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Viewing III 

Projection in Practice 

It looks like a matrix… 
Sort of… 
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 Now that we have familiarity with  terms we can say that these view 
volumes can be specified by placement and shape 

 Placement: 
 Position (a point) 

 Look and Up vectors 

 Shape: 
 horizontal and vertical view angles (for a perspective view volume) 

 front and back clipping planes  

 Note camera coordinate system (u, v, w) is defined in the world (x, y, z) 
coordinate system 

 

 

Arbitrary 3D views 

𝒘 
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 We know that we want the 𝒖, 𝒗, 𝒘 axes to have the following properties: 

 our arbitrary Look Vector will lie along negative w-axis 

 a projection of Up Vector into plane defined by the w-axis as its normal will lie 
along the 𝒗-axis 

 The 𝒖-axis will be mutually perpendicular to the 𝒗 and 𝒘-axes, and will form a 
right-handed coordinate system 

 Plan of attack: first find 𝒘 from Look, then find 𝒗 from Up and 𝒘 vector, then find 
𝒖 as a normal to plane defined by 𝒘 and 𝒗 

 

Finding 𝒖, 𝒗, and 𝒘 from Position, Look, and Up (1/5) 

Look 
Up 

w 

v 

u 
x 

y 

z 

-z 
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 Finding 𝒘 

 Finding 𝒘 is easy.  Look vector in canonical volume lies on –𝑧. Since 𝑧 
maps to 𝒘, 𝒘 is a normalized vector pointing in opposite direction 
from our arbitrary Look vector. 

 

 

 

 

 

 Note that  

 Up and 𝒘 define a plane 

 𝒖 is a normal to that plane 

 𝒗 is a normal to  plane defined by 𝒘 and 𝒖 
 

Finding 𝒖, 𝒗, and 𝒘 (2/5) 
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-z 
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Finding 𝒖, 𝒗, and 𝒘 (3/5) 

Look 
Up 

w 

v 

u 
x 

y 

z 

-z 

v

v
v

wwUpUpv



 )(

Finding v 
Problem: find a vector, v, perpendicular to  w 
Solution: project out the w component of the Up vector and normalize 

w is unit length, but Up vector might not be unit length or perpendicular to w, so 
we have to remove the w component and then normalize 

 
By removing the w component  from the Up vector, the resulting vector is the 
component of Up  in a direction perpendicular to w 
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Look 
Up 

w 

v 

u 

 Finding 𝒖 

 We can use cross-product, but which one should we use?  

 𝒘 × 𝒗 and 𝒗 ×  𝒘 are both perpendicular to the plane, but in different 
directions . . .  

 Answer: cross-products are right-handed, so use 𝒗 ×  𝒘 to create a right-
handed coordinate frame 

 

 

 

 As a reminder, the cross product of two vectors 𝑎 and b is: 

 

Finding 𝒖, 𝒗, and 𝒘 (4/5) 
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 To Summarize: 

 

 

 

 

 

 

 
 

Finding 𝒖, 𝒗, and 𝒘 (5/5) 
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• Given camera coordinate system, how to calculate projection? 
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 How exactly do we take contents of an arbitrary 
view volume and project them to a 2D surface? 

 Arbitrary view volume is too complex… 

 Reduce it to a simpler problem! The canonical view 
volume! 

 Can also be called the standard or unit view volume 

 Specific orientation, position, height and width that 
make operations like projecting and clipping much 
easier, as we will see 

 Transform complex view volume and all objects in 
volume to the canonical volume (normalizing 
transformation) and then project contents onto 
normalized film plane  

 Not to be confused with animation where camera may 
move relative to objects!  Normalization applies to an 
arbitrary camera view at a given instant 

 Let’s start with easiest case:  parallel view volume 

 

 

The canonical view volume 

Image credit: 
http://www.codeguru.com/cpp/misc/misc/math
/article.php/c10123__2/ 
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 Sits at origin: 
 Center of near clipping plane = (0,0,0) 

 Looks along negative 𝑧-axis: 
 Look Vector = (0,0,-1) 

 Oriented upright: 
 Up Vector = (0,1,0) 

 Viewing window bounds 
normalized: 
 -1 to 1 in 𝑥 and 𝑦 directions 

 Near and far clipping planes: 
 Near at 𝑧 = 0 plane 
 Far at 𝑧= 1 plane 
 

 Note: Look vector along negative 𝑧-axis 
seems like an odd choice, but it makes the 
math easier. Same with choosing -1 to 1 as 
our film plane bounds 

The canonical parallel view volume 

z 

Up 
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 Goal: transform arbitrary view and scene to canonical view volume, maintaining 
relationship between view volume and scene, then render 

 For parallel view volumes need only rotations, scales, and translations   

 The composite transformation composed of these scales, rotations and translations is a 
4x4 homogenous matrix called the normalizing transformation (the inverse is called the 
viewing transformation and turns a canonical view volume into an arbitrary one) 

 

 

 

 

 

 

 Note: the scene resulting from normalization will not appear any different from the 
original - every vertex is transformed in the same way. The goal is to simplify our view 
volume, not change what we see. 

 

 

The normalizing transformation 

z 

Up 

Remember that our camera 
Is just a model, there is no 
actual camera in our scene. 
The normalizing matrix 
needs to be applied to every 
vertex in our scene to  
simulate this transformation 
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 Our goal is to send the 𝒖, 𝒗, 𝒘 axes of camera’s coordinate system to 
𝒙, 𝒚, 𝒛 axes of world coordinate system 

 Start by moving camera from its position to origin 

 Given camera position 𝑃, w axis, and the distances to the 𝑛𝑒𝑎𝑟 and far clipping 
planes, the center of the near clipping plane is located at 𝑃𝑛 =  𝑃 +  𝑛𝑒𝑎𝑟 ∗ 𝑤 

 The following matrix will translate all world points and camera so that   𝑃𝑛 is 
now at the origin 

 

 

 

 

 

 

 

 

 

View Volume Translation 
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 Rotating the camera/scene can’t be done by inspection 

 Our Camera is now at the origin, we need to align the 𝒖, 𝒗, 𝒘 axes with the 
𝒙, 𝒚, 𝒛 axes 

 Let’s leave out the homogenous coordinate for now 

 𝒆𝟏 =  
1
0
0

, 𝒆𝟐 =  
0
1
0

, 𝒆𝟑 =  
0
0
1

 

 Need to rotate 𝒖 into 𝒆𝟏, 𝒗 into 𝒆𝟐, and 𝒘 into 𝒆𝟑 

 Need to find some matrix 𝑹𝒓𝒐𝒕 , such that: 

 𝑹𝒓𝒐𝒕𝒖 = 𝒆𝟏 

 𝑹𝒓𝒐𝒕𝒗 = 𝒆𝟐 

 𝑹𝒓𝒐𝒕𝒘 = 𝒆𝟑 

View Volume Rotation (1/3) 
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 So how do we find 𝑹𝒓𝒐𝒕? 

 The brute force way is to find angles between pairs of vectors 
(𝑢, 𝑒1), (𝑣, 𝑒2), (𝑤, 𝑒3) and compose all 3 of the rotation matrices together 
to form a single rotation 

 Too much math, not efficient -- there’s a better way, using the linear 
algebra concept or orthogonal vectors (Transformations Lecture) 

View Volume Rotation (2/3) 
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 Consider this: 

 𝒖, 𝒗, 𝒘 are all orthogonal unit vectors 

 Want a matrix that converts each of these vectors to  standard basis vectors 

 For vector 𝒖, 𝑹𝒓𝒐𝒕𝒖 must equal 𝒆𝟏 =  
1
0
0

 

 Think about each entry of this vector and compose a matrix that, when 
applied to 𝒖, can obtain it 

View Volume Rotation (2/3) 
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 Recall from linear algebra 

 A unit vector dotted with itself equals 1 

 A unit vector dotted with a vector orthogonal (perpendicular) to it equals 𝟎 

 To obtain the 1 we need the first row of our matrix to be 𝒖 itself 

 To get the other two to be 𝟎 we need vectors perpendicular to 𝑢 

 Why not use 𝒗 and 𝒘 ? 

 Our matrix 𝐑𝒓𝒐𝒕 now looks like this, 
𝒖
𝒗
𝒘

, where 𝒖, 𝒗, 𝒘 are row vectors 

 Using the same reasoning as we did for 𝑢 for the first row, we need 𝑣 as 
the second row to get 𝐑𝒓𝒐𝒕 𝒗 to equal 𝒆𝟐 

 We also need 𝒘 as the third row to get 𝐑𝒓𝒐𝒕 𝒘 to equal 𝒆𝟑 

 Feel free to confirm this by doing these matrix-vector multiplications 

View Volume Rotation (3/3) 
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 Our Rotation Matrix with homogenous coordinates: 

 
𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

 

 

Final Rotation Matrix 
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 So now we have a view volume sitting at the origin, oriented upright with the 
look vector pointing down the –𝑧 axis 

 But the size of our volume has not met our specifications yet 

 We want the (𝑥, 𝑦) bounds to be -1 and 1 and we want the far clipping plane to 
be at 𝑧 = -1 

 Given 𝑤𝑖𝑑𝑡𝑕, 𝑕𝑒𝑖𝑔𝑕𝑡, and far clipping plane distance, 𝑓𝑎𝑟, of a parallel view 
volume our scaling matrix 𝑆𝑥𝑦𝑧  is as follows: 



2

𝑤𝑖𝑑𝑡𝑕
0 0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0 0

0 0
1

𝑓𝑎𝑟
0

0 0 0 1

 (note that 
1

𝑤𝑖𝑑𝑡ℎ

2

=
2

𝑤𝑖𝑑𝑡𝑕
, etc.) 

 Now all vertices are bounded in between  planes 𝑥 = (-1, 1), 𝑦 = (-1, 1),𝑧 = (0, -1) 

Scaling the view volume 
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 Now have a complete transformation from an arbitrary parallel view 
volume to  canonical parallel view volume 

 First  translate to  origin using translation matrix, 𝑻𝒕𝒓𝒂𝒏𝒔 

 Then align  𝒖, 𝒗, 𝒘 axes with  𝒙, 𝒚, 𝒛 axes using rotation matrix 𝑹𝒓𝒐𝒕 

 Finally  scale  view volume using scaling matrix 𝑺𝒙𝒚𝒛 

 Composite normalizing transformation is simply, 𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔 

 

 

 

 

 

 

 Since each individual transformation results in 𝑤 =  1, no division by 𝑤 is 
necessary at this stage 

The normalizing transformation (parallel) and re-homogenization 

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

 

2

𝑤𝑖𝑑𝑡𝑕
0 0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0 0

0 0
1

𝑓𝑎𝑟
0

0 0 0 1

 

1 0 0 −𝑃𝑛𝑥

0 1 0 −𝑃𝑛𝑦

0 0 1 −𝑃𝑛𝑧

0 0 0 1
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 The book groups all of these three transformations together into one 
transformation matrix 

 For the parallel case we will call it 𝑴𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍 

 For the perspective case, which we will get to, it is called, 𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 

 For ease of understanding we split all three up, but they can be 
represented more compactly by the following: 

Notation 

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

 𝑵 =  

2

𝑤𝑖𝑑𝑡𝑕
0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0

0 0
1

𝑓𝑎𝑟

 

𝑴𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍 =

−𝑃𝑛𝑥

𝑁 −𝑃𝑛𝑦

−𝑃𝑛𝑧

0 0 0 1

 

N is the 3x3 matrix 
representing rotations 
and scaling 
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 Before returning to original goal of 
projecting scene onto film plane, how to 
clip? 

 With arbitrary view volume, testing 
needed to decide whether a vertex is in or 
out and clipping is done by solving 
simultaneous equations 

 With canonical view volume, clipping is 
much easier 

 After we have applied the normalizing 
transformation to all vertices in the scene, 
anything that falls outside the bounds of 
the planes 𝑥 = (-1,1), 𝑦 = (-1, 1) and 𝑧 = (0, -
1), is clipped.  Primitives that intersect the 
view volume must be partially clipped 

 Most graphics packages such as OpenGL 
will do this step for you 

Clipping against the parallel view volume 

Note: Clipping edges that intersect 
the boundaries of  view volume 
is another step explored in next 
lecture 
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 So how do we project the scene in this normalized view volume onto a the 
(𝑥, 𝑦) plane, where the film plane is now located? 

 If there is a point (𝑥, 𝑦, 𝑧) that we want to project to the (𝑥, 𝑦) plane, just get 
rid of the 𝑧 coordinate! 

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 

 We could take this a step farther and use the following matrix to convert 3D 
homogenous vectors into 2D homogenous 

𝐌𝒑𝒓𝒐𝒋 =
1 0 0 0
0 1 0 0
0 0 0 1

 

 Like clipping, in most graphics packages, this step is also handled for you 

Projecting in the normalized view volume 
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 Need to find a transformation to turn an arbitrary view volume into a 
canonical (unit) view volume 

 

Canonical view volume: 

 

The Perspective View Volume 

z 

y 

x 

(-c,c,-c) 

(-1,1,-1) 

z = -1 
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Properties of the canonical view volume – as shown next 

z 

y 

x 

(-c,c,-c) 

(-1,1,-1) 

z = -1 

23 of 53 

 Sits at origin: 
 Position = (0,0,0) 

 This time it’s the actual given camera position that 
is going to move to the origin 

 Looks along negative z-axis: 
 Look Vector = (0,0,-1) 

 Oriented upright: 
 Up Vector = (0,1,0) 

 Near and far clipping planes: 

 Near at z =−
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 plane 

 Far at z = -1 plane 

 

 Far clipping plane bounds: 
 (x, y) from -1 to 1 

 
 Note: The perspective canonical view volume is just like the parallel one 

except that the “film”/viewing window is more ambiguous here, so we 
bound just the far clipping plane for now 
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 For our normalizing transformation, the first two steps are the same 

 

 

 

Translation and Rotation 

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

 

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

 

• The translation matrix 𝐓𝒕𝒓𝒂𝒏𝒔 is even easier to calculate this 
time, since we are given the point to translate to the origin: 
 
 
 

Our current situation: 
 

• And we use the same matrix 𝐑𝒓𝒐𝒕 to align the camera axes: 
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Scaling the perspective view volume 
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 For perspective volumes, scaling is more complicated and requires some 
trigonometry 

 It was easy to scale the parallel view volume if we know the width and 
height of our view volume 

 Based on our definition of our perspective view volume however, we are 
not given these two values 

 We need a scaling transformation  𝑺𝒙𝒚𝒛 ,  that: 

 Finds the width and height of the far clipping plane based on width angle 𝜃𝑤 
and height angle 𝜃𝑕 and the distance to the clipping plane, 𝑓𝑎𝑟 

 Scales our view volume based on these dimensions 

 

 Scaling the position of the far clipping plane to 𝑧 = -1 remains the same as 
the parallel case since we are still given 𝑓𝑎𝑟, however, unlike the parallel 
case, the near plane is not immediately mapped to z = 0. 

Problems with Scaling 
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 It’s too hard to think about scaling in both the x and y directions at the 
same time, so consider the two separately 

Scaling the perspective view volume (1/3) 

 Start with just the X 

 We want to scale by 
𝑤𝑖𝑑𝑡𝑕

2
 of the far 

clipping plane to bring it to z = -1 

 Divide viewing frustum down the middle 
with line PQ 

 The length of PQ is just 𝑓𝑎𝑟 and we know 
𝜃𝑤

2
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Note: 𝜃𝑤  refers to the width angle of the viewing frustum here. w 
shouldn’t be confused with the w-axis of the camera coordinate system! 

 



cs123  INTRODUCTION TO COMPUTER GRAPHICS 

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam 

 To find 
𝑤

2
 we need to use a little bit of trig 

𝑤

2
= tan

𝜃𝑤

2
∗ 𝑓𝑎𝑟 

 Now, scale to send the X-coordinates of the 
far plane to [-1,1] 

1

tan
𝜃𝑤
2

∗ 𝑓𝑎𝑟
 

 Repeat for the Y-coordinates,  

 just replace 𝜃𝑤 with 𝜃𝑕  

 scale in the Y by  

1

tan
𝜃𝑕
2

∗ 𝑓𝑎𝑟
 

  

Scaling the perspective view volume (2/3) 

𝜃𝑤/2 

𝑓𝑎𝑟 

𝑤

2
 

𝜃𝑕/2 

𝑓𝑎𝑟 

𝑕

2
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 We know what to scale by to bound X 
and Y between -1 and 1 

 To bound the far clipping plane to be 

between 0 and -1, we scale by 
1

𝑓𝑎𝑟
 as in 

the parallel case 

 

 

 

 Here’s what our transformation looks 
like in the 𝑥𝑧 plane: 

 

 

 

Scaling the perspective view volume (3/3) 

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟 
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1
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The normalizing transformation (perspective) 
 Our current perspective transformation takes on the same form as the 

parallel case:  𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔 

 𝑻𝒕𝒓𝒂𝒏𝒔 takes the camera’s Position and moves the camera to the world origin 

 𝑹𝒓𝒐𝒕 takes the Look and Up vectors and orients the camera to look down the –z axis 

 𝑺𝒙𝒚𝒛 takes and scales the view volume so that the corners are at (±1, ±1) and takes the 
far clipping plane and scales it to lie on the z=-1 plane 

 

 

 

 

 

 So given point P,  if we multiply 𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔 * P = P’, the position of resulting 
point P’ will be translated, rotated and scaled to match our normalization but the 
projected scene will still look the same as if we had projected our scene using the 
arbitrary frustum 

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

 

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

 

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟 
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1
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 We can represent this composite matrix as 𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 by the following: 

 

Notation 

𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 =

−𝑃𝑥

𝑁 −𝑃𝑦

−𝑃𝑧

0 0 0 1

 

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

 𝑵 =

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟 
0

0 0
1

𝑓𝑎𝑟

 
N is the 3x3 matrix 
representing rotations 
and scaling 
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 Now we have our canonical 
perspective view volume 

 However, projecting a perspective 
view volume on to a 2D plane is 
much more difficult than it was in 
the parallel case 

 The solution? Reduce it to a simpler 
problem! 

 The final step of our normalizing 
transformation, transforming the 
perspective view volume into a 
parallel one 

 Think of this transformation as the 
unhinging transformation, 
represented by matrix 𝑴𝒑𝒑 

Perspective and Projection 
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 We’ve put the perspective view volume into canonical position, 
orientation and size 

 Let’s look at a particular point on the original near clipping plane lying on 
the Look vector: 

 

  

 It gets moved to a new location 

 

 

 

 on the negative z-axis, say 

 

  

 

The perspective transformation(1/2) 

 cp 00

pTMSp transrotxyz

LooknearPositionp 
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 What is the value of 𝑐? Trace through the steps.  

  p first gets moved to just 

 

 

 

 

 

 

 This point is then rotated to −𝑛𝑒𝑎𝑟 ∗ 𝒆𝟑 

 

 

 

 The 𝑥𝑦 scaling has no effect, and the far scaling changes this to −
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
𝒆𝟑,  so it 

must be that 𝑐 = (−
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
) 

The perspective transformation(2/2) 

Looknear 
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 Note from figure that we don’t have to do anything to far clipping plane, 
already in right position 

 Near clipping plane needs to lie on Z=0 plane and should be bounded by -1 
and 1 in X and Y 

 Need to know where near clipping plane is in canonical frustum 

 In arbitrary frustum distance to near clipping plane, 𝑛𝑒𝑎𝑟, can be 
represented as 

𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
∗ 𝑓𝑎𝑟 



𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 remains constant before and after the  

normalizing transformation 

 Our normalized far clipping plane is at 𝑧 = -1 

 So, the normalized near clipping plane is  
at 𝒄 = −

𝒏𝒆𝒂𝒓

𝒇𝒂𝒓
 

 

Unhinging the View Volume (1/4) 
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 A restatement of our problem: We want to transform the portion standard 
frustum between 𝑐 and − 1 to a standard parallel view volume 

 The derivation of this matrix is very complex, our approach will be instead 
to give you the matrix and show that it works by example 

 Our unhinging transformation matrix, 𝑴𝒑𝒑 

 

 

 

 

Unhinging the View Volume (2/4) 

1 0 0 0
0 1 0 0

0 0
1

𝑐 + 1

−𝑐

𝑐 + 1
0 0 −1 0
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 Our perspective transformation do the following: 

 Send all points on the 𝑧 = -1 far clipping plane to itself 

 We’ll check (-1, 1, -1, 1) and (1, -1, -1, 1) 

 Sends all points on the z = c near clipping plane on to the z = 0 plane 

 Note that the corners of the canonical clipping plane are actually 
(−𝑐, 𝑐), (𝑐, −𝑐), (𝑐, 𝑐) 𝑎𝑛𝑑 (−𝑐, −𝑐) (Similar triangle geometry) 

 We’ll check to see that (−𝑐, 𝑐, 𝑐, 1) gets sent to (-1, 1, 0, 1) 

 And that (𝑐, −𝑐, 𝑐, 1) gets sent to (1, -1, 0, 1) 

 Let’s say 𝑐 =  −
1

2
  

 

Unhinging the View Volume (3/4) 

1 0 0 0
0 1 0 0

0 0
1

𝑐+1

−𝑐

𝑐+1

0 0 −1 0

  = 

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0
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Unhinging the View Volume (4/4) 

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

 

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

 

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

 

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

 

−1
1

−1
1

 

1
−1
−1
1

 

−1/2
1/2

−1/2
1

 

1/2
−1/2
−1/2

1

 

−1
1

−1
1

 

1
−1
−1
1

 

−1/2
1/2

0
1/2

 

1/2
−1/2

0
1/2

 

Don’t forget to  
homogenize! 

−1
1
0
1

 

1
−1
0
1
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 Typically depth testing is done using a z-buffer that determines the order in 
which objects are rendered based on the normalized z-values of the vertices 

 The expected range for these values are from 0.0 to 1.0 where 0.0 is the closest 
an object can be before getting clipped away, and 1.0 is the farthest 

 Thus we present an alternate form of 𝑀𝑝𝑝 that does the same thing as the 
original but negates the z-term: 

 

 

 

 

 

 

 

 

 

 

 Use this one in your assignments, but we’ll use the un-flipped version for the 
remainder of the lecture 

Practical Considerations: The z-buffer 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 

1 0 0 0
0 1 0 0

0 0
1

𝑐+1

−𝑐

𝑐+1

0 0 −1 0

    = 

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎

𝟎 𝟎
−𝟏

𝒄 + 𝟏

𝒄

𝒄 + 𝟏
𝟎 𝟎 −𝟏 𝟎
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 We now have our final normalizing transformation, call it 𝑵𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆, to 

convert and arbitrary perspective view volume into a canonical parallel 
view volume 

 𝑵𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 =  𝑴𝒑𝒑𝑺𝒙𝒚𝒛𝑹𝒓𝒐𝒕𝑻𝒕𝒓𝒂𝒏𝒔 or 𝑴𝒑𝒑𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 

 

 

 

 

 Remember to homogenize your points after you apply this transformation 

 We can now project our points to the viewing window easily since we’re 
using a parallel view volume: Just get rid of the 𝑧-coordinate! 

 After that we can map our viewing window to the viewport using the 
windowing transformation 

 

The normalizing transformation (perspective) 

1 0 0 0
0 1 0 0

0 0
−1

𝑐 + 1

𝑐

𝑐 + 1
0 0 −1 0

 

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

 

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

 

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟 
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1
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 The last step in our rendering process after projecting is to take our 
“film”/viewing window, and resize it to match the dimensions of the 
viewport so that we can easily map the contents of our film to our 
viewport 

 To do this we want to have a film/viewing window with the lower left 
corner at (0,0) and the 𝑤𝑖𝑑𝑡𝑕 and 𝑕𝑒𝑖𝑔𝑕𝑡 of the viewport 

 This can be done using the windowing transformation: 

 

 

 

 

The windowing transformation (1/2) 

1/2 0 1/2
0 1/2 1/2

 𝑀𝑤𝑖𝑛𝑑 =
𝑤𝑖𝑑𝑡𝑕 0

0 𝑕𝑒𝑖𝑔𝑕𝑡
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 Note: You can confirm this matches the more general windowing transformation 
we presented to you in the transformations lecture, with the exception that this 
transformation gets rid of the homogenous coordinate 

 This step is also usually handled by most graphics packages 

 

The windowing transformation (2/2)  

 We first scale our viewing 
window to be between         –
½ and ½ in the X and Y and 
then translate by the 
window by ( ½, ½ ) to put 
the lower left corner at the 
origin 

 

 Then we scale by the 𝑤𝑖𝑑𝑡𝑕 
and 𝑕𝑒𝑖𝑔𝑕𝑡 of the viewing 
window to get our desired 
result 
 

1/2 0 1/2
0 1/2 1/2

 

𝑤𝑖𝑑𝑡𝑕 0
0 𝑕𝑒𝑖𝑔𝑕𝑡

 

(-1,-1) 

(1,1) 

(0,0) 

(1,1) 

(0,0) 

(1,1) 
(w,h) 

42 of 53 



cs123  INTRODUCTION TO COMPUTER GRAPHICS 

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam 

 You may question, how exactly does this 
transformation result in a perspective 
scene? 

 The key is in the unhinging step 

 We can take an intuitive approach to see 
this 
 The closer the object is to the near clipping 

plane, the more it is enlarged during the 
unhinging step 

 Thus, closer objects are larger and farther 
away objects are smaller as is to be expected 

 Another way to see it is to use the parallel 
lines 
 Draw parallel lines in a perspective volume 

 When we unhinge the volume, the lines fan 
out at the near clipping 

 The result is converging lines 

 Think of a pair of railroad tracks that appear 
to converge in the distance 

Why it works (1/2) 

(0,0) 

(0,0) 
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 Yet another way to demonstrate how 
this works is to use occlusion (when 
elements in the scene are blocked by 
other elements) 

 Looking at the top view of the 
frustum, we see a square 

 Draw a line from your eye point to 
the left corner of the square, we can 
see that points behind this corner are 
obscured 

 Now unhinge the perspective and 
draw a line again to the left corner, 
we can see that all points obscured 
before are still obscured and all 
points that were visible before are 
still visible 

Why it works (2/2) 
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 One important effect of the unhinging transformation is that points are 
compressed towards the far clipping plane 

 Let’s look at the general case of multiplying 𝑀𝑝𝑝 ∗

𝑥
𝑦
𝑧
1

 

 

 

 

 

 Let’s focus on the new 𝑧-term, call it 𝑧’. This represents the new depth of the 
point along the z-axis after normalization and homogenization 

 𝑧’ =  
𝑐

𝑧
−1

𝑐+1
 , now let’s hold c constant and plug in some values for 𝑧 

 Let’s have 𝑛𝑒𝑎𝑟 = −.1, 𝑓𝑎𝑟 = −1, 𝑠𝑜 𝑐 =  .1 

 The following is a graph of 𝑧’ dependent on 𝑧: 

 

 

 

Unhinging considerations (1/3) 

1 0 0 0
0 1 0 0

0 0
1

𝑐 + 1

−𝑐

𝑐 + 1
0 0 −1 0

 

𝑥
𝑦
𝑧
1

 =  

𝑥
𝑦

𝑧−𝑐

𝑐+1
−𝑧

  

−𝑥/𝑧
−𝑦/𝑧

𝑐

𝑧
−1

𝑐+1

1

  

45 of 53 



cs123  INTRODUCTION TO COMPUTER GRAPHICS 

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam 

 

 

 

 

 

 

 

 

 We can see that if the z-values of points are being compressed towards z = -1 in 
our canonical view volume, the compression is more noticeable for points 
originally closer to the near clipping plane 

 If you try playing around with the near and far clipping planes, another important 
observation is that as you bring the near clipping plane closer to z = 0, or extend 
the far clipping plane out more, the compression becomes more severe 

 Caution when choosing near and far clipping planes, if compression is too severe, 
depth testing become more inaccurate near the back of the view volume and 
errors in rounding can cause objects to be rendered out of order 

Unhinging considerations (2/3) 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

z’ 

z 
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 One may be tempted to place the near clipping plane at z = 0, or the far 
clipping plane very far away (z = ∞) 

 First note that the value of 𝑐 =
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 as either 𝑛𝑒𝑎𝑟 approaches 0 or 𝑓𝑎𝑟 

approaches ∞, approaches 0 

 Applying this to our value for 𝑧’ =  
𝑐

𝑧
−1

𝑐+1
, we sub in 0 for c to get 𝑧′ = −

1

1
=

− 1 

 From this we can see that if our far clipping plane approaches infinity, or if 
our near clipping plane approaches 0, points will cluster at 𝑧 =  −1, the 
far clipping plane of our canonical view volume 

Unhinging considerations (3/3) 
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 This converging of points at the far clipping also poses problems when trying to 
interpolate values, such as color, between points 

 Say for example we color the midpoint between two vertices, call them A and B, in 
a scene as the average of the two colors of A and B 

 If we were just using a parallel view volume it would be safe to just set the midpoint 
to the average and be done 

Aside: Projection and Interpolation(1/3) 

 We can’t do that for perspective 
transformations since the point 
that was originally the midpoint 
gets compressed towards the far 
clipping plane and isn’t the actual 
midpoint anymore 

 Another way to say this is that the 
color, call it 𝑮, does not 
interpolate between points 
linearly anymore, so we can’t just 
assign the new midpoint the 
average color 
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 However, while 𝐺 does not interpolate linearly, 𝐺/𝑤 does, where 𝑤 is the 
homogenous coordinate after being multiplied by our normalizing 
transformation, but before being homogenized 

 In our case 𝑤 will always be −𝑧 

 Knowing this, how can we find the color at this new midpoint?  

 When we transform A and B, we get two 𝑤 values, 𝑤𝑎and 𝑤𝑏 

 We also know the values of 𝐺𝑎 and 𝐺𝑏  

 If we interpolate linearly between 
𝐺𝑎

𝑤𝑎
 and 

𝐺𝑏

𝑤𝑏
 (which in this case is just 

taking the average), we will know the 
𝐺

𝑤
 value for the new midpoint 

𝐺𝑚

𝑤𝑚
 

 We can also find the average of 1/𝑤𝑎 and 1/𝑤𝑏 to get 1/𝑤𝑚 by itself 

 Dividing 
𝐺𝑚

𝑤𝑚
 by 

1

𝑤𝑚
, we can get our new value of 𝑮𝒎 

Aside: Projection and Interpolation(2/3) 
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 Let’s make this slightly more general 

 Say we have a function 𝑓 that represents a property of a point (we used color in the last 
example) 

 The point we want to apply the function to between points A and B is: 𝟏 − 𝒕 𝑨 + 𝒕𝑩, 
(let’s call it 𝑷) 

 𝑡 ranges from 0 to 1, and represents the fraction of the way from point A’ to point B’ 
your point of interest is (in our last example, 𝑡 = .5) 

 Goal: Compute 𝒇(𝑷) 
𝟏

𝑾𝒕
 =  𝟏 − 𝒕

𝟏

𝒘𝒂
+ 𝒕

𝟏

𝒘𝒃
 

 
𝒇 𝑷

𝒘𝒕
= (𝟏 − 𝒕) ∗

𝒇 𝑨

𝒘𝒂
+ 𝒕 ∗

𝒇 𝑩

𝒘𝒃
 

 

 So to find the value of our function at the point specified by 𝑡 we compute 
𝒇 𝑷

𝒘𝒕
/ 

𝟏

𝑾𝒕
 =𝒇 𝑷  

 

 

 

Aside: Projection and Interpolation(3/3) 
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 Let’s revisit the setup from this image: 

 Say we want the 𝑓(𝐴)  =  0, 𝑓(𝐵)  =  1, 
and thus 𝑓(𝑀)  =  .5 

 After unhinging transformation: 

 The new midpoint, 𝑀’, is 4/5 of the way 
from 𝐴’ to 𝐵’ , which can be found by 
dividing: (𝐴’𝑀’)/(𝐴’𝐵’)  

 Like 𝑓 𝑀 , 𝑓(𝑀’) should be .5 

 𝑤𝑎 =  ¼ and 𝑤𝑏  =  1 



𝟏

𝑾𝒕
 =  𝟏−. 𝟖

𝟏

.𝟐𝟓
+. 𝟖(

𝟏

𝟏
) = 1.6 

 



𝒇 𝑷

𝒘𝒕
= 𝟏−. 𝟖 ∗

𝟎

.𝟐𝟓
+. 𝟖 ∗

𝟏

𝟏
 = .8 

 

 𝒇 𝑴′ =
𝒇 𝑷

𝒘𝒕
/ 

𝟏

𝑾𝒕
= . 𝟓 

 

Proof by example 
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 We know about camera and object modeling transformations now, let’s 
put them together: 

 1) 𝑁𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑝𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 

 2) 𝐶𝑀𝑇𝑀 = 𝑆𝑅𝑇 

 The CMTM (Composite Modeling Transformation Matrix) is a composite matrix 
of all of our object modeling transformations (Scaling, Rotating, Translations, 
etc) 

 3) 𝐶𝑇𝑀 = 𝑁𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 ∗ 𝐶𝑀𝑇𝑀 

 The CTM (Composite Transformation Matrix) is the combination of all our 
camera and modeling transformations 

 In OpenGL it is referred to as the ModelViewProjection Matrix 

 Model: Modeling Transformations 

 View: Camera translate/rotate 

 Projection: Frustum scaling/unhinging 

 

Final Words (1/2) 
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 With our CTM we now have a start to finish view of our rendering process: 

 1) Apply the CTM to all points in the scene 

 2) Project normalized scene on to film plane (into viewing window) 

 3) Resize viewing window to match viewport size 

 4) Map colors at (x,y) coordinates of viewing window to (u,v) pixels of 
viewport and our rendering is complete! 

 

 Applications in CS123: 

 Camtrans:  

 You will be computing the normalizing transformation for adjustable camera 
settings 

 Sceneview: 

 You will extend your camtrans code and object transformations to build the 
CMTM from a scene-graph and then the CTM for each primitive in the scene 

Final Words (2/2) 
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