1. Projection Transformation

Let $\left(x_{c}, y_{c}, z_{c}\right)$ be a point in camera coordinates and let $\left(x_{p}, y_{p}, z_{p}\right)$ be its perspective projection onto the viewplane. Then

$$
x_{p}=-x_{c} / z_{c}, \quad y_{p}=-y_{c} / z_{c}, \quad z_{p}=-1
$$

2. Clipping Equations

Let v_{0} and v_{1} be the endpoints of a line segment in the viewplane $z=-1$. If the line segment crosses the line $x=1$, or $x=-1$, or $y=1$, or $y=-1$ (respectively), then we solve for t in the equation

$$
\begin{gathered}
(1-t) v_{0}+t v_{1}=\left(1, y_{c}\right) \\
(1-t) v_{0}+t v_{1}=\left(-1, y_{c}\right) \\
(1-t) v_{0}+t v_{1}=\left(x_{c}, 1\right) \\
(1-t) v_{0}+t v_{1}=\left(x_{c},-1\right)
\end{gathered}
$$

(respectively) to find the point where the line segment should be clipped.
3. Viewport Transformation

Let $\left(x_{p}, y_{p},-1\right)$ be a point within the viewplane's view rectangle and let $\left(x_{v p}, y_{v p}\right)$ be its result from the viewport transformation. Then

$$
\begin{aligned}
& x_{v p}=0.5+(w / 2)\left(x_{p}+1\right), \\
& y_{v p}=0.5+(h / 2)\left(y_{p}+1\right) .
\end{aligned}
$$

4. Viewport to Pixel Transformation

Let $\left(x_{v p}, y_{v p}\right)$ be a point in the renderer's viewport and let (x, y) be the equivalent pixel in the framebuffer's viewport. Then

$$
\begin{aligned}
& x=(\text { int }) \text { Math.round }\left(x_{v p}\right)-1 \\
& y=h-(\text { int }) \operatorname{Math} . \operatorname{round}\left(y_{v p}\right)
\end{aligned}
$$

