
Rasterization

Michael Doggett
Department of Computer Science

Lund university

Pixel shader

Vertex shader

Today’s stage of the
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

How to rasterize a
triangle?

Edge
functions

Pixel sampling

Traversal

Interpolation

Edge
functions

Pixel sampling

Traversal

Interpolation

Which pixel is inside a
triangle?

• Triangle traversal

Clearly, this pixel
belongs to the triangle

Clearly, this pixel does NOT
belong to the triangle

Which pixel is inside a
triangle?

• Sample at the center

How about this case? And this? And this? And this?

How are we computing
pixel center?

Screen space coordinates

(px,py) are in [0,w] x [0,h]

What happens if you round off
floating point vertices to nearest

pixel center?
Triangle
edge
using
floating
point
coords

Edge with ”snapped”
vertex coordinates

Frame 1 Frame 2 Frame 3

Big jump here... looks really bad.

With sub-pixel
coordinates this
will get solved

We need sub-pixel
coordinates!

Remember: integer coords
at pixel corners!

Sub-pixel
Sample points

Floating point
coordinates
snaps to the
closest sub-
pixel sample

• We can use fixed point math (integer)

• Use 2 sub-pixel fractional bits per x, and y

Edge
functions

Pixel sampling

Traversal

Interpolation

How do we determine if a
sample is inside a triangle?
• Convert edges into functions

• line equation

• Edge function for 2 points p0 and p1 is:

Can be thought of as the ‘normal’ of the line

How do points relate
to the edge function?

Points are inside if all edge
functions are positive!

What happens to pixels
exactly on an edge?

• One and only one of A or B

• Because :

• No cracks between triangles

• No overlapping triangles

A

B
Does the pixel belong to A or B,

or both ? or neither?

How to decide which triangle
an edge sample is in?

 One solution (by McCool el at)

• Another way to
think about it:

• We exclude
shadowed edges

How about when a vertex
coincides with the sampling point?

You get the same kind of problems!

One solution: offset the subpixel grid so that sampling
points never coincide with sub-pixel grid

Another solution

• Don’t move the grid

• Choose one direction, say southwards:

• The sampling point should only belong to the
triangle that has the arrow in it

• Can be determined from looking at the
”normals” of the edge functions

• Edges sharing sample points is the most
common problem, so solve that first...

[Idea by John Owens, UC Davis]

Edge
functions

Pixel sampling

Traversal

Interpolation

Triangle traversal
strategies

• Simple (and naive):

• execute Inside() for every pixel on screen,
and for every edge

• Little better: compute bounding box first

• Called ”bounding box traversal”

Visits all gray pixels

Only dark gray
pixels are inside

So only keep those

Backtrack traversal

• Was used for mobile graphics chip

• by Korean research group (KAIST)

• Advantage: only traverse from left to right

• Could make for more efficient memory accesses

• Could backtrack at a faster pace (because no mem acc)

Zigzag traversal

• Simple technique that avoids backtracking

• Still visits outside pixels

• see the last scaneline

Side by side comparison
Backtrack vs zigzag

Backtrack never visits
unnecessary

pixels to the left

Zigzag never visits unnecessary
pixels to the left on even scanlines
and to the right on odd scanlines

(and avoids backtracking)

Tiled traversal

• Divide screen into tiles

• each tile is w x h pixels

• 8x8 tile size is common in desktop GPUs

4x4 tiles

Tiled traversal

• Gives better texture cache performance

• Enables simple culling (Zmin & Zmax)

• Real-time buffer compression (color and depth)

Is tiled traversal that
different?

• We need:

• 1 : Traverse to tiles overlapping triangle

• 2 : Test if tile overlaps with triangle

• 3 : Traverse pixels inside tile

• We only need new algorithm for part 2

• Can use Haines and Wallace’s box line
intersection test (EGSR94)

Edge
functions

Pixel sampling

Traversal

Interpolation

How can we interpolate
parameters across triangles?

image

How can we interpolate
parameters across triangles?

• What is s at p?

• S should vary smoothly across triangle

• Use barycentric coordinates, (u,v,w)

Barycentric
Coordinates

Proportional to the signed
areas of the subtriangles

formed by p and the vertices

Area computed using cross product, e.g.:

In graphics, we use barycentric coordinates normalized
with respect to triangle area:

What do barycentric
coordinates look like?

• Constant on lines parallel to an edge

• because the height of the subtriangle is constant

How to use them?

Interpolate vertex parameters s0, s1, s2

32

Barycentric coordinates from edge
functions (1)

• The a and b parameters of an edge function must
be proportional to the normal

• We can use the edge functions directly to
compute barycentric coordinates as well!

• Focus on edge, e2:

33

Barycentric coordinates from edge
functions (2)

• ||n2|| must be exactly b (base
of triangle)

• ||p-p0||cos α is the length of
projection of p-p0 onto n2
i.e., h (height of triangle)

• From definition of dot product:

34

Barycentric coordinates from edge
functions (3)

• This means:

• And 1/(2AΔ) can be computed in the triangle
setup (once per triangle)

35

Resulting interpolation

• Looks even
worse when
animated...

• Clearly,
perspective
correction is
needed!

Which is which?

With barycentric coordinates,
i.e., without perspective correction

With perspective correction

36

• Why?
–Things farther away appear smaller!

• And even inside objects, of course:

Perspective-correct interpolation

Remember homogeneous
coordinates

p = (px, py, pz, 1) in screen space

Perspective correct
interpolation

• An overly simplified way to think of it

• Linearly interpolate

• s/w in screen space

• 1/w in screen space

• Then divide

Perspective correct
interpolation coordinates

• Compute perspective correct barycentric
coordinates (u,v,w) first

• Then interpolate vertex parameters

Perspectively correct
barycentric coordinates

Recall perspective
correction

Simplify:

Once per triangle vs
Once per pixel

Triangle setup

Per pixel
(simple)

What’s next
• Chapter 2 & 3 in Graphics Hardware notes

• Rasterization and interpolation

• Next Week

• Fixed point math (for the sub-pixel sampling)

• Texturing

• Caching

• Read chapter 5.5 General Caching

• Assignment 1 available on the web page

The End!

