
cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam

Viewing III

Projection in Practice

It looks like a matrix…
Sort of…

1 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Now that we have familiarity with terms we can say that these view
volumes can be specified by placement and shape

 Placement:
 Position (a point)

 Look and Up vectors

 Shape:
 horizontal and vertical view angles (for a perspective view volume)

 front and back clipping planes

 Note camera coordinate system (u, v, w) is defined in the world (x, y, z)
coordinate system

Arbitrary 3D views

𝒘

2 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We know that we want the 𝒖, 𝒗, 𝒘 axes to have the following properties:

 our arbitrary Look Vector will lie along negative w-axis

 a projection of Up Vector into plane defined by the w-axis as its normal will lie
along the 𝒗-axis

 The 𝒖-axis will be mutually perpendicular to the 𝒗 and 𝒘-axes, and will form a
right-handed coordinate system

 Plan of attack: first find 𝒘 from Look, then find 𝒗 from Up and 𝒘 vector, then find
𝒖 as a normal to plane defined by 𝒘 and 𝒗

Finding 𝒖, 𝒗, and 𝒘 from Position, Look, and Up (1/5)

Look
Up

w

v

u
x

y

z

-z

3 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Finding 𝒘

 Finding 𝒘 is easy. Look vector in canonical volume lies on –𝑧. Since 𝑧
maps to 𝒘, 𝒘 is a normalized vector pointing in opposite direction
from our arbitrary Look vector.

 Note that

 Up and 𝒘 define a plane

 𝒖 is a normal to that plane

 𝒗 is a normal to plane defined by 𝒘 and 𝒖

Finding 𝒖, 𝒗, and 𝒘 (2/5)

Look

Look
w




Look
Up

w

v

u
x

y

z

-z

4 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

Finding 𝒖, 𝒗, and 𝒘 (3/5)

Look
Up

w

v

u
x

y

z

-z

v

v
v

wwUpUpv



)(

Finding v
Problem: find a vector, v, perpendicular to w
Solution: project out the w component of the Up vector and normalize

w is unit length, but Up vector might not be unit length or perpendicular to w, so
we have to remove the w component and then normalize

By removing the w component from the Up vector, the resulting vector is the
component of Up in a direction perpendicular to w

5 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

Look
Up

w

v

u

 Finding 𝒖

 We can use cross-product, but which one should we use?

 𝒘 × 𝒗 and 𝒗 × 𝒘 are both perpendicular to the plane, but in different
directions . . .

 Answer: cross-products are right-handed, so use 𝒗 × 𝒘 to create a right-
handed coordinate frame

 As a reminder, the cross product of two vectors 𝑎 and b is:

Finding 𝒖, 𝒗, and 𝒘 (4/5)

wvu 
x

y

z

-z



























































1221

3113

2332

3

2

1

3

2

1

baba

baba

baba

b

b

b

a

a

a

6 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 To Summarize:

Finding 𝒖, 𝒗, and 𝒘 (5/5)

Look
Up

w

v

u
x

y

z

-z

Look

Look
w




wwUpUp

wwUpUp
v

)(

)(






wvu 

7 of 53

• Given camera coordinate system, how to calculate projection?

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 How exactly do we take contents of an arbitrary
view volume and project them to a 2D surface?

 Arbitrary view volume is too complex…

 Reduce it to a simpler problem! The canonical view
volume!

 Can also be called the standard or unit view volume

 Specific orientation, position, height and width that
make operations like projecting and clipping much
easier, as we will see

 Transform complex view volume and all objects in
volume to the canonical volume (normalizing
transformation) and then project contents onto
normalized film plane

 Not to be confused with animation where camera may
move relative to objects! Normalization applies to an
arbitrary camera view at a given instant

 Let’s start with easiest case: parallel view volume

The canonical view volume

Image credit:
http://www.codeguru.com/cpp/misc/misc/math
/article.php/c10123__2/

8 of 53

http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__2/
http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__2/

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Sits at origin:
 Center of near clipping plane = (0,0,0)

 Looks along negative 𝑧-axis:
 Look Vector = (0,0,-1)

 Oriented upright:
 Up Vector = (0,1,0)

 Viewing window bounds
normalized:
 -1 to 1 in 𝑥 and 𝑦 directions

 Near and far clipping planes:
 Near at 𝑧 = 0 plane
 Far at 𝑧= 1 plane

 Note: Look vector along negative 𝑧-axis
seems like an odd choice, but it makes the
math easier. Same with choosing -1 to 1 as
our film plane bounds

The canonical parallel view volume

z

Up

9 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Goal: transform arbitrary view and scene to canonical view volume, maintaining
relationship between view volume and scene, then render

 For parallel view volumes need only rotations, scales, and translations

 The composite transformation composed of these scales, rotations and translations is a
4x4 homogenous matrix called the normalizing transformation (the inverse is called the
viewing transformation and turns a canonical view volume into an arbitrary one)

 Note: the scene resulting from normalization will not appear any different from the
original - every vertex is transformed in the same way. The goal is to simplify our view
volume, not change what we see.

The normalizing transformation

z

Up

Remember that our camera
Is just a model, there is no
actual camera in our scene.
The normalizing matrix
needs to be applied to every
vertex in our scene to
simulate this transformation

10 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Our goal is to send the 𝒖, 𝒗, 𝒘 axes of camera’s coordinate system to
𝒙, 𝒚, 𝒛 axes of world coordinate system

 Start by moving camera from its position to origin

 Given camera position 𝑃, w axis, and the distances to the 𝑛𝑒𝑎𝑟 and far clipping
planes, the center of the near clipping plane is located at 𝑃𝑛 = 𝑃 + 𝑛𝑒𝑎𝑟 ∗ 𝑤

 The following matrix will translate all world points and camera so that 𝑃𝑛 is
now at the origin

View Volume Translation

11 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Rotating the camera/scene can’t be done by inspection

 Our Camera is now at the origin, we need to align the 𝒖, 𝒗, 𝒘 axes with the
𝒙, 𝒚, 𝒛 axes

 Let’s leave out the homogenous coordinate for now

 𝒆𝟏 =
1
0
0

, 𝒆𝟐 =
0
1
0

, 𝒆𝟑 =
0
0
1

 Need to rotate 𝒖 into 𝒆𝟏, 𝒗 into 𝒆𝟐, and 𝒘 into 𝒆𝟑

 Need to find some matrix 𝑹𝒓𝒐𝒕 , such that:

 𝑹𝒓𝒐𝒕𝒖 = 𝒆𝟏

 𝑹𝒓𝒐𝒕𝒗 = 𝒆𝟐

 𝑹𝒓𝒐𝒕𝒘 = 𝒆𝟑

View Volume Rotation (1/3)

12 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 So how do we find 𝑹𝒓𝒐𝒕?

 The brute force way is to find angles between pairs of vectors
(𝑢, 𝑒1), (𝑣, 𝑒2), (𝑤, 𝑒3) and compose all 3 of the rotation matrices together
to form a single rotation

 Too much math, not efficient -- there’s a better way, using the linear
algebra concept or orthogonal vectors (Transformations Lecture)

View Volume Rotation (2/3)

13 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Consider this:

 𝒖, 𝒗, 𝒘 are all orthogonal unit vectors

 Want a matrix that converts each of these vectors to standard basis vectors

 For vector 𝒖, 𝑹𝒓𝒐𝒕𝒖 must equal 𝒆𝟏 =
1
0
0

 Think about each entry of this vector and compose a matrix that, when
applied to 𝒖, can obtain it

View Volume Rotation (2/3)

14 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Recall from linear algebra

 A unit vector dotted with itself equals 1

 A unit vector dotted with a vector orthogonal (perpendicular) to it equals 𝟎

 To obtain the 1 we need the first row of our matrix to be 𝒖 itself

 To get the other two to be 𝟎 we need vectors perpendicular to 𝑢

 Why not use 𝒗 and 𝒘 ?

 Our matrix 𝐑𝒓𝒐𝒕 now looks like this,
𝒖
𝒗
𝒘

, where 𝒖, 𝒗, 𝒘 are row vectors

 Using the same reasoning as we did for 𝑢 for the first row, we need 𝑣 as
the second row to get 𝐑𝒓𝒐𝒕 𝒗 to equal 𝒆𝟐

 We also need 𝒘 as the third row to get 𝐑𝒓𝒐𝒕 𝒘 to equal 𝒆𝟑

 Feel free to confirm this by doing these matrix-vector multiplications

View Volume Rotation (3/3)

15 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Our Rotation Matrix with homogenous coordinates:

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

Final Rotation Matrix

16 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 So now we have a view volume sitting at the origin, oriented upright with the
look vector pointing down the –𝑧 axis

 But the size of our volume has not met our specifications yet

 We want the (𝑥, 𝑦) bounds to be -1 and 1 and we want the far clipping plane to
be at 𝑧 = -1

 Given 𝑤𝑖𝑑𝑡𝑕, 𝑕𝑒𝑖𝑔𝑕𝑡, and far clipping plane distance, 𝑓𝑎𝑟, of a parallel view
volume our scaling matrix 𝑆𝑥𝑦𝑧 is as follows:



2

𝑤𝑖𝑑𝑡𝑕
0 0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0 0

0 0
1

𝑓𝑎𝑟
0

0 0 0 1

 (note that
1

𝑤𝑖𝑑𝑡ℎ

2

=
2

𝑤𝑖𝑑𝑡𝑕
, etc.)

 Now all vertices are bounded in between planes 𝑥 = (-1, 1), 𝑦 = (-1, 1),𝑧 = (0, -1)

Scaling the view volume

17 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Now have a complete transformation from an arbitrary parallel view
volume to canonical parallel view volume

 First translate to origin using translation matrix, 𝑻𝒕𝒓𝒂𝒏𝒔

 Then align 𝒖, 𝒗, 𝒘 axes with 𝒙, 𝒚, 𝒛 axes using rotation matrix 𝑹𝒓𝒐𝒕

 Finally scale view volume using scaling matrix 𝑺𝒙𝒚𝒛

 Composite normalizing transformation is simply, 𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔

 Since each individual transformation results in 𝑤 = 1, no division by 𝑤 is
necessary at this stage

The normalizing transformation (parallel) and re-homogenization

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

2

𝑤𝑖𝑑𝑡𝑕
0 0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0 0

0 0
1

𝑓𝑎𝑟
0

0 0 0 1

1 0 0 −𝑃𝑛𝑥

0 1 0 −𝑃𝑛𝑦

0 0 1 −𝑃𝑛𝑧

0 0 0 1

18 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 The book groups all of these three transformations together into one
transformation matrix

 For the parallel case we will call it 𝑴𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍

 For the perspective case, which we will get to, it is called, 𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆

 For ease of understanding we split all three up, but they can be
represented more compactly by the following:

Notation

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

 𝑵 =

2

𝑤𝑖𝑑𝑡𝑕
0 0

0
2

𝑕𝑒𝑖𝑔𝑕𝑡
0

0 0
1

𝑓𝑎𝑟

𝑴𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍 =

−𝑃𝑛𝑥

𝑁 −𝑃𝑛𝑦

−𝑃𝑛𝑧

0 0 0 1

N is the 3x3 matrix
representing rotations
and scaling

19 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Before returning to original goal of
projecting scene onto film plane, how to
clip?

 With arbitrary view volume, testing
needed to decide whether a vertex is in or
out and clipping is done by solving
simultaneous equations

 With canonical view volume, clipping is
much easier

 After we have applied the normalizing
transformation to all vertices in the scene,
anything that falls outside the bounds of
the planes 𝑥 = (-1,1), 𝑦 = (-1, 1) and 𝑧 = (0, -
1), is clipped. Primitives that intersect the
view volume must be partially clipped

 Most graphics packages such as OpenGL
will do this step for you

Clipping against the parallel view volume

Note: Clipping edges that intersect
the boundaries of view volume
is another step explored in next
lecture

20 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 So how do we project the scene in this normalized view volume onto a the
(𝑥, 𝑦) plane, where the film plane is now located?

 If there is a point (𝑥, 𝑦, 𝑧) that we want to project to the (𝑥, 𝑦) plane, just get
rid of the 𝑧 coordinate!

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 We could take this a step farther and use the following matrix to convert 3D
homogenous vectors into 2D homogenous

𝐌𝒑𝒓𝒐𝒋 =
1 0 0 0
0 1 0 0
0 0 0 1

 Like clipping, in most graphics packages, this step is also handled for you

Projecting in the normalized view volume

21 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Need to find a transformation to turn an arbitrary view volume into a
canonical (unit) view volume

Canonical view volume:

The Perspective View Volume

z

y

x

(-c,c,-c)

(-1,1,-1)

z = -1

22 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

Properties of the canonical view volume – as shown next

z

y

x

(-c,c,-c)

(-1,1,-1)

z = -1

23 of 53

 Sits at origin:
 Position = (0,0,0)

 This time it’s the actual given camera position that
is going to move to the origin

 Looks along negative z-axis:
 Look Vector = (0,0,-1)

 Oriented upright:
 Up Vector = (0,1,0)

 Near and far clipping planes:

 Near at z =−
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 plane

 Far at z = -1 plane

 Far clipping plane bounds:
 (x, y) from -1 to 1

 Note: The perspective canonical view volume is just like the parallel one

except that the “film”/viewing window is more ambiguous here, so we
bound just the far clipping plane for now

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 For our normalizing transformation, the first two steps are the same

Translation and Rotation

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

• The translation matrix 𝐓𝒕𝒓𝒂𝒏𝒔 is even easier to calculate this
time, since we are given the point to translate to the origin:

Our current situation:

• And we use the same matrix 𝐑𝒓𝒐𝒕 to align the camera axes:

24 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

Scaling the perspective view volume

25 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 For perspective volumes, scaling is more complicated and requires some
trigonometry

 It was easy to scale the parallel view volume if we know the width and
height of our view volume

 Based on our definition of our perspective view volume however, we are
not given these two values

 We need a scaling transformation 𝑺𝒙𝒚𝒛 , that:

 Finds the width and height of the far clipping plane based on width angle 𝜃𝑤
and height angle 𝜃𝑕 and the distance to the clipping plane, 𝑓𝑎𝑟

 Scales our view volume based on these dimensions

 Scaling the position of the far clipping plane to 𝑧 = -1 remains the same as
the parallel case since we are still given 𝑓𝑎𝑟, however, unlike the parallel
case, the near plane is not immediately mapped to z = 0.

Problems with Scaling

26 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 It’s too hard to think about scaling in both the x and y directions at the
same time, so consider the two separately

Scaling the perspective view volume (1/3)

 Start with just the X

 We want to scale by
𝑤𝑖𝑑𝑡𝑕

2
 of the far

clipping plane to bring it to z = -1

 Divide viewing frustum down the middle
with line PQ

 The length of PQ is just 𝑓𝑎𝑟 and we know
𝜃𝑤

2

27 of 53

Note: 𝜃𝑤 refers to the width angle of the viewing frustum here. w
shouldn’t be confused with the w-axis of the camera coordinate system!

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 To find
𝑤

2
 we need to use a little bit of trig

𝑤

2
= tan

𝜃𝑤

2
∗ 𝑓𝑎𝑟

 Now, scale to send the X-coordinates of the
far plane to [-1,1]

1

tan
𝜃𝑤
2

∗ 𝑓𝑎𝑟

 Repeat for the Y-coordinates,

 just replace 𝜃𝑤 with 𝜃𝑕

 scale in the Y by

1

tan
𝜃𝑕
2

∗ 𝑓𝑎𝑟

Scaling the perspective view volume (2/3)

𝜃𝑤/2

𝑓𝑎𝑟

𝑤

2

𝜃𝑕/2

𝑓𝑎𝑟

𝑕

2

28 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We know what to scale by to bound X
and Y between -1 and 1

 To bound the far clipping plane to be

between 0 and -1, we scale by
1

𝑓𝑎𝑟
 as in

the parallel case

 Here’s what our transformation looks
like in the 𝑥𝑧 plane:

Scaling the perspective view volume (3/3)

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1

29 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

The normalizing transformation (perspective)
 Our current perspective transformation takes on the same form as the

parallel case: 𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔

 𝑻𝒕𝒓𝒂𝒏𝒔 takes the camera’s Position and moves the camera to the world origin

 𝑹𝒓𝒐𝒕 takes the Look and Up vectors and orients the camera to look down the –z axis

 𝑺𝒙𝒚𝒛 takes and scales the view volume so that the corners are at (±1, ±1) and takes the
far clipping plane and scales it to lie on the z=-1 plane

 So given point P, if we multiply 𝑺𝒙𝒚𝒛 𝑹𝒓𝒐𝒕 𝑻𝒕𝒓𝒂𝒏𝒔 * P = P’, the position of resulting
point P’ will be translated, rotated and scaled to match our normalization but the
projected scene will still look the same as if we had projected our scene using the
arbitrary frustum

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1

30 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We can represent this composite matrix as 𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 by the following:

Notation

𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 =

−𝑃𝑥

𝑁 −𝑃𝑦

−𝑃𝑧

0 0 0 1

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

 𝑵 =

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟
0

0 0
1

𝑓𝑎𝑟

N is the 3x3 matrix
representing rotations
and scaling

31 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Now we have our canonical
perspective view volume

 However, projecting a perspective
view volume on to a 2D plane is
much more difficult than it was in
the parallel case

 The solution? Reduce it to a simpler
problem!

 The final step of our normalizing
transformation, transforming the
perspective view volume into a
parallel one

 Think of this transformation as the
unhinging transformation,
represented by matrix 𝑴𝒑𝒑

Perspective and Projection

32 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We’ve put the perspective view volume into canonical position,
orientation and size

 Let’s look at a particular point on the original near clipping plane lying on
the Look vector:

 It gets moved to a new location

 on the negative z-axis, say

The perspective transformation(1/2)

 cp 00

pTMSp transrotxyz

LooknearPositionp 

33 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 What is the value of 𝑐? Trace through the steps.

 p first gets moved to just

 This point is then rotated to −𝑛𝑒𝑎𝑟 ∗ 𝒆𝟑

 The 𝑥𝑦 scaling has no effect, and the far scaling changes this to −
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
𝒆𝟑, so it

must be that 𝑐 = (−
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
)

The perspective transformation(2/2)

Looknear 

34 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Note from figure that we don’t have to do anything to far clipping plane,
already in right position

 Near clipping plane needs to lie on Z=0 plane and should be bounded by -1
and 1 in X and Y

 Need to know where near clipping plane is in canonical frustum

 In arbitrary frustum distance to near clipping plane, 𝑛𝑒𝑎𝑟, can be
represented as

𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
∗ 𝑓𝑎𝑟



𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 remains constant before and after the

normalizing transformation

 Our normalized far clipping plane is at 𝑧 = -1

 So, the normalized near clipping plane is
at 𝒄 = −

𝒏𝒆𝒂𝒓

𝒇𝒂𝒓

Unhinging the View Volume (1/4)

35 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 A restatement of our problem: We want to transform the portion standard
frustum between 𝑐 and − 1 to a standard parallel view volume

 The derivation of this matrix is very complex, our approach will be instead
to give you the matrix and show that it works by example

 Our unhinging transformation matrix, 𝑴𝒑𝒑

Unhinging the View Volume (2/4)

1 0 0 0
0 1 0 0

0 0
1

𝑐 + 1

−𝑐

𝑐 + 1
0 0 −1 0

36 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Our perspective transformation do the following:

 Send all points on the 𝑧 = -1 far clipping plane to itself

 We’ll check (-1, 1, -1, 1) and (1, -1, -1, 1)

 Sends all points on the z = c near clipping plane on to the z = 0 plane

 Note that the corners of the canonical clipping plane are actually
(−𝑐, 𝑐), (𝑐, −𝑐), (𝑐, 𝑐) 𝑎𝑛𝑑 (−𝑐, −𝑐) (Similar triangle geometry)

 We’ll check to see that (−𝑐, 𝑐, 𝑐, 1) gets sent to (-1, 1, 0, 1)

 And that (𝑐, −𝑐, 𝑐, 1) gets sent to (1, -1, 0, 1)

 Let’s say 𝑐 = −
1

2

Unhinging the View Volume (3/4)

1 0 0 0
0 1 0 0

0 0
1

𝑐+1

−𝑐

𝑐+1

0 0 −1 0

 =

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

37 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

Unhinging the View Volume (4/4)

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

1 0 0 0
0 1 0 0
0 0 2 1
0 0 −1 0

−1
1

−1
1

1
−1
−1
1

−1/2
1/2

−1/2
1

1/2
−1/2
−1/2

1

−1
1

−1
1

1
−1
−1
1

−1/2
1/2

0
1/2

1/2
−1/2

0
1/2

Don’t forget to
homogenize!

−1
1
0
1

1
−1
0
1

38 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Typically depth testing is done using a z-buffer that determines the order in
which objects are rendered based on the normalized z-values of the vertices

 The expected range for these values are from 0.0 to 1.0 where 0.0 is the closest
an object can be before getting clipped away, and 1.0 is the farthest

 Thus we present an alternate form of 𝑀𝑝𝑝 that does the same thing as the
original but negates the z-term:

 Use this one in your assignments, but we’ll use the un-flipped version for the
remainder of the lecture

Practical Considerations: The z-buffer

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

1 0 0 0
0 1 0 0

0 0
1

𝑐+1

−𝑐

𝑐+1

0 0 −1 0

 =

𝟏 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎

𝟎 𝟎
−𝟏

𝒄 + 𝟏

𝒄

𝒄 + 𝟏
𝟎 𝟎 −𝟏 𝟎

39 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We now have our final normalizing transformation, call it 𝑵𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆, to

convert and arbitrary perspective view volume into a canonical parallel
view volume

 𝑵𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑴𝒑𝒑𝑺𝒙𝒚𝒛𝑹𝒓𝒐𝒕𝑻𝒕𝒓𝒂𝒏𝒔 or 𝑴𝒑𝒑𝑴𝒑𝒆𝒓𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆

 Remember to homogenize your points after you apply this transformation

 We can now project our points to the viewing window easily since we’re
using a parallel view volume: Just get rid of the 𝑧-coordinate!

 After that we can map our viewing window to the viewport using the
windowing transformation

The normalizing transformation (perspective)

1 0 0 0
0 1 0 0

0 0
−1

𝑐 + 1

𝑐

𝑐 + 1
0 0 −1 0

1 0 0 −𝑃𝑥

0 1 0 −𝑃𝑦

0 0 1 −𝑃𝑧

0 0 0 1

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑤𝑥 𝑤𝑦 𝑤𝑧 0

0 0 0 1

1

tan
𝜃𝑤
2

𝑓𝑎𝑟
 0 0 0

0
1

tan
𝜃𝑕
2

𝑓𝑎𝑟
0 0

0 0 1/𝑓𝑎𝑟 0
0 0 0 1

40 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 The last step in our rendering process after projecting is to take our
“film”/viewing window, and resize it to match the dimensions of the
viewport so that we can easily map the contents of our film to our
viewport

 To do this we want to have a film/viewing window with the lower left
corner at (0,0) and the 𝑤𝑖𝑑𝑡𝑕 and 𝑕𝑒𝑖𝑔𝑕𝑡 of the viewport

 This can be done using the windowing transformation:

The windowing transformation (1/2)

1/2 0 1/2
0 1/2 1/2

 𝑀𝑤𝑖𝑛𝑑 =
𝑤𝑖𝑑𝑡𝑕 0

0 𝑕𝑒𝑖𝑔𝑕𝑡

41 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Note: You can confirm this matches the more general windowing transformation
we presented to you in the transformations lecture, with the exception that this
transformation gets rid of the homogenous coordinate

 This step is also usually handled by most graphics packages

The windowing transformation (2/2)

 We first scale our viewing
window to be between –
½ and ½ in the X and Y and
then translate by the
window by (½, ½) to put
the lower left corner at the
origin

 Then we scale by the 𝑤𝑖𝑑𝑡𝑕
and 𝑕𝑒𝑖𝑔𝑕𝑡 of the viewing
window to get our desired
result

1/2 0 1/2
0 1/2 1/2

𝑤𝑖𝑑𝑡𝑕 0
0 𝑕𝑒𝑖𝑔𝑕𝑡

(-1,-1)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)
(w,h)

42 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 You may question, how exactly does this
transformation result in a perspective
scene?

 The key is in the unhinging step

 We can take an intuitive approach to see
this
 The closer the object is to the near clipping

plane, the more it is enlarged during the
unhinging step

 Thus, closer objects are larger and farther
away objects are smaller as is to be expected

 Another way to see it is to use the parallel
lines
 Draw parallel lines in a perspective volume

 When we unhinge the volume, the lines fan
out at the near clipping

 The result is converging lines

 Think of a pair of railroad tracks that appear
to converge in the distance

Why it works (1/2)

(0,0)

(0,0)

43 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Yet another way to demonstrate how
this works is to use occlusion (when
elements in the scene are blocked by
other elements)

 Looking at the top view of the
frustum, we see a square

 Draw a line from your eye point to
the left corner of the square, we can
see that points behind this corner are
obscured

 Now unhinge the perspective and
draw a line again to the left corner,
we can see that all points obscured
before are still obscured and all
points that were visible before are
still visible

Why it works (2/2)

44 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 One important effect of the unhinging transformation is that points are
compressed towards the far clipping plane

 Let’s look at the general case of multiplying 𝑀𝑝𝑝 ∗

𝑥
𝑦
𝑧
1

 Let’s focus on the new 𝑧-term, call it 𝑧’. This represents the new depth of the
point along the z-axis after normalization and homogenization

 𝑧’ =
𝑐

𝑧
−1

𝑐+1
 , now let’s hold c constant and plug in some values for 𝑧

 Let’s have 𝑛𝑒𝑎𝑟 = −.1, 𝑓𝑎𝑟 = −1, 𝑠𝑜 𝑐 = .1

 The following is a graph of 𝑧’ dependent on 𝑧:

Unhinging considerations (1/3)

1 0 0 0
0 1 0 0

0 0
1

𝑐 + 1

−𝑐

𝑐 + 1
0 0 −1 0

𝑥
𝑦
𝑧
1

 =

𝑥
𝑦

𝑧−𝑐

𝑐+1
−𝑧

−𝑥/𝑧
−𝑦/𝑧

𝑐

𝑧
−1

𝑐+1

1

45 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We can see that if the z-values of points are being compressed towards z = -1 in
our canonical view volume, the compression is more noticeable for points
originally closer to the near clipping plane

 If you try playing around with the near and far clipping planes, another important
observation is that as you bring the near clipping plane closer to z = 0, or extend
the far clipping plane out more, the compression becomes more severe

 Caution when choosing near and far clipping planes, if compression is too severe,
depth testing become more inaccurate near the back of the view volume and
errors in rounding can cause objects to be rendered out of order

Unhinging considerations (2/3)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

z’

z

46 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 One may be tempted to place the near clipping plane at z = 0, or the far
clipping plane very far away (z = ∞)

 First note that the value of 𝑐 =
𝑛𝑒𝑎𝑟

𝑓𝑎𝑟
 as either 𝑛𝑒𝑎𝑟 approaches 0 or 𝑓𝑎𝑟

approaches ∞, approaches 0

 Applying this to our value for 𝑧’ =
𝑐

𝑧
−1

𝑐+1
, we sub in 0 for c to get 𝑧′ = −

1

1
=

− 1

 From this we can see that if our far clipping plane approaches infinity, or if
our near clipping plane approaches 0, points will cluster at 𝑧 = −1, the
far clipping plane of our canonical view volume

Unhinging considerations (3/3)

47 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 This converging of points at the far clipping also poses problems when trying to
interpolate values, such as color, between points

 Say for example we color the midpoint between two vertices, call them A and B, in
a scene as the average of the two colors of A and B

 If we were just using a parallel view volume it would be safe to just set the midpoint
to the average and be done

Aside: Projection and Interpolation(1/3)

 We can’t do that for perspective
transformations since the point
that was originally the midpoint
gets compressed towards the far
clipping plane and isn’t the actual
midpoint anymore

 Another way to say this is that the
color, call it 𝑮, does not
interpolate between points
linearly anymore, so we can’t just
assign the new midpoint the
average color

48 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 However, while 𝐺 does not interpolate linearly, 𝐺/𝑤 does, where 𝑤 is the
homogenous coordinate after being multiplied by our normalizing
transformation, but before being homogenized

 In our case 𝑤 will always be −𝑧

 Knowing this, how can we find the color at this new midpoint?

 When we transform A and B, we get two 𝑤 values, 𝑤𝑎and 𝑤𝑏

 We also know the values of 𝐺𝑎 and 𝐺𝑏

 If we interpolate linearly between
𝐺𝑎

𝑤𝑎
 and

𝐺𝑏

𝑤𝑏
 (which in this case is just

taking the average), we will know the
𝐺

𝑤
 value for the new midpoint

𝐺𝑚

𝑤𝑚

 We can also find the average of 1/𝑤𝑎 and 1/𝑤𝑏 to get 1/𝑤𝑚 by itself

 Dividing
𝐺𝑚

𝑤𝑚
 by

1

𝑤𝑚
, we can get our new value of 𝑮𝒎

Aside: Projection and Interpolation(2/3)

49 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Let’s make this slightly more general

 Say we have a function 𝑓 that represents a property of a point (we used color in the last
example)

 The point we want to apply the function to between points A and B is: 𝟏 − 𝒕 𝑨 + 𝒕𝑩,
(let’s call it 𝑷)

 𝑡 ranges from 0 to 1, and represents the fraction of the way from point A’ to point B’
your point of interest is (in our last example, 𝑡 = .5)

 Goal: Compute 𝒇(𝑷)
𝟏

𝑾𝒕
 = 𝟏 − 𝒕

𝟏

𝒘𝒂
+ 𝒕

𝟏

𝒘𝒃

𝒇 𝑷

𝒘𝒕
= (𝟏 − 𝒕) ∗

𝒇 𝑨

𝒘𝒂
+ 𝒕 ∗

𝒇 𝑩

𝒘𝒃

 So to find the value of our function at the point specified by 𝑡 we compute
𝒇 𝑷

𝒘𝒕
/

𝟏

𝑾𝒕
 =𝒇 𝑷

Aside: Projection and Interpolation(3/3)

50 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 Let’s revisit the setup from this image:

 Say we want the 𝑓(𝐴) = 0, 𝑓(𝐵) = 1,
and thus 𝑓(𝑀) = .5

 After unhinging transformation:

 The new midpoint, 𝑀’, is 4/5 of the way
from 𝐴’ to 𝐵’ , which can be found by
dividing: (𝐴’𝑀’)/(𝐴’𝐵’)

 Like 𝑓 𝑀 , 𝑓(𝑀’) should be .5

 𝑤𝑎 = ¼ and 𝑤𝑏 = 1



𝟏

𝑾𝒕
 = 𝟏−. 𝟖

𝟏

.𝟐𝟓
+. 𝟖(

𝟏

𝟏
) = 1.6



𝒇 𝑷

𝒘𝒕
= 𝟏−. 𝟖 ∗

𝟎

.𝟐𝟓
+. 𝟖 ∗

𝟏

𝟏
 = .8

 𝒇 𝑴′ =
𝒇 𝑷

𝒘𝒕
/

𝟏

𝑾𝒕
= . 𝟓

Proof by example

51 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 We know about camera and object modeling transformations now, let’s
put them together:

 1) 𝑁𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑝𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒

 2) 𝐶𝑀𝑇𝑀 = 𝑆𝑅𝑇

 The CMTM (Composite Modeling Transformation Matrix) is a composite matrix
of all of our object modeling transformations (Scaling, Rotating, Translations,
etc)

 3) 𝐶𝑇𝑀 = 𝑁𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 ∗ 𝐶𝑀𝑇𝑀

 The CTM (Composite Transformation Matrix) is the combination of all our
camera and modeling transformations

 In OpenGL it is referred to as the ModelViewProjection Matrix

 Model: Modeling Transformations

 View: Camera translate/rotate

 Projection: Frustum scaling/unhinging

Final Words (1/2)

52 of 53

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Andries van Dam 10/11/2011 Andries van Dam Andries van Dam

 With our CTM we now have a start to finish view of our rendering process:

 1) Apply the CTM to all points in the scene

 2) Project normalized scene on to film plane (into viewing window)

 3) Resize viewing window to match viewport size

 4) Map colors at (x,y) coordinates of viewing window to (u,v) pixels of
viewport and our rendering is complete!

 Applications in CS123:

 Camtrans:

 You will be computing the normalizing transformation for adjustable camera
settings

 Sceneview:

 You will extend your camtrans code and object transformations to build the
CMTM from a scene-graph and then the CTM for each primitive in the scene

Final Words (2/2)

53 of 53

