View Projections

m Transform from camera space to normalized view space

m Two basic kinds:

o : make things farther away seem smaller
« Most common for computer graphics
- Simple model of human eye, or camera lens
* (Actually, a model of an ideal pinhole camera)

O : simply flatten, without any perspective
« Used for architectural or plan views (top,side,front)
* Not used for realistic rendering

m Others, more complex:

lens, with focus & depth of field

fish-eye lens

dome projection

computations don’t easily fit into basic hardware rendering pipeline

17

View Volume

m A 3D shape in world space that represents the volume viewable by
the camera

27

Perspective Projection

(¥z,yz2,-Zz2)
L X s
vz e
ﬁ‘"h : :'- e
- W . P
(', -d) M’-.._:E}I'l x 3
5 : o
a I’ i, i
[ARREEEEE FAJREREEEEEEEEERERE =
b Fz - =

m Assume that we have “film” at distance d from the eye
m Distant tall object projects to same height as near small object

By simil iangl have: ’
u y similar triangles, we have Y_¥%_»

d z, 2,
Giving the transformation relations:

= Notice: divide by z 2
m not a linear operation!

19

Perspective Projection

d =
x’ <
/ Y
y d, =
, V4

<
Lo B
A+—
Lz

= Not a linear equation

m not an affine transformation

m doesn’t preserve angles-but does preserve straight lines

= Note: it will blow up if z=0 (object at the eye)
m Zmapsto

m necessary to preserve straight lines
= maintains depth order when B<0: if z,<z, then z’,<Z’,
= We’ll come up with values for d,, d,, A, and B, in a little while

= will choose them to keep area of interest within -1 to 1 in x,y,z
m Ugly formula. Make it work with homogeneous matrices...

21

Homogeneous Perspective Projection

m The homogeneous perspective projection matrix. Notice the last row!
d 0 0 O]
0 d, 0
0O 0 A
0 0 1

—_

o O

P=

-

= Multiply it by a homogeneous point
(x| [x] [dx+0+0+0] [dx
-~ y 0+d,y+0+0 d,y
’ Z 0+0+Az+ B Az+B
’ (1] | 0+0+2z+0 | Z

e

\<\

S N

m Notice that the result doesn’t have w=1. So

x’ [x/w' [dx/z]
y yIw d,x/z
= =
7 7w A+B/z
W ww 1]

Homogeneous Perspective Transform

m As always, there’s some deep math behind this...
m 3D projective space

m For practical purposes:
s Use homogeneous matrices normally
s Modeling & viewing transformations use affine matrices
* points keep w=1

* no need to divide by w when doing modeling operations or
transforming into camera space

m Projection transform uses perspective matrices
* wnot always 1
+ divide by w after performing projection transform
- AKA !

s GPU hardware does this

23

Perspective view volume

m A perspective camera with a rectangular image describes a pyramid
In space

The tip of the pyramid is at the eye point
The pyramid projects outward in front of the camera into space
Nominally the pyramid starts at the eye point and goes out infinitely...
But, to avoid divide-by-zero problems for objects close to the camera
* introduce a
+ objects closer than that are not shown
-+ chops off the tip of the pyramid
Also, to avoid floating-point precision problems in the Z buffer
* introduce a
* objects beyond that are not shown
- defines the bottom of the pyramid

A pyramid with the tip cut off is a truncated pyramid, AKA a
The standard perspective view volume is called the

28

View Frustum

y=iop)

x=left J | y=top

Z‘f,,IL_i_ R j /
VCS ;‘ y=hottom Z=-hear z=-far
X=right =-near

Parameterized by: z=-far
« left,right,top,bottom (generally symmetric)
* near,far
Or, when symmetric, by:
(FOV),
* near,far
« Aspect ratio is the x/y ratio of the final displayed image. Common values:
* 4/3 for TV & old movies; 1.66 for cartoons & European movies; 16/9 for American movies &
HDTV; 2.35 for epic movies

right —left right
top — bottom top

top
near

aspect ratio=

tan(FOV /2) =

29

Frustum Projection Matrix

m \We can think of the view frustrum as a distorted cube,
since it has six faces, each with 4 sides

m The perspective projection warps this to a cube.

m Everything inside gets distorted accordingly

m By setting the parameters properly, we get the cube to range from
-1 to 1 in all dimensions: i.e., normalized view space

1

0 0
aspect - tan(FOV / 2)
1
0 0 0
P .., (FOV,aspect,near, far) = tan(FOV /2)
0 0 near + far 2 -near - far

near — far near — far
0 0 —1 0

Perspective Camera Class

class Perspective(Camera) {
Vector3 Eye;
Vector3 Target;

float FOV,Aspect,NearClip,FarClip;
Matrix getProjection();

}i

31

Orthographic projection

Ya
(xz'y=' -d) (x2,yz,-22)
(x1°,y1"-dl) x.y1,-21) "-3-‘?‘.#'
Jrby I iy E
= = -
gl'-l,. " o Y
ﬁ-*; |
d L
e i crernerneeee =
R R RRRREEEEEEEEEEEEEEEEE 2L L EEEEEEEEEE =]

m Simple: xX’=x, y’=y, z’'=z
m For scaling purposes, we’ll introduce d,, d,, A, and B
m Again, will choose them so that region of interest is in -1 to 1

24

Homogeneous Orthographic Projection

m The orthographic projection matrix is:
d 0 0 0
0 d 0 0
0 0 A B
0 0 0 1]
m This is an ordinary affine transform (scale+translate)
= when transforming a point, keeps w=1

®m No need to divide by w
m but... no harm done dividing by w

m Send the GPU either an orthonormal or perspective
projection matrix

m it can divide by win either case
m don’t need to special-case the two types of projections

P=

25

Orthographic View Volume

“y=to
x=left 5-‘ . __::,;——'
¥ I N—"""
Z— x=right
ves W N
X fr ' ___g,f—**""
y=hottom N—"" z

m Parametrized by: right, left, top, bottom, near, far
m Or, if symmetric, by: width, height, near, far

32

Orthographic Projection Matrix

m Simply translates and scales to transform the view volume
to -1 to 1 in all dimensions: normalized view coordinates.

: o _righttlef]
right — left right — left
0 2 0 _ top + bottom
P . (right,left,top,bottom,near, far) = top — bottom top — bottom
0 0 2 far + near
far — near far — near
0 0 0 1]
2 0 0
width
0 2 0
P . (width,height,near, far) = height
0 0 2 far + near
far —near far — near
. 0 0 0 1 |

33

