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Arbitrary 3D views

» Now that we have familiarity with terms we can say that these view
volumes can be specified by placement and shape

» Placement:
» Position (a point)
» Look and Up vectors
» Shape:
» horizontal and vertical view angles (for a perspective view volume)
» front and back clipping planes

» Note camera coordinate system (u, v, w) is defined in the world (x, y, z)
coordinate system

Y hy (Up)

ok
W "

2 ’

Arbitrary Perspective Frustum
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Finding u, v, and w from Position, Look, and Up (2/5)

»  We know that we want the u, v, w axes to have the following properties:
» our arbitrary Look Vector will lie along negative w-axis

» a projection of Up Vector into plane defined by the w-axis as its normal will lie
along the v-axis

» The u-axis will be mutually perpendicular to the v and w-axes, and will form a
right-handed coordinate system

» Plan of attack: first find w from Look, then find v from Up and w vector, then find
u as a normal to plane defined by w and v
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Finding u, v, and w (2/5)

» Findingw

» Finding w is easy. Look vector in canonical volume lies on —z. Since z
maps to w, w is a normalized vector pointing in opposite direction
from our arbitrary Look vector.

— Look

W =
|Look|

» Note that
» Up and w define a plane
» uisanormaltothat plane
» visanormalto plane defined by wand u
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Finding u, v, and w (3/5)
» Finding v

» Problem: find a vector, v, perpendicularto w
» Solution: project out the w component of the Up vector and normalize

v=Up-(Upew)w

V="
vi

» wis unit length, but Up vector might not be unit length or perpendicular to w, so
we have to remove the w component and then normalize

» By removing the w component from the Up vector, the resulting vector is the
component of Up in a direction perpendicular to w
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Finding u, v, and w s

» Findingu
» We can use cross-product, but which one should we use?

» wXwvandv X w are both perpendicular to the plane, but in different
directions.. ..

» Answer: cross-products are right-handed, so use v X w to create aright-
handed coordinate frame

U=VXW

aQ b1 _a2b3 o asbz ]
a, [x|b, |=| &b, —ab,
s b3 B ale o azbl A
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Finding w, v, and w (sss)

» To Summarize:

— Look

|Look|

_ Up—(Upew)w
[Up—(Upew)w

U=VXW

* Given camera coordinate system, how to calculate projection?
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The canonical view volume

» How exactly do we take contents of an arbitrary
view volume and project them to a 2D surface?

» Arbitrary view volume is too complex...

» Reduceitto asimpler problem!The canonical view
volume!

» Can also be called the standard or unit view volume .19

» Specific orientation, position, height and width that
make operations like projecting and clipping much
easier, as we will see

» Transform complex view volume and all objects in
volume to the canonical volume (normalizing
transformation) and then project contents onto
normalized film plane

=1,-1,0)
view volume

canonical view volume

Not to be confused with animation where camera may

move relative to objects! Normalization applies to an
arbitrary camera view at a given instant

Image credit:
, . . _ http://www.codeguru.com/cpp/misc/misc/math
» Let's start with easiest case: parallel view volume Jarticle.php/c10123 2/
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csl23

INTRODUCTION TO COMPUTER GRAPHICS

The canonical parallel view volume

>

Sits at origin:

» Center of near clipping plane = (0,0,0)
Looks along negative z-axis:
» Look Vector =(0,0,-1)
Oriented upright:

» UpVector =(0,1,0)

Viewing window bounds
normalized:

» -1toa1inx andy directions
Near and far clipping planes:
» Nearatz=oplane

» Faratz=1plane

Note: Look vector along negative z-axis
seems like an odd choice, but it makes the
math easier. Same with choosing -1to 1 as
our film plane bounds

Up

(-1,1,0)

-11,-1)

(111 1-1 )

(1,1,0)

ooy |

(-1 l-1 1'1 )

(-1,-1,0) \

Front Clip Plane
atZ=0

Look
"

Back Clip Plane
at Z=-1

(1¢'1a0)

(1,-1,-1)
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The normalizing transformation

» Goal: transform arbitrary view and scene to canonical view volume, maintaining
relationship between view volume and scene, then render

» For parallel view volumes need only rotations, scales, and translations

» The composite transformation composed of these scales, rotations and translations is a
4x4 homogenous matrix called the normalizing transformation (the inverse is called the
viewing transformation and turns a canonical view volume into an arbitrary one)

/., Remember that our camera
/ \ e P Is just a model, there is no
actual camera in our scene.
v The normalizing matrix

00-1 ~  needs to be applied to every
2 | — vertex in our scene to

S - simulate this transformation
Front Clip Plane )
atZ=0
1-1-1)

11,00

- =<

(11,00

» Note: the scene resulting from normalization will not appear any different from the
original - every vertex is transformed in the same way. The goal is to simplify our view
volume, not change what we see.
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View Volume Translation

» Our goal is to send the u, v, w axes of camera’s coordinate system to
X, Yy, z axes of world coordinate system
» Start by moving camera from its position to origin

» Given camera position P, w axis, and the distances to the near and far clipping
planes, the center of the near clipping planeis locatedat P, = P + near *w

» The following matrix will translate all world points and camera so that P, is
now at the origin

1 0 0 —P, -
0 1 0 —Py,
0 0 1 —B,
0 0 0 1 -
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View Volume Rotation (1/3)

» Rotating the camera/scene can’t be done by inspection

» Our Camerais now at the origin, we need to align the u, v, w axes with the
X,Y,Z axes

» Let's leave out the homogenous coordinate for now

1 0 0
» e1 = |0],ep; = |1],e3= |0
0 0 1

» Need to rotate u into e4, v into e,, and w into e;

» Need to find some matrix R,.,; , such that:
» R,.,;U =64
» R,V =6
» R,.,;W = e3

Andries van Dam 10/11/2011 12 of 53
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View Volume Rotation (2/3)

» Sohow do we find R,.,;?

» The brute force way is to find angles between pairs of vectors
(u,eq), (v, ey), (w, e3) and compose all 3 of the rotation matrices together
to form a single rotation

» Too much math, not efficient -- there’s a better way, using the linear
algebra concept or orthogonal vectors (Transformations Lecture)
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View Volume Rotation (2/3)

» Consider this:
» u,v,w are all orthogonal unit vectors

» Want a matrix that converts each of these vectors to standard basis vectors
1
» Forvectoru, R,,;u mustequale; = |0
0

» Think about each entry of this vector and compose a matrix that, when
applied to u, can obtain it
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View Volume Rotation (3/3)

» Recall from linear algebra
» A unit vector dotted with itself equals 1

» A unit vector dotted with a vector orthogonal (perpendicular) to it equals 0
» To obtain the 1 we need the first row of our matrix to be u itself
» To get the othertwo to be 0 we need vectors perpendicular to u
» Whynotusevandw?

u
» Our matrix R,.,; now looks like this, [v] ,where u, v, w are row vectors
w

» Using the same reasoning as we did for u for the first row, we need v as
the second row to get (R,.,;)V to equal e,

» We also need w as the third row to get (R,,;)W to equal e;3
» Feel free to confirm this by doing these matrix-vector multiplications
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Final Rotation Matrix

» Our Rotation Matrix with homogenous coordinates:

Uy Uy Uy O]
vy v, v, 0
wy wy, w, 0

.0 0 o0 1

Andries van Dam 10/11/2011 16 of 53
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Scaling the view volume

» So now we have a view volume sitting at the origin, oriented upright with the
look vector pointing down the —z axis

» But the size of our volume has not met our specifications yet

» We want the (x, y) bounds to be -1 and 1 and we want the far clipping plane to
beatz=-1

» Given width, height, and far clipping plane distance, far, of a parallel view
volume our scaling matrix Sy, is as follows:

— 2 —
width 0 0 0
- 0
> height (note that Wiilth = Wiflth’ etc.)
0 0 L 0 2
far
L0 0 0 1

v

Now all vertices are bounded in between planes x = (-1, 1), y = (-1, 1),z = (0, -1)

Andries van Dam 10/11/2011 17 of 53
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The normalizing transformation (parallel) and re-homogenization

» Now have a complete transformation from an arbitrary parallel view
volume to canonical parallel view volume

» First translate to origin using translation matrix, T tyqns

» Thenalign u, v, w axes with x,y, z axes using rotation matrix R,.,;

» Finally scale view volume using scaling matrix Sy,

» Composite normalizing transformation is simply, Syy; Rrot T trans

0 O

width 0 Uy Uy Uy O] 1 0 O _an

O 1 0 -P

height of v« vy vz 0 ny

1 wy wy, w, O0f 0 0 1 —P,,

O % = %lo o o oo o 1
0 0 0 1

» Since each individual transformation resultsinw = 1, no division by w is
necessary at this stage
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Notation

» The book groups all of these three transformations together into one
transformation matrix

» Forthe parallel case we will call it Myythogonat
» For the perspective case, which we will get to, itis called, Myerspective

» For ease of understanding we split all three up, but they can be
represented more compactly by the following:

2 -
dth 0
. . W Uy Uy Uy
N is the 3x3 matrix N = 0 0
representing rotations o height Uy Uy Uy
and scaling 1 Wy Wy, W,
0 0 —_—
far]
_ _an_
N —P,
M orthogonal — Y
_Pnz
L0 0 O 1 A
Andries van Dam 10/11/2011 19 of 53
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Clipping against the parallel view volume

» Before returning to original goal of
projecting scene onto film plane, how to

clip?
. . . . Y
» With arbitrary view volume, testing ey (1D
needed to decide whether a vertex s in or
out and clipping is done by solving Clipped
simultaneous equations (1) Clipped
Look
» With canonical view volume, clipping is -

much easier z

Back Clip Plane
at Z=-1

» After we have applied the normalizing
transformation to all vertices in the scene, ront i Plane
anything that falls outside the bounds of atz=0
the planes x = (-1,1), y =(-1, 1) and z = (o, - (-1.0)
1), is clipped. Primitives that intersect the
view volume must be partially clipped

Note: Clipping edges that intersect
the boundaries of view volume

> Most graphics packages such as OpenGL is another step explored in next
will do this step for you lecture
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Projecting in the normalized view volume

» So how do we project the scene in this normalized view volume onto a the
(x,y) plane, where the film plane is now located?

» If there is a point (x, y, z) that we want to project to the (x, y) plane, just get
rid of the z coordinate!

o = O

o O OO
= o o O

(===

0

» We could take this a step farther and use the following matrix to convert 3D
homogenous vectors into 2D homogenous

1 0 0 O
Mpr0j=0 1 0 0

0 0 0 1

» Like clipping, in most graphics packages, this step is also handled for you
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The Perspective View Volume

» Need to find a transformation to turn an arbitrary view volume into a
canonical (unit) view volume

Canonical view volume:

(-1,1,-1)

(-c,c,-c)

A

Andries van Dam 10/11/2011 22 of 53
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Properties of the canonical view volume — as shown next

>

Sits at origin:
» Position =(0,0,0)

» Thistime it's the actual given camera position that
is going to move to the origin

Looks along negative z-axis:
» LookVector =(0,0,-1)
Oriented upright:

» UpVector =(0,1,0)

Near and far clipping planes:
near

» Nearatz=— plane

far
» Faratz=-1plane

Far clipping plane bounds:
» (x,y)from-1to1

Note: The perspective canonical view volume is just like the parallel one
except that the “film”/viewing window is more ambiguous here, so we
bound just the far clipping plane for now
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Translation and Rotation

» For our normalizing transformation, the first two steps are the same

1 0 0 —P]
* The translation matrix T;,-gns is €ven easier to calculate this 01 0 -p
time, since we are given the point to translate to the origin: 0 0 1 —P,
0o 0 0 1.
_ , Uy Uy Uy O]
* And we use the same matrix R,.,¢ to align the camera axes:
vy vy, U, 0
wy wy, w, 0
L0 0 0 1

Our current situation:

— -» Look Vector

Andries van Dam 10/11/2011 24 0of 53
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Scaling the perspective view volume

{l(-l, 0,-1)

()01

1,0,-1)
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Problems with Scaling

» For perspective volumes, scaling is more complicated and requires some
trigonometry

» It was easy to scale the parallel view volume if we know the width and
height of our view volume

» Based on our definition of our perspective view volume however, we are
not given these two values

» We need a scaling transformation S,,, that:

» Finds the width and height of the far clipping plane based on width angle 6,,
and height angle 8, and the distance to the clipping plane, far

» Scales our view volume based on these dimensions

» Scaling the position of the far clipping plane to z = -1 remains the same as
the parallel case since we are still given far, however, unlike the parallel
case, the near plane is not immediately mappedtoz =o.
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Scaling the perspective view volume (1/3)

» It's too hard to think about scaling in both the x and y directions at the
same time, so consider the two separately

» Start with just the X

idth
» We want to scale blezt of the far

clipping plane to bringittoz=-1

» Divide viewing frustum down the middle
with line PQ

» Thelength of PQis just far and we know
Ow
2

- -

Note: 6,, refers to the width angle of the viewing frustum here. w
shouldn’t be confused with the w-axis of the camera coordinate system!
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Scaling the perspective view volume (2/3)

» To find % we need to use a little bit of trig

w O
£l —tan< ) far

» Now, scale to send the X-coordinates of the

far plane to [-1,1]
1

tan( ) far

» Repeat for theY-coordinates,

» justreplace 8,, with 6,

» scaleintheY by
1

tan (02—h> * far

w
2
0,,/2
far
h
2
0/2
far

Andries van Dam 10/11/2011
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Scaling the perspective view volume (3/3)

» We know what to scale by to bound X

andY between -1anda —
0 0 0
» To bound the far clipping plane to be tan<97w)far
1
- S I 1
between o and -1, we scale by o asin 0 = o 0
the parallel case tan (7>far
0 0 1/far 0
0 0 0 1

» Here's what our transformation looks
like in the xz plane:

1,0,-1)
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The normalizing transformation (perspective)

» Our current perspective transformation takes on the same form as the
parallel case: Syy; Ryot Tirans

» T, .ns takes the camera’s Position and moves the camera to the world origin
» R, takesthe Look and Up vectors and orients the camera to look down the —z axis
» S, takes and scales the view volume so that the corners are at (£1, 1) and takes the

far clipping plane and scales it to lie on the z=-1 plane

1 _
. (%V")far 0 O Ofruy u, u; 0111 0 0 —-P]
1 vy v, v, 0[]0 1 0 =B
0 tan <92_h> far 0 0 wy wy, w, 0[]0 0 1 -—P,
0 0 \/far ofLO 0 0 1410 0 O 1/
0 0 0 1.

» Sogiven point P, if we multiply Sy, Rrot Terans * P = P’, the position of resulting
point P" will be translated, rotated and scaled to match our normalization but the
projected scene will still look the same as if we had projected our scene using the
arbitrary frustum
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Notation

» We can represent this composite matrix as Mperspective Y the following:

1
] 0 0
tan (7"") far
: : Uy Uy Uy
N is the 3x3 matrix 1
representing rotations N = 0 9 0 Uy vy Uy
and scaling tan <7h) far Wy Wy W,
0 0 !
farl
_ _Px_
Mperspective - N _Py
_PZ
L0 0 O 1
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Perspective and Projection

» Now we have our canonical
perspective view volume

» However, projecting a perspective P

view volume on to a 2D plane is
much more difficult than it was in
the parallel case

» The solution? Reduce it to a simpler
problem!

» The final step of our normalizing
transformation, transforming the
perspective view volume into a
parallel one

» Think of this transformation as the
unhinging transformation,
represented by matrix M,,,,

Andries van Dam 10/11/2011
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The perspective transformation(z/2)

» We’ve put the perspective view volume into canonical position,
orientation and size

» Let’s look at a particular point on the original near clipping plane lying on
the Look vector:

p = Position +near * Look

It gets moved to a new location
’ —
p o Sxyz M rotTtrans p

on the negative z-axis, say

p'=(0 0 c)
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The perspective transformation(2/2)

» What is the value of ¢? Trace through the steps.
»  pfirst gets moved to just near * Look

look vector Yy Yy
'y '
look vector
near dist.”
zZ Z  near dist.

» This point is then rotated to —near * e3
y

near |dist.
- P
’ y

look vector

» The xy scaling has no effect, and the far scaling changes this to (— %) ez, soit
must be that c = (— near)

far
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Unhinging the View Volume (1/4)

» Note from figure that we don’t have to do anything to far clipping plane,
already in right position

» Near clipping plane needs to lie on Z=0 plane and should be bounded by -1
and1inXandY

» Need to know where near clipping plane is in canonical frustum

» Inarbitrary frustum distance to near clipping plane, near, can be
near
represented as * far

far
near

remains constant before and after the

far T
normalizing transformation |/

\LN

» Our normalized far clipping planeisat z = -1 (0,0)
» So, the normalized near clipping plane is 7= _near T
near far . _ 4
atc = —
far
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Unhinging the View Volume (2/4)

» A restatement of our problem: We want to transform the portion standard
frustum between c and — 1 to a standard parallel view volume

» The derivation of this matrix is very complex, our approach will be instead
to give you the matrix and show that it works by example

» Our unhinging transformation matrix, My,

1 0 0 0
0 1 0 0
0 o 1 —C
c+1 c+1
0O 0 -1 0
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Unhinging the View Volume (3/4)

» Our perspective transformation do the following:

» Send all points on the z = -1 far clipping plane to itself
We'll check (-1, 1, -1, 1) and (g, -1, -1, 1)
» Sends all points on the z = c near clipping plane on to the z = o plane

Note that the corners of the canonical clipping plane are actually
(—c,c),(c,—c),(c,c) and (—c,—c) (Similar triangle geometry)

We'll check to see that (—c, ¢, ¢, 1) gets sent to (-1, 1, 0, 1)
And that (¢, —c,c, 1) getssentto (1, -1, 0, 1)

» Let'ssayc = —%
(1) ‘1) 8 8' 1 0 0 0]
1 —c| = O 1 0 O
O 0 — —
&1 1| |00 2 1
O 0 -1 o0 0 0 —1 0.
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Unhinging the View Volume (4/4)

1 0 0 0] [-1 —1

01 0 0 1 ‘ 1

00 2 1| [-1 —1

0 0 -1 ol |1] [ 1]

1 0 0 0] [1° 1]

01 0 o [-1 ‘ _1

0 0 2 1 -1 —1 Don't forget to

0 0 -1 0. 1 1 homogenize!

1 0 0 0] [—-1/2 —1/2] 1

01 0 o |1/2 ‘ 1/2 ‘ 1

0 0 2 1| [-1/2 0 0

0 0 -1 0 1 | 1/2 [ 1]

1 0 0 0] [1/2] [ 1/2 (1]

01 0 0f |-1/2 ‘ ~1/2 ‘ 1

00 2 1| |-1/2 0 0

0 0 -1 0. 1 L 1/2 | 1
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Practical Considerations: The z-buffer

» Typically depth testing is done using a z-buffer that determines the orderin
which objects are rendered based on the normalized z-values of the vertices

» The expected range for these values are from 0.0 to 1.0 where 0.0 is the closest
an object can be before getting clipped away, and 1.0 is the farthest

» Thus we present an alternate form of M,,,, that does the same thing as the
original but negates the z-term:

1 0 0 0lel 0 0 0 1 0 0 0
0 1 01 0 0 01 0 0
00 -1 of[o 0o = =| T |o o =L _€
0 0 0 0o C_+11 661 c+1 c+1
o 0 -1 0
1) LWy
__l ___________ . _
B
. negz = POS Z
v (L-n ' (-1, 1)

» Use this one in your assignments, but we'll use the un-TIipped version for the
remainder of the lecture
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The normalizing transformation (perspective)

» We now have our final normalizing transformation, call it Nperspectives tO

convert and arbitrary perspective view volume into a canonical parallel
view volume

» N perspective — M ppryerotTtrans orM ppM perspective

1
0 0 0

1 0 0 0 tan (97W) far Uy Uy, U, O0Jr1 0o 0 -~P,
0 1 0 0 ) vy vy v, 0110 1 0 —P
-1 c 0 — 0 0
0 0 0 w, w, w, 0|10 0 1 -P
c+1 c+1 tan (7h> far ()x ()y ()Z 110 0 0 1Z
0O 0 -1 0 | 0 0 1/far 0
0 0 0 1

» Remember to homogenize your points after you apply this transformation

» We can now project our points to the viewing window easily since we're
using a parallel view volume: Just get rid of the z-coordinate!

» After that we can map our viewing window to the viewport using the
windowing transformation
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The windowing transformation (2/2)

» The last step in our rendering process after projecting is to take our
“film”/viewing window, and resize it to match the dimensions of the
viewport so that we can easily map the contents of our film to our
viewport

» To do this we want to have a film/viewing window with the lower left
corner at (0,0) and the width and height of the viewport

» This can be done using the windowing transformation:

" _[Width 0 ”1/2 0 1/2
wind = | 0 height] | 0 1/2 1/2
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The windowing transformation (2/2)

» We first scale our viewing
window to be between —
5 and V2 inthe XandY and
then translate by the
window by (¥4, ¥2) to put
the lower left corner at the
origin. 1 n o 12

[ 0 1/2 1,2

» Then we scale by the width
and height of the viewing
window to get our desired

result ,
[Wldth 0 ]

0 height

(1,2)
(1,2) I
8 ' (0,0) ‘
('11'1)
(w,h)

(1,2)

1 oy ||

» Note:You can confirm this matches the more general windowing transformation
we presented to you in the transformations lecture, with the exception that this
transformation gets rid of the homogenous coordinate

» This step is also usually handled by most graphics packages

Andries van Dam
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Why it works (1/2)

» You may question, how exactly does this
transformation result in a perspective
scene?

» The key is in the unhinging step

» We can take an intuitive approach to see
this
» The closer the object is to the near clipping

plane, the more it is enlarged during the
unhinging step

» Thus, closer objects are larger and farther
away objects are smaller as is to be expected

» Another way to see it is to use the parallel
lines
» Draw parallel lines in a perspective volume

» When we unhinge the volume, the lines fan
out at the near clipping

» Theresultis converging lines

» Think of a pair of railroad tracks that appear
to converge in the distance

(0,0)

(0,0)

Andries van Dam 10/11/2011
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Why it works (2/2)

» Yet another way to demonstrate how
this works is to use occlusion (when
elements in the scene are blocked by
other elements)

» Looking at the top view of the
frustum, we see a square

EI

» Draw a line from your eye point to
the left corner of the square, we can
see that points behind this corner are
obscured

U
"_J

z=-1/4

» Now unhinge the perspective and
draw a line again to the left corner,
we can see that all points obscured
before are still obscured and all
points that were visible before are
still visible
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Unhinging considerations (1/3)

One important effect of the unhinging transformation is that points are
compressed towards the far clipping plane

o
Let’s look at the general case of multiplying M,,,, * 321
1)

10 0 0 Trel [ X1 —Xx /7]

01 0 0 —y/z

_ y y y

0 0 L =< ||o|= || == -

c+1 c+1 c+1 -

o0 -1 o I [z °t

Let's focus on the new z-term, call it z’. This represents the new depth of the

point along the z-axis after normalization and homogenization
Cc

zZ = §+1 , now let’s hold c constant and plug in some values for z
Let's have near = —.1, far = -1, soc = .1

The following is a graph of z’ dependent on z:
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Unhinging considerations (2/3)

y4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 )

I

1.4 Z

» We can see that if the z-values of points are being compressed towards z=-1in
our canonical view volume, the compression is more noticeable for points
originally closer to the near clipping plane

» If you try playing around with the near and far clipping planes, another important
observation is that as you bring the near clipping plane closerto z = o, or extend
the far clipping plane out more, the compression becomes more severe

» Caution when choosing near and far clipping planes, if compression is too severe,
depth testing become more inaccurate near the back of the view volume and
errors in rounding can cause objects to be rendered out of order
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Unhinging considerations (3/3)

» One may be tempted to place the near clipping plane at z = o, or the far
clipping plane very far away (z = o)

» First note that the value of ¢ = % as either near approachesoor far

approaches oo, approaches o
C

Z

» Applying this to our value forz’ = v
-1
» From this we can see that if our far clipping plane approaches infinity, or if

our near clipping plane approaches o, points will clusteratz = —1, the
far clipping plane of our canonical view volume

. 1
,wesubinoforctogetz' = - =
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Aside: Projection and Interpolation(1/3)

>

This converging of points at the far clipping also poses problems when trying to
interpolate values, such as color, between points

Say for example we color the midpoint between two vertices, call them A and B, in
a scene as the average of the two colors of A and B

If we were just using a parallel view volume it would be safe to just set the midpoint
to the average and be done

We can’t do that for perspective
transformations since the point = (1,-1) S
that was originally the midpoint
gets compressed towards the far
clipping plane and isn‘t the actual
midpoint anymore z

Another way to say this is that the \ 4= (14, 1104)
color, call it G, does not
interpolate between points
linearly anymore, so we can't just z=-1/4 -
assign the new midpoint the
average color

M' o (304, -A05)

(3/8,|-5/8)

Al = (-1, 0}

Andries van Dam 10/11/2011 48 of 53



csl23 INTRODUCTION TO COMPUTER GRAPHICS
Aside: Projection and Interpolation(2/3)

» However, while G does not interpolate linearly, G /w does, where w is the
homogenous coordinate after being multiplied by our normalizing
transformation, but before being homogenized

» Inourcase w will always be —z
» Knowing this, how can we find the color at this new midpoint?
» When we transform A and B, we get two w values, w,and wy,

» We also know the values of G, and G,

. . G G ST -
» If we interpolate linearly between W—“ and W—b (which in this case is just
a b

. . G v .G
taking the average), we will know the — value for the new midpoint W—m

m

» We can also find the average of 1/w, and 1/w,, to get 1/w,, by itself

.G 1
» Dividing —=by —, we can get our new value of G,
W W
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Aside: Projection and Interpolation(3/3)

» Let's make this slightly more general

» Say we have a function f that represents a property of a point (we used color in the last
example)

» The point we want to apply the function to between points Aand Bis: (1 — t)A + tB,
(let's call it P)

» tranges from o to 1, and represents the fraction of the way from point A’ to point B’
your point of interest is (in our last example, t = .5)

» Goal: Compute f(P)
1 1 1 1
w = 00 () ()

ACO TN () A ()
Wi Wq Wp

» So to find the value of our function at the point specified by t we compute
fp), 1

—/ w, f(P)
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Proof by example

4
4

v

Let's revisit the setup from this image:

Say wewantthe f(4) = 0,f(B) =
and thus f(M) =

After unhinging transformation:

The new midpoint, M’, is 4/5 of the way
from A’ to B’, which can be found by
dividing: (A’'M")/(A’B’)

Like f(M), f(M") should be .5

w, = Yaandw, =1

= = (1-.8)(5-) +.8(}) =1.6
t

f(P) _ 4 0 1_
Tt—(l .8)*.25+.8*1—.8

' f(P) 1 _
o) =18 = s

INTRODUCTION TO COMPUTER GRAPHICS

z

Bw=i(l-1)

\ A = (=1/d, =1/4)

7=-1/4

8=

M

(L, =1}

(304, -4/5)
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Final Words (1/2)

» We know about camera and object modeling transformations now, let’s
put them together:

1) Nperspective = MppMperspective
» 2)CMTM = SRT

» The CMTM (Composite Modeling Transformation Matrix) is a composite matrix

of all of our object modeling transformations (Scaling, Rotating, Translations,
etc)

» 3)CTM = Nperspective * CMTM
» The CTM (Composite Transformation Matrix) is the combination of all our
camera and modeling transformations
In OpenGL it is referred to as the ModelViewProjection Matrix
Model: Modeling Transformations
View: Camera translate/rotate

Projection: Frustum scaling/unhinging

Andries van Dam 10/11/2011 52 of 53



csl23 INTRODUCTION TO COMPUTER GRAPHICS

Final Words (2/2)

» With our CTM we now have a start to finish view of our rendering process:

v

1) Apply the CTM to all points in the scene
» 2)Project normalized scene on to film plane (into viewing window)
» 3) Resize viewing window to match viewport size

» 4) Map colors at (x,y) coordinates of viewing window to (u,v) pixels of
viewport and our rendering is complete!

» Applications in CS123:

» Camtrans:

» You will be computing the normalizing transformation for adjustable camera
settings

» Sceneview:

» You will extend your camtrans code and object transformations to build the
CMTM from a scene-graph and then the CTM for each primitive in the scene
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