
Clipping Algorithms

Clipping algorithms are designed to efficiently identify the portions of a

scene (in viewing coordinates) that lie inside a given viewport. They are

useful because they

• excludes unwanted graphics from the screen;

• improves efficiency, as the computation dedicated to objects that ap-

pear off screen can be significantly reduced;

• can be used in other ways (modelling of rectangular aperatures, for

example).

Two possible ways to apply clipping in the viewport transformation:

1. Apply clipping in the world coordinate system: ignore objects (e.g.,

vertices, line segments, and polygons) that lie outside of the window.

2. Apply clipping in the device coordinate system:ignore objects that lie

outside of the viewport.



Clipping Algorithms

Most often clipping is defined with respect to a rectangular window; though

the algorithms can be extended to different geometries.

• Point clipping

• Line clipping

◦ Cohen-Sutherland

◦ Liang-Barsky

◦ Nicholl-Lee-Nicholl

• Polygon clipping

◦ Sutherland-Hodgeman

◦ Weiler-Atherton



Point Clipping

Let W denote a clip window with coordinates (xmin, ymin), (xmin, ymax),
(xmax, ymin), (xmax, ymax), then a vertex (x,y) is displayed only if all

four of the following “point clipping” inequalities are satisfied:

xmin ≤ x ≤ xmax, and, ymin ≤ y ≤ ymax.

• Can be applied in viewing or device coordinates.

• Very simple and efficient!

• Only works for vertices.



Line Clipping

In computer graphics, a the term “line” usually refers to a line segment.

Basic principles (assuming the clip window W is convex):

• If both endpoints of a line segment fall within W , then display the line

segment.

• If both endpoints of a line segment fall outside of W because they vi-

olate the same point clipping inequality, then do not display the line

segment.

• If one endpoint falls within W and another falls outside, then part of

the line segment is displayed.

• If both endpoints fall outside W , but do not violate a common point

clipping inequality, then part of the line may be visible.



Intersection Test

Let (x1, y1) and (x2, y2) denote two endpoints of a given line segment S.

Then the line segment can be described parametrically as

x = x1 +u(x2 − x1)

y = y1 +u(y2 −y1)

where u varies over the interval 0 ≤ u ≤ 1.

How can we use the above to determine if S intersects the boundary of W ?



Cyrus-Beck and Liang-Barsky Line Clipping

Let ∆x = x2 − x1 and ∆y = y2 −y1. The parametrized segments are thus

x = x1 +u∆x
y = y1 +u∆y

(for 0 ≤ u ≤ 1). Whence the point-clipping inequalities become:

xmin ≤ x1 +u∆x ≤ xmax

ymin ≤ y1 +u∆y ≤ ymax

These four inequalities can be expressed as

upk ≤ qk
for k = 1,2,3,4, where

p1 = −∆x, q1 = x1 − xmin
p2 = ∆x, q2 = xmax − x1

p3 = −∆y, q3 = y1 −ymin
p4 = ∆y, q4 = ymax −y1



Cyrus-Beck and Liang-Barsky Line Clipping (cont.)

upk ≤ qk

p1 = −∆x, q1 = x1 − xmin
p2 = ∆x, q2 = xmax − x1

p3 = −∆y, q3 = y1 −ymin
p4 = ∆y, q4 = ymax −y1

Observations:

• If pk = 0, then the line is parallel to a boundary; if qk < 0 for the same

k, then the line can be discarded. If qk ≥ 0 then the corresponding

point-clipping inequality is satisfied.

• If pk < 0 the segment potentially enters the clip rectangle across the

k-th boundary (PE).

• If pk > 0 the segment potentially leaves the clip rectangle across the

k-th boundary (PL).



Cyrus-Beck and Liang-Barsky Line Clipping (cont.)

Let

KPE = {k : pk < 0}
denote the set of indices of boundaries across which the line potentially

enters the clip rectangle, and let

KPL = {k : pk > 0}
denote the set of indices of boundaries across which the line potentially

leaves. Let

uk =
qk
pk

denote the parameter value at the k-th boundary crossing. Then the visible

portion of the segment is in the parameter range umin ≤ u ≤ umax, where,

umin = max
k∈KPE

[0, uk], umax = min
k∈KPL

[1, uk]

If umin > umax then the entire segment is clipped.



Example

0

0

0

1

1

1

u1

u2

u2

u2

u1

u1
u3u3

u4u4

u3



Liang-Barsky Line Clipping — The Code
int clipTest (float p, float q, float * u1, float * u2) {

float r;
int retVal = TRUE;

if (p < 0.0) {
r = q / p;
if (r > *u2)

retVal = FALSE;
else if (r > *u1)

*u1 = r;
} else if (p > 0.0) {

r = q / p;
if (r < *u1)

retVal = FALSE;
else if (r < *u2)

*u2 = r;
} else if (q < 0.0)

/* p = 0, so line is parallel to this clipping edge */
/* Line is outside clipping edge */
retVal = FALSE;

return (retVal);
}



Liang-Barsky Line Clipping — The Code
void clipLine (dcPt winMin, dcPt winMax, wcPt2 p1, wcPt2 p2) {

float u1 = 0.0, u2 = 1.0, dx = p2.x - p1.x, dy;

if (clipTest (-dx, p1.x - winMin.x, &u1, &u2))
if (clipTest (dx, winMax.x - p1.x, &u1, &u2)) {

dy = p2.y - p1.y;
if (clipTest (-dy, p1.y - winMin.y, &u1, &u2))

if (clipTest (dy, winMax.y - p1.y, &u1, &u2)) {
if (u2 < 1.0) {

p2.x = p1.x + u2 * dx;
p2.y = p1.y + u2 * dy;

}
if (u1 > 0.0) {

p1.x += u1 * dx;
p1.y += u1 * dy;

}
lineDDA (ROUND(p1.x), ROUND(p1.y), ROUND(p2.x), ROUND(p2.y));

}
}

}



Liang-Barsky Line Clipping – The Code

Bibliographical Note: The preceding code was extracted from Computer

Graphics: C Version, Second Edition, by Donald Hearn and M. Pauline Baker,

Prentice-Hall, 1994, pp. 231–232. A similar pair of subroutines appears in

Computer Graphics: Principles and Practice, Second Edition in C, by James

D. Foley, Andries van Dam, Stephen K. Feiner, and John F. Hughes, Addison-

Wesley, 1996, pp. 122–123.



Nicholl-Lee-Nicholl Line Clipping

In general the line that supports a given line segement P1P2 intersects all

four window boundaries; at most, two of these intersections are relevant.

Principle: Assuming that most of the computational overhead involves find-

ing these intersections, one should avoid computing irrelevant intersec-

tions.

Symmetry reduces the problem to three basic cases. Slope calculations can

be used to identify which intersections should be computed. Some inter-

mediate values can be reused.



Nicholl-Lee-Nicholl Line Clipping

Using symmetry, a given endpoint P1 = (x1, y1) falls in one of three distinct

regions:

P1 P1

P1

P1 in the clip window P1 in an edge region P1 in a corner region



Nicholl-Lee-Nicholl Line Clipping (Case 1)

If P1 = (x1, y1) falls in the clip rectangle, the ray from P1 through P2 will

cross side L, B, R, or T .

P1

T

L

B

R

(xL, yT) (xR, yT)

(xL, yB) (xR, yB)



Nicholl-Lee-Nicholl Line Clipping (Case 2)

If P1 = (x1, y1) falls in an outside edge region (shown as left WLOG), then

part of the line may be visible if the ray from P1 through P2 enters region

LB, LR, or LT .

P1

LT

L

L

L
LB

LR

(xL, yT)

(xR, yT)

(xL, yB)

(xR, yB)



Nicholl-Lee-Nicholl Line Clipping (Case 3A)

If P1 = (x1, y1) falls in a corner region (shown as upper left WLOG), then

two subcases are considered: If the ray from P1 through (xL,yT) intersects

the bottom edge before the right edge, then part of the segment may be

visible if the ray enters region LB, TB, or TR.

P1

T
T

L

TBLB

TR

(xL, yT) (xR, yT)

(xL, yB) (xR, yB)



Nicholl-Lee-Nicholl Line Clipping (Case 3B)

If the ray from P1 = (x1, y1) through (xL,yT) intersects the bottom edge

after the right edge, then part of the segment may be visible if the ray enters

region LB, LR, or TR.

P1

T

L L

LB

TR

LR

(xL, yT)

(xR, yT)

(xL, yB)
(xR, yB)


