
Chapter 3D viewing November 23, 1999 page 1

(for ECE660, Fall, 1999)

CHAPTER 7 Three-Dimensional Viewing
I am a camera with its shutter open, quite passive, recording, not thinking.

Christopher Isherwood, A Berlin Diary

Goals of the Chapter
• To develop tools for creating and manipulating a “camera” that produces pictures of a 3D scene.
• To see how to “fly” a camera through a scene interactively, and to make animations.
• To learn the mathematics that describe various kinds of projections.
• To see how each operation in the OpenGL graphics pipeline operates, and why it is used.
• To build a powerful clipping algorithm for 3D objects.
• To devise a means for producing stereo views of objects.

Preview
Section 7.1 provides an overview of the additional tools that are needed to build an application that lets a
camera “fly” through a scene. Section 7.2 defines a camera that produces perspective views, and shows
how to make such a camera using OpenGL. It introduces aviation terminology that helps to describe ways
to manipulate a camera. It develops some of the mathematics needed to describe a camera’s orientation
through a matrix. Section 7.3 develops the Camera class to encapsulate information about a camera, and
develops methods that create and adjust a camera in an application.

Section 7.4 examines the geometric nature of perspective projections, and develops mathematical tools to
describe perspective. It shows how to incorporate perspective projections in the graphics pipeline, and
describes how OpenGL does it. An additional property of homogeneous coordinates is introduced to
facilitate this. The section also develops a powerful clipping algorithm that operates in homogeneous
coordinate space, and shows how its efficiency is a result of proper transformations applied to points
before clipping begins. Code for the clipper is given for those programmers who wish to develop their
own graphics pipeline.

Section 7.5 shows how to produce stereo views of a scene in order to make them more intelligible.
Section 7.6 develops a taxonomy of the many kinds of projections used in art, architecture, and
engineering, and shows how to produce each kind of projection in a program. The chapter closes with a
number of Case Studies for developing applications that test the techniques discussed.

7.1 Introduction.
We are already in a position to create pictures of elaborate 3D objects. As we saw in Chapter 5, OpenGL
provides tools for establishing a camera in the scene, for projecting the scene onto the camera’s
viewplane, and for rendering the projection in the viewport. So far our camera only produces parallel
projections. In Chapter 6 we described several classes of interesting 3D shapes that can be used to model
the objects we want in a scene, and through the Mesh class we have ways of drawing any of them with
appropriate shading.

So what’s left to do? For greater realism we want to create and control a camera that produces
perspective projections. We also need ways to take more control of the camera’s position and orientation,
so that the user can “fly” the camera through the scene in an animation. This requires developing more
controls than OpenGL provides. We also need to achieve precise control over the camera’s view volume,
which is determined in the perspective case as it was when forming parallel projections: by a certain
matrix. This requires a deeper use of homogeneous coordinates than we have used so far, so we develop
the mathematics of perspective projections from the beginning, and see how they are incorporated in the
OpenGL graphics pipeline. We also describe how clipping is done against the camera’s view volume,
which again requires some detailed working with homogeneous coordinates. So we finally see how it is
all done, from start to finish! This also provides the underlying theory for those programmers who must
develop 3D graphics software without the benefit of OpenGL.

7.2. The Camera Revisited.
It adds a precious seeing to the eye.

Chapter 3D viewing November 23, 1999 page 2

William Shakespeare, Love's Labours Lost

In Chapter 5 we used a camera that produces parallel projections. Its view volume is a parallelepiped
bounded by six walls, including a near plane and a far plane. OpenGL also supports a camera that creates
perspective views of 3D scenes. It is similar in many ways to the camera used before, except that its view
volume has a different shape.

Figure 7.1 shows its general form. It has an eye positioned at some point in space, and its view volume is
a portion of a rectangular pyramid, whose apex is at the eye. The opening of the pyramid is set by the
viewangle θ (see part b of the figure). Two planes are defined perpendicular to the axis of the pyramid:
the near plane and the far plane. Where these planes intersect the pyramid they form rectangular
windows. The windows have a certain aspect ratio, which can be set in a program. OpenGL clips off any
parts of the scene that lie outside the view volume. Points lying inside the view volume are projected
onto the view plane to a corresponding point P’ as suggested in part c. (We shall see that it doesn’t
matter which plane one uses as the view plane, so for now take it to be the near plane.) With a
perspective projection the point P’ is determined by finding where a line from the eye to P intersects the
view plane. (Contrast this with how a parallel projection operates.)
a). b). c).

Figure 7.1. A camera to produce perspective views of a scene.

Finally, the image formed on the view plane is mapped into the viewport as shown in part c, and becomes
visible on the display device.

7.2.1. Setting the View Volume.
Figure 7.2 shows the camera in its default position, with the eye at the origin and the axis of the pyramid
aligned with the z-axis. The eye is “looking” down the negative z-axis.

Figure 7.2. the camera in its default position.

OpenGL provides a simple way to set the view volume in a program. Recall that the shape of the
camera’s view volume is encoded in the projection matrix that appears in the graphics pipeline. The
projection matrix is set up using the function gluPerspective () with four parameters. The sequence
to use is:

glMatrixMode(GL_PROJECTION); // make the projection matrix current
glLoadIdentity(); // start with a unit matrix
gluPerspective(viewAngle, aspectRatio, N, F); // load the appropriate
values

The parameter viewAngle , shown as θ in the figure, is given in degrees, and sets the angle between the
top and bottom walls of the pyramid. aspectRatio sets the aspect ratio of any window parallel to the
xy-plane. The value N is the distance from the eye to the near plane, and F is the distance from the eye to
the far plane. N and F should be positive. For example, gluPerspective(60.0, 1.5, 0.3,
50.0) establishes the view volume to have a vertical opening of 60o, with a window that has an aspect

Chapter 3D viewing November 23, 1999 page 3

ratio of 1.5. The near plane lies at z = -0.3 and the far plane lies at z = -50.0. We see later exactly what
values this function places in the projection matrix.

7.2.2. Positioning and pointing the camera.
In order to obtain the desired view of a scene, we move the camera away from its default position shown
in Figure 7.2, and aim it in a particular direction. We do this by performing a rotation and a translation,
and these transformations become part of the modelview matrix, as we discussed in Section 5.6.

We set up the camera’s position and orientation in exactly the same way as we did for the parallel-
projection camera. (The only difference between a parallel- and perspective-projection camera resides in
the projection matrix, which determines the shape of the view volume.) The simplest function to use is
again gluLookAt (), using the sequence

glMatrixMode(GL_MODELVIEW); // make the modelview matrix current
glLoadIdentity(); // start with a unit matrix
gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y,
up.z);

As before this moves the camera so its eye resides at point eye , and it looks towards the point of interest
look . The “upward” direction is generally suggested by the vector up, which is most often set simply to
(0, 1, 0). We took these parameters and the whole process of setting the camera pretty much for granted
in Chapter 5. In this chapter we will probe deeper, both to see how it is done and to take finer control
over setting the camera. We also develop tools to make relative changes to the camera’s direction, such
as rotating it slightly to the left, tilting it up, or sliding it forward.

The General camera with arbitrary orientation and position.
A camera can have any position in the scene, and any orientation. Imagine a transformation that picks up
the camera of Figure 7.2 and moves it somewhere in space, then rotates it around to aim it as desired. We
need a way to describe this precisely, and to determine what the resulting modelview matrix will be.

It will serve us well to attach an explicit coordinate system to the camera, as suggested by Figure 7.3.
This coordinate system has its origin at the eye, and has three axes, usually called the u-, v-, and n- axes,
that define its orientation. The axes are pointed in directions given by the vectors u, v, and n as shown in
the figure. Because the camera by default looks down the negative z-axis, we say in general that the
camera looks down the negative n-axis, in the direction -n. The direction u points off “to the right of”
the camera, and direction v points “upward”. Think of the u-, v-, and n-axes as “clones” of the x-,y-, and
z-axes of Figure 7.2, that are moved and rotated as we move the camera into position.

Figure 7.3. Attaching a coordinate system to the camera.

Position is easy to describe, but orientation is difficult. It helps to specify orientation using the flying
terms pitch, heading, yaw, and roll , as suggested in Figure 7.4. The pitch of a plane is the angle that its
longitudinal axis (running from tail to nose and having direction -n) makes with the horizontal plane. A
plane rolls by rotating about this longitudinal axis; its roll is the amount of this rotation relative to the
horizontal. A plane’s heading is the direction in which it is headed. (Other terms are azimuth and
bearing.) To find the heading and pitch given n, simply express -n in spherical coordinates, as shown in
Figure 7.5. (See Appendix 2 for a review of spherical coordinates.) The vector -n has longitude and
latitude given by angles θ and φ, respectively. The heading of a plane is given by the longitude of -n, and
the pitch is given by the latitude of -n. Formulas for roll, pitch, and heading in terms of the vectors u and
n are developed in the exercises.

Chapter 3D viewing November 23, 1999 page 4

n

uv

un

a). pitc h b). rol l c). yaw

Figure 7.4. A plane’s orientation relative to the “world”.

Figure 7.5. The heading and pitch of a plane.

Pitch and roll are both nouns and verbs: when used as verbs they describe a change in the plane’s
orientation. You can say a plane “pitches up” when it increases its pitch (rotates about its u-axis), and
that it “rolls” when it rotates about its n-axis. The common term for changing heading is yaw: to yaw left
or right it rotates about its v-axis.

These terms can be used with a camera as well. Figure 7.6a shows a camera with the same coordinate
system attached: it has u, v, and n- axes, and its origin is at position eye. The camera in part b has some
non-zero roll, whereas the one in part c has zero roll. We most often set a camera to have zero roll, and
call it a “no-roll ” camera. The u-axis of a no-roll camera is horizontal: that is, perpendicular to the y-axis
of the world. Note that a no-roll camera can still have an arbitrary n direction, so it can have any pitch or
heading.

How do we control the roll, pitch, and heading of a camera? gluLookAt () is handy for setting up an
initial camera, since we usually have a good idea of how to choose eye and look. But it’s harder to
visualize how to choose up to obtain a certain roll, and it’s hard to make later relative adjustments to the
camera using only gluLookAt (). (gluLookAt () works with Cartesian coordinates, whereas orientation
deals with angles and rotations about axes.) OpenGL doesn’t give direct access to the u, v, and n
directions, so we’ll maintain them ourselves in a program. This will make it much easier to describe and
adjust the camera.

c). no- rolla). Cam era orientation b). with roll

n

v

u u

v
v

u

Figure 7.6. Various camera orientations.

What gluLookAt () does: some mathematical underpinnings.
What then are the directions u, v, and n when we execute gluLookAt () with given values for eye, look,
and up? Let’s see exactly what gluLookAt () does, and why it does it.

As shown in Figure 7.7a, we are given the locations of eye and look, and the up direction. We
immediately know that n must be parallel to the vector eye - look, as shown in Figure 7.7b, so we set
n = eye - look. (We’ll normalize this and the other vectors later as necessary.)

Chapter 3D viewing November 23, 1999 page 5

Figure 7.7. Building the vectors u, v, and n.

We now need to find u and v that are perpendicular to n and to each other. The u direction points “off to
the side” of a camera, so it is (fairly) natural to make it perpendicular to up, which the user has said is the
“upward” direction. This is the assumption gluLookAt () makes in any case, and so the direction u is
made perpendicular to n and up. An excellent way to build a vector that is perpendicular to two given
vectors is to form their cross product, so we set u up n= × . (The user should not choose an up
direction that is parallel to n, as then u would have zero length - why?) We choose u up n= × rather
than n up× so that u will point “to the right” as we look along -n.

With u and n in hand it is easy to form v: it must be perpendicular to both u and v so use a cross product
again: v n u= × . Notice that v will usually not be aligned with up: v must be aimed perpendicular to n,
whereas the user provides up as a suggestion of “upwardness”, and the only property of it that is used is
its cross product with n.

Summarizing: given eye, look, and up, we form

n

u up n

v n u

= −
= ×
= ×

eye look

(7.1)

and then normalize all three to unit length.

Note how this plays out for the common case where up = (0,1,0). Convince yourself that in this case u =
(nz, 0, -nx) and v = (-nxny, nx

2 + nz

2, -nzny). Notice that u does indeed have a y-component of 0, so it is
“horizontal”. Further, v has a positive y-component, so it is pointed more or less “upward”.

Example 7.2.1. Find the camera coordinate system. Consider a camera with eye = (4, 4, 4) that “looks
down” on a look-at point look = (0, 1, 0). Further suppose that up is initially set to (0, 1, 0). Find u, v,
and n. Repeat for up = (2, 1, 0).
Solution: From Equation 7.1 we find: u = (4, 0, -4) , v = (-12, 32, -12) , n = (4, 3, 4), which are easily
normalized to unit length. (Sketch this situation.) Note that u is indeed horizontal. Check that these are
mutually perpendicular. For the case of up = (2, 1, 0) (try to visualize this camera before working out the
arithmetic), u = (4, -8, 2), v = (38, 8, -44), and n = (4, 3, 4). Sketch this situation. Check that these
vectors are mutually perpendicular.
Example 7.2.2. Building intuition with cameras. To assist in developing geometric intuition when
setting up a camera, Figure 7.8 shows two example cameras - each depicted as a coordinate system with a
view volume - positioned above the world coordinate system, which is made more visible by grids drawn
in the xz-plane. The view volume of both cameras has an aspect ratio of 2. One camera is set with eye =
(-2, 2, 0), look = (0,0,0), and up = (0,1,0). For this camera we find from Equation 7.1 that n = (-2, 2, 0), u
= (0,0,2), and v = (4, 4, 0). The figure shows these vectors (v is drawn the darkest) as well as the up
vector. The second camera uses eye = (2,2,0), look = (0,0,0), and up = (0,0,1). In this case u = (-2, -2, 0)
and v = (0, 0, 8). The direction v is parallel to up here. Note that this camera appears to be “on its side”:
(Check that all of these vectors appear drawn in the proper directions.)

Chapter 3D viewing November 23, 1999 page 6

Figure 7.8. Two example settings of the camera.

Finally, we want to see what values gluLookAt () places in the modelview matrix. From Chapter 5 we
know that the modelview matrix is the product of two matrices, the matrix V that accounts for the
transformation of world points into camera coordinates, and the matrix M that embodies all of the
modeling transformations applied to points. gluLookAt () builds the V matrix and postmultiplies the
current matrix by it. Because the job of the V matrix is to convert world coordinates to camera
coordinates, it must transform the camera’s coordinate system into the generic position for the camera as
shown in Figure 7.9. This means it must transform eye into the origin, u into the vector i, v into j, and n
into k. There are several ways to derive what V must be, but it’s easiest to check that the following
matrix does the trick:

Figure 7.9. The transformation which gluLookAt () sets up.

V

u u u d

v v v d

n n n d

x y z x

x y z y

x y z z

=

�

�

�
�
�
�

�

�

�
�
�
�

0 0 0 1

(7.2)

where (, ,) (, ,)d d d eye eye eyex y z = − ⋅ − ⋅ − ⋅u v n 1. Check that in fact

V

eye

eye

eye

x

y

z

1

0

0

0

1

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

1 A technicality: since it’s not legal to dot a point and a vector, eye should be replaced here by the vector
(eye - (0,0,0)).

Chapter 3D viewing November 23, 1999 page 7

as desired, where we have extended point eye to homogeneous coordinates. Also check that

V

u

u

u

x

y

z

0

1

0

0

0

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

and that V maps v into (0,1,0,0)T and maps n into (0,0,1,0)T. The matrix V is created by gluLookAt ()
and is postmultiplied with the current matrix. We will have occasion to do this same operation later when
we maintain our own camera in a program.

Practice Exercises.
7.2.1. Finding roll, pitch, and heading given vectors u, v, and n. Suppose a camera is based on a
coordinate system with axes in the directions u, v, and n, all unit vectors. The heading and pitch of the
camera is found by representing -n in spherical coordinates. Using Appendix 2, show that

heading n n

pitch n

z x

y

= − −

= −−

arctan(,)

sin ()1

Further, the roll of the camera is the angle its u-axis makes with the horizontal. To find it, construct a
vector b that is horizontal and lies in the uv-plane. Show that b j n= × has these properties. Show that
the angle between b and u is given by

roll
u n u n

n n
x z z x

x z

=
−
+

�
��

�
��

−cos 1
2 2

7.2.2. Using up sets v to a “best approximation” to up. Show that using up as in Equation 7.1 to set u
and v is equivalent to making v the closest vector to up that is perpendicular to vector n. Use these steps:
a). Show that v n up n= × ×() ;
b). Use a property of the “triple vector product”, that says a (b c) (a c)b (a b)c× × = ⋅ − ⋅ .
c). Show that v is therefore the projection of up onto the plane with normal n (see Chapter 4), and
therefore is the closest vector in this plane to up.

7.3 Building a Camera in a Program.
It is as interesting and as difficult to say a thing well as to paint it.

Vincent van Gogh

In order to have fine control over camera movements, we create and manipulate our own camera in a
program. After each change to this camera is made, the camera “tells” OpenGL what the new camera is.

We create a Camera class that knows how to do all the things a camera does. It’s very simple and the
payoff is high. In a program we create a Camera object called, say, cam, and adjust it with functions
such as:

cam.set(eye, look, up); // initialize the camera - similar to
gluLookAt()
cam.slide(-1,0,-2); // slide the camera forward and to the left
cam.roll(30); // roll it through 30 o

cam.yaw(20); // yaw it through 20 o

etc.

Figure 7.10 shows the basic definition of the Camera class. It contains fields for the eye and the
directions u, v, and n. (Point3 and Vector3 are the basic data types defined in Appendix 3.) It also
has fields that describe the shape of the view volume: viewAngle , aspect , nearDist , and
farDist .
class Camera{

Chapter 3D viewing November 23, 1999 page 8

 private:
Point3 eye;
Vector3 u,v,n;
double viewAngle, aspect, nearDist, farDist; // view volume shape
void setModelviewMatrix(); // tell OpenGL where the camera is

 public:
Camera(); // default constructor
void set(Point3 eye, Point3 look, Vector3 up); // like gluLookAt()
void roll(float angle); // roll it
void pitch(float angle); // increase pitch
void yaw(float angle); // yaw it
void slide(float delU, float delV, float delN); // slide it
void setShape(float vAng, float asp, float nearD, float farD);

};
Figure 7.10. The Camera class definition.

The utility routine setModelviewMatrix () communicates the modelview matrix to OpenGL. It is
used only by member functions of the class, and needs to be called after each change is made to the
camera’s position or orientation. Figure 7.11 shows a possible implementation. It computes the matrix of
Equation 7.2 based on current values of eye, u, v, and n, and loads the matrix directly into the modelview
matrix using glLoadMatrixf ().

The method set () acts just like gluLookAt (): it uses the values of eye , look , and up to compute u, v,
and n according to Equation 7.1. It places this information in the camera’s fields and communicates it to
OpenGL. Figure 7.11 shows a possible implementation.
void Camera :: setModelViewMatrix(void)
{ // load modelview matrix with existing camera values

float m[16];
Vector3 eVec(eye.x, eye.y, eye.z); // a vector version of eye
m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -eVec.dot(u);
m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -eVec.dot(v);
m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -eVec.dot(n);
m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1.0;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m); // load OpenGL’s modelview matrix

}
void Camera:: set(Point3 Eye, Point3 look, Vector3 up)
{ // create a modelview matrix and send it to OpenGL

eye.set(Eye); // store the given eye position
n.set(eye.x - look.x, eye.y - look.y, eye.z - look.z); // make n
u.set(up.cross(n)); // make u = up X n
n.normalize(); u.normalize(); // make them unit length
v.set(n.cross(u)); // make v = n X u
setModelViewMatrix(); // tell OpenGL

}
Figure 7.11. The utility routines set () and setModelViewMatrix ().

The routine setShape() is even simpler: It puts the four argument values into the appropriate camera
fields, and then calls gluPerspective (viewangle ,aspect ,nearDist , farDist) (along with
glMatrixMode (GL_PROJECTION) and glLoadIdentity ()) to set the projection matrix.

The central camera methods are slide (), roll (), yaw(), and pitch (), which make relative changes to
the camera’s position and orientation. (The whole reason for maintaining the eye , u, v , and n fields in
our Camera data structure is so that we have a record of the “current” camera, and can therefore alter it.)
We examine how the camera methods operate next.

7.3.1. “Flying” the Camera.
The user flies the camera through a scene interactively by pressing keys or clicking the mouse. For
instance, pressing ‘u’ might slide the camera “up” some amount, pressing ‘y’ might yaw it to the left, and
pressing ‘f’ might slide it forward. The user can see how the scene looks from one point of view, then

Chapter 3D viewing November 23, 1999 page 9

change the camera to a better viewing spot and direction and produce another picture. Or the user can fly
around a scene taking different snapshots. If the snapshots are stored and then played back rapidly, an
animation is produced of the camera flying around the scene.

There are six degrees of freedom for adjusting a camera: it can be “slid” in three dimensions, and it can
be rotated about any of three coordinate axes. We first develop the slide () function.

Sliding the camera.
Sliding a camera means to move it along one its own axes, that is, in the u, v, or n direction, without
rotating it. Since the camera is looking along the negative n-axis, movement along n is “forward” and
“back”. Similarly, movement along u is “left” or “right”, and along v is “up” or “down”.

It is simple to move the camera along one of its axes. To move it distance D along its u-axis, set eye to
eye + D u. For convenience we can combine the three possible slides in a single function. slide (delU ,
delV , delN) slides the camera amount delU along u, delV along v, and delN along n:

void Camera:: slide(float delU, float delV, float delN)
{

eye.x += delU * u.x + delV * v.x + delN * n.x;
eye.y += delU * u.y + delV * v.y + delN * n.y;
eye.z += delU * u.z + delV * v.z + delN * n.z;
setModelViewMatrix();

}

Rotating the Camera.
We want to roll, pitch, or yaw the camera. This involves a rotation of the camera about one of its own
axes. We look at rolling in detail; the other two types of rotation are similar.

To roll the camera is to rotate it about its own n axis. This means that both the directions u and v must be
rotated, as shown in Figure 7.12. We form two new axes u’ and v’ that lie in the same plane as u and v
yet have been rotated through the angle α degrees.

u

v

u'

v'

α

Figure 7.12. Rolling the camera.

So we need only form u’ as the appropriate linear combination of u and v, and do similarly for v’:

u’ = cos(α) u + sin(α) v (7.3)
v’ = -sin(α) u + cos(α) v

The new axes u’ and v’ then replace u and v in the camera. This is straightforward to implement.

void Camera :: roll(float angle)
{ // roll the camera through angle degrees

float cs = cos(3.14159265/180 * angle);
float sn = sin(3.14159265/180 * angle);
Vector3 t(u); // remember old u
u.set(cs*t.x - sn*v.x, cs*t.y - sn*v.y, cs*t.z - sn*v.z);
v.set(sn*t.x + cs*v.x, sn*t.y + cs*v.y, sn*t.z + cs*v.z);
setModelViewMatrix();

}

Chapter 3D viewing November 23, 1999 page 10

The functions pitch () and yaw() are implemented in a similar fashion. See the exercises.

Putting it all together.
We show in Figure 7.13 how the Camera class can be used with OpenGL to fly a camera through a
scene. The scene consists of the lone teapot here. The camera is a global object, and is set up in main ()
with a good starting view and shape. When a key is pressed myKeyboard () is called, and the camera is
slid or rotated depending on which key was pressed. For instance, if ‘P’ is pressed the camera is pitched
up by 1 degree. If CTRL F is pressed2 (hold down the control key and press ‘f’), the camera is pitched
down by 1 degree. After the keystroke has been processed glutPostRedisplay () causes
myDisplay () to be called again to draw the new picture.
// the usual includes
#include "camera.h"

Camera cam; // global camera object

//<<<<<<<<<<<<<<<<<<<<<<<< myKeyboard >>>>>>>>>>>>>>>>>>>>>>
void myKeyboard(unsigned char key, int x, int y)
{
 switch(key)
 {

// controls for camera
case 'F': cam.slide(0,0, 0.2); break; // slide camera forward
case 'F'-64: cam.slide(0,0,-0.2); break; //slide camera back
// add up/down and left/right controls
case 'P': cam.pitch(-1.0); break;
case 'P' - 64: cam.pitch(1.0); break;
// add roll and yaw controls

 }
glutPostRedisplay(); // draw it again

}
//<<<<<<<<<<<<<<<<<<<<<<< myDisplay >>>>>>>>>>>>>>>>>>>>>>>>>>
void myDisplay(void)
{

glClear(GL_COLOR_BUFFER_BIT||GL_DEPTH_BUFFER_BIT);
glutWireTeapot(1.0); // draw the teapot
glFlush();
glutSwapBuffers(); // display the screen just made

}
//<<<<<<<<<<<<<<<<<<<<<< main >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
void main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // double buffering
glutInitWindowSize(640,480);
glutInitWindowPosition(50, 50);
glutCreateWindow("fly a camera around a teapot");
glutKeyboardFunc(myKeyboard);
glutDisplayFunc(myDisplay);
glClearColor(1.0f,1.0f,1.0f,1.0f); // background is white
glColor3f(0.0f,0.0f,0.0f); // set color of stuff
glViewport(0, 0, 640, 480);
cam.set(4, 4, 4, 0, 0, 0, 0, 1, 0); // make the initial camera
cam.setShape(30.0f, 64.0f/48.0f, 0.5f, 50.0f);
glutMainLoop();

}
Figure 7.13. Application to fly a camera around the teapot.

2 On most keyboards pressing CTRL and a letter key returns an ASCII value that is 64 less than the
ASCII value returned by the letter itself.

Chapter 3D viewing November 23, 1999 page 11

Notice the call to glutSwapBuffers() 3. This application uses double-buffering to produce a rapid
and smooth transition between one picture and the next. There are two memory buffers used to store the
generated pictures. The display switches from showing one buffer to showing the other under the control
of glutSwapBuffers (). Each new picture is drawn in the invisible buffer, and when the drawing is
complete the display switches to it. Thus the viewer doesn’t see the screen erased and the new picture
slowly emerge line-by-line, which is visually annoying. Instead the “old” picture is displayed steadily
while the picture is being composed off-screen, and then the display switches very rapidly to the newly
completed picture.

Drawing SDL scenes using a camera.
It is just as easy to incorporate a camera in an application that reads SDL files, as described in Chapter 5.
There are then two global objects:

Camera cam;
Scene scn;

and in main() an SDL file is read and parsed using scn.read(“myScene.dat”). Finally, in
myDisplay (void), simply replace glutWireTeapot (1.0) with scn.drawSceneOpenGL ();

Practice Exercises.
7.3.1. Implementing pitch () and yaw(). Write the functions void Camera:: pitch(float
angle) and void Camera :: yaw(float angle) that respectively pitch and yaw the camera.
Arrange matters so that a positive yaw yaws the camera to the “left” and a positive pitch pitches the
camera “up”.
7.3.2. Building a universal rotate () method. Write the functions void Camera::
rotate(Vector3 axis, float angle) that rotates the camera through angle degrees about
axis . It rotates all three axes u, v, and n about the eye.

7.4. Perspective Projections of 3D Objects
Treat them in terms of the cylinder, the sphere, the cone, all in perspective.

Ashanti proverb

With the Camera class in hand we can navigate around 3D scenes and readily create pictures. Using
OpenGL each picture is created by passing vertices of objects (such as a mesh representing a teapot or
chess piece) down the graphics pipeline, as we described in Chapter 5. Figure 7.14 shows the graphics
pipeline again, with one new element.

has perspective division too

Figure 7.14. The graphics pipeline revisited.

Recall that each vertex v is multiplied by the modelview matrix (VM). The modeling part (M) embodies
all of the modeling transformations for the object; the viewing part (V) accounts for the transformation
set by the camera’s position and orientation. When a vertex emerges from this matrix it is in eye
coordinates, that is, in the coordinate system of the eye. Figure 7.15 shows this system, for which the eye
is at the origin, and the near plane is perpendicular to the z-axis residing at z = -N. A vertex located at P
in eye coordinates is passed through the next stages of the pipeline where it is (somehow) projected to a
certain point (x*, y*) on the near plane, clipping is carried out, and finally the surviving vertices are
mapped to the viewport on the display.

Figure 7.15. Perspective projection of vertices expressed in eye coordinates.

3 glutInitDisplayMode () must have an argument of GLUT_DOUBLE to enable double-buffering.

Chapter 3D viewing November 23, 1999 page 12

At this point we must look more deeply into the process of forming perspective projections. We need
answers to a number of questions. What operations constitute forming a perspective projection, and how
does the pipeline do these operations? What’s the relationship between perspective projections and
matrices. How does the projection map the view volume into a “canonical view volume” for clipping?
How is clipping done? How do homogeneous coordinates come into play in the process? How is the
“depth” of a point from the eye retained so that proper hidden surface removal can be done? And what is
that “perspective division” step?

We start by examining the nature of perspective projection, independent of specific processing steps in
the pipeline. Then we see how the steps in the pipeline are carefully crafted to produce the numerical
values required for a perspective projection.

7.4.1. Perspective Projection of a Point.
The fundamental operation is projecting a 3D point to a 2D point on a plane. Figure 7.16 elaborates on
Figure 7.15 to show point P = (Px, Py, Pz) projecting onto the near plane of the camera to a point (x*, y*).
We erect a local coordinate system on the near plane, with its origin on the camera’s z-axis. Then it is
meaningful to talk about the point x* units over to the right of the origin, and y* units above the origin.

Figure 7.16. Finding the projection of a point P in eye coordinates.

The first question is then, what are x* and y*? It’s simplest to use similar triangles, and say x* is in the
same ratio to Px as the distance N is to the distance |Pz|. Or since Pz is negative, we can say

x

P

N

Px z

* =
−

or x* = NPx/(-Pz). Similarly y* = NPy/(-Pz). So we have that P projects to the point on the viewplane:

(*, *) ,x y N
P

P
N

P

P
x

z

y

z

=
− −

�
��

�
��

 (the projection of P) (7.4)

An alternate (analytical) method for arriving at this result is given in the exercises.

Example 7.4.1: Where on the viewplane does P = (1, 0.5, -1.5) lie for the camera having a near plane at
N = 1? Solution: Direct use of Equation 7.4 yields (x*, y*) = (0.666, 0.333).

We can make some preliminary observations about how points are projected.

1). Note the denominator term -Pz. It is larger for more remote points (those farther along the negative z-
axis), which reduces the values of x* and y*. This introduces perspective foreshortening, and makes
remote parts of an object appear smaller than nearer parts.

2). Denominators have a nasty way of evaluating to zero, and Pz becomes 0 when P lies in the “same
plane” as the eye: the z = 0 plane. Normally we use clipping to remove such offending points before
trying to project them.

3). If P lies “behind the eye” there is a reversal in sign of Pz, which causes further trouble, as we see later.
These points, too, are usually removed by clipping.

4). The effect of the near plane distance N is simply to scale the picture (both x* and y* are proportional
to N). So if we choose some other plane (still parallel to the near plane) as the view plane onto which to
project pictures, the projection will differ only in size with the projection onto the near plane. Since we
ultimately map this projection to a viewport of a fixed size on the display, the size of the projected image
makes no difference. This shows that any viewplane parallel to the near plane would work just as well, so
we might as well use the near plane itself.

Chapter 3D viewing November 23, 1999 page 13

5). Straight lines project to straight lines. Figure 7.17 provides the simplest proof. Consider the line in 3D
space between points A and B. A projects to A’ and B projects to B’. But do points between A and B
project to points directly between A’ and B’? Yes: just consider the plane formed by A, B and the origin.
Since any two planes intersect in a straight line, this plane intersects the near plane in a straight line.
Thus line segment AB projects to line segment A’B’ .

Figure 7.17. Proof that a straight line projects to a straight line.

Example 7.4.2. Three projections of the barn.
A lot of intuition can be acquired by seeing how a simple object is viewed by different cameras. Here we
examine how the edges of the barn defined in Chapter 6 and repeated in Figure 7.18 are projected onto
three cameras. The barn has 10 vertices, 15 edges and seven faces.

Figure 7.18. The basic barn revisited.

• View #1: We first set the camera’s eye at (0, 0, 3) and have it look down the negative z-axis, with u =
(1,0,0) and n = (-1, 0, 0). We will set the near plane at distance 1 from the eye. (The near plane happens
therefore to coincide with the front of the barn.) In terms of camera coordinates all points on the front
wall of the barn have Pz = -1 and those on the back wall have Pz = -2. So from Equation 7.4 any point (Px,
Py, Pz) on the front wall projects to:

P’ = (Px, Py) {projection of a point on the front wall}

and any point on the back wall projects to

P’ = (Px /2, Py / 2). {projection of a point on the back wall}

The foreshortening factor is two for those points on the back wall. Figure 7.19a shows the projection of
the barn for this view. Note that edges on the rear wall project at half their true length. Also note that
edges of the barn that are actually parallel in 3D need not project as parallel. (We shall see that parallel
edges that are parallel to the viewplane do project as parallel, but parallel edges that are not parallel to
the viewplane are not parallel: they recede to a “vanishing point”.)

Figure 7.19. Projections of the barn for views #1 and #2.

View #2: Here the camera has been slid over so that eye = (0.5, 0, 2), but u, and n are the same as in view
#1. Figure 7.19b shows the projection.

View #3 Here we use the camera with Eye = (2, 5, 2) and look = (0,0,0), resulting in Figure 7.20. The
world axes have been added as a guide. This shows the barn from an informative point of view. From a
wireframe view it is difficult to discern which faces are where.

Figure 7.20. A third view of the barn.

Practice Exercises.
7.4.1. Sketch a Cube in Perspective. Draw (by hand) the perspective view of a cube C (axis-aligned and
centered at the origin, with sides of length 2) when the eye is at E = 5 on the z-axis. Repeat when C is
shifted so that its center is at (1, 1, 1).
7.4.2. Where does the ray hit the viewplane? (Don’t skip this one.)
We want to derive Equation 7.4 by finding where the ray from the origin to P intersects the near plane.

Chapter 3D viewing November 23, 1999 page 14

a). Show that if this ray is at the origin at t = 0 and at P at time t = 1, then it has parametric representation
r(t) = Pt.
b). Show that it hits the near plane at t = N/(-Pz);
c). Show that the “hit point” is (x*, y*) = (NPx/(-Pz), NPy/(-Pz)).

7.4.2. Perspective Projection of a Line.
We develop here some interesting properties of perspective projections by examining how straight lines
project.

1). Lines that are parallel in 3D project to lines, but these lines aren’t necessary parallel. If not parallel,
they meet at some “vanishing point.”

2). Lines that pass behind the eye of the camera cause a catastrophic “passage through infinity”. (Such
lines should be clipped off.)

3). Perspective projections usually produce geometrically realistic pictures. But realism is strained for
very long lines parallel to the viewplane.

1). Projecting Parallel Lines.
We suppose the line in 3D passes (using camera coordinates) through point A = (Ax, Ay, Az) and has
direction vector c = (cx, cy, cz). It therefore has parametric form P(t) = A + c t. Substituting this form in
Equation 7.4 yields the parametric form for the projection of this line:

p t N
A c t

A c t
N

A c t

A c t
x x

z z

y y

z z

() ,=
+

− −
+

− −
�
��

�
��

(7.5)

(This may not look like the parametric form for a straight line, but it is. See the exercises.) Thus the point
A in 3D projects to the point p(0), and as t varies the projected point p(t) moves across the screen (in a
straight line). We can discern several important properties directly from this formula.

Suppose the line A + ct is parallel to the viewplane. Then cz = 0 and the projected line is given by:

p t
N

A
A c t A c t

z
x x y y() ,=

−
+ +2 7

This is the parametric form for a line with slope cy/cx. This slope does not depend on the position of the
line, only its direction c. Thus all lines in 3D with direction c will project with this slope, so their
projections are parallel. We conclude:

If two lines in 3D are parallel to each other and to the viewplane, they project to two parallel lines.

Now consider the case where the direction c is not parallel to the viewplane. For convenience suppose cz

< 0, so that as t increases the line recedes further and further from the eye. At very large values of t,
Equation 7.5 becomes:

p N
c

c
N

c

c
x

z

y

z

() ,∞ =
− −

�
��

�
��

(the vanishing point for the line) (7.6)

This is called the “vanishing point” for this line: it’s the point towards which the projected line moves as
t gets larger and larger. Notice that it depends only on the direction c of the line and not its position
(which is embodied in A). Thus all parallel lines share the same vanishing point.
In particular, these lines project to lines that are not parallel.

Figure 7.21a makes this more vivid for the example of a cube. Several edges of the cube are parallel:
there are those that are horizontal, those that are vertical, and those that recede from the eye. This picture

Chapter 3D viewing November 23, 1999 page 15

was made with the camera oriented so that its near plane was parallel to the front face of the cube. Thus
in camera coordinates the z-component of c for the horizontal and vertical edges is 0. The horizontal
edges therefore project to parallel lines, and so do the vertical edges. The receding edges, however, are
not parallel to the view plane, and hence converge onto a vanishing point (VP). Artists often set up
drawings of objects this way, choosing the vanishing point and sketching parallel lines as pointing at the
VP. We shall see more on vanishing points as we proceed.

VP

d

d

Figure 7.21. The vanishing point for parallel lines.

Figure 7.22 suggests what a vanishing point is geometrically. Looking down onto the camera’s xz-plane
from above, we see the eye viewing various points on the line AB. A projects to A’, B projects to B’, etc.
Very remote points on the line project to VP as shown. The point VP is situated so that the line from the
eye through VP is parallel to AB (why?).

Figure 7.22. The geometry of a vanishing point.

2). Lines that Pass Behind the Eye.
We saw earlier that trying to project a point that lies in the plane of the eye (z = 0 in eye coordinates)
results in a denominator of 0, and would surely spell trouble if we try to project it. We now examine the
projection of a line segment where one endpoint lies in front of the eye, and one endpoint lies behind.

Figure 7.23 again looks down on the camera from above. Point A lies in front of the eye and projects to
A’ in a very reasonable manner. Point B, on the other hand, lies behind the eye, and projects to B’, which
seems to end up on the wrong side of the viewplane! Consider a point C that moves from A to B, and
sketch how its projection moves. As C moves back towards the plane of the eye, its projection slides
further and further along the viewplane to the right. As C approaches the plane of the eye its projection
spurts off to infinity, and as C moves behind the eye its projection reappears from far off to the left on the
viewplane! You might say that the projection has “wrapped around infinity” and come back from the
opposite direction [blinn96]. If we tried to draw such a line there would most likely be chaos. Normally
all parts of the line closer to the eye than the near plane are clipped off before the projection is attempted.

Figure 7.23. Projecting the line segment AB, with B “behind the eye.”

Example 7.4.3. The Classic Horizontal Plane in Perspective.
A good way to gain insight into vanishing points is to view a grid of lines in perspective, as in Figure 7.24.
Grid lines here lie in the xz-plane, and are spaced 1 unit apart. The eye is perched 1 unit above the xz-plane,
at (0, 1, 0), and looks along -n, where n = (0,0,1). As usual we take up = (0,1,0). N is chosen to be 1.

Chapter 3D viewing November 23, 1999 page 16

Figure 7.24. Viewing a horizontal grid on the xz-plane.

The grid lines of constant x have parametric form in eye coordinates of (i, 0, t), where i = ..,-2, -1, 0, 1,

2, ... and t varies from 0 to ∞ . By Equation 7.4 the i-th line projects to (-i/t, 2/t), which is a line through
the vanishing point (0, 0), so all of these lines converge on the same vanishing point, as expected.

The grid lines of constant z are given by (t, 0, -i), where i = 1, 2, ..N for some N., and t varies from - ∞
to ∞. These project to (-t/i, -2/i), which appear as horizontal straight lines (check this). Their projections
are parallel since the gridlines themselves are parallel to the viewplane. The more remote ones (larger
values of i) lie closer together, providing a vivid example of perspective foreshortening. Many of the
remote contours are not drawn here, as they become so crowded they cannot be drawn clearly. The
horizon consists of all the contours where z is very large and negative; it is positioned at y = 0.

3). The anomaly of viewing long parallel lines.
Perspective projections seem to be a reasonable model for the way we see. But there are some anomalies,
mainly because our eyes do not have planar “view screens”. The problem occurs for very long objects.
Consider an experiment, for example, where you look up at a pair of parallel telephone wires, as
suggested in Figure 7.25a.

a). viewing parallel
 telephone wires

b). A perspective
 projection shows

c). What your eye sees

Figure 7.25. Viewing very long parallel wires. (use old 12.14).

For the perspective view, if we orient the viewplane to be parallel to the wires, we know the image will
show two straight and parallel lines (part b). But what you see is quite different. The wires appear curved
as they converge to “vanishing points” in both directions (part c)! In Practice this anomaly is barely

Chapter 3D viewing November 23, 1999 page 17

visible because the window or your eye limits the field of view to a reasonable region. (To see different
parts of the wires you have to roll your eyes up and down, which of course rotates your “view planes”.)

Practice Exercises.
7.4.3. Straight lines project as straight lines: the parametric form. Show that the parametric form in
Equation 7.5 is that of a straight line. Hint: For the x-component divide the denominator into the
numerator to get -AxN/Az + R g(t) where R depends on the x-components of A and c, but not the y-
components, and g(t) is some function of t that depends on neither the x nor y-components. Repeat for the
y-component, obtaining -AyN/Az + Sg(t) with similar properties. Argue why this is the parametric
representation of a straight line, (albeit one for which the point does not move with constant speed as t
varies).
7.4.4. Derive results for horizontal grids. Derive the parametric forms for the projected grid lines in
Example 7.4.3.

7.4.3. Incorporating Perspective in the Graphics Pipeline.
Only a fool tests the depth of the river with both feet.

Paul Cezanne, 1925

We want the graphics pipeline to project vertices of 3D objects onto the near plane, then map them to the
viewport. After passing through the modelview matrix, the vertices are represented in the camera’s
coordinate system, and Equation 7.4 shows the values we need to compute for the proper projection. We
need to do clipping, and then map what survives to the viewport. But we need a little more as well.

Adding Pseudodepth.
Taking a projection discards depth information; that is, how far the point is from the eye. But we mustn’t
discard this information completely, or it will be impossible to do hidden surface removal later.

The actual distance of a point P from the eye in camera coordinates is P P Px y z
2 2 2+ + , which would

be cumbersome and slow to compute for each point of interest. All we really need is some measure of
distance that tells when two points project to the same point on the near plane, which is the closer. Figure
7.26 shows points P1 and P2 that both lie on a line from the eye, and therefore project to the same point.
We must be able to test whether P1obscures P2 or vice versa. So for each point P that we project we
compute a value called the pseudodepth that provides an adequate measure of depth for P. We then say
that P projects to (x*, y*, z*), where (x*, y*) is the value provided in Equation 7.4 and z* is its
pseudodepth.

Figure 7.26. Is P1 closer than P2 or farther away?

What is a good choice for the pseudodepth function? Notice that if two points project to the same point
the farther one always has a more negative value of Pz, so we might use -Pz itself for pseudodepth. But it
will turn out to be very harmonious and efficient to choose a function with the same denominator (-Pz) as
occurs with x* and y*. So we try a function that has this denominator, and a numerator that is linear in Pz,
and say that P “projects to”

(*, *, *) , ,x y z N
P

P
N

P

P

aP b

P
x

z

y

z

z

z

=
− −

+
−

�
��

�
��

(7.7)

for some choice of the constants a and b. Although many different choices for a and b will do, we choose
them so that the pseudodepth varies between -1 and 1 (we see later why these are good choices). Since
depth increases as a point moves further down the negative z-axis, we decide that the pseudodepth is -1
when Pz = -N, and is +1 when Pz = -F. With these two conditions we can easily solve for a and b,
obtaining:

a
F N

F N
b

FN

F N
= − +

−
= −

−
,

2
(7.8)

Chapter 3D viewing November 23, 1999 page 18

Figure 7.27 plots pseudodepth versus (-Pz). As we insisted it grows from -1 for a point on the near plane
up to +1 for a point on the far plane. As Pz approaches 0 (so that the point is just in front of the eye)
pseudodepth plummets to -∞. For a point just behind the eye, the pseudodepth is huge and positive. But
we will clip off points that lie closer than the near plane, so this catastrophic behavior will never be
encountered.

Figure 7.27. Pseudodepth grows as Pz becomes more negative.

Also notice that pseudodepth values bunch together as (-Pz) gets closer to F. Given the finite precision
arithmetic of a computer, this can cause a problem when you must distinguish the pseudodepth of two
points during hidden surface removal: the points have different true depths from the eye, but their
pseudodepths come out with the same value!

Note that defining pseudodepth as in Equation 7.7 causes it to become more positive as Pz becomes more
negative. This seems reasonable since depth from the eye increases as Pz moves further along the
negative z-axis.

Example 7.4.4. Pseudodepth varies slowly as (-Pz) approaches F.
 Suppose N = 1 and F = 100. This produces a = -101/99 and b = -200/99, so pseudodepth is given by

pseudodepth
P

PN F
z

z
= = =

+
1 100

101 200

99,

This maps appropriately to -1 at Pz = -N, and 1 at Pz = -F. But close to -F it varies quite slowly with (-Pz).
For (-Pz) values of 97, 98, and 99, for instance, this evaluates to 1.041028, 1.040816, and 1.040608.

A little algebra (see the exercises) shows that when N is much smaller than F as it normally will be,
pseudodepth can be approximated by

pseudodepth
N

Pz

≈ +1
2

(7.9)

Again you see that it varies more and more slowly as (-Pz) approaches F. But its variation is increased by
using large values of N. N should be set as large as possible (but of course not so large that objects
nearest to the camera are clipped off!).

Using Homogeneous Coordinates.
Why was there consideration given to having the same denominator for each term in Equation 7.7? As we
now show, this makes it possible to represent all of the steps so far in the graphics pipeline as matrix
multiplications, offering both processing efficiency and uniformity. (Chips on some graphics cards can
multiply a point by a matrix in hardware, making this operation extremely fast!) Doing it this way will
also allow us to set things up for a highly efficient and reliable clipping step.

The new approach requires that we represent points in homogeneous coordinates. We have been doing
that anyway, since this makes it easier to transform a vertex by the modelview matrix. But we are going
to expand the notion of the homogeneous coordinate representation beyond what we have needed before
now, and therein find new power. In particular, a matrix will not only be able to perform an affine
transformation, it will be able to perform a “perspective transformation.”

Up to now we have said that a point P = (Px, Py, Pz) has the representation (Px, Py, Pz, 1) in homogeneous
coordinates, and that a vector v = (vx, vy, vz) has the representation (vx, vy, vz, 0). We have simply
appended a 1 or 0. This made it possible to use coordinate frames as a basis for representing the points
and vectors of interest, and it allowed us to represent an affine transformation by a matrix.

Now we extend the idea , and say that a point P = (Px, Py, Pz) has a whole family of homogeneous
representations (wPx, wPy, wPz, w) for any value of w except 0. For example, the point (1, 2, 3) has the
representations (1, 2, 3, 1), (2, 4, 6, 2), (0.003, 0.006, 0.009, 0.001), (-1, -2, -3, -1), and so forth. If

Chapter 3D viewing November 23, 1999 page 19

someone hands you a point in this form, say (3, 6, 2, 3) and asks what point is it, just divide through by
the last component to get (1, 2, 2/3, 1), then discard the last component: the point in “ordinary”
coordinates is (1, 2, 2/3). Thus:

• To convert a point from ordinary coordinates to homogeneous coordinates, append a 14;
• To convert a point from homogeneous coordinates to ordinary coordinates, divide all components by

the last component, and discard the fourth component.

The additional property of being able to scale all the components of a point without changing the point is
really the basis for the name “homogeneous”. Up until now we have always been working with the
special case where the final component is 1.

We examine homogeneous coordinates further in the exercises, but now focus on how they operate when
transforming points. Affine transformations work fine when homogeneous coordinates are used. Recall
that the matrix for an affine transformation always has (0,0,0,1) in its fourth row. Therefore if we
multiply a point P in homogeneous representation by such a matrix M, to form MP = Q (recall Equation
5.24), as in the example

2 1 3 1

6 5 1 4

0 4 2 3

0 0 0 1

−

−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

=

�

�

�
�
�
�

�

�

�
�
�
�

.

wP

wP

wP

w

wQ

wQ

wQ

w

x

y

z

x

y

z

the final component of Q will always be unaltered: it is still w. Therefore we can convert the Q back to
ordinary coordinates in the usual fashion.

But something new happens if we deviate from a fourth row of (0,0,0,1). Consider the important example
that has a fourth row of (0, 0, -1, 0), (which is close to what we shall later call the “projection matrix”):

N

N

a b

0 0 0

0 0 0

0 0

0 0 1 0−

�

�

�
�
�
�

�

�

�
�
�
�

(the projection matrix - version 1) (7.10)

for any choices of N, a, and b. Multiply this by a point represented in homogeneous coordinates with an
arbitrary w:

N

N

a b

wP

wP

wP

w

wNP

wNP

w aP b

wP

x

y

z

x

y

z

z

0 0 0

0 0 0

0 0

0 0 1 0−

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

=
+

−

�

�

�
�
�
�

�

�

�
�
�
�

()

This corresponds to an ordinary point, but which one? Divide through by the fourth component and
discard it, to obtain

N
P

P
N

P

P

aP b

P
x

z

y

z

z

z− −
+

−
�
��

�
��

, ,

4 and, if you wish, multiply all four components by any nonzero value.

Chapter 3D viewing November 23, 1999 page 20

which is precisely what we need according to Equation 7.7. Thus using homogeneous coordinates allows
us to capture perspective using a matrix multiplication! To make it work we must always divide through
by the fourth component, a step which is called perspective division.

A matrix that has values other than (0,0,0,1) for its fourth row does not perform an affine transformation.
It performs a more general class of transformation called a perspective transformation. It is a
transformation not a projection. A projection reduces the dimensionality of a point, to a 3-tuple or a 2-
tuple, whereas a perspective transformation takes a 4-tuple and produces a 4-tuple.

Consider the algebraic effect of putting nonzero values in the fourth row of the matrix, such as
(A,B,C,D). When you multiply the matrix by (Px, Py, Pz, 1) (or any multiple thereof) the fourth term in the
resulting point becomes APx + BPy + CPz + D, making it linearly dependent on each of the components of
P. After perspective division this term appears in the denominator of the point. Such a denominator is
exactly what is needed to produce the geometric effect of perspective projection onto a general plane, as
we show in the exercises.

The perspective transformation therefore carries a 3D point P into another 3D point P’, according to:

(, ,) , ,P P P N
P

P
N

P

P

aP b

Px y z
x

z

y

z

z

z

→
− −

+
−

�
��

�
��

“the perspective transformation” (7.11)

Where does the projection part come into play? Further along the pipeline the first two components of
this point are used for drawing: to locate in screen coordinates the position of the point to be drawn. The
third component is “peeled off” to be used for depth testing. As far as locating the point on the screen is
concerned, ignoring the third component is equivalent to replacing it by 0, as in:

N
P

P
N

P

P

aP b

P
N

P

P
N

P

P
x

z

y

z

z

z

x

z

y

z− −
+

−
�
��

�
��

→
− −

�
��

�
��

, , , ,0 “the projection” (7.12)

This is just what we did in Chapter 5 to project a point “orthographically” (meaning perpendicularly to
the viewplane) when setting up a camera for our first efforts at viewing a 3D scene. We will study
orthographic projections in full detail later. For now we can conclude:

 (perspective projection) = (perspective transformation) + (orthographic projection)

This decomposition of a perspective projection into a specific transformation followed by a (trivial)
projection will prove very useful, both algorithmically and for understanding better what each point
actually experiences as it passes through the graphics pipeline. OpenGL does the transformation step
separately from the projection step. In fact it inserts clipping, perspective division, and one additional
mapping between them. We next look deeper into the transformation part of the process.

The Geometric Nature of the Perspective Transformation.
The perspective transformation alters 3D point P into another 3D point according to Equation 7.11, to
“prepare it” for projection. It is useful to think of it as causing a “warping” of 3D space, and to see how it
warps one shape into another. Very importantly, it preserves straightness and “flatness”, so lines
transform into lines, planes into planes, and polygonal faces into other polygonal faces. It also preserves
“in-between-ness”, so if point a is inside an object, the transformed point will also be inside the
transformed object. (Our choice of a suitable pseudodepth function was guided by the need to preserve
these properties.) The proof of these properties is developed in the exercises.

Of particular interest is how it transforms the camera’s view volume, because if we are going to do
clipping in the warped space, we will be clipping against the warped view volume. The perspective
transformation shines in this regard: the warped view volume is a perfect shape for simple and efficient
clipping! Figure 7.28 suggests how the view volume and other shapes are transformed. The near plane W
at z = -N maps into the plane W’ at z = -1, and the far plane maps to the plane at z = +1. The top wall T is
“tilted” into the horizontal plane T’ so that is parallel to the z-axis. The bottom wall S becomes the

Chapter 3D viewing November 23, 1999 page 21

horizontal S’, and the two side walls become parallel to the z-axis. The camera’s view volume is
transformed into a parallelepiped!

Figure 7.28. The view volume warped by the perspective transformation.

It’s easy to prove how these planes map, because they all involve lines that are either parallel to the near
plane or that pass through the eye. Check these carefully:

Fact: Lines through the eye map into lines parallel to the z-axis. Proof: All points of such a line project
to a single point, say (x*, y*), on the viewplane. So all of the points along the line transform to all of the
points (x, y, z) with x = x*, y = y*, and z taking on all pseudodepth values between -1 and 1.

Fact: Lines perpendicular to the z-axis map to lines perpendicular to the z-axis. Proof: All points along
such a line have the same z-coordinate, so they all map to points with the same pseudodepth value.

Using these facts it is straightforward to derive the exact shape and dimensions of the warped view
volume.

The transformation also “warps” objects, like the blocks shown, into new shapes. Figure 7.28b shows a
block being projected onto the near plane. Suppose the top edge of its front face projects to y = 2 and the
top edge of its back face projects to y = 1. When this block is transformed, it becomes a truncated
pyramid: the top edge of its front face lies at y = 2, and the top edge of its back face lies at y = 1.Things
closer to the eye than the near plane become bigger, and things beyond the near plane become smaller.
The transformed object is smaller at the back than the front because the original object projects that way.
The x and y-coordinates of the transformed object are the x- and y-coordinates of the projection of the
original object. These are the coordinates you would encounter upon making an orthographic projection
of the transformed object. In a nutshell:

The perspective transformation “warps” objects so that, when viewed with an orthographic projection,
they appear the same as the original objects do when viewed with a perspective projection.

So all objects are warped into properly foreshortened shapes according to the rules of perspective
projection. Thereafter they can be viewed with an orthographic projection, and the correct picture is
produced.

We look more closely at the specific shape and dimensions of the transformed view volume.

Details of the Transformed View Volume, and mapping into the Canonical View Volume.
We want to put some numbers on the dimensions of the view volume before and after it is warped.
Consider the top plane, and suppose it passes through the point (left, top, -N) at z = -N as shown in Figure
7.29. Because it is composed of lines that pass through the eye and through points in the near plane all of
which have a y-coordinate of top, it must transform to the plane y = top. Similarly,

Figure 7.29. Details of the perspective transformation.

- the bottom plane transforms to the y = bott plane;
- the left plane transforms to the x = left plane;
- the right plane transforms to the x = right.

We now know the transformed view volume precisely: a parallelepiped with dimensions that are related
to the camera’s properties in a very simple way. This is a splendid shape to clip against as we shall see,
because its walls are parallel to the coordinate planes. But it would be an even better shape for clipping if
its dimensions didn’t depend on the particular camera being used. OpenGL composes the perspective
transformation with another mapping that scales and shifts this parallelepiped into the canonical view
volume, a cube that extends from -1 to 1 in each dimension. Because this scales things differently in the

Chapter 3D viewing November 23, 1999 page 22

x- and y- dimensions as it “squashes” the scene into a fixed volume it introduces some distortion, but the
distortion will be eliminated in the final viewport transformation.

The transformed view volume already extends from -1 to 1 in z, so it only needs to be scaled in the other
two dimensions. We therefore include a scaling and shift in both x and y to map the parallelepiped into
the canonical view volume. We first shift by -(right + left)/2 in x and by -(top + bott)/2 in y. Then we
scale by 2/(right - left) in x and by 2/(top - bott) in y. When the matrix multiplications are done (see the
exercises) we obtain the final matrix:

R

N

right left

right left

right left
N

top bott

top bott

top bott
F N

F N

FN

F N

=

−
+
−

−
+
−

− +
−

−
−

−

�

�

�
�
�
�
�
��

�

�

�
�
�
�
�
��

2
0 0

0
2

0

0 0
2

0 0 1 0

()
 (the projection matrix) (7.13)

This is known as the projection matrix , and it performs the perspective transformation plus a scaling and
shifting to transform the camera’s view volume into the canonical view volume. It is precisely the matrix
that OpenGL creates (and by which it multiplies the current matrix) when glFrustum(left,
right, bott, top, N, F) is executed. Recall that gluPerspective(viewAngle,
aspect, N, F) is usually used instead, as its parameters are more intuitive. This sets up the same
matrix, after computing values for top, bott, etc. using

top N viewAngle= tan(/)
π

180
2

bott = -top, right = top * aspect, and left = -right.

Clipping Faces against the View Volume.
Recall from Figure 7.14 that clipping is performed after vertices have passed through the projection
matrix. It is done in this warped space because the canonical view volume is particularly well suited for
efficient clipping. Here we show how to exploit this, and we develop the details of the clipping
algorithm.

Clipping in the warped space works because a point lies inside the camera’s view volume if and only if
its transformed version lies inside the canonical view volume. Figure 7.30a shows an example of clipping
in action. A triangle has vertices v1, v2, and v3. Vertex v3 lies outside the canonical view volume, CVV.
The clipper works on edges: it first clips edge v1v2, and finds that the entire edge lies inside CVV. Then it
clips edge v2v3, and records the new vertex a formed where the edge exits from the CVV. Finally it clips
edge v3v1 and records the new vertex where the edge enters the CVV. At the end of the process the
original triangle has become a quadrilateral with vertices v1v2a b. (We will see later that in addition to
identifying the locations of the new vertices, the pipeline also computes new color and texture parameters
at these new vertices.)

a). clip a triangle b). clip an edge
Figure 7.30. Clipping against the canonical view volume.

The clipping problem is basically the problem of clipping a line segment against the CVV. We examined
such an algorithm, the Cyrus-Beck clipper, in Section 4.8.3. The clipper we develop here is similar to
that one, but of course it works in 3D rather than 2D.

Actually, it works in 4D. We will clip in the 4D homogeneous coordinate space called “clip coordinates”
in Figure 7.14. This is easier than it might seem, and it will nicely distinguish between points in front of,
and behind, the eye.

Suppose we want to clip the line segment AC shown in Figure 7.30b against the CVV. This means we are
given two points in homogeneous coordinates, A = (ax, ay, az, aw) and C = (cx, cy, cz, cw), and we want to

Chapter 3D viewing November 23, 1999 page 23

determine which part of the segment lies inside the CVV. If the segment intersects the boundary of the
CVV we will need to compute the intersection point I = (Ix, Iy, Iz, Iw).

As with the Cyrus-Beck algorithm we view the CVV as six infinite planes, and consider where the given
edge lies relative to each plane in turn. We can represent the edge parametrically as A + (C-A)t. It lies at
A when t is 0, and at C when t is 1. For each wall of the CVV we first test whether A and C lie on the
same side of a wall: if they do there is no need to compute the intersection of the edge with the wall. If
they lie on opposite sides we locate the intersection point and clip off the part of the edge that lies
outside.

So we must be able to test whether a point is on the “outside” or “inside” of a plane. Take the plane x = -1,
for instance, which is one of the walls of the CVV. The point A lies to the right of it (on the “inside”) if

a

a
a a a ax

w
x w w x> − > − + >1 0or or () . (7.14)

(When you multiply both sides of an inequality by a negative term you must reverse the direction of the
inequality. But we are ultimately dealing with only positive values of aw here - see the exercises.)
Similarly A is inside the plane x = 1 if

a

a
a ax

w
w x> − >1 0or ()

Blinn [blinn96] calls these quantities the “boundary coordinates” of point A, and he lists the six such
quantities that we work with as in Figure 7.31:
boundary coordinate homogeneous value clip plane
BC0 w+x X=-1
BC1 w-x X=1
BC2 w+y Y=-1
BC3 w-y Y=1
BC4 w+x Z=-1
BC5 w-z Z=1
Figure 7.31. The boundary codes computed for each end point of an edge.

We form these six quantities for A and again for C. If all six are positive the point lies inside the CVV. If
any are negative the point lies outside. If both points lie inside we have the same kind of “trivial accept”
we had in the Cohen Sutherland clipper of Section 3.3. If A and C lie outside on the same side
(corresponding BC’s are negative) the edge must lie wholly outside the CVV.

Trivial accept: both endpoints lie inside the CVV (all 12 BC’s are positive)
Trivial reject: both endpoints lie outside the same plane of the CVV.

If neither condition prevails we must clip segment AC against each plane individually. Just as with the
Cyrus-Beck clipper, we keep track of a candidate interval (CI) (see Figure 4.45), an interval of time
during which the edge might still be inside the CVV. Basically we know the converse: if t is outside the
CI we know for sure the edge is not inside the CVV. The CI extends from t = tin to tout.

We test the edge against each wall in turn. If the corresponding boundary codes have opposite signs we
know the edge hits the plane at some thit, which we then compute. If the edge “is entering” (is moving into
the “inside” of the plane at t increases) we update tin = max(old tin, thit), since it could not possibly be
entering at an earlier time than thit. Similarly, if the edge is exiting, we update tout = min(old tout, thit). If at
any time the CI is reduced to the empty interval (tout becomes > tin) we know the entire edge is clipped off
and we have an “early out”, which saves unnecessary computation.

It is straightforward to calculate the hit time of an edge with a plane. Write the edge parametrically in
homogeneous coordinates:

Chapter 3D viewing November 23, 1999 page 24

edge(t) = (ax + (cx-aa) t, ay + (cy - ay) t, az + (cz - az) t, aw + (cw - aw) t)

If it’s the X = 1 plane, for instance, when the x-coordinate of A + (C-A)t is 1:

a c a t

a c a t
x x x

w w w

+ −
+ −

=
()

()
1

This is easily solved for t, yielding

t
a a

a a c c
w x

w x w x

=
−

− − −() ()
(7.15)

Note that thit depends on only two boundary coordinates. Intersection with other planes yield similar
formulas.

This is easily put into code, as shown in Figure 7.32. This is basically the Liang Barsky algorithm
[liang84], with some refinements suggested by Blinn [blinn96]. The routine clipEdge(Point4 A,
Point4 C) takes two points in homogeneous coordinates (having fields x, y, z, and w) and returns 0 if
no part of AC lies in the CVV, and 1 otherwise. It also alters A and C so that when the routine is finished
A and C are the endpoints of the clipped edge.

 The routine finds the six boundary coordinates for each endpoint and stores them in aBC[] and cBC[] .
For efficiency it also builds an outcode for each point, which holds the signs of the six boundary codes
for that point. Bit i of A’s outcode holds a 0 if aBC[i] > 0 (A is inside the i-th wall) and a 1 otherwise.
Using these, a trivial accept occurs when both aOutcode and cOutcode are 0. A trivial reject occurs
when the bit-wise AND of the two outcodes is nonzero.
int clipEdge(Point4& A, Point4& C)
{

double tIn = 0.0, tOut = 1.0, tHit;
double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = 0;
<.. find BC’s for A and C ..>
<.. form outcodes for A and C ..>

if((aOutcode & cOutcode) != 0) // trivial reject
return 0;

if((aOutcode | cOutcode) == 0) // trivial accept
return 1;

for(int i = 0; i < 6; i++) // clip against each plane
{

if(cBC[i] < 0) // exits: C is outside
{

tHit = aBC[i]/(aBC[i] - cBC[i]);
tOut = MIN(tOut,tHit);

}
else if(aBC[i] < 0) //enters: A is outside
{

tHit = aBC[i]/(aBC[i] - cBC[i]);
tIn = MAX(tIn, tHit);

}
if(tIn > tOut) return 0; //CI is empty early out

}
// update the end points as necessary
Point4 tmp;
if(aOutcode != 0) // A is out: tIn has changed
{ // find updated A, (but don’t change it yet)

tmp.x = A.x + tIn * (C.x - A.x);
tmp.y = A.y + tIn * (C.y - A.y);
tmp.z = A.z + tIn * (C.z - A.z);
tmp.w = A.w + tIn * (C.w - A.w);

Chapter 3D viewing November 23, 1999 page 25

}
if(cOutcode != 0) // C is out: tOut has changed
{ // update C (using original value of A)

C.x = A.x + tOut * (C.x - A.x);
C.y = A.y + tOut * (C.y - A.y);
C.z = A.z + tOut * (C.z - A.z);
C.w = A.w + tOut * (C.w - A.w);

}
A = tmp; // now update A
return 1; // some of the edge lies inside the CVV

}
Figure 7.32. The edge clipper (as refined by Blinn).

In the loop that tests the edge against each plane, at most one of the BC’s can be negative. (Why?) If A
has negative BC the edge must be entering at the hit point; if C has a negative BC the edge must be
exiting at the hit point. (Why?) (Blinn uses a slightly faster test by incorporating a mask that tests one bit
of an outcode.) Each time tIn or tOut are updated an early out is taken if tIn has become greater than
tOut.

When all planes have been tested, one or both of tIn and tOut have been altered (why?). A is updated
to A + (i - A) tIn if tIn has changed, and C is updated to A + (C - A) tOut if tOut has changed.

Blinn suggests pre-computing the BC’s and outcode for every point to be processed. The eliminates the
need to re-compute these quantities when a vertex is an endpoint of more than one edge, as is often the
case.

Why did we clip against the canonical view volume?
Now that we have seen how easy it is to do clipping against the canonical view volume, we can see the
value of having transformed all objects of interest into it prior to clipping. There are two important
features of the CVV:

1. It is parameter-free: the algorithm needs no extra information to describe the clipping volume. It uses
only the values -1 and 1. So the code itself can be highly tuned for maximum efficiency.

2. Its planes are aligned with the coordinate axes (after the perspective transformation is performed).
This means that we can determine which side of a plane a point lies on using a single coordinate, as
in ax > -1. If the planes were not aligned, an expensive dot product would be needed.

Why did we clip in homogeneous coordinates, rather than after the perspective division step?
This isn’t completely necessary, but it makes the clipping algorithm clean, fast, and simple. Doing the
perspective divide step destroys information: if you have the values ax and aw explicitly you know of
course the signs of both of them. But given only the ratio ax/aw you can tell only whether ax and aw have
the same or opposite signs. Keeping values in homogeneous coordinates and clipping points closer to the
eye than the near plane automatically removes points that lie behind the eye, such as B in Figure 7.23.

Some “perverse” situations that necessitate clipping in homogeneous coordinates are described in
[blinn96, foley90]. They involve peculiar transformations of objects, or construction of certain surfaces,
where the original point (ax, ay, az, aw) has a negative fourth term, even though the point is in front of the
eye. None of the objects we discuss modeling here involve such cases. We conclude that clipping in
homogeneous coordinates, although usually not cricitcal, makes the algorithm fast and simple, and brings
it almost no cost.

Following the clipping operation perspective division is finally done, (as in Figure 7.14), and the 3-tuple
(x, y, z) is passed through the viewport transformation. As we discuss next, this transformation sizes and
shifts the x- and y- values so they are placed properly in the viewport, and makes minor adjustments on
the z- component (pseudodepth) to make it more suitable for depth testing.

The Viewport Transformation.

Chapter 3D viewing November 23, 1999 page 26

As we have seen the perspective transformation squashes the scene into the canonical cube, as suggested
in Figure 7.33. If the aspect ratio of the camera’s view volume (that is, the aspect ratio of the window on
the near plane) is 1.5, there is obvious distortion introduced when the perspective transformation scales
objects into a window with aspect ratio 1. But the viewport transformation can undo this distortion by
mapping a square into a viewport of aspect ratio 1.5. We normally set the aspect ratio of the viewport to
be the same as that of the view volume.

Figure 7.33. The viewport transformation restores aspect ratio.

We have encountered the OpenGL function glViewport(x, y, wid, ht) often before. It specifies
that the viewport will have lower left corner (x,y) in screen coordinates, and will be wid pixels wide
and ht pixels high. It thus specifies a viewport with aspect ratio wid /ht . The viewport transformation
also maps pseudodepth from the range -1 to 1 into the range 0 to 1.

Review Figure 7.14, which reveals the entire graphics pipeline. Each point P (which is usually one vertex
of a polygon) is passed through the following steps:

- P is extended to a homogeneous 4-tuple by appending a 1;
- This 4-tuple is multiplied by the modelview matrix, producing a 4-tuple giving the position in eye

coordinates;
- The point is then multiplied by the projection matrix , producing a 4-tuple in clip coordinates;
- The edge having this point as an endpoint is clipped;
- Perspective division is performed, returning a 3-tuple;
- The viewport transformation multiplies the 3-tuple by a matrix: the result (sx, sy, dz) is used for

drawing and depth calculations. (sx, sy) is the point in screen coordinates to be displayed; dz is a
measure of the depth of the original point from the eye of the camera.

Practice Exercises.
 7.4.5. P projects where? Suppose the viewplane is given in camera coordinates by the equation Ax + By
+ Cz = D. Show that any point P projects onto this plane at the point given in homogeneous coordinates

P DP DP DP AP BP CPx y z x y z' (, , ,)= + +
Do it using these steps.
a). Show that the projected point is the point at which the ray between the eye and P hits the given plane.
b). Show that the ray is given by Pt, and it hits the plane at t* = D/(APx + BPy + CPz).
c). Show that the projected point - the hit point - is therefore given properly above.
d). Show that for the near plane we use earlier, we obtain (x*, y*) as given by Equation 7.4.
7.4.6. A revealing approximate form for pseudodepth. Show that pseudodepth a + b/(-Pz), where a
and b are given in Equation 7.8, is well approximated by Equation 7.9 when N is much smaller than F.
7.4.7. Points at infinity in homogeneous coordinates. Consider the nature of the homogeneous
coordinate point (x, y, z, w) as w becomes smaller and smaller. For w = .01 it is (100x, 100y, 100z), for w
= 0.0001 it is (10000x, 10000y, 10000z), etc. It progresses out” toward infinity” in the direction (x, y, z).
The point with representation (x, y, z, 0) is in fact called a “point at infinity”. It is one of the advantages
of homogeneous coordinates that such an idealized point has a perfectly “finite” representation: in some
mathematical derivations this removes many awkward special cases. For instance, two lines will always
intersect, even if they are parallel [ayers67, semple52]. But other things don’t work as well. What is the
difference of two points in homogeneous coordinates?
7.4.8. How does the perspective transformation affect lines and planes?
We must show that the perspective transformation preserves flatness and in-between-ness.
a). Argue why this is proven if we can show that a point P lying on the line between two points A and B
transforms to a point P’ that lies between the transformed versions of A and B.
b). Show that the perspective transformation does indeed produce a point P’ with the property just stated.
c). Show that each plane that passes through the eye maps to a plane that is parallel to the z-axis.
d). Show that each plane that is parallel to the z-axis maps to a plane parallel to the z- axis.
e). Show that relative depth is preserved;
7.4.9. The details of the transformed view volume. Show that the warped view volume has the
dimensions given in the five points above. You can use the facts developed in the preceding exercise.

Chapter 3D viewing November 23, 1999 page 27

7.4.10. Show the final form of the projection matrix. The projection matrix is basically that of
Equation 7.10, followed by the shift and scaling described. If the matrix of Equation 7.10 is denoted as
M, and T represents the shifting matrix, and S the scaling matrix, show that the matrix product STM is
that given in Equation 7.13.
7.4.11. What Becomes of Points Behind the Eye? If the perspective transformation moves the eye off to
-infinity, what happens to points that lie behind the eye? Consider a line, P(t), that begins at a point in
front of the eye at t = 0 and moves to one behind the eye at t = 1.
a). Find its parametric form in homogeneous coordinates;
b). Find the parametric representation after it undergoes the perspective transformation;
c). Interpret it geometrically. Specifically state what the fourth homogeneous coordinate is geometrically.
A valuable discussion of this phenomenon is given in [blinn78].

	CHAPTER 7 Three-Dimensional Viewing
	
	Ł To see how each operation in the OpenGL graphics pipeline operates, and why it is used.
	Preview

	7.1 Introduction.
	7.2. The Camera Revisited.
	7.2.1. Setting the View Volume.
	7.2.2. Positioning and pointing the camera.

	7.3 Building a Camera in a Program.
	7.3.1. ﬁFlyingﬂ the Camera.

	7.4. Perspective Projections of 3D Objects
	7.4.1. Perspective Projection of a Point.
	7.4.2. Perspective Projection of a Line.

	7.4.3. Incorporating Perspective in the Graphics Pipeline.

