-buffer (can use 1D z-buffer on the scanline)

■ Disadvantages:
° Doesn’t scale well to large scenes

° Have to worry about fractional offsets

° Lots of special cases

2/07/07 19

Rasterizing with edge equations
■ Compute edge equations from vertices

■ Compute interpolation equations from vertex parameters

■ Traverse pixels evaluating the edge equations

■ Draw pixels for which all edge equations are positive

■ Interpolate parameters at pixels

2/07/07 20

Edge equation coefficients
■ The cross product between 2 homogeneous points

generates the line between them

■ A pixel at (x,y) is “inside” an edge if E(x,y)>0

0v

1v

0 1

t t
0 0 1 1

0 1 1 0 0 1 1 0

e v v

[x y 1] [x y 1]

[(y y) (x x) (x y x y)]

= ×

= ×
= − − −e

A B C

E(x, y) Ax By C= + +

2/07/07 21

Numerical precision
■ Subtraction of two nearly equal floating point

numbers results in catastophic cancellation which
leaves only a few significant bits

■ When x0y1 ≈ x1y0 computing C = x0y1 − x1y0 can result in
loss of precision

■ Reformulate C coefficent:

3 3 01.234 1.23310 10 .0001 10× − × = ×

0 1 0 1A(x x) B(y y)
C

2

+ + +
= −

2/07/07 22

Triangle area
0 1 2

1
2 0 1 2

1
2 1 2 2 1 0 2 2 0 0 1 1 0

1
2 0 1 2

x x x

Area det y y y

1 1 1

((x y x y) (x y x y) (x y x y))

(C C C)

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

= − − − + −
= + +

■ Area = 0 means that the triangle is not visible

■ Area < 0 means the triangle is back facing:
° Reject triangle if performing back-face culling

° Otherwise, flip edge equations by multiplying by -1

2/07/07 23

Shared edges
■ Suppose two triangles share an edge.

Which covers the pixel when the edge
passes through the sample (E(x,y)=0)?

■ Both
° pixel color becomes dependent on order of

triangle rendering

° creates problems when rendering transparent objects -
“double hitting”

■ Neither
° Missing pixels create holes in otherwise solid surface

■ We need a consistent tie-breaker!

triangle 1

triangle 2

2/07/07 24

Shared edges
■ A common tie-breaker:

■ Coverage determination becomes

if(E(x,y) >0 || (E(x,y)==0 && t))

pixel is covered

triangle 1

triangle 2

(A,B)

A 0 if A 0
bool t

B 0 otherwise

> ≠⎧
= ⎨ >⎩

2/07/07 25

Shared vertices
■ Use “inclusion direction” as a tie

breaker.

■ Any direction can be used

■ Snap vertices to subpixel grid and
displace so that no vertex can be at
the pixel center

2/07/07 26

Other benefits of snapping to
subpixel grid
■ Simplicity

° can use fixed-point arithmetic can be used (integer
operations)

■ Robustness
° With sufficient bits, edge equations and areas can be

computed exactly

■ Quality
° Smoother animation than if we snapped to the pixel grid

2/07/07 27

Interpolating parameters

■ Specify a parameter, say redness (r) at each vertex
of the triangle.

■ Linear interpolation creates a planar function

x
y

r(x,y) = Ax + By + C

2/07/07 28

Solving for interpolation
equation
■ Given the redness of the three vertices, we can set up the following linear

system:

with the solution:

[] []
0 1 2

0 1 2 r r r 0 1 2

x x x

r r r A B C y y y

1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

[] []

1 2 2 1 1 2 2 1

0 2 2 0 0 2 2 0

0 1 1 0 0 1 1 0

r r r 0 1 2

0 1 2

0 1 2

(y y) (x x) (x y x y)

(y y) (x x) (x y x y)

(y y) (x x) (x y x y)
A B C r r r

x x x

det y y y

1 1 1

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥

− − −⎢ ⎥⎣ ⎦=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2/07/07 29

Interpolation equation
■ The parameter plane equation is just a linear

combination of the edge equations

Extra work to interpolate a parameter:
° Transform parameter vector

° Compute one interpolation equation per pixel per parameter

[] []
0

r r r 0 1 2 1

2

e
1

A B C r r r e
2 area

e

⎡ ⎤
⎢ ⎥= ⎢ ⎥⋅
⎢ ⎥⎣ ⎦

2/07/07 30

Z-Buffering
■ When rendering multiple triangles we

need to determine which triangles are
visible

■ Use z-buffer to resolve visibility
° stores the depth `at each pixel

■ Initialize z-buffer to 1
° Post-perspective z values lie between 0 and 1

■ Linearly interpolate depth (ztri)
across triangles
° Why can we do this?

■ If ztri(x,y) < zBuffer[x][y]
write to pixel at (x,y)
zBuffer[x][y] = ztri(x,y) im

a
ge

 f
ro

m
 w

ik
ip

ed
ia

.c
om

2/07/07 31

Traversing pixels
■ Free to traverse pixels how we

please
° Edge and interpolation equations can be

computed at any point

■ Try to minimize work
° Restrict traversal to primitive bounding box

° Zig-zag traversal avoids empty pixels

° Hierarchical traversal

- Knock out tiles of pixels (say 4x4) at a time

- Test corners of tiles against equations

- Test individual pixels of tiles not entirely
inside or outside

2/07/07 32

Incremental update of linear equations

■ Some computation can be saved by updating the
edge and interpolation equations incrementally:

■ Equations can be updated with a single addition!

E(x, y) Ax By C

E(x , y) A(x) By C

E(x, y) A

E(x, y) Ax B(y) C

E(x, y) B

= + +
+ ∆ = + ∆ + +

= + ⋅∆
+ ∆ = + + ∆ +

= + ⋅∆

2/07/07 33

Triangle setup
■ Compute edge equations

° 3 cross products

■ Compute triangle area
° A few additions

■ Cull zero area and back-facing triangles and/or flip
edge equations

■ Compute interpolation equations
° Matrix/vector product per parameter

