
i
i

i
i

i
i

i
i

CHAPTER 9
Orientation

T
he notion of orientation is vitally important in CG when drawing
3D scenes but, unfortunately, often confusing for the beginner.
OpenGL itself makes critical use of orientation to determine the

visible side of a surface. Note that the word “orientation” in the current
context relates to handedness, e.g., clockwise or counter-clockwise, as we
shall see, and has nothing to do with the orientation of a camera as discussed
in Section 4.6.3, where the word meant pose or arrangement. The goal for
this chapter is an understanding of orientation and its utility in CG.

The first section motivates the concept of orientation with a benign
thought experiment. Section 9.2 describes how OpenGL applies orientation
to determine the particular side of a 2D primitive which the viewer sees and
then renders it with that side’s specified material properties. If an object is
specified as a collection of triangles, as in a triangulation, the question then
arises of consistently orienting the collection. This is the topic of Section 9.3.
Section 9.4 describes how OpenGL can make use of orientation to improve
the efficiency of its rendering pipeline by culling certain triangles belonging
to a closed surface, a procedure called back-face culling. In Section 9.5
we see how geometric transformations affect the perceived orientation of a
primitive. We conclude in Section 9.6.

Although the three are conceptual in nature without a lot of excitement
by way of programming, this chapter and the two preceding ones form a
good part of the geometric core of CG.

9.1 Motivation

A thought experiment:
You and your friend, environmentally-conscious types both, are headed

separately toward a meeting of the Tree Huggers’ Union. The meeting is 305



i
i

i
i

i
i

i
i

Chapter 9

Orientation

out in the open in a field with, well, lots of trees and no other landmarks.
There is, though, a triangle of long helium-filled balloons with the letters T,
H and U at the corners floating high above the meeting site. See Figure 9.1
(ignore superman with a spray can and the sheet in the middle for now).

You
Friend

THU is CW THU is CCW

T

U
H

Figure 9.1: Meeting of the Tree Huggers’ Union.

Now, you want to meet up with your friend before running into the crowd.
So while walking you call him on his cell phone to try to figure out how he
is currently situated with respect to you. How do you do this?

As both can see the balloons, a start is to determine if you are on the
same side or not. Unfortunately, the letters at the corners (carefully chosen,
of course!) are of no help as they each look the same from either side.

What you can do, though, is ask your friend, “Does the vertex sequence
THU – that’s T→H→U – appear CW (clockwise) or CCW (counter-
clockwise) from where you are?” If the orientation appears the same for
both, then you are on the same side of the balloons; if not, you are on
opposite sides.

OpenGL, as well, must determine for each triangle if the viewer currently
sees one side or the other. And, as we’ll see, it does so in an exactly similar
manner. We’ll understand as well the reason for this (seemingly) roundabout
method. Why does OpenGL need to distinguish sides in the first place?
Because they may have properties (e.g., outlined/filled, color, etc.) specified
differently by the programmer and OpenGL is obliged to display accordingly.

P
Q Rt1

t2

Figure 9.2: A bowl of
two colors.

For example, if the inside of a triangulated bowl is green and the outside
red, then the two sides of every triangle composing it are colored differently
as well. Given a viewpoint, OpenGL must determine the visible side of each
triangle and render it with the appropriate color. See Figure 9.2. From the
current (reader’s) viewpoint the red side of triangle t1 and the green side of306



i
i

i
i

i
i

i
i

Section 9.2

OpenGL Procedure

to Determine Front

and Back Faces

triangle t2 are visible. If the viewpoint travels 180◦ around the bowl, then
the visible side is reversed for both.

9.2 OpenGL Procedure to Determine Front
and Back Faces

Here then is the procedure that OpenGL follows.

(1) First, it obtains the vertex orders of each 2D primitive from the code.
For example, the declaration

glBegin(GL TRIANGLES);

v0; v1; v2; v3; v4; v5;

glEnd();

specifies the order of the vertices of the first triangle as v0, v1, v2

and that of the second as v3, v4, v5 (these orders are part of the
GL TRIANGLES definition; see Section 2.6). The declaration

glBegin(GL TRIANGLE STRIP);

v0; v1; v2; v3; v4; v5;

glEnd();

specifies the vertex orders of the four successive triangles in the strip as
v0, v1, v2 and v1, v3, v2 and v2, v3, v4 and v3, v5, v4. And,
similarly, for the other 2D primitives.

(2) Second, OpenGL determines for each component primitive if the order
of its vertices as determined in Step (1) is perceived as CW or CCW
by the viewer. This is said to be the orientation of the primitive with
respect to the viewer (keep in mind that orientation as just defined
has nothing to do with the identical word used to describe the pose of
a camera in Section 4.6.3).

OpenGL can make this determination because it knows both the
location of the viewer – at the origin in case of perspective projection
and at some point on the viewing face (it doesn’t matter which) in
case of orthographic projection – and those of the primitive’s vertices.
For example, in Figure 9.3, if the vertex order of the triangle is P,Q,R,
then it is perceived as CCW by the viewer. We’ll see later in this section
a specific algorithm to output the orientation given these respective
inputs.

Viewer

P

Q R

Figure 9.3: PQR is
oriented CCW to the
viewer, so it’s rendered
according to properties for
the front face.

(3) Finally, those component primitives whose orientation the viewer
perceives as CCW are presumed to be front-facing , i.e., the viewer
is presumed by OpenGL to see their front faces, while those whose 307



i
i

i
i

i
i

i
i

Chapter 9

Orientation

orientation is perceived as CW back-facing . This is actually the default,
which can be flipped with a glFrontFace(GL CW) call. Front-facing
components are rendered with properties specified for their front faces,
while back-facing ones with those for their back faces.

For example, if the vertex order of triangle t1 in Figure 9.2 happens to
be P,Q,R and the viewer is the reader, then OpenGL determines that
this triangle is oriented CCW with respect to the viewer, who sees,
therefore, the front face. Accordingly, t1 is rendered red, assuming
that the code indeed specifies that front-facing triangles are red. In
Figure 9.3 we show the red rendering on the viewing face itself,
pretending that it is the OpenGL window.

The reader may wonder at this point why one needs to invoke a particular
viewpoint to distinguish sides. In real life the inside of the bowl (which is
absolute and does not depend on the location of any viewer) is painted green
and the outside (absolute as well) red. Subsequently, a viewer’s perception
is determined simply by the laws of nature, in particular, how light from the
bowl travels to her eyes.

Why doesn’t OpenGL try and simulate this phenomenon? The answer
is that, yes, it is true that the inside and outside of the bowl are absolute
irrespective of the viewer, but only after the entire bowl has been created ! If
one breaks off a tiny piece of the bowl – a tiny flat triangle, if you will – and
shows it to someone who has never seen the whole, then it is not possible
for that person to decide which side of the piece originally lay on the bowl’s
inside and which the outside (Figure 9.4). OpenGL has no global notion of
objects either as it simply draws them triangle by triangle, and, therefore,
requires direction from the programmer as to which side of each triangle is
which.

?

Figure 9.4: Was the inside of the bowl red or green?

The three-step procedure described above provides exactly a mechanism
for such direction. Let’s return to the thought experiment at the start of the
section and assume that there is a giant triangular sheet of paper attached
to the balloons (as in Figure 9.1) which you know is colored differently on
either side. Then, of course, you could ask your friend, “What color do308



i
i

i
i

i
i

i
i

Section 9.2

OpenGL Procedure

to Determine Front

and Back Faces

you see up there?” instead of “Does the vertex sequence THU – that’s
T→H→U – appear CW or CCW from where you are?” The point is that the
two questions are exactly equivalent in that those who perceive a particular
orientation see a particular side and vice versa.

Continuing with this line of thought, suppose as you are walking that
you notice a man high up about to spray-paint the sides of the triangular
paper and he has a cell phone which you can call. You could then either ask
him to arbitrarily paint one side green and the other red, which would at
least serve the purpose of locating your friend, or you could ask him to paint
your side green and the other red, which allows you (the programmer) to
dictate that “CCW-seers” see red and “CW-seers” green.

There are three points worth emphasizing:

(a) First, “front-facing” and “back-facing” are merely terms to call one
side and the other. There is no intrinsic front or back of an OpenGL
triangle or other 2D primitive. If we didn’t use these terms, we would
have to say things like “the side which the viewer sees when the order
v0v1v2 appears clockwise from the origin”.

(b) A real-life 2D object (like a piece of paper) actually has two physical
sides regardless of which an observer sees. This is not true of OpenGL,
whose objects are all, of course, virtual. An OpenGL 2D primitive such
as a triangle consists simply of data, e.g., vertex coordinates, color
values, etc., residing inside the computer.

When asked to draw, OpenGL determines if the viewer is supposed to
see the front or the back face according to the procedure described
earlier and then displays the primitive with properties specified for
that face. And, what it displays, of course, is simply a set of colored
pixels in the OpenGL window (which has only one side!).

(c) OpenGL draws primitives one by one as they occur in the code. It
has no global understanding of the objects formed by these primitives
together .

Exercise 9.1. If a triangle t is specified by

glBegin(GL TRIANGLES); v0; v1; v2; glEnd();

where the vertices are as below, in each case determine which side of
t, front or back, a viewer at the origin sees, assuming the default of
glFrontFace(GL CCW):

(a) v0 = (1, 0, 0), v1 = (0, 1, 0), v2 = (0, 0, 1)

Answer :

x

y

z

v1

o v0

v2

Figure 9.5: v0v1v2
appears CW from O.

The back face because v0v1v2 appears CW from O. See Figure 9.5.

(b) v0 = (0, 1, 0), v1 = (1, 0, 0), v2 = (0, 0, 1) 309



i
i

i
i

i
i

i
i

Chapter 9

Orientation

(c) v0 = (−1, 0, 0), v1 = (0,−1, 0), v2 = (0, 0,−1)

(d) v0 = (1, 1, 1), v1 = (1, 1,−2), v2 = (−1, 1,−2)

Exercise 9.2. A tacit assumption in all of the preceding discussion is that
a viewer at a particular location sees, in fact, only one side – front or back –
of a 2D primitive. For example, if a viewer could see both sides of a triangle,
then is it front or back facing (or both)? Moreover, how then would one
reconcile the situation with the three-step procedure at the start of the
section, which purports to determine a unique orientation for the primitive?

So, is the assumption that only one side is visible a valid one?
Hint : A triangle is always flat (planar), while a quad or polygon should be
specified to be so.

Definition 9.1. Two orders of the vertices of a polygon are said to be
equivalent if one can be cyclically rotated into the other.

v0

v1v2

v3

q

Figure 9.6: A
quadrilateral.

It follows that the sequence of vertices around any given polygon can
be written in exactly two inequivalent orders. For example, the sequence
of vertices around the quadrilateral q of Figure 9.6 can be written in eight
different ways:

v0v1v2v3 v1v2v3v0 v2v3v0v1 v3v0v1v2

v0v3v2v1 v3v2v1v0 v2v1v0v3 v1v0v3v2

The orders on the top line are all equivalent to each other, while those
on the second all to each other as well, and none on the first equivalent to
any on the second. The notion of equivalence is important precisely because
of the fact that a viewer on one side of a polygon perceives equivalent orders
of vertices as either all CW or all CCW.

Experiment 9.1. Replace the polygon declaration part of square.cpp
with (Block 1∗):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

This simply adds the two glPolygonMode() statements to the original
square.cpp. In particular, they specify that front-facing polygons are to be
drawn in outline and back-facing ones filled. Now, the order of the vertices

∗To cut-and-paste you can find the block in text format in the file
chap9codeModifications.txt in the directory Code/CodeModifications.310



i
i

i
i

i
i

i
i

Section 9.2

OpenGL Procedure

to Determine Front

and Back Faces

is (20.0, 20.0, 0.0), (80.0, 20.0, 0.0), (80.0, 80.0, 0.0), (20.0, 80.0, 0.0), which
appears CCW from the viewing face. Therefore, the square is drawn in
outline.

Next, rotate the vertices cyclically so that the declaration becomes
(Block 2):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

As the vertex order remains equivalent to the previous one, the square is
still outlined.

Reverse the listing next (Block 3):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The square is drawn filled as the vertex order now appears CW from the
front of the viewing box. End

Exercise 9.3. (Programming) If the polygon declaration part of
square.cpp is replaced with the following piece of code (Block 4), then
is an outlined or filled triangle seen? Try to answer first without running
the program.

glFrontFace(GL CW);

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLES);

glVertex3f(80.0, 10.0, -1.0);

glVertex3f(90.0, 75.0, 1.0);

glVertex3f(15.0, 10.0, 0.5);

glEnd();

Remark 9.1. Before we get to Chapter 11 and learn about material properties
and how to color the sides of an object differently, we’ll have to do with
distinguishing them by the unglamorous means of drawing one in outline
and the other filled. 311



i
i

i
i

i
i

i
i

Chapter 9

Orientation

Algorithm to Decide the Orientation Perceived by a Viewer

An algorithmic question, that we did not address then, arose earlier in
this section in Step (2) of OpenGL’s procedure to determine the side of a
primitive a viewer sees: given a viewpoint and a primitive with its vertices
ordered, how to decide if the given order appears CW or CCW? We invite
the reader to answer this for herself in the following exercise, with a fair
amount of input from our end.

Exercise 9.4. Assume that the viewpoint is at the origin O and that the
vertices of a triangle are P = (x1, y1, z1), Q = (x2, y2z2) and R = (x3, y3, z3).
See Figure 9.7. Determine if the viewer at O perceives the order PQR as
CCW or CW.

z

y

xO

n = PQ x PR

P

p

Q

R

Figure 9.7: The plane p contains the triangle PQR: the orientation of PQR depends
on which side of p the viewer is located.

If you don’t do the exercise do at least read the conclusion below in terms of
the determinant D.
Suggested approach: Supposing, first, that P , Q and R are not collinear, i.e.,
PQR is a non-degenerate triangle, determine the equation ax+by+cz+d = 0
of the unique plane p containing P , Q and R.

A point (x, y, z) lies on p if ax + by + cz + d = 0. A point lies in one
half-space of p, i.e., on one side of p or the other, depending on whether
ax+ by + cz + d < 0 or ax+ by + cz + d > 0. In particular, one half-space
consists of all points (x, y, z) such that ax+ by + cz + d < 0, and the other
such that ax+ by + cz + d > 0. (To be particular, we are talking of open
half-spaces excluding the plane itself.)

Observe that a viewer located on p sees triangle PQR “edge-on”, in
other words, as a line and not a triangle, so the question of orientation does
not arise. Moreover, the orientation of PQR perceived by a viewer not on
p depends on the half-space he is in: all viewers in one half-space perceive
CCW, while those in the other CW.

Therefore, the perception at viewpoint O, in particular, depends on
whether O lies on p or, if not, on which side.

Finally, conclude the following:312



i
i

i
i

i
i

i
i

Section 9.3

Consistently

Oriented

Triangulation

Let D be the determinant ∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
1. If D = 0, then either (a) P , Q and R are collinear, in which case PQR

is a degenerate triangle and the question of an orientation of PQR
does not arise, or (b) O lies on the plane p containing P , Q and R,
so that the viewer at O sees triangle PQR edge-on and, again, the
question of orientation does not arise.

2. If D > 0, then the viewer at O perceives the order PQR as CW.

3. If D < 0, then the viewer at O perceives the order PQR as CCW.

Another approach is with the use of cross-products, by observing that
n = PQ× PR is normal to the plane p and, in fact, points to the half-space
where observers perceive PQR as CCW. Therefore, if the eye direction
vector PO makes an angle of less than 90◦ with n – placing it in the same
half-space as n – then the viewer at O perceives the order PQR as CCW; if
greater, then as CW (in the configuration depicted in the figure the angle
is, in fact, greater than 90◦). Whether the angle between the two vectors n
and PO is greater or less than 90◦ can be decided from the sign of the dot
product n · PO.

Note: If you’re not familiar with the dot or cross-product of vectors, we
have short sidebars Sections 4.6.1 and 5.4.3, respectively.

Exercise 9.5. Does a viewer at the origin perceive the order PQR of the
points P = (−1, 2, 0), Q = (3, 2, 2) and R = (−3,−8, 6) as CW or CCW?

Exercise 9.6. Does a viewer at the point O′ = (1, 3, 2) perceive the order
PQR of the points P = (3, 7, 5), Q = (4, 1, 2) and R = (0, 1, 2) as CW or
CCW?
Hint : Translate all points by (−1,−3,−2) to bring O′ to the origin and
then apply the result of Exercise 9.4.

Exercise 9.7. Relate Lemma 5.1 to the answer to Exercise 9.4.

9.3 Consistently Oriented Triangulation

The notion of orientation gets more interesting when one considers a collection
of triangles, as in a triangulation. The issue arises then of consistency . We
have the following definition: 313



i
i

i
i

i
i

i
i

Chapter 9

Orientation

Definition 9.2. Suppose an order is given of the vertices of each triangle
belonging to some triangulation T of an object X. T is said to be consistently
oriented if any two triangles of T which share an edge order the shared edge
oppositely; otherwise, T is inconsistently oriented .

Figure 9.8(a) shows a consistently oriented triangulation. For example,
the edge shared by the two triangles v0v1v2 and v1v3v2 is ordered v1v2 by
the first and v2v1 by the second. The triangulation of Figure 9.8(b) is not
consistently oriented as the edge shared by the two leftmost triangles is
ordered v1v2 by both.

v0

v0

v1v1

v4

v2v2

v5v4

v7

v8

v6
v3v3

(a) (b)

Figure 9.8: (a) Consistently oriented triangulation (b) Inconsistently oriented
triangulation.

Intuitively, triangles in a consistently oriented triangulation of X appear
oriented either all CW or all CCW “looking at one side of X”. What exactly
does this mean?

A

H

T

B

C

U

Figure 9.9: OpenGL spray-painting bots.

Let’s return again to the earlier thought experiment at the point when
you were about to call the painter. Looking up again you make out that the
large triangular sheet is actually composed of four smaller ones and that
there’s a painter for each, so you’ll have to call them separately (Figure 9.9).
Moreover, all that you are allowed to specify to each is the order of his
triangle’s vertices – e.g., you can specify to the painter at the top his vertex314



i
i

i
i

i
i

i
i

Section 9.3

Consistently

Oriented

Triangulation

order as either C→A→T or T→A→C – for these painters are nothing but
OpenGL bots that have been programmed to do the following:

Determine if you perceive the order that you just called in as CCW or
CW; if CCW then paint your side red, if not green.

Clearly, the onus then is on you to call in the four orders so that the
small triangles are consistently oriented or else your side of the large triangle
will be colored disparately.

Are we saying that an observer at a given position can see only one side
of a consistently oriented surface? Not at all. For example, the man
in Figure 9.10 can see parts of both sides of the consistently oriented
triangulated wall. However, he sees a change in side, according to the
CW/CCW rule, only across boundary edges, never across an internal edge
– which is physically authentic. If the wall were not consistently oriented,
though, then this would not be the case. For example, the reader using the
CW/CCW rule would believe herself to be seeing two different sides of the
polygon of Figure 9.8(b) along the edge v1v2.

Figure 9.10: Man looking at both sides of a consistently oriented wall.

Recall again the bowl of Figure 9.2 with its inside green and outside red.
If it’s created in OpenGL as a triangulation, the programmer should then
(a) specify that all front faces are of one color and back faces of the other,
and (b) ensure consistent orientation of the triangulation so that the entire
inside and entire outside appear of the desired colors, respectively.

In fact, the preceding rule should apply to all surfaces that we create.
Here’s what can happen if it doesn’t.

Experiment 9.2. Replace the polygon declaration part of square.cpp
with (Block 5)

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLES);

// CCW

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0); 315



i
i

i
i

i
i

i
i

Chapter 9

Orientation

glVertex3f(50.0, 80.0, 0.0);

//CCW

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

// CW

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

// CCW

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The specification is for front faces to be outlined and back faces filled,
but, as the four triangles are not consistently oriented, we see both outlined
and filled triangles (Figure 9.11(a)). End

(a) (b)

Figure 9.11: Screenshots for (a) Experiment 9.2 and (b) Experiment 9.3.

Experiment 9.3. Continuing the previous experiment, next replace the
polygon declaration part of square.cpp with (Block 6):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLE STRIP);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);316



i
i

i
i

i
i

i
i

Section 9.3

Consistently

Oriented

Triangulation

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The resulting triangulation is the same as before, but, as it’s consistently
oriented, we see only outlined front faces. (Figure 9.11(b)). End

In the next experiment we see an example of a consistently oriented
object, both sides of which are visible.

Experiment 9.4. Run squareOfWalls.cpp, which shows four rectangular
walls enclosing a square space. The front faces (the outside of the walls)
are filled, while the back faces (the inside) are outlined. Figure 9.12(a) is a
screenshot.

The triangle strip of squareOfWalls.cpp consists of eight triangles which
are consistently oriented, because triangles in a strip are always consistently
oriented. End

(a) (b)

Figure 9.12: Screenshots of (a) squareOfWalls.cpp and (b) threeQuarterSphere.cpp.

Experiment 9.5. Run threeQuarterSphere.cpp, which adds one half of
a hemisphere to the bottom of the hemisphere of hemisphere.cpp. The
two polygon mode calls ask the front faces to be drawn filled and back ones
outlined. Turn the object about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’
and ‘Z’.

Unfortunately, the ordering of the vertices is such that the outside of
the hemisphere appears filled, while that of the half-hemisphere outlined.
Figure 9.12(b) is a screenshot. Likely, this would not be intended in a
real design application where one would, typically, expect a consistent look
throughout one side.

Such mixing up of orientation is not an uncommon error when assembling
an object out of multiple pieces. Fix the problem in the case of
threeQuarterSphere.cpp in four different ways: 317



i
i

i
i

i
i

i
i

Chapter 9

Orientation

(a) Replace the loop statement

for(i = 0; i <= p/2; i++)

of the half-hemisphere with

for(i = p/2; i >= 0; i--)

to reverse its orientation.

(b) Interchange the two glVertex3f() statements of the half-hemisphere,
again reversing its orientation.

(c) Place the additional polygon mode calls

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

before the half-hemisphere so that its back faces are drawn filled.

(d) Call

glFrontFace(GL CCW)

before the hemisphere definition and

glFrontFace(GL CW)

before the half-hemisphere to change the front-face default to be CW-
facing for the latter.

Of the four, either (a) or (b) is to be preferred because they go to the
source of the problem and repair the object, rather than hide it with the
help of state variables, as do (c) and (d). End

It is not hard to orient consistently when creating objects in OpenGL
because the primitives themselves tend to help. Verify from the definition of
the drawing primitives in Section 2.6 that the set of triangles created by a call
to GL TRIANGLE STRIP or GL TRIANGLE FAN is, in fact, consistently oriented.
Therefore, a GL TRIANGLE STRIP or a GL TRIANGLE FAN call guarantees
consistent orientation, at least for that particular set of triangles, so it’s a
good idea to use as many such as possible.318



i
i

i
i

i
i

i
i

Section 9.4

Culling Obscured

Faces

Klein bottle
(sort of)

Möbius band

180o

Figure 9.13: Non-orientable surfaces.

Non-Orientable Surfaces

Before concluding this section, mention must be made of non-orientability.
There do exist surfaces which can be triangulated but never consistently
oriented. The most famous two, the Möbius band and Klein bottle, are
depicted in Figure 9.13. Such surfaces are said to be non-orientable. Surfaces
for which consistently oriented triangulations do exist are orientable.

Experiment 9.6. Make a Möbius band as follows.
Take a long and thin strip of paper and draw two equal rows of triangles

on one side to make a triangulation of the strip as in the bottom of Figure 9.13.
Turn the strip into a Möbius band by pasting the two end edges together
after twisting one 180◦. The triangles you drew on the strip now make a
triangulation of the Möbius band.

Try next to orient the triangles by simply drawing a curved arrow in
each, in a manner such that the entire triangulation is consistently oriented.
Were you able to?! End

We have less to worry about with the Klein bottle, at least as far as
real-world applications are concerned, because it cannot be created in 3-space.
It needs at least 4D space to hold it properly.

Further formalization of the notion of orientability requires knowledge of
topology, but what we have discussed so far is ample from the point of view
of first-level computer graphics. By the way, in case non-orientability looks
like a potential can of worms, rest assured you will almost never encounter
a non-orientable surface in practical applications.

9.4 Culling Obscured Faces

Consider a closed surface such as a sphere, cube or torus, i.e., a surface that
bounds a solid. See Figure 9.14. If the surface is opaque, then a viewer 319



i
i

i
i

i
i

i
i

Chapter 9

Orientation

outside of it sees only one side, no matter where she is located, while a
viewer inside sees the other.

P
RQ

Figure 9.14: First three closed surfaces, next two non-closed (the sphere is not shaded
to reveal the inside). The green back face of a triangle is not visible from outside the
sphere.

Such a situation is replicated in OpenGL by a consistently oriented
triangulation of the given closed surface. For example, suppose the outside
of the sphere of Figure 9.14 is painted red, while the inside green. Suppose,
too, it’s consistently triangulated so that the orientation of the triangle PQR
appears CCW, as shown in the figure, to a viewer outside the sphere (e.g., the
reader). Then any viewer outside the sphere sees only front-facing (assuming
the default of CCW = front-facing) triangles and never any back-facing
ones (e.g., the green back face of the other triangle in the figure) because,
for such a viewer, all back-facing triangles are hidden behind front-facing
ones. The precise opposite is true for viewers inside the sphere who see only
back-facing triangles.

Now, OpenGL cannot know if a surface is closed or not because this is a
global decision to be made after the entire surface has been drawn (e.g., if
even one triangle were missing from the sphere then it would no longer be
closed). Closedness cannot, therefore, be determined by an API which simply
draws one triangle after another. As a result, what happens, for example,
in the case of the sphere above with the viewer outside, is that OpenGL
processes every triangle and then ends up discarding back-facing ones at
the time of hidden surface removal, because it’s only then that OpenGL
discovers back-facing triangles to be obscured by front-facing ones.

Therefore, knowing that a viewer located outside the closed sphere can
see only front-facing triangles, the programmer can help OpenGL be more
efficient by directing it to not process any further a triangle once it’s been
determined to be back-facing. This is called back-face culling or polygon
culling .

Experiment 9.7. Run sphereInBox1.cpp, which draws a green ball
inside a red box. Press up or down arrow keys to open or close the box.
Figure 9.15(a) is a screenshot of the box partly open.

Ignore the statements to do with lighting and material properties
for now. The command glCullFace(face) where face can be GL FRONT,
GL BACK or GL FRONT AND BACK, is used to specify if front-facing or back-320



i
i

i
i

i
i

i
i

Section 9.4

Culling Obscured

Faces

facing or all polygons are to be culled. Culling is enabled with a call to
glEnable(GL CULL FACE) and disabled with glDisable(GL CULL FACE).

You can see at the bottom of the drawing routine that back-facing
triangles of the sphere are indeed culled, which makes the program more
efficient because these triangle are hidden in any case behind the front-facing
ones.

Comment out the glDisable(GL CULL FACE) call and open the box.
Oops, some sides of the box have disappeared, as you can see in Figure 9.15(b).
The reason, of course, is that the state variable GL CULL FACE is set when
the drawing routine is called the first time so that all back-facing triangles,
including those belonging to the box, are eliminated on subsequent calls.

End

(a) (b) (c)

Figure 9.15: Screenshots for (a) Experiment 9.7 (b) Experiment 9.7 (disable culling
commented out) (c) Experiment 9.8.

Experiment 9.8. Here’s a trick often used in 3D design environments like
Maya and Studio Max to open up a closed space. Suppose you’ve finished
designing a box-like room and now want to work on objects inside it. A
good way to do this is to remove only the walls that obscure your view of the
inside and leave the rest, but the obscuring walls are either all front-facing
or all back-facing, so a cull will do the trick.

Insert the pair of statements

glEnable(GL CULL FACE);

glCullFace(GL FRONT);

in the drawing routine of sphereInBox1.cpp just before glDrawElements().
The top and front sides of the box are not drawn, leaving its interior visible.
Figure 9.15(c) is a screenshot. End

321



i
i

i
i

i
i

i
i

Chapter 9

Orientation

9.5 Transformations and the Orientation of
Geometric Primitives

We know now how OpenGL uses the vertex order to determine the orientation
of a primitive perceived by a viewer and, accordingly, the face seen, front
or back. A reader, recollecting the theory of transformations, particularly
Section 5.4.7 about orientation-preserving Euclidean transformations (i.e.,
rigid transformations) and orientation-reversing ones, may have already
thought about and guessed the answer to the following question: how
do these transformations affect the perceived orientation of a geometric
primitive?

Answer : An orientation-preserving Euclidean transformation preserves
the viewer’s perceived orientation of the primitive, while an orientation-
reversing one reverses it. An experiment will help make this clear.

(a) (b) (c)

Figure 9.16: Screenshots from Experiment 9.9: (a) Original (b) Wrongly reflected (c)
Correctly reflected.

Experiment 9.9. Run squareOfWallsReflected.cpp, which is square-

OfWalls.cpp with the following additional block of code, including a
glScalef(-1.0, 1.0, 1.0) call, to reflect the scene about the yz-plane.

// Block to reflect the scene about the yz-plane.

if (isReflected)

{
. . .
glScalef(-1.0, 1.0, 1.0);

// glFrontFace(GL CW);

}
else

{
. . .
// glFrontFace(GL CCW);

}322



i
i

i
i

i
i

i
i

Section 9.6

Summary, Notes and

More Reading

The original walls are as in Figure 9.16(a). Press space to reflect. Keeping
in mind that front faces are filled and back faces outlined, it seems that
glScalef(-1.0, 1.0, 1.0) not only reflects, but turns the square of walls
inside out as well, as you can see in Figure 9.16(b)

Well, of course! The viewer’s (default) agreement with OpenGL is that
if she perceives a primitive’s vertex order as CCW, then she is shown the
front, if not the back. Reflection about the yz-plane, an orientation-reversing
Euclidean transformation, flips all perceived orientations, so those primitives
whose front the viewer used to see now have their back to her, and vice
versa.

We likely want the reflection to transform the primitives but not
simultaneously change their orientation. This is easily done by revising
the viewer’s agreement with OpenGL with a call to glFrontFace(GL CW).
Accordingly, uncomment the two glFrontFace() statements in the reflection
block. Now the reflection looks right, as shown in Figure 9.16(c). The
primitives are clearly still being reflected about the yz-plane, but front and
back stay same. End

9.6 Summary, Notes and More Reading

In this chapter we learned how OpenGL uses orientation to determine which
side of a 2D primitive is visible and to render it accordingly. We saw as
well the importance of consistently orienting a triangulation in order to
avoid disparate rendering. The technique of back-face culling to improve
efficiency in rendering a closed surface was a useful addition to our repertoire.
We learned as well how orientation-preserving and orientation-reversing
transformations impact the orientation of a primitive.

Although our discussion of orientation at the elementary level is ample
for the practical programmer, a fairly sophisticated mathematical setting
is required to formalize the concept of the orientability of a surface. The
interested reader is urged to look up an introductory topology text. The
two by Munkres [94, 95], as well as the one by Singer & Thorpe [128], are
classics. Incidentally, the mathematically-inclined student of CG will find
many things of use in topology. One has only to scan the latest ACM
SIGGRAPH papers [125] to see the heavy application of topological ideas in
cutting-edge CG.

323


