
Clipping

by William Shoaff with lots of help

March 12, 2002

Overview

1 Cohen–Sutherland Line Clipping 1
1.1 Cohen–Sutherland in 3D . 4

2 Liang-Barsky Line Clipping 4

3 Blinn’s Line Clipping 7
3.1 Boundary coordinates . 9
3.2 Outcodes . 9
3.3 Interpolation . 10
3.4 The Algorithm . 11

4 Polygon Clipping 15

5 Sutherland–Hodgman Polygon Clipping 15
5.1 Inside/Outside Testing . 18
5.2 Crossings . 18
5.3 Intersections . 18
5.4 Sutherland–Hodgman Summary . 19

6 Weiler–Atherton Polygon Clipper 19

1. PDF version of these notes

2. Audio file of these notes (up to Blinn’s algorithm)

Clipping refers to the removal of part of a scene. Internal clipping removes parts of a picture
outside a given region; external clipping removes parts inside a region. We’ll explore internal clipping,
but external clipping can almost always be accomplished as a by-product.

There is also the question of what primitive types can we clip? We will consider line clipping and
polygon clipping. A line clipping algorithms takes as input two endpoints of line segment and returns
one (or more) line segments. A polygon clipper takes as input the vertices of a polygon and returns
one (or more) polygons. There are several clipping algorithms. We’ll study the Cohen–Sutherland
line clipping algorithm to learn some basic concepts. Develop the more efficient Liang–Barsky

1

algorithm and us its insights to culminate with Blinn’s line clipping algorithm. The Sutherland–
Hodgman polygon clipping algorithm will then be covered and the Weiler-Atherton algorithm, time
permitting.

There are other issues in clipping that we will not have time to cover. Some of these are:

• Text character clipping

• Scissoring — clips the primitive during scan conversion to pixels

• Bit (Pixel) block transfers (bitblts/pixblts)

– Copy a 2D array of pixels from a large canvas to a destination window

– Useful for text characters, pulldown menus, etc.

1 Cohen–Sutherland Line Clipping

The Cohen–Sutherland algorithm clips a line to an upright rectangular window. It is an application
of triage, or make the simple case fast. The algorithm extended window boundaries to define 9
regions:

top-left, top-center, top-right, center-left, center, center-right, bottom-left, bottom-center,
and bottom-right.

See figure 1 below. These 9 regions can be uniquely identified using a 4 bit code, often called an
outcode. We’ll use the order: left, right, bottom, top (LRBT) for these four bits. In particular, for
each point p = (x, y)

• Left (first) bit is set to 1 when p lies to left of window

• Right (second) bit is set to 1 when p lies to right of window

• Bottom (third) bit is set to 1 when p lies below window

• Top (fourth) bit set is set to 1 when p lies above window

The LRBT (Left, Right, Bottom, Top) order is somewhat arbitrary, but once an order is chosen we
must stick with it. Note that points on the clipping window edge are considered inside (the bits are
left at 0).

Given a line segment with end points p0 = (x0, y0) and p1 = (x1, y1), here’s the basic flow of
the Cohen–Sutherland algorithm:

1. Compute 4-bit outcodes LRBT0 and LRBT1 for each end-point

2. If both outcodes are 0000, the trivially visible case, pass end-points to draw routine This occurs
when the bitwise OR of outcodes yields 0000.

3. If both outcodes have 1’s in the same bit position, the trivially invisible case, clip the entire
line (pass nothing to the draw routine). This occurs when the bitwise AND of outcodes is not
0000.

2

1001 0001 0101

1000 0000 0100
Clip

Window

1010 0010 0110

Figure 1: The nine region defined by an up-right window and their outcodes.

4. Otherwise, the indeterminate case, – line may be partially visible or not visible. Analytically
compute the intersection of the line with the appropriate window edges

Let’s explore the indeterminate case more closely. First, one of two end-points must be outside
the window, pretend it is p0 = (x0, y0).

1. Read P1’s 4-bit code in order, say left-to-right

2. When a set bit (1) is found, compute intersection point I of corresponding window edge with
line from p0 to p1.

As an example, pretend the right bit is set so we want to compute the intersection with the right
clipping window edge, also, pretend we’ve already done the homogeneous divide, so the right edge
is x = 1, and we need to find y. The y value of the intersection is found by substituting x = 1 into
the line equation (from p0 to p1)

y − y0 =
y1 − y0

x1 − x0
(x− x0)

and solving for y

y = y0 +
y1 − y0

x1 − x0
(1− x1).

Other cases are handled similarly.
Now this may not complete the clipping of the line, so we replace p0 by the intersection point I and

repeat Cohen–Sutherland algorithm. (Clearly we can save some state to avoid some computations)

• Define window by

x = 0 Left edge
x = 1 Right edge
y = 0 Bottom edge
y = 1 Top edge

3

• End-points p0 = (1/2, 1/2) and p = (1/4, 3/4) both have 4-bit codes 0000. Logical bitwise
OR: 0000 ∨ 0000 = 0000⇒ line is completely visible – draw line between them.

• End-point p2 = (3, 3) has 4-bit code 0101 and end-point p3 = (−2, 5) has 4-bit code 1001.
Logical bitwise AND: 0101 ∧ 1001 = 0001 6= 0000 ⇒ both end-points to right of window.
Therefore line is invisible.

• End-point p4 = (3, 3) has 4-bit code 0101 and end-point p5 = (0, 1/2) has 4-bit code 0000.

– Logical bitwise OR 0101 ∨ 0000 = 0101⇒ no information.

– Logical bitwise AND 0101 ∧ 0000 = 0000⇒ no information.

– p4 = (3, 3) is outside.

– Reading p4’s 4-bit code from left-to-right, “right” bit is set.

– Intersection with right edge is at I = (1, 4/3)

– I has 4-bit code . . .

The Cohen–Sutherland was one of, if not, the first clipping algorithm to be implemented in
hardware. Yet the intersection was not computed analytically, as we have done, but by bisection
(binary search) of the line segment.

1.1 Cohen–Sutherland in 3D

The Cohen–Sutherland algorithm extends easily to 3D. Extended the 3D clipping window boundaries
to define 27 regions. Assign a 6 bit code to each region, that is, for each point (x, y, z)

• Left (first) bit set (1) ⇒ point lies to left of window

• Right (second) bit set (1) ⇒ point lies to right of window

• Bottom (third) bit set (1) ⇒ point lies below window

• Top (fourth) bit set (1) ⇒ point lies above window

• Near (fifth) bit set (1) ⇒ point lies to in front of window (near)

• Far (sixth) bit set (1) ⇒ point lies to behind of window (far)

The Left, Right, Bottom, Top, Near, Far (LRBTNF) outcode can be used to determine segments
that are trivially visible, trivially invisible, or indeterminate. In the indeterminate case we intersect
the line segment with faces of clipping cube determined by the outcode of an end-point that is
outside of the clipping cube. More specifically, in the indeterminant case, use parametric form of
the line

x = x0 + t(x1 − x0)
y = y0 + t(y1 − y0)
z = z0 + t(z1 − z0)

4

To clip against a face, say y = 1, compute

t =
1− y0

y1 − y0

and use it to evaluate the x and z intersections

2 Liang-Barsky Line Clipping

The Liang-Barsky is optimized for clipping to an upright rectangular clip window (the Cyrus-Beck
algorithms is similar but clips to a more general convex polygon). Liang-Barsky uses parametric
equations, clip window edge normals, and inner products can improve the efficiency of line clipping
over Cohen-Sutherland. Let

L(t) = p0 + t(p1 − p0) = (1− t)p0 + tp1, 0 ≤ t ≤ 1

denote the parametric equation of the line segment from p0 to p1 Let ~Ne denote the outward pointing
normal of the clip window edge e, and let pe be an arbitrary point on edge e.

Consider the vector L(t)− pe from pe to a point on the line L(t) Figure 2 shows several of these
vectors for different values of t. At the intersection of L(t) and edge e the inner product of ~Ne and
L(t)− pe is zero, see figure 2. In fact, we have

~Ne · (L(t)− pe) = ~Ne · (p0 + t(p1 − p0)− pe)
= ~Ne · (p0 − pe) + t ~Ne · (p1 − p0))
= 0

which if we Solve for t yields

t =
~Ne · (pe − p0)
~Ne · (p1 − p0)

.

(Note that checks need to be made that the denominator above is not zero.)
Using the 4 edge normals for an upright rectangular clip window and 4 points, one on each

edge, we can calculate 4 parameter values where L(t) intersects each edge Let’s call these parameter
values tL, tR, tB , tT Note any of the t’s outside of the interval [0, 1] can be discarded, since they
correspond to points before p0 (when t < 0) and points after p1 (when t > 1). The remaining t
values are characterized as “potentially entering” (PE) or “potentially leaving” (PL)

• The parameter ti is PE if when traveling along the (extended) line from p0 to p1 we move from
the outside to the inside of the window with respect to the edge i.

• The parameter ti is PL if when traveling along the (extended) line from p0 to p1 we move from
the inside to the outside of the window with respect to the edge i.

See figure 3
The inner product of the outward pointing edge normal ~Ni with p1 − p0 can be used to classify

the parameter ti as either PE or PL.

5

��
��
�
��
��
��
�
��
�

�

t
�
�
�
�
�
�
�
�
���

?

@
@
@
@
@R

p0

p1

~Ne

Edge e

peOutside Inside

Figure 2: The setup for Liang-Barsky clipping.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

p0

p1

p0

p1

p1

p0

PE

PE

PL

PL

PL

PE

PE

PE

PL

Figure 3: Potentially entering and leaving edge intersections.

6

1. If
~Ni · (p1 − p0) < 0

the parameter ti is potentially entering (PE). The vectors ~Ni and p1 − p0 point in opposite
directions. Since ~Ni is outward, the vector p1 − p0 from p0 to p1 points inward.

2. If
~Ni · (p1 − p0) > 0

the parameter ti is potentially leaving (PL). The vectors ~Ni and p1 − p0 point in similar
directions. Since ~Ni is outward, the vector p1 − p0 from p0 to p1 points outward too.

3. Let tpe be the largest PE parameter value and tpl the smallest PL parameter value

4. The clipped line extends from L(tpe) to L(tpl), where 0 ≤ tpe ≤ tpl ≤ 1

�

Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

��
�
��
�
��
��*

-

p0

p1

p0

p1

~NL ~NR

Edge L

Edge R

Edge B

Edge T

PL
PE

3 Blinn’s Line Clipping

A clipping volume can be defined as set of bounding planes. Choosing simple planes is a good idea.
We’ll define the clipping volume by:

X = 0, X = 1, Y = 0, Y = 1, Z = 0, Z = 1

We’ll call these the real space interpretation of the clipping volume bounding planes.
It is convenient to think of these in terms of inner products. More specifically, the X = 0 plane

can be thought of at the column vector: 
1
0
0
0



7

A homogeneous point (x, y, z, w) is then “in the plane” if the inner product of the point and vector
is zero, that is,

(x, y, z, w) ·


1
0
0
0

 = x = 0

To obtain the real plane we must divide x by w (whatever its value other than 0), but we’ll still get
X = x/w = 0 since x = 0.

(Recall the homogeneous divide necessary to map points after a perspective projection
into real points: X = x/w, Y = y/w, Z = z/w.)

Using this notation, the six bounding planes become the six column vectors:

B0 =


1
0
0
0

 , B1 =


−1

0
0
1

 , B2 =


0
1
0
0

 ,

B3 =


0
−1

0
1

 , B4 =


0
0
1
0

 , B5 =


0
0
−1

1


We’ll call these the homogeneous space interpretation of the clipping volume bounding planes.
Nota bene:

1. The first three elements of each column vector form an inward, unit length normal vector to
the plane in real space.

2. When the homogeneous coordinate (w) is equal to 1 and the inner product of a point with
the bounding plane column vector is set to 0, the equation reduces to the real space equation.
That is, for example,

(x, y, z, 1) ·


0
0
−1

1

 = −z + 1 = 0

or
z = z/1 = Z = 1.

3. Or, better yet, dividing the equation by w produces the real equation, for example w − z = 0
becomes 1− z/w = 1− Z = 0 or Z = 1.

8

3.1 Boundary coordinates

Following Blinn’s terminology we’ll call the inner products of a point with the bounding planes the
boundary coordinates of a point. They are listed in the table below.

Boundary Number (Homogeneous Value) Real Plane
Boundary Coordinate

0 x X = 0
1 w − x X = 1
2 y Y = 0
3 w − y Y = 1
4 z Z = 0
5 w − z Z = 1

3.2 Outcodes

The question we want to answer is:

Given two end points (P0 and P1) of a line segment, how can we use the boundary
coordinates to determine a points Cohen–Sutherland outcode?

Let’s assume the 6-bit outcode is in the order left, right, bottom, top, near, far (LRBTNF) so it
corresponds to the order of the boundary coordinates. A particular bit is set (to 1) if the point is in
the designated region and unset (to 0) otherwise.

We’ll assume w > 0. Recall that the value of w that comes out of the perspective transform is
w = z sin(θ) where θ is (half of) the field of view angle. Now both sin(θ) > 0 and z > 0 (provided
we’re looking at something in front of us) so w > 0. The bottom line is division by a positive
quantity does not affect the sense of an inequality!

Consider the left plane X = 0.

• if its boundary coordinate x is negative we’re in the left region and L is set.

• if its boundary coordinate x is greater than or equal to zero, we’re not in the left region and
L is unset.

This works with the other planes too. Consider the right plane X = 1.

• if its boundary coordinate w − x < 0, then division by w yields 1 − X < 0 and we’re in the
right region (X > 1) and R is set.

• if its boundary coordinate w − x ≥ 0 we’re not in the right region and R is unset.

All outcodes are set by testing inequality against 0.

x < 0 Set L (to 1)
w − x < 0 Set R
y < 0 Set B

w − y < 0 Set T
z < 0 Set N

w − z < 0 Set F

9

For a particular bounding plane (bit in the outcode) and a pair of line segment end points there
are four cases.

Bit for P0 Bit for P1 Interpretation
0 0 Segment visible w.r.t. this boundary
1 0 Straddles boundary, P0 outside
0 1 Straddles boundary, P1 outside
1 1 Segment invisible w.r.t. this boundary

Given the outcodes LRBTNF for P0 and P1 (set by considering the boundary coordinates x,
w − x, etc.) we can apply the trivial accept and reject tests:

1. If outcode(P0) | outcode(P1) == 000000 accept line segment. (All bits in both outcodes
must be 0)

2. If outcode(P0) & outcode(P1) != 000000 reject line segment. (Some bit is set in both
outcodes for some plane)

3.3 Interpolation

When the trivial tests fail we must calculate the intersections and this is best done by parametric
linear interpolation, our old friend. Let

P (u) = P0 + u(P1 − P0)

be the (directed) line segment from P0 to P1 as parameter u increases from 0 to 1. We need to
calculate u and this is done by inner products with the boundary column vectors, say Bi, that is,

P (u) ·Bi = P0 ·Bi + u(P1 − P0) ·Bi

and since we want the point P (u) to be on the boundary this inner product should be 0. Or

u =
P0 ·Bi

(P0 − P1) ·Bi
=

P0 ·Bi
P0 ·Bi − P1 ·Bi

but these inner products are just the boundary coordinates! To be explicit,

P (u) = (x0 + u(x1 − x0), y0 + u(y1 − y0), z0 + u(z1 − z0), w0 + u(w1 − w0))

and let’s assume the line straddles the X = 1 plane, so we’re working with boundary column vector

B1 =


−1

0
0
1


and the inner product is

P (u) ·B1 = −[x0 + u(x1 − x0)] + [w0 + u(w1 − w0)]

10

Figure 4: Crossing boundaries for u < 0, 0 ≤ u ≤ 1 and u > 1

which if we set to zero and solve for u yields

u =
w0 − x0

(w0 − x0)− (w1 − x1)
.

Note this value of u will be in the range 0 to 1 only when boundary coordinates (w0 − x0 and
w1 − x1 in the above example) have opposite signs. This is easy to interpret in real space (see
figure 4). But you can also establish it algebraically by considering the inequality

0 <
a

a− b
< 1.

If a is positive, then a − b must be positive and greater than a, that is b is negative. Something
similar happens when a is negative. The point is we only want to calculate u when the boundary
coordinates differ in sign, that is the line segment straddles the boundary.

3.4 The Algorithm

Here’s the algorithm for clipping. The method clip() would be called twice. With the first segment
end point we simply want to “move” there — it may be helpful to think in terms of a vector (random
scan or calligraphic) display that simply moves to a location on the screen (with the electron gun
turned off) then draws to a new point (with the gun on). So there are calls:

clip(P0, ”move”); // move to the first point
clip(P1, ”draw”); // draw to the second

So the first call is fairly straight forward, we calculate some boundary coordinates and outcodes,
inform the next stage of the pipeline that its getting the first point of a line segment (assuming that
is is visible) and save the calculated values for the next call. On the second call, we’ll clip the line
segment and draw the visible portion, or do nothing if it nothing is visible.

11 〈Clip 11〉≡
public void clip(Hpoint p, String action) {
〈Calculate boundary coordinates for p 12a〉
〈Set outcode using boundary coordinates 12b〉
if (action.compareTo("move") {
〈Do move stuff 12c〉

}
else {
〈Do draw stuff 12d〉

}
〈Copy p 14b〉
〈Copy boundary conditions 14c〉
〈Copy outcodes 14d〉

}

11

Here we just compute the boundary coordinates using the definitions given earlier.

12a 〈Calculate boundary coordinates for p 12a〉≡ (11)

double[] boundaryCoord = new double[6];
boundaryCoord[0] = p.x;
boundaryCoord[1] = p.w - p.x;
boundaryCoord[2] = p.y;
boundaryCoord[3] = p.w - p.y;
boundaryCoord[4] = p.z;
boundaryCoord[5] = p.w - p.z;

The signs of the boundary coordinates determine the bit codes. Although not real efficient, will
store them in a boolean array.

12b 〈Set outcode using boundary coordinates 12b〉≡ (11)

boolean[] outCode = new boolean[6];
if (boundaryCoord[0] < 0) outCode[0] = true;
if (boundaryCoord[1] < 0) outCode[1] = true;
if (boundaryCoord[2] < 0) outCode[2] = true;
if (boundaryCoord[3] < 0) outCode[3] = true;
if (boundaryCoord[4] < 0) outCode[4] = true;
if (boundaryCoord[5] < 0) outCode[5] = true;

We won’t fill out this chunk of code, basically if the point is visible we just pass it through the pipe.

12c 〈Do move stuff 12c〉≡ (11)

if 〈outCode is all zeros (false) (never defined)〉 { // point is visible
〈Pass point p down the pipeline as a move to point (never defined)〉

}

The drawing stuff is more interesting. If we can’t trivially reject the segment, we’ll see if we can
trivially accept it, and if not we’ll do the non-trivial stuff. Of course, if we can trivially reject we do
not need to do anything!

12d 〈Do draw stuff 12d〉≡ (11)

if 〈Not trivial reject 13a〉 {
if 〈Trivial accept 13b〉 {
〈Draw line from previous point passed down the pipeline to p (never defined)〉

}
else {
〈Do non-trivial stuff 13c〉

}
}

12

We’re cheating here (when haven’t I lied to you) by writing pseudo-code. We want to compute
the bit-wise AND of the two outcodes. If the result is all false then we can not trivially reject the
segment.

Also, we’ve not seen it yet but firstOutcode was saved from the outCode of the first call.

13a 〈Not trivial reject 13a〉≡ (12d)

firstOutCode & outCode;

Still cheating, the trivial accept test the bit-wise OR of two outcodes. If the result is all false then
both points are in the clipping volume.

13b 〈Trivial accept 13b〉≡ (12d)

firstOutCode | outCode;

clipCode will tell us which boundary coordinates have opposite signs (true and false), and hence
which boundaries are straddled. We’ll still act as if we can just take bit-wise operations on arrays
of booleans.

What we want to do is compute the last (largest) entering parameter value and the first (smallest)
leaving parameter value. We’ll clip against some number of clip planes so if you don’t want to clip
against the near and far plane set the terminating variable in the for loop to 4.

13c 〈Do non-trivial stuff 13c〉≡ (12d)

boolean[] clipCode = firstOutCode | outCode;

double uEnter = 0.0;
double uLeave = 1.0;
for (int i = 0; i < numberOfClipPlanes; i++) {
〈Does segment straddle boundary? update parameters if so 14a〉

}
if (firstOutcode != false) { // first point was outside

Hpoint q = firstP + u*(p - firstP);
〈Pass point q down the pipeline as a move to point (never defined)〉

}
if (outCode != false) { // second point was outside
Hpoint q = firstP + u*(p - firstP);
〈Draw line from previous point passed down the pipeline to q (never defined)〉

}
else { // second point was inside
〈Draw line from previous point passed down the pipeline to p (never defined)〉

}

13

Now if a clipCode element is set the corresponding boundary is straddled. So we’ll compute the
parameter value u and update the entering and leaving parameters, if appropriate.

If the first point was outside the boundary we must be entering, so if we have a larger u than the
current entering parameter save this larger value. On the other hand, if the first point was inside,
the second must be outside (after all the boundary is straddled). Thus the intersection must be a
leaving one, so we’ll update the leaving value if we’ve computed a smaller one.

If at any time we discover we’ve left the clipping volume before we’ve entered it we’ll simple
return.

14a 〈Does segment straddle boundary? update parameters if so 14a〉≡ (13c)

if (clipCode[i]) {
u = firstBoundryCoord[i]/(firstBoundaryCoord[i] - boundaryCoord[i]);
if ((firstOutcode[i] == true) { // first point outside this boundary

uEnter = max (uEnter, u);
}
else { // first point inside, so second point outside
uLeave = min (uLeave, u);

}
if (uLeave < uEnter) { // segment is invisible
return;

}

Here we just save the values of the point, boundary coordinates, and outcodes between calls to the
clipper.

14b 〈Copy p 14b〉≡ (11)

static Hpoint firstP;
firstP = p;

14c 〈Copy boundary conditions 14c〉≡ (11)

static double[] firstBoundaryCoord;
firstBoundaryCoord = boundaryCoord;

14d 〈Copy outcodes 14d〉≡ (11)

static boolean[] firstOutcode;
firstOutcode = outCode;

14

Jim Blinn presents this material better than I can. See [2] and, in particular, [1].

4 Polygon Clipping

Polygon clipping differs from line clipping in several respects.

1. The input to the clipper is a polygon, which for simplicity we will view as a list of n ≥ 3
vertices (v0, v1, . . . , vn−1).

2. The output from the clipper is one or more polygons.

3. The clipping process may generate vertices that do not lie on any of the edges of the orginal
polygon.

4. Complex polygons (that is, non-convex) may lead to strange artifacts.

5 Sutherland–Hodgman Polygon Clipping

Since polygons are basic primitives, algorithms have been developed for clipping them directly. The
Sutherland–Hodgman algorithm is a polygon clipper. It was a basic component in James Clark’s
“Geometry Engine,” which was the precursor to the first Silicon Graphics machines. This algorithm
clips any subject polygon (convex or concave) against any convex clipping window, but we will usually
pretend the clipping window is an upright rectangle.

Given a subject polygon with an ordered sequence of vertices

v1, v2, . . . , vn−1, n ≥ 3,

Sutherland–Hodgman compares each subject polygon edge against a single clip window edge, saving
the vertices on the in-side of the edge and the intersection points when edges are crossed. The
clipper is then re-entered with this intermediate polygon and another clip window edge.

Given a clip window edge and a subject polygon edge, there are four cases to consider:

1. The subject polygon edge goes from outside clip window edge to outside clip window edge. In
this case we output nothing.

2. The subject polygon edge goes from outside clip window edge to inside clip window edge. In
this case we save intersection and inside vertex.

3. The subject polygon edge goes from inside clip window edge to outside clip window edge. In
this case we save intersection point.

4. The subject polygon edge goes from inside clip window edge to inside clip window edge. In
this case we save second inside point (the first was saved previously).

To complete the description, we need to consider the first vertex of the subject polygon and its last
edge. If the first vertex is inside the current edge we save it to the list of vertices in the intermediate
polygon, otherwise we drop it out. For the last edge, note that if nothing has yet been saved in
the intermediate polygon, the entire subject must not be visible in the clip window, so we can quit.

15

Otherwise, if the last subject edge crosses clip window edge, the intersection point must be appended
to the intermediate polygon.

Figure 5 shows an example of the Sutherland–Hodgman clipping process. The clip window edge
currently be used is solid, the others are dashed.

First Clip Window Edge: Starting with the original triangle (subject polygon), we set the inter-
mdiate polygon to null and find

1. Start vertex: p0 is outside the edge, so not saved in the intermediate polygon vertex list.

2. Subject edge p0p1 crosses the clip edge and so the intersection i01 is saved — intermediate
list (i01).

3. p1 is inside the edge, so it is saved — intermediate list (i01, p1).

4. Subject edge p1p2 does not crosses the clip edge and so no intersection is computed.

5. p2 is inside the edge, so it is saved — intermediate list (i01, p1, p2).

6. Last edge p2p0: We have output some data, so we’ll continue.

(a) Subject edge p2p0 does crosses the clip edge and so the intersection i01 is saved —
intermediate list (i01, p1, p2, i20).

Second Clip Window Edge:

Start vertex: i01 is inside the edge, so saved in the intermediate polygon vertex list — intermediate
list (i01).

Subject edge i01p1 crosses the clip edge and so the intersection i011 is saved — intermediate list
(i01, i011).

p1 is outside the edge, so it is not saved.

Subject edge p1p2 does crosses the clip edge and so the intersection i12 is saved — intermediate list
(i01, i011, i12).

p2 is inside the edge, so it is saved — intermediate list (i01, i011, i12, p2).

Subject edge p2i20 does not cross the clip edge and so no interesection is computed.

i20 is inside the edge, so it is saved — intermediate list (i01, i011, i12, p2, i20).

Last edge i20i01: We have output some data, so we’ll continue.

1. Subject edge i20i01 does not crosses the clip edge and so no intersection is saved.

As an exercise, you can complete the clipping process.
The Sutherland–Hodgman algorithm is not too difficult to code either.

16

p0

p1

p2

v0 v1

v2v3

i01

i20

p1

p2

i20

i01

v0 v1

v2v3

i011 i12

v0

i01

i20

v3

p2

v2

v1

i011 i12

Figure 5: An Example of Sutherland–Hodgman Clipping.

17

5.1 Inside/Outside Testing

The Sutherland–Hodgman algorithm depends on our ability to determine that a point (vertex) is
inside or outside of a given edge (line). This is a fairly common decision problem in computer
graphics, yet due to the build up of floating point arithmetic errors, it may be difficult to answer
the question exactly. We will declare that vertices that lie on the edge are inside.

There are several ways to answer the question: Is point p = (x, y) on the in or out side of a
line determined by vertices v0 = (x0, y0) and v1 = (x1, y1). The one we present is based on inner
products, but before we can begin, we must know what is meant by inside and outside. A complete
description of this topic and related one is included in the chapter on basic concepts. Recall, that
our polygon vertices are listed in counter-clockwise when viewed from the front side, and this implies
that the inside of the polygon is on our left as we traverse its vertices.

These assumption lead to the mathematical result that the outward edge normal from vertex v0

to v1 is given by
~n01 = 〈y1 − y0, −(x1 − x0)〉.

Now, consider the vector
~p− v0 = 〈x− x0, y − y0〉

from v0 to p. If the inner product of ~n01 and ~p− v0 is

1. positive, p is on the out side.

2. zero, p is on the edge and consider inside.

3. negative, p is on the in side.

5.2 Crossings

We can use the inside/outside decision algorithm to determine whether or not two edges cross.
The edge crossing algorithm is called by one edge with a second edge as an input parameter. We

assume an instance of Edge knows its first and second vertices. So we simply ask: are the first and
second vertices inside the argument edge. If both are inside or both or outside, the edges do not
cross. Put differently, if one vertex is inside and the other outside, then the edges cross.

18 〈Edge crossing algorithm 18〉≡
public boolean crosses(Edge edge) {
boolean isFirstInside = firstvertex.inside(edge);
boolean isSecondInside = secondvertex.inside(edge);
if ((isFirstInside && !isSecondInside) || (!isFirstInside && isSecondInside)) {
return true;

}
else {
return false;

}
}

5.3 Intersections

The last task we must complete is developing the code to compute an intersection.

18

5.4 Sutherland–Hodgman Summary

The Sutherland–Hodgman polygon clipping algorithm clips polygons against convex clipping win-
dows. It does so by clipping the subject polygon against each clip edge producing intermediate
subject polygons. Although we have not done so, the Sutherland–Hodgman algorithm easily ex-
tends to 3 dimensions.

The Sutherland–Hodgman may produce connecting lines that were not in the original polygon.
When the subject polygon is concave (not convex) these connecting lines may be undesirable arti-
facts.

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��
Q

Q
Q
Q
Q
Q
Q
Q
QQ V0s V1s

V2s
V3s
V4s

V5

s
V6

s
V7

sV8s
V9s

The Weiler–Atherton, which we will consider next, clips arbitrary polygons against arbitrary
clipping windows, the price we pay for this generally is that Weiler–Atherton is only a 2D clipper.

6 Weiler–Atherton Polygon Clipper

• Assume the vertices of the subject polygon are listed in clockwise order (interior is on the
right)

• Start at an entering intersection

• Follow the edge(s) of the polygon being clipped until an exiting intersection is encountered

• Turn right at the exiting intersection and following clip window edge until intersection is found

• Turn right and follow the subject polygon

• Continue until vertex already visited is reached

• If entire polygon has not be processed, repeat

• Consider the subject polygon with vertices a, b, c, d and the clip polygon with verticesA, B, C, D

• Insert the intersections in both vertex lists

– Subject list: a, 1, b, 2, c, 3, 4, d, 5, 6

19

– Clip list: A, 6, 3, 2, B, 1, C, D, 4, 5

S
S
S
S
S
S
S
S
S
S
S
S
S#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#!!!!!!!!!!!!!!H

HH
H

HH
HH

HH
HH

�
�
�
�
�
�
�
�
�
�
�
�
�B
B
B
B
B
B
B
BB

��������������
��
�
��
��
��
�
��
�
��
��
�

a

b

c

d

A

B

C

D

12

34

5

6

• Starting at vertex a of the clip polygon, find 1 is first entering intersection

• Traversing the subject, find 2 is exiting intersection

• “Jump” to vertex 2 in clip polygon, follow until vertex 1 (which has be visited)

• Output clipped list 1, b, 2, B

• Jump back to subject list, restarting at c, find 3 is entering intersection

• Traversing the subject, find 4 is exiting intersection

• Jump to vertex 4 in clip polygon, follow until vertex 5 (which is entering)

• Jump to subject, at vertex 5, find 6 is exiting

• Jump to clip, at vertex 6, find 3 is visited

• Output clipped list 3, 4, 5, 6

• All entering intersections have been visited

References

[1] J. Blinn, A trip down the graphics pipeline: Line clipping, IEEE Computer Graphics and
Applications, 11 (1991), pp. 98 – 105.

[2] , Jim Blinn’s Corner: a trip down the graphics pipeline, Morgan Kaufmann Publishers,
Inc., 1996. 1-55860-387-5.

20

