(for ECEG660, Fall, 1999)

Chapter 4. Vectors Tools for Graphics.

“The knowledge at which geometry aims is knowledge of the eternal,
and not of aught perishing and transient.”
Plato
For us, whose shoulders sag under the weight of the heritage of Greek thought
and who walk in the paths traced out by the heroes of the Renaissance,
a civilization without mathematics is unthinkable.
Andre Weil
“Let us grant that the pursuit of mathematics is a divine madness of the human spirit.”
Alfred North Whitehead
“All that transcend geometry, transcends our comprehension”.
Blaise Pascal

Goals of the Chapter

* Toreview vector arithmetic, and to relate vectors to objects of interest in graphics.

» To relate geometric concepts to their algebraic representations.

* To describe lines and planes parametrically.

* Todistinguish points and vectors properly.

* To exploit the dot product in graphics topics.

» To develop tools for working with objects in 3D space, including the cross product of two vectors.

Preview

This chapter develops a number of useful tools for dealing with geometric objects encountered in
computer graphics. Section 4.1 motivates the use of vectors in graphics, and describes the principal
coordinate systems used. Section 4.2 reviews the basic ideas of vectors, and describes the key operations
that vectors allow. Although most results apply to any number of dimensions, vectors in 2D and 3D are
stressed. Section 4.3 reviews the powerful dot product operation, and applies it to a number of geometric
tasks, such as performing orthogonal projections, finding the distance from a point to a line, and finding
the direction of a ray “reflected” from a shiny surface. Section 4.4 reviews the cross product of two

vectors, and discusses its important applications in 3D graphics.

Section 4.5 introduces the notion of a coordinate frame and homogeneous coordinates, and stresses that
points and vectors are significantly different types of geometric objects. It also develops the two principal
mathematical representations of a line and a plane, and shows where each is useful. It also introduces
affine combinations of points and describes an interesting kind of animation known as “tweening”. A
preview of Bezier curves is described as an application of tweening.

Section 4.6 examines the central problem of finding where two line segments intersect, which is vastly
simplified by using vectors. It also discusses the problem of finding the unique circle determined by three
points. Section 4.7 discusses the problem of finding where a “ray” hits a line or plane, and applies the
notions to the clipping problem. Section 4.8 focuses on clipping lines against convex polygons and
polyhedra, and develops the powerful Cyrus-Beck clipping algorithm.

The chapter ends with Case Studies that extend these tools and provide opportunities to enrich your
graphics programming skills. Tasks include processing polygons, performing experiments in 2D “ray
tracing”, drawing rounded corners on figures, animation by tweening, and developing advanced clipping
tools.

4.1 Introduction.
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In computer graphics we work, of course, with objects defined in a three dimensional world (with 2D objects

and worlds being just special cases). All objects to be drawn, and the “cameras” used to draw them, have shape,
position, and orientation. We must write computer programs that somehow describe these objects, and describe
how light bounces around illuminating them, so that the final pixel values on the display can be computed.

Think of an animation where a camera flies through a hilly scene containing various buildings, trees, roads, and
cars. What does the camera “see”? It all has to be converted ultimately to numbers. It's a tall order.

The two fundamental sets of tools that come to our aid in graphieeaoe analysisndtransformationsBy

studying them in detail we develop methods to describe the various geometric objects we will encounter, and
we learn how to convert geometric ideas to numbers. This leads to a collection of crucial algorithms that we can
call upon in graphics programs.

In this chapter we examine the fundamental operations of vector algebra, and see how they are used in graphics;
transformations are addressed in Chapter 5. We start at the beginning and develop a humber of important tools
and methods of attack that will appear again and again throughout the book. If you have previously studied
vectors much of this chapter will be familiar, but the numerous applications of vector analysis to geometric
situations should still be scrutinized. The chapter might strike you as a mathematics text. But having it all
collected in one place, and related to the real problems we encounter in graphics, may be found useful.

Why are vectors so important?
A preview of some of some situations where vector analysis comes to the rescue might help to motivate the
study of vectors. Figure 4.1 shows three geometric problems that arise in graphics. Many other examples could

be given.
a). b). c).
(4.6) '
: '/_center? E
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(2:2) (7,1) \viewplane

Figure 4.1. Three sample geometric problems that yield readily to vector analysis.

Part a) shows a computer-aided design problem: the user has placed three points on the display with the mouse,
and wants to draw the unique circle that passes through them. (Can you visualize this circle?). For the
coordinates given where is the center of the circle located? We see in Section 4.6 that this problem is thorny
without the use of vectors, but almost trivial when the right vector tools are used.

Part b) shows a camera situated in a scene that contains a Christmas tree. The camera must form an image of the
tree on its “viewplane” (similar to the film plane of a physical camera), which will be transferred to a screen
window on the user’s display. Where does the image of the tree appear on this plane, and what is its exact
shape? To answer this we need a detailed study of perspective projections, which will be greatly aided by the

use of vector tools. (If this seems too easy, imagine that you are developing an animation, and the camera is
zooming in on the sphere along some trajectory, and rotating as it does so. Write a routine that generates the
whole sequence of images!)

Part c) shows a shiny cone in which the reflection of a cube can be seen. Given the positions of the cone, cube,
and viewing camera, wheexactlydoes the reflected image appear, and what is its color and shape? When
studying ray tracing in Chapter 15 we will make extensive use of vectors, and we will see that this problem is
readily solved.

Some Basics.

All points and vectors we work with are defined relative to some coordinate system. Figure 4.2 shows the
coordinate systems that are normally used. Each system begiarcalledd and some axes emanating from

J . The axes are usually oriented at right angles to one another. Distances are marked along each axis, and a
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point is given coordinates according to how far along each axis it lies. Part a) shows the usual two-dimensional
system. Part b) showsright handed3D coordinate system, and part ¢) shodeftehandecdcoordinate system.

y

a). b). o 7

z X

Figure 4.2. The familiar two- and three-dimensional coordinate systems.

In a right handed system, if you rotate yaght hand around theaxis by sweeping from the positixe

axis around to the positiweaxis, as shown in the figure, your thumb points along the pogitixés. In a

left handed system, you must do this with ylafirhand to make your thumb point along the positive

axis. Right-handed systems are more familiar and are conventionally used in mathematics, physics, and
engineering discussions. In this text we use a right-handed system when setting up models for objects. But
left-handed systems also have a natural place in graphics, when dealing with viewing systems and
“‘cameras”.

We first look at the basics of vectors, how one works with them, and how they are useful in graphics. In
Section 4.5 we return to fundamentals and show an important distinction between points and vectors that, if
ignored, can cause great difficulties in graphics programs.

4.2. Review of Vectors.

“Not only Newton’s laws, but also the other laws of physics, so far as we know today, have the two
properties which we call invariance under translation of axes and rotation of axes. These properties are so
important that a mathematical technique has been developed to take advantage of them in writing and using
physical laws.. called vector analysis.”

Richard Feynman

Vector arithmetic provides a unified way to express geometric ideas algebraically. In graphics we work with
vectors of two, three, and four dimensions, but many results need only be stated once and they apply to
vectors of any dimension. This makes it possible to bring together the various cases that arise in graphics
together into a single expression, which can be applied to a broad variety of tasks.

Viewed geometrically, vectors are objects having length and direction. They correspond to various physical
entities such as force, displacement, and velocity. A vector is often drawn as an arrow of a certain length
pointing in a certain direction. It is valuable to think of a vector geometricallyisplacemenfrom one

point to another

Figure 4.3 uses vectors to show how the stars in the Big Dipper are moving over time [kerr79]. The current
location of each star is shown by a point, and a vector shows the velocity of each star. The “tip” of each
arrow shows the point where its star will be located in 50,000 years: producing a very different Big Dipper
indeed!
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Figure 4.3. The Big Dipper now and in AD 50,000.

Figure 4.4a shows, in a 2D coordinate system, the two gemtel, 3) andQ = (4, 1). The displacement

from P to Q is a vectow having components (3, -Ecalculated by subtracting the coordinates of the points

individually. To “get from”P to Q we shift down by 2 and to the right by 3. Because a vector is a

displacement it has size and direction but no inherent location: the two arrows laipetied figure are in

fact the same vector. Figure 4.4b shows the corresponding situation in three dimerisitmesyvector from
ointP to pointQ. One often states:

a). b).
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Figure 4.4. A vector as a displacement.
« Thedifference between two points is a vectar=Q - P;

Turning this around, we also say that a pQris formed by displacing poif by vectorv; we say thav
“offsets” P to form Q. Algebraically,Q is then thesum: Q=P +v.

» Thesum of a point and a vector is a poift+v = Q.

At this point we represent a vector through a list of its componentsdenensional vector is given by an
n-tuple

W= (W, W2, . . . ,Wn) (4.1)

Mostly we will be interested in 2D or 3D vectors as i (3.4, -7.78) ot = (33, 142.7, 89.1). Later when it
becomes important we will explore the distinction between a vector amegpiitsentationand in fact will
use a slightly expanded notation to represent vectors (and points). Writing a veatowasatrixlike t =
(33, 142.7, 89.1) fits nicely on the page, but when it matters we will instead write veatohsras

matrices

33

34
r= ,ort=|1427
-7.78
89.1

It matters when we want to multiply a point or a vector by a matrix, as we shall see in Chapter 5.
4.2.1. Operations with vectors.

Vectors permit two fundamental operations: you can add them, ar@ghgauultiply them bgcalars(real
numberd]] So ifa andb are two vectors, angiis a scalar, it is meaningful to form bath b and the
productsa. For example, i = (2, 5, 6) andb = (-2, 7, 1), we can form the two vectors:

a+b=(0,12,7)

lUpper case letters are conventionally used for points, and boldface lower case letters for vectors.
2 There are also systems where the scalars can be complex numbers; we do not work with them here.
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6a= (12, 30, 36)

always performing the operationemponentwiseg-igure 4.5 shows a two-dimensional example, using

(1, -1) andb = (2, 1). We can represent the addition of two vectors graphically in two different ways. In
Figure 4.5a we show both vectors “starting” at the same point, thereby forming two sides of a parallelogram.
The sum of the vectors then a diagonal of this parallelogram, the diagonal that emanates from the binding
point of the vectors. This view — the “parallelogram rule” for adding vectors — is the natural picture for
forces acting at a point: The diagonal gives the resultant force.

b).

a+b

Figure 4.5. The sum of two vectors.

Alternatively, in Figure 4.5b we show one vector starting at the head of the other (i.e., place tleatil of

the head o&) and draw the sum as emanating from the tailtofthe head db. The sum completes the

triangle, which is the simple addition of one displacement to another. The components of the sum are clearly
the sums of the components of its parts, as the algebra dictates.

Figure 4.6 shows the effect of scaling a vector.d=02.5 the vectos a has the same direction agut is
2.5 times as long. Whesis negative, the direction efa is opposite that ai: The case = -1 is shown in
the figure.

Figure 4.6. Scaling a vector.

Subtraction follows easily once adding and scaling have been estabtisteeid:simplya + (-c). Figure 4.7
shows the geometric interpretation of this operation, forming the differeracanafc as the sum ai and ¢
(Figure 4.7b). Using the parallelogram rule, this sum is seen to be equal to the vector that

a). C).

a-cCc

Figure 4.7. Subtracting vectors.

emanates from the headwénd terminates at the headadqfigure 4.7c¢). This is recognized as one diagonal
of the parallelogram constructed usagndc. Note too that it is the “other” diagonal from the one that
represents the sua+ c.

4.2.2. Linear Combinations of Vectors.

With methods in hand for adding and scaling vectors, we can define a linear combination of vectors. To
form alinear combination of two vectorsy andw, (having the same dimension) we scale each of them by
some scalars, sayandb, and add the weighted versions to form the new veator; b w. The more

general definition for combiningn such vectors is:
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Definition:

A linear combination of them Vectorsv,, v, . . .,V is a vector of the form

w=a Vv, +av,+t..+a v (4.2)
Whereal, a,...,a are scalars.

For example, the linear combination 2(3, 4,-1) + 6(-1, 0, 2) forms the vector (0O, 8, 10). In later chapters we
shall deal with rather elaborate linear combinations of vectors, especially when representing curves and
surfaces using spline functions.

Two special types of linear combinations, “affine” and “convex” combinations, are particularly important in
graphics.

Affine Combinations of Vectors.
A linear combination is aaffine combination if the coefficientsa, a,, . . . ,a,,add up to 1. Thus the linear
combination in Equation 4.2 is affine if:

ata+..+a =1 (4.3)

For example, & + 2b - 4cis an affine combination @, b, andc, but 3a + b - 4cis not. The
coefficients of an affine combination of two vectarandb are often forced to sum to 1 by writing one as
some scalarand the other as @-

(1t a+@)b (4.4)

Affine combinations of vectors appear in various contexts, as do affine combinations of points, as we see
later.

Convex Combinations of Vectors.

Convex combinations have an important place in mathematics, and numerous applications in graphics. A
convex combinationarises as a further restriction on an affine combination. Not only must the

coefficients of the linear combination sum to one; each one must also be nonnegative. The linear
combination of Equation (4.2.2) ¢®nvexif:

a+a+..+a =1, (4.5)
anda; =0, fori =1,...m. As a consequence allmust lie between 0 and 1. (Why?).

Thus .&+.7b is a convex combination afandb, but 1.& -.8b is not. The set of coefficientg, a,, . . . ,a|

is sometimes said to formpartition of unity , suggesting that a unit amount of “material” is partitioned into
pieces. Convex combinations frequently arise in applications when one is making a unit amount of some
brew and can combine only positive amounts of the various ingredients. They appear in unexpected
contexts. For instance, we shall see in Chapter 8 that “spline” curves are in fact convex combinations of
certain vectors, and in our discussion of color in Chapter 12 we shall find that colors can be considered as
vectors, and that any color of unit brightness may be considered to be a convex combination of three primary
colors!

We will find it useful to talk about the “set of all convex combinations” of a collection of vectors. Consider
the set of all convex combinations of the two vectgrandv.. It is the set of all vectors

v=(l-a)vi+aw (4.6)

as the parameteris allowed to vary from 0 to 1 (why?) What is this set? Rearranging the equas@gen
to be:
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v=vi+a (V-Vvy) 4.7)

Figure 4.8a shows this to be the vector that {glus some fraction of, - v;, so the tip of lies on the line
joining vi andv,. As a varies from 0 to 1,takes on all the positions on the line frepto v,, and only
those.

a). b).

A

V2 A

a(vo-vq)
V3

2V

——.3v3

»
>

\

\
.Svo

Figure 4.8. The set of vectors representable by convex combinations.

Figure 4.8b shows the set of all convex combinations of three vectors. Choose two pararaetegs a
both lying between 0 and 1, and form the following linear combination:

g=a v, +a,v,+(1l-a-a,)v, (4.8)

where we also insist thaf plusa, does not exceed one. This is a convex combination, since none of the
coefficients is ever negative and they sum to one. Figure 4.9 shows the three positiov vedtars),v, =

(3, 3), andv, = (7, 4). By the proper choices afanda,, any vector lying within the shaded triangle of
vectors can be represented, and no vectors outside this triangle can be reached. Tine v2uior .5v, +

.3V, for instance, is shown explicitly as the vector sum of the three weighted ingredients. (Note how it is

built up out of “portions” of the three constituent vectors.) So the set of all convex combinations of these
three vectors “spans” the shaded triangle. The proof of this is requested in the exercises.

If a,= 0, any vector in the link that joinsv, andv, can be “reached” by the proper choiceapfFor
example, the vector that is 20 percent of the way frpto v, alongL is given by .8/, + Ov, +.2v,.

4.2.3. The Magnitude of a vector, and unit vectors.
If a vectorw is represented by thetuple (v, w,, . . . ,wp), how might its magnitude (equivalently, its

lengthor size be defined and computed? We denote the magnitudg byndl define it as the distance from
its tail to its head. Based on the Pythagorean theorem, this becomes

W] = W2 + w2+ w2 (4.9)

For example, the magnitudewf= (4, -2) ism, and that ofv = (1, -3, 2) isW14 . A vector of zero
length is denoted & Note that ifw is the vector from poinA to pointB, then | will be the distance from
Ato B (why?).

It is often useful to scale a vector so that the result has a length equal to one. This®oakdiding a
vector, and the result is known asrat vector. For example, we form the normalized versiom,afenoted

a, by scaling it with the value 3|

Hill - Chapter 4 09/23/99 page 7



a
£

Clearly this is a unit vectod:él =1 (why?), having the same directionaa&or example, i = (3, -4), then
|a|=5 and the normalized versima = (£,%). At times we refer to a unit vector asligection. Note
that any vector can be written as its magnitude times its directianisithe normalized version af vector
amay always be writtea =| a| a

a= (4.10)

Practice Exercises.

4.2.1. Representing Vectors as linear combinationgVith reference to Figure 4.9, what values, or range of

values, for aand g create the following sets?

a.v,.

b. The line joiningy, andv,,.

c. The vector midway between andv..

d. The centroid of the triangle.

4.2.2. The set of all convex combinationShow that the set of all convex combinations of three veetpvs,

andyv, is the set of vectors whose tips lie in the “triangle” formed by the tips of the three vectors. Hint: Each
point in the triangle is a combination 8f and some point lying betwe&n andVs.

4.2.3. Factoring out a scalar.Show how scaling a vectorby a scalas changes its length. That is, show that:
|sv|=]s]|V¥]|.Note the dual use of the magnitude symbol | |, once for a scalar and once for a vector.
4.2.4. Normalizing Vectors Normalize each of the following vectors:

a). (1, -2, .5); b). (8, 6); ¢). (4, 3)

4.3. The Dot Product.

There are two other powerful tools that facilitate working with vectors: the dot (or inner) product, and the
cross product. The dot product produces a scalar; the cross product works only on three dimensional vectors
and produces another vector. In this section we review the basic properties of the dot product, principally to
develop the notion of perpendicularity. We then work with the dot product to solve a number of important
geometric problems in graphics. Then the cross product is introduced, and used to solve a number of 3D
geometric problems.

Thedot product of two vectors is simple to define and compute. For two-dimensional veetors,) @nd

(b, b,), it is simply the scalar whose valueaib, + a,b,. Thus to calculate it, multiply corresponding
components of the two vectors, and add the results. For example, the dot product of (3, 4) and (1, 6) is 27,
and that of (2, 3) and (9, -6) is 0.

The definition of the dot product generalizes easily tiimensions:

Definition: The Dot Product
The dot productl of two n-dimensional vectorsy = (v, v,, . .. ,v.) andw = (w;, w,, .. . ,w ) is denoted as

1 72
v -w and has the value

d:VEN:ZViW (4.11)

1=1

Example 4.3.1:

» The dot product of (2, 3, 1) and (0, 4, -1) is 11.
°(2,2,2,2)-(4,1,2,1.1)=16.2.
*(14,0,1,0,1)-(0,2,0,1,0)=0.

* (169, 0, 43) (0, 375.3,0) = 0.

Hill - Chapter 4 09/23/99 page 8



4.3.1. Properties of the Dot Product
The dot product exhibits four major properties that we frequently exploit and that follow easily (see the
exercises) from its basic definition:

1. Symmetry: a-b=b-a

2: Linearity: @+c)-b=a-b+cb
3: Homogeneity: @ -b=s@:b

4. bl2=b-b

The first states that the order in which the two vectors are combined does not matter: the dot product is
commutative. The next two proclaim that the dot produdinsar; that is, the dot product of a sum of

vectors can be expressed as the sum of the individual dot products, and scaling a vector scales the value of
the dot product. The last property is also useful, as it asserts that taking the dot product of a vector with itself

yields thesquare of the lengthof the vector. It appears frequently in the fohirH \/b-b .

The following manipulations show how these properties can be used to simplify an expression involving dot
products. The result itself will be used in the next section.

Example 4.3.2: Simplification of |a - b?f
Simplify the expression for the length (squared) of the difference of two veatamdp, to obtain the
following relation:

la-bP=|al-2a-b+|bJ] (4.12)

The derivation proceeds as follows: Give the n&ne the expressiong|- b |2. By the fourth propertyC is
the dot product:

C=|a-bP=(a-b)-@-bh).

Using linearity:C=a- @-b)-b - @-b).

Using symmetry and linearity to simplify this furth&@=a-a-2a-b+b -b.

Using the fourth property above to obtélr- |a |2 -2a-b+|b |2 gives the desired result.

By replacing the minus with a plus in this relation, the following similar and useful relation emerges:
la+b=|aP+2a-b+|b]| (4.13)

4.3.2. The Angle Between Two Vectors.

The most important application of the dot product is in finding the angle between two vectors, or between
two intersecting lines. Figure 4.9 shows the 2D case, where vbaod lie at angle®p, anddc,

relativeto thex-axis. Now from elementary trigonometry:

AY

%c
Do

X

Figure 4.9. Finding the angle between two vectors.
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b = (bl cos¢p , bl sindp)
¢ = (kI cosdc, [l sindc).

Thus their dot product is

bl¢ =|bf [c|cog$. cod,+ b [l s, s

=|bl[cicos@. -9, )

so we have, for any two vectdssandc:

b -c =l kf cos@) (4.14)

wheref is the angle fronb toc. Thusb - ¢ varies as the cosine of the angle frioto c. The same result
holds for vectors of three, four, or any number of dimensions.

To obtain a slightly more compact form, divide through both siddy Iy &nd use the unit vector notation

b=b/ |b| to obtain

cos@) =b & (4.15)

This is the desired result: The cosine of the angle between two vieetodg is the dot product of their
normalized versions.

Example 4.3.3Find the angle betwedn= (3, 4) anct = (5, 2).
Solution: Form b| = 5 andd| = 5.385 so thdd = (3/5, 4/5) anc = (.9285, .3714). The dot product

b [€ = .85422 = coH), so tha® = 31.32&. This can be checked by plotting the two vectors on graph paper
and measuring the angle between them.

4.3.3. The Sign of b-c, and Perpendicularity.

Recall that co$)) is positive if |0] is less than 39 zeroif |8] equals 99, andnegativeif |8] exceeds 90
Because the dot product of two vectors is proportional to the cosine of the angle between them, we can
therefore observe immediately that two vectors (of any nonzero length) are

+ lessthan 9P apart ifb-c>0;
+  exactly 9® apart ifb - c=0; (4.16)
+  more than 9 apart ifb - c<0;

This is indicated by Figure 4.10. The sign of the dot product is used in many algorithmic tests.
b
b

c Cc

bec>0 bec=0 bec<O
Figure 4.10. The sign of the dot product.

The case in which the vectors ar®@part, operpendicular, is of special importance.

Definition:
Vectorsb andc are perpendicular i - c= 0.
(4.17)
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Other names for “perpendicular” asghogonal andnormal, and we shall use all three interchangeably.

The most familiar examples of orthogonal vectors are those aimed along the axes of 2D and 3D coordinate
systems, as shown in Figure 4.11. In part a) the 2D vectors (1, 0) and (0, 1) are mutually perpendicular unit
vectors. The 3D versions are so commonly used they are called the “standard unit vectors” and are given
namesq, j, andk.

a). b).

y
T(O.l)

(1,0)

o
3 /

z

Figure 4.11. The standard unit vectors.

Definition:
Thestandard unit vectorsin 3D have components:
i=(1,0,0), i=(0,1,0), ankl= (0, O, 1). (4.18)

Part b) of the figure shows them for a right-handed system, and part ¢) shows them for a left-handed
system. Note thd always points in the positive z direction.

Using these definitions any 3D vector sucha$,(c) can be written in the alternative form:
(a,b,c)=ai+bj+ck (4.19)

Example 4.3.4Notice thatv = (2, 5, -1) is clearly the same as 2 (1,0, 0)+ 5 (0, 1, 0) -1 (0, O, 1), which is
recognized as 2+ 5j -k.

This form presents a vector as a sum of separate elementary component vectors, so it simplifies various
pencil-and-paper calculations. It is particularly convenient when dealing with the cross product, discussed in
Section 4.4.

Practice Exercises.

4.3.1. Alternate proof of b - ¢ = |b| |c|] ca&& Note thatb andc form two sides of a triangle, and the third

side isb - ¢. Use the law of cosines to obtain the square of the length ©fn terms of the lengths dfand

¢ and the cosine @ Compare this with Equation 4.13 to obtain the desired result.

4.3.2. Find the Angle Calculate the angle between the vectors (2, 3) and (-3, 1), and check the result
visually using graph paper. Then compute the angle between the 3D vectors (1, 3, -2) and (3, 3, 1).
4.3.3. Testing for Perpendicularity. Which pairs of the following vectors are perpendicular to one another:
3,4,1),(2,1,1),(-3,-4,1),(0,0,0), (1, -2, 0), (4, 4, 4), (0, -1, 4),and (2, 2, 1)?

4.3.4. Pythagorean TheoremRefer to Equations 4.12 and 4.13. For the case in vehicidb are
perpendicular, these expressions have the same value, which seems to make no sense geometrically. Show
that it works all right, and relate the result to the Pythagorean theorem.

4.3.4. The 2D “Perp” Vector.
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Suppose the 2D vectarhas componentsi, ay). What vectors are perpendicular to it? One way to obtain
such a vector is to interchange #h@ndy- components and negate one of t@rlnet b = (-ay, ax). Then

the dot producé - b equals 0 sa andb are indeed perpendicular. For instance,3f(4,7) therb = (-7, 4)
is a vector normal te. There are infinitely many vectors normal to angince any scalar multiple bf
such ag-21, 12) and (7, -4) is also normalao(Sketch several of them for a givan

It is convenient to have a symbol for queaticular vector that is normal to a given 2D vectoiWe use
the symbolO (pronounced “perp”) for this.

Definition:  Givena = (&, a), al = (-ay, &) is thecounterclockwise
(4.20)
perpendicular toa.

Note thata and a [ have the same lengtha| hml . Figure 4.12a shows an arbitrary vectend the
resultinga U Note that moving from tha direction to directiora 0 requires a left turn. (Making a right

turn is equivalent to turning in the directicn- )
2). b).

e

O
-a

Figure 4.12. The vecta U perpendicular ta.

We show in the next section how this notation can be put to good use. Figure 4.12b shows that in three
dimensions no single vector lies in “the” direction perpendicular to a given 3D @esioce any of the
vectors lying in the plane perpendiculaatwill do. However, the cross product developed later will
provide a simple tool for dealing with such vectors.

Practice Exercises.

4.3.5. Some Pleasant Properties ofhlt is useful in some discussions to view the “perp” syn%ak an
operator that performs a “rotate 90° left” operation on its argument, satisthe vector produced by
applying theU to vectora, much as\/;( is the value produced by applying the square root operator to
Viewing Uin this way, show that it enjoys the following properties:

a). Linearity: & + b)D =all+pH and (A\a)D = Aal for any scalad,

b). all = (aD)D =-a (two perp’s make a reversal)

4.3.6. The “perp dot” product. Interesting things happen when we dot the “perp” of a vector with another

vector, as i b. We call this the “perp dot product” [hill95]. Use the basic definitioalbfibove to
show:

. a” b= axh/ - aybx (value of the perp dot product)

. alla=0, (aD is perpendicular ta)

. |aD|2 = |a|2. (aD anda have the same length) (4.22)
. alpb=-pU- g (antisymmetric)

3 This is equivalent to the familiar fact that perpendicular lines have slopes that are negative reciprocals of one another.
In Chapter 5 we see the “interchange and negate” operation arise naturally in connection with a rotation of 90 degrees.
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The fourth fact shows that the perp dot product is “antisymmetric”: movin@ tieem one vector to the
other reverses the sign of the dot product. Other useful properties of the perp dot product will be discussed
as they are needed.

4.3.7. Calculate one.Computea - b anda b fora= (3,4) ancb = (2,1).

4.3.8. It's a determinant.Show thatl b can be written as the determinant (for definitions of matrices
and determinants see Appendix 2):

a' = %%
b, b,

4.3.9. Other goodies.

a). Show thatg™b)2 + (a-b)2 = |a2b|2.

|b). Showthatib+b+c=0thenal-b=bU.c=cU.a

4.3.5. Orthogonal Projections, and the Distance from a Point to a Line.

Three geometric problems arise frequently in graphics applicapiojscting a vector onto a given
vector,resolving a vector into its components in one direction and another, and finding the distance
between a point and a line. All three problems are simplified if we use the perp vector and the perp dot
product.

Figure 4.13a shows the basic ingredients. We are given two poamdC, and a vectov. These questions arise:
a). b). c).

G

Figure 4.13. Resolving a vector into two orthogonal vectors.

a). How far is the poin€ from the linel that passes throughin the directionv?
b). If we drop a perpendicular froBiontoL, where does it hit?
¢). How do we decompose the veatar C - A into a part along the lineand a part perpendicular t@

Figure 4.13.b defines some additional quantit’vg%ts the vectow rotated 90 degrees CCW. Dropping a
perpendicular fron€ onto lineL we say that the vectaris resolvedinto the portiorKv alongv and the

portionM a perpendicular tg, whereK andM are some constants to be determined. Then we have

c=Kv+M U (4.22)

Givenc andv we want to solve foK andM. Once found, we say that thghogonal projection of c onto
v is Kv, and that the distance from C to the line is%ll

Figure 4.13c shows a situation where these questions might arise. We wish to analyze how the gravitational
force vectorG acts on the block to pull it down the incline. To do this we must re§olaéo the force

acting along the incline and the fof8eacting perpendicular to the incline. That is, flhdndB such that
G=F+B.

Equation 4.22 is really two equations: the left and right hand sides must agreexfepthgonents and

they also must agree for thecomponents. There are two unknowhandM. So we have two equations
in two unknowns, and Cramer’s rule can be applied. But who remembers Cramer’s rule? We use a trick
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here that is easy to remember and immediately reveals the solution. It is equivalent to Cramer’s rule, but
simpler to apply.

The trick in solving two equations in two unknowns is to eliminate one of the variables. We do this by
forming the dot product of both sides with the veestor

cv=Kvv + MvH.y (4.23)

Happily, the ternv-v vanishes, (why?), yieldinlg immediately:

cly
K=——.
v LV
Similarly “dot” both sides of Equation 4.3.12 with! to obtain M:

cv”
vV [V

where we have used the third property in Equation 4.21. Putting these together we have

HVB:DV Et\/DB:D O
OvfO D|v|2D

c= (resolvingc intov andvD) (4.24)

This equality holds for any vectocsaandv. The part alongy is known as therthogonal projection of ¢
onto the vectow. The second term gives the “difference term” explicitly and compactly. Its size is the
distance from C to the line:

|V

VI

(Check that the second form really equals the first). Referring to Figure 4.13b we cdue sistance
from a point C to the line through A in the directiorv is:

V" OC-A)
distance :T . (4.25)

Example 4.3.5Find the orthogonal projection of the veator (6, 4) ontaa = (1, 2). (Sketch the relevant
vectors.)Solution: Evaluate the first term in Equation 4.24, obtaining the vector (14, 28) / 5.
Example 4.3.6:How far is the poin€ = (6,4) from the line that passes through (1,1) and (&8)&ion:
SetA=(1, 1), user = (4, 9) - (1, 1) = (3, 8), and evalualistancein Equation 4.25. The result is:

d=31/J73.

Practice Exercises.

4.3.10. Resolve it.Express vectog = (4, 7) as a linear combinationlof= (3, 5) and. How far is 4,2

+ g from the line through (4, 2) that moves in the directi@n

4.3.11. A Block pulled down an inclineA block rests on an incline tilted 30° from the horizontal. Gravity
exerts a force of one newton on the block. What is the force that is “trying” to move the block along the
incline?

4.3.12. How far is it?How far from the line through (2, 5) and ( 4, -1) does the point (6, 11) lie? Check your
result on graph paper.
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4.3.6. Applications of Projection: Reflections.

To display the reflection of light from a mirror, or the behavior of billiard balls bouncing off one another,

we need to find the direction that an object takes upon being reflected at a given surface. In a case study at
the end of this chapter we describe an application to trace a ray of light as it bounces around inside a
reflective chamber, or a billiard ball as it bounces around a pool table. At each bounce a reflection is made
to a new direction, as derived in this section.

When light reflects from a mirror we know that the angle of reflection must equal the angle of incidence.
We next show how to use vectors and projections to compute this new direction. We can think in terms of
two-dimensional vectors for simplicity, but because the derivation does not explicitly state the dimension of
the vectors involved, the same result applies in three dimensions for reflections from a surface.

Figure 4.14a shows a ray having directpmitting lineL, and reflecting in (as yet unknown) directian
The vectom is perpendicular to the line. Angdg in the figure must equal angbe. How isr related taa
andn? Figure 4.14b showsresolved into the portiom alongn and the portiom orthogonal tan.
Because of symmetry,has the same componentrthogonal tan, but the opposite component alamg
and sa =e-m. Because =a - m, this gives =a - 2m. Nowm is the orthogonal projection afonton,
so by Equation 4.2¢h is

a). b).
AN

81|62

77 77 L

4.14. Reflection of a ray from a surface.

m=20, (alh)n (4.26)

2
In|
(recall N is the unit length version of) and so we obtain the result
r=a-2@ Eﬁ)ﬁ (direction of the reflected ray) 4.27)

In three dimensions physics demands that the reflected direatioist lie in the plane defined byanda.
The expression far above indeed supports this, as we show in Chapter five.

| Example 4.3.7 Leta = (4, -2) anch = (0, 3). Then Equation 4.27 yields: (4, 2), as expected. Both the
|ang|e of incidence and reflection are equal tOJ@).

Practice Exercises.

4.3.13. Find the Reflected Direction.Fora= (2, 3) anch = (-2, 1), find the direction of the reflection.
4.3.14. Lengths of the Incident and Reflected VectordJsing Equation 4.27 and properties of the dot
product, show that || = f.

4.4. The Cross Product of Two Vectors.
Thecross product(also called theector product) of two vectors is another vector. It has many useful
properties, but the one we use most often is that it is perpendicular to both of the given vectors. The cross
product is defined only for three-dimensional vectors.
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Given the 3D vectora = (ax, ay, az) andb = (bx, by, bz), their cross product is denotedas b.Itis
defined in terms of the standard unit vecigjsandk (see Equation 4.18) by

Definition of a X b:
axb= (aybz - a-zby)i + (asz - axbz)J + (axby - aybx)k (4.28)
(It can actually be derived from more fundamental principles: See the exercises.) As this form is rather

difficult to remember, it is often written as an easily remembered determinant (see Appendix 2 for a review
of determinants).

b
axb=l|a, a,
b, b

Remembering how to form the cross product thus requires only remembering how to form a determinant.

(4.29)

oo X

Z

Example 4.4.1.Fora= (3, 0, 2) andb = (4, 1, 8), direct calculation shows thas b = -2 -16 + 3k. What
isbx a?

From this definition one can easily show the following algebraic properties of the cross product:

ixj=k
1. ] xk =i

k xi= ]
2.axb=-bxa (antisymmetry)
3.ax(b+c)=axb+axc (linearity) (4.30)
4. (sa) xb=s(axb) (homogeneity)

These equations are true in both left-handed and right-handed coordinate systems. Note the logical
(alphabetical) ordering of ingredients in the equati®hj = K, which also provides a handy mnemonic
device for remembering the direction of cross products.

Practice Exercises.

4.4.1. Demonstrate the Four Propertie?rove each of the preceding four properties given for the cross
product.

4.4.2. Derivation of the Cross ProductThe form in Equation 4.28, presented as a definition, can actually
be derived from more fundamental ideas. We need only assume that:

a. The cross product operation is linear.

b. The cross product of a vector with itself is 0.

c.ixj=k, jxk=i,andk xi =j.

By writing a=ax i +ayj +azk andb = by i + by j + bz k, apply these rules to derive the proper form for
axb.

4.4.3. Isa X b perpendicular to a? Show that the cross product of vectarandb is indeed

perpendicular ta.

4.4.4. Vector Products Find the vectob = (by, by, bz) that satisfies the cross product relatéo b=c
wherea= (2, 1, 3) and = (2, -4, 0). Is there only one such vector?
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4.4.5. Nonassociativity of the Cross ProducShow that the cross product is not associative. That is, that
a x (b x c) is not necessarily the same(asx b) x c.

4.4.6. Another Useful FactShow by direct calculation on the components that the length of the cross
product has the form:

lax bl = {ld’bl* - (a [b)?

4.4.1. Geometric Interpretation of the Cross Product.
By definition the cross produetx b of two vectors is another vector, but how is it related geometrically to the
others, and why is it of interest? Figure 4.15 gives the answer. The cross pradiucas the following useful
properties (whose proofs are requested in the exercises):

axb

Area=laxb|

Figure 4.15. Interpretation of the cross product.

1.axbis perpendicular (orthogonal) to batlandb.

2. The length ofa X b equals the area of the parallelogram determinedamdb. This area is equal to
la x b|=|al|b|sin () (4.31)

whereg is the angle betweamandb, measured froma tob or b to a, whichever produces an angle less than 180

degrees. As a special casex b = 0 if, and only ifa andb have the same or opposite directions or if either has
zero length. What is the magnitude of the cross prodaaiifdb are perpendicular?

3. The sense ai X b is given by the right-hand rule when working in a right-handed system. For example,
twist the fingers of your right hand froato b, and thera X b will point in the direction of your thumb. (When
working in a left-handed system, use your left hand instead.) Notiexthjat k supports this.

Example 4.4.2Leta= (1, 0, 1) and = (1, O, 0). These vectors are easy to visualize, as they both liexirzthe
plane. (Sketch them.) The area of the parallelogram definacbgb is easily seen to be 1. Becaws& b is
orthogonal to botla andb, we expect it to be parallel to tireaxis and hence be proportional {o i either a
right-handed or a left-handed system, sweeping the fingers of the appropriate haatbftoraveals a thumb
pointed along the positiveaxis. Direct calculation based on Equation 4.28 confirms all of@hisb =j.

| Practice Exercise 4.4.7. Proving the Propertie®rove the three properties given above for the cross product.

4.4.2. Finding the Normal to a Plane.

As we shall see in the next section, we sometimes must compute the components of the normabwvector

plane.

If the plane is known to pass through three specific points, the cross product provides the tool to accomplish this.

Any three pointsP1, P2, P3, determine a unique plane, as long as the points don't lie in a straight line. Figure
4.16 shows this situation.
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axb
Figure 4.16. Finding the plane through three given points.

To find the normal vector, build two vectoesz P2 - P1 andb = P3 - P1. Their cross produch =a x b,

must be normal to bothandb, so it is normal to every line in the plane (why?). It is therefore the desired
normal vector. (What happens if the three points do lie in a straight line?) Any scalar multiple of this cross
product is also a normal vector, includibg< a, which points in the opposite direction.

Example 4.4.3 Find the normal vector to the plane that passes through the points (1, 0, 2), (2, 3, 0), and (1, 2, 4).

Solution: By direct calculationa= (2, 3, 0) - (1,0, 2)=(1, 3, -2), abd (1, 2,4) - (1,0, 2)=(0, 2, 2), and so
their cross product = (10, -2, 2).

Note: Since a cross product involves the subtraction of various quantities (see Equation 4.28), this method for
finding n is vulnerable to numerical inaccuracies, especially when the angle betaedh is small. We
develop a more robust method later for finding normal vectors in practice.

Practice Exercises.
4.4.8. Does the choice of points matter®s the same plane obtained as in Example 4.4.3 if we use the points in
a different order, sap= (1, 0, 2) - (2, 3,0) and= (1, 2, 4) - (2, 3, 0)? Show that the same plane does result.
4.4.9. Finding Some Planes:or each of the following triplets of points, find the normal vector to the plane (if it
exists) that passes through the triplet.

aP=(111)P,=(,2 1P, =@30,4)

b.P,=(8,9,7)P,=(-8, -9, -)P,=(1,2,1)

c.P,=(,3, -4P,=(0,0,0),P,=(2,1, -1)

d.P,=(0,0,00P,=(1,1,1)P,=(22,2).

4.4.10. Finding the normal vectorsCalculate the normal vectors to each of the faces of the two objects shown
in Figure 4.17. The cube has vertices (+1,+1,£1) and the tetrahedron has vertices (0,0,0), (0,0,1), (1,0,0), and
(0,1,0).

a). b).

N
' I

Figure 4.17. Finding the normal vectors to faces.

4.5. Representations of Key Geometric Objects.
In the preceding sections we have discussed some basic ideas of vectors and their application to important
geometric problems that arise in graphics. Now we develop the fundamental ideas that facilitate working
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with lines and planes, which are central to graphics, and whose “straightness” and “flatness” makes them
easy to represent and manipulate.

What does it mean to “represent” a line or plane, and why is it important? The goal is to come up with a
formula or equation that distinguishes points that lie on the line from those that don't. This might be an
equation that is satisfied by all points on the line, and only those points. Or it might be a function that returns
different points in the line as some parameter is varied. The representation allows one to test such things as:
is pointP on the line?, or where does the lintersectanother line or some other object. Very importantly, a

line lying in a plane divides the plane into two parts, and we often need to ask whethBrligsiioh one

side or the other of the line.

In order to deal properly with lines and planes we must, somewhat unexpectedly, go back to basics and
review how points and vectors differ, and how each is represented. The need for this arises because, to
represent a line or plane we must “add points together”, and “scale points”, operations that for points are
nonsensical. To see what is really going on we introduce the notion of a coordinate frame, that makes clear
the significant difference between a point and a vector, and reveals in what sense it is legitimate to “add
points”. The use of coordinate frames leads ultimately to the notion of “homogeneous coordinates”, which
is a central tool in computer graphics, and greatly simplifies many algorithms. We will make explicit use of
coordinate frames in only a few places in the book, most notably when changing coordinate systems and
“flying” cameras around a scene (see Chapters 5, 6, ﬂ\@ﬂb even when not explicitly mentioned, an
underlying coordinate frame will be present in every situation.

4.5.1. Coordinate Systems and Coordinate Frames.
One doesn't discover new lands without consenting
to lose sight of the shore for a very long time.
Andre Gide

When discussing vectors in previous sections we say, for instance, that arve¢®12, 7), meaning it is a
certain 3-tuple. We say the same for a point, as in poin(5, 3, 1). This makes it seem that points and
vectors are the same thing. But points and vectors are very different creatures: points have location but no
size or direction; vectors have size and direction but no location.

What we mean by = (3, 2, 7), of course, is that the vectdnas “components” (3, 2, 7) in the underlying
coordinate system. Similarl, = (5, 3, 1) means poifit has coordinates (5, 3, 1) in the underlying

coordinate system. Normally this confusion between the object and its representation presents no problem.
The problem arises when there is more than one coordinate system (a very common occurrence in graphics),
and when you transform points or vectors from one system into another.

We usually think of a coordinate system as three “axes” emanating from an origin, as in Figure 4.2b. But in
fact a coordinate system is “located” somewhere in “the world”, and its axes are best described by three
vectors that point in mutually perpendicular directions. In particular it is important to make explicit the
“location” of the coordinate system. So we extend the notion of a 3D coordinatefysteat of a 3D
coordinate “frame.” Acoordinate frame consists of a specific poinf , called theorigin, and three

mutually perpendicular unit vect@]s, b, andc. Figure 4.18 shows a coordinate frame “residing” at some

pointd within “the world”, with its vectors, b, andc drawn so they appear to emanate frdnlike axes.

4 This is an area where graphics programmers can easily go astray: their programs produce pictures that look OK for simple
situations, and become mysteriously and glaringly wrong when things get more complex.

5 The ideas for a 2D system are essentially identical.

6 n more general contexts the vectors need not be mutually perpendicular, but rather only “linearly independent” (sugfnifrat, ro
none of them is a linear combination of the other two). The coordinate frames we worklvatvays have perpendicular axis
vectors.
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Figure 4.18. A coordinate frame positioned in “the world”.

Now to represent a vectarwe find three numbersy;( v, v3) such that

v=via+v,b+vsc (4.32)
and say that “has the representationVy( v, va) in this system.

On the other hand, to represent a pdhtye view its location as an offset from the origin by a certain
amount: we represent the veckr J by finding three numberg{, p,, ps) such that:

P-3 =pa+pb+psc
and then equivalently write itself as:
P=9 +pa+pb+psc (4.33)

The representation &fis not just a 3-tuple, but a 3-tuple along with an oriBiis “at” a location that is

offset from the origin by,a + p,b + psc. The basic idea is to make the origin of the coordinate system

explicit This becomes important only when there is more than one coordinate frame, and when transforming
one frame into another.

Note that when we earlier defined the standard unit vetprandk as (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively, we were actually defining thieipresentation an underlying coordinate frame. Since by
Equation 4.32 = 1a + Ob + Cc, vectori is actually just itself! It's a matter of naming: whether you are
talking about the vector or about its representation in a coordinate frame. We usually don’t bother to
distinguish them.

Note that you can’t explicitly say wher2 is, or cite the directions &f b, andc: To do so requires having

some other coordinate frame in which to represent this one. In terms of its own coordinat@ftmsehe
representation (0, 0, |,has the representation (1, 0, 0), etc.

The homogeneous representation of a point and a vector.

It is useful to represent both points and vectors usingaimeset of basic underlying objects, b, c, 0 ).
From Equations 4.32 and 4.33 the vesterv;,a +V, b +v; c then needs the four coefficients, (v, vs, 0)
whereas the poirt = p,a + pb + psc + 3 needs the four coefficientpy( p, ps, 1). The fourth component
designates whether the object does or does not indludie can formally write any andP using a matrix
multiplication (multiplying a row vector by a column vector - see Appendix 2):
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V2
v=(ab,c?d (4.34)

P=(ab,c? (4.35)

Here the row matrix captures the nature of the coordinate frame, and the column vector captures the
representation of the specific object of interest. Thus vectors and points have different representations: there
is a fourth component of O for a vector and 1 for a point. This is often calledriaeneous

representation{JThe use of homogeneous coordinates is one of the hallmarks of computer graphics, as it
helps to keep straight the distinction between points and vectors, and provides a compact notation when
working with affine transformations. It pays off in a computer program to represent the points and vectors of

interest in homogeneous coordinates as 4-tuples, by appending 8l Thisds particularly true when we
must convert between one coordinate frame and another in which points and vectors are represented.

It is simple to convert between the “ordinary” representation of a point or vector (a 3-tuple for 3D objects or
a 2-tuple for 2D objects) and the homogeneous form:

To go from ordinary to homogeneous coordinates:

if it's a point append a 1;
if it's a vector, append a 0;

To go from homogeneous coordinates to ordinary coordinates:

If it's a vector its final coordinate is 0. Delete the 0.
If it's a point its final coordinate is 1 Delete the 1.

OpenGL uses 4D homogeneous coordinates for all its vertices. If you send it a 3-tuple in tixeyformit(
converts it immediately to«(y, z, 1). If you send it a 2D poinky), it first appends a 0 for the z-component
and then a 1, to fornx(y, 0, 1). All computations are done within OpenGL in 4D homogeneous
coordinates.

Linear Combinations of Vectors .
Note how nicely some things work out in homogeneous coordinates when we combine vectors coordinate-
wise: all the definitions and manipulations are consistent:

* The difference of two points,(y, z, 1) and (U, v, w, 1) is (x-u,y - v, z-w, 0), which is, as expected, a
vector.

» The sum of a poink(y, z, 1) and a vectord( e, f, 0)is k+d,y+e, z+f, 1), another point;

» Two vectors can be added; ¢, f, 0) + (m,n,r, 0) = @+ m e+n, f+r, 0) which produces another vector;
« It is meaningful to scale a vector:d3¢, f, 0) = (3, 3¢, 3, 0);

7 Actually we are only going part of the way in this discussion. As we see in Chapter 7 when studying projections, homogeneous
coordinates in that context permit an additional operation, which makes them truly “homogeneous”. Until we examine ptioiections
operation need not be introduced.

81n the 2D case, points are 3-tupleg fp 1) and vectors are 3-tuples,(v,, 0).
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« It is meaningful to fornanylinear combination of vectors. Let the vectors/e(v; , W, V3, 0) andw =
(w1, Wy, Ws, 0). Then using arbitrary scalars a and b, we form v = (av + bwi, aw + bws, aw + bw, 0),
which is a legitimate vector.

Forming a linear combination of vectors is well defined, but does it make sense for points? The answer is no,
except in one special case, as we explore next.

4.5.2. Affine Combinations of Points.
Consider forming a linear combination of two poifs; (P, P2, P3,1) andR= (Ry, R, Rs, 1) , using the
scalard andg:

fP + gR: (fPl + gRl: sz + ng, fP3 + gR3, f+ g)

We know this is a legitimate vectorfif- g = 0 (why?). But we shall see that inista legitimate point

unlessf +g = 1! Recall from Equation 4.2 that when the coefficients of a linear combination sum to 1 it is
called an “affine” combination. So we see that the only linear combination of points that is legitimate is an
affine combination. Thus, for example, the objecPGt3.7R is a legitimate point, as are P.71. /R and

the midpoint 0.2 + 0.3R, butP + Ris not a point. For three poin®, R, andQ we can form the legal point
0.3P+ 0.R- 0.2, but notP + Q -0.9R..

Fact: any affine combination of points is a legitimate point.

But what's wrong geometrically with formirany linear combination of two points, say

E=fP+gR (4.36)
whenf + g is different from 1? The problem arises if we shift the origin of the coordinate system
[Goldman85]. Suppose the origin is shifted by veatao thatP is altered td® + u andR is shifted taR +

u. If E is a legitimate point, it too must be shifted to the new @8intE + u. But instead we have
E=fP+gR+(f+gu

which isnotE + u unless +g = 1.

The failure of a simple sui®, + P, of two points to be a true point is shown in Figure 4.19. P&nésdP,
are shown represented in two coordinate systems, one offset from the other. Viewing each point as the head
of a vector bound to its origin, we see that the Bym P, yields two different points in the two systems.

ThereforeP; + P, depends on the choice of coordinate system. Note, by way of contrast, that the affine
combination 0.99; + P,) doesnotdepend on this choice.

o P1
~7
///
A System 2 _— 7~ /depends on
/ system
o / \
== /NPy Py)
A Pk/// // e 1+F2
System 1 AN S
/// \‘ /S
s
/ // \\\//LK(PH P2)/2
/
S s P1
// /////// N
/ -~ -
// 7
rad
-~

Figure 4.19. Adding poi;1ts is not legal.

A Point plus a Vector is an Affine Combination of Points.
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There is another way of examining affine sums of points that is interesting on its own, and also leads to a
useful tool in graphics. It doesn’t require the use of homogeneous coordinates.

Consider forming a point as a pofkbffset by a vectov that has been scaled by scalak + tv. This is the
sum of a point and a vector so it is a legitimate point. If we take as vattedifference between some
other pointB andA: v = B - A then we have the poiRt

P=A+tB-A) (4.37)
which is also a legitimate point. But now rewrite it algebraically as:
P=tB+ (1-tA (4.38)

and it is seen to be an affine combination of points (why?). This further legitimizes writing affine sums of
points. In fact, any affine sum of points can be written as a point plus a vector (see the exercises). If you are
ever uncomfortable writing an affine sum of points as in Equation 4.38 (a form we will use often), simply
understand that ineanghe point given by Equation 4.37.

Example 4.5.1: The centroid of a triangleConsider the triangl€ with verticesA, B, andC shown in
Figure 4.20. We use the ideas above to show that thentiediansof T meet at a point that lies 2/3 of the

way along each median. This is the centroid (center of gﬂvit)]' .
E

G

centroid C

D
Figure 4.20. The centroid of a triangle as an affine combination.

By definition the median frorD is the line fronD to the midpoint of the opposite side. THais (E + F)/2.
We first ask where the point that is 2/3 of the way fi@io G lies? Using the parametric form the desired
point must bed + (G - D)t with t = 2/3, which yields the affine combinati@given by

D+E+F

3
(Try itl) Here’s the cute part [pedoe70]. Since this resudymmetricain D, E, andF, it must also be 2/3 of
the way along the median frof and 2/3 of the way along the median frBrfHence the 3 medians meet
there, andC is the centroid.

C=

This result generalizes nicely for a regular polygoi sfdes: the centroid is simply the average ofthe
vertex locations, another affine combination. For an arbitrary polygon the formula is more complex

Practice Exercises.

4.5.1. Any affine combination of points is legitimateConsider three scalaasb, andc that sum to one,
and three point8, B, andC. The affine combinatiora A+b B+ c Cis a legal point because using1- a

- bitis seen to be the sameaa&+bB+ (1-a-b)C=C+a(A-C)+b(B-C), the sum of a point and
two vectors (check this out!). To generalize: Given the affine combination of pefts w.A, + ... +

WA, wherew; +w, + ... +w, = 1, show that it can be written as a point plus a vector, and is therefore a
legitimate point.

4.5.2. Shifting the coordinate systerflGoldman85]. Consider the general situation of forming a linear
combination oim points:

9The reference to gravity arises because if a thin plate is cut in the shape of T, the plate hangs level if suspended by a
thread attached at the centroid. Gravity pulls equally on all sides of the centroid, so the plate is balanced.
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m
E=> 3R
1=1
We ask whetheE is a point, a vector, or nothing at all? By considering the effect of a shift irPpaghu

show that is “shifted” toE’ = E + Su, whereSis the sum of the coefficients:
m

S= Z a
1=1
Show that:
i). Eis a point ifS= 1.
ii). Eis a vector ifS= 0.
ii). Eis meaningless for other valuesSf

4.5.3. Linear Interpolation of two points.
The affine combination of points expressed in Equation 4.33:

P=A(l-t)+Bt

performslinear interpolation between the poin®s andB. That is, thex-componen®,(t)

provides a value that is fractidmf the way between the valdg andBX’ and similarly for the
y-component (and in 3D tteecomponent). This is a sufficiently important operation to warrant
a name, anterp() (for linear interpolation) has become popular. In one dimensasp(a, b,

t) provides a number that is the fractianf the way froma to b. Figure 4.21 provides a simple
implementation oferp().

float lerp(float a, float b, float t)
{

returna + (b - a) *t; // return a float

}

Figure 4.21. Linear interpolation effectedlbgp().

Similarly, one often wants to compute the péi(t) that is fractiort of the way along the
straight line from poinA to pointB. This point is often called the “tween” (for “in-between”)
att of pointsA andB. Each component of the resulting point is formed asetipe () of the
corresponding componentsAfandB. A procedure

Point2 canvas:: Tween(Point2 A, Point2 B, float t) Il tween A and B
is easily written (how?) to implement tweening. A 3D version is almost the same.

Example 4.5.2LetA= (4, 9) andB = (3, 7). ThenmTween( A B, t) returns the point (4t; 9 - 4), so
thatTween(A, B, 0.4) returns (3.6, 8.1). (Check this on graph paper.)

4.5.3. “Tweening” for Art and Animation.

Interesting animations can be created that show one figure being “tweened” into another. It's simplest if the
two figures are polylines (or families of polylines) based on the same number of points. Suppose the first
figure, A, is based on the polyline with poirig, and the second polylinB, is based on poin®j, fori =

0, ...,n-1. We can form the polylin(t), called the “tween at, by forming the points:

Pi(t) = (1 -t) Aj+t B

If we look at a succession of values for t between 0 and 1t s&),0.1, 0.2, ..., 0.9, 1.0, we see that this
polyline begins with the shape Afand ends with the shapeRfbut in between it is a blend of the two
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shapes. For small values of t it looks likebut as t increases it warps (smoothly) towards a shape close to
B. Fort = 0.25, for instance, poiij(.25) of the tween is 25% of the way fr@kio B.

Figure 4.22 shows a simple example, in which polyfres the shape of a house, and polyBirtes the
shape of the letter “T". The poiRon the house corresponds to p&@min the ‘T’. The various tweens of
pointR on the house and poi§ton the T lie on the line betwe@&andS. The tween fot = 1/2 lies at the
midpoint ofRS The in between polylines show the shapes of the tweehsf@, 0.25, 0.5, 0.75, and 1.0.

[ EICAT

Figure 4.22. Tweening a "T" into a house.

Figure 4.23 showdrawTween( ), that draws a tween of two polylinAsandB, each having vertices, at
the specified value df

void canvas:: drawTween(Point2 A[], Point2 B[], int n, float

Y
{ // draw the tween at time t between polylines A and B
for(inti=0;i<n;i++)

{
Point2 P;
P = Tween(A[i], B[i],1);
if(i == 0) moveTo(P.x, P.y);
else lineTo(P.x, P.y);
}

}

Figure 4.23. Tweening two Polylines.

drawTween () could be used in an animation loop that twekasdB back and forth, first asincreases

from 0 to 1, then asdecreases back to 0, etc. Double buffering, as discussed in Chapter 3, is used to make
the transition from one displayed tween to the next instantaneous.

for(t=0.0, delT =0.1; ; t += delT) // tween back and forth forever

{

<clear the buffer>

drawTween(A, B, n, t);

glutSwapBuffers();

if(t>= 1.0 || t <= 0.0) delT = - delT; // reverse the flow of t
}

Figure 4.24 shows an artistic use of this technique based on two sets of polylines. Three tweens are shown
(what values of are used?). Because the two sets of polylines are drawn sufficiently far apart, there is
room to draw the tweens between them with no overlap, so that all five pictures fit nicely on one frame.

see Figure 7.11 from first edition
Figure 4.24. From man to woman. (Courtesy of Marc Infield.)

Susan E. Brennan of Hewlett Packard in Palo Alto, California, has produced caricatures of famous figures
using this method (see [dewdney88]). Figure 4.25 shows an example. The second and fourth faces are
based on digitized points for Elizabeth Taylor and John F. Kennedy. The third face is a tween, and the other
three are based @xtrapolation. That is, values dflarger than 1 are used, so that the termt)1s-

negative. Extrapolation can produce caricature-like distortions, in some sense “going to the other side” of
polyline B from polylineA. Values oft less than 0 may also be used, with a similar effect.

[see Figure 7.12 from 1st edition: Elizabeth Taylor to J.F. Kennedy |
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Figure 4.25. Face Caricature: Tweening and extrapolation. (Courtesy of Susan Brennan.)

Tweening is used in the film industry to reduce the cost of producing animations such as cartoons. In earlier
days an artist had to draw 24 pictures for each second of film, because movies display 24 frames per
second. With the assistance of a computer, however, an artist need draw only the first and final pictures,
calledkey-frames in certain sequences and let the others be generated automatically. For instance, if the
characters are not moving too rapidly in a certain one-half-second portion of a cartoon, the artist can draw
and digitize the first and final frames of this portion, and the computer can create 10 tweens using linear
interpolation, thereby saving a great deal of the artist's time. See the case study at the end of this chapter for
a programming project that produces these effects.

Practice Exercises.

4.5.3. A Limiting Case of TweeningWhat is the effect of tweening when all of the poifgtin polyline A

are the same? How is polyliBedistorted in its appearance in each tween?

4.5.4. An Extrapolation. PolylineA is a square with vertices (1, 1), (-1, 1), (-1, -1), (1, -1), and polBline

is a wedge with vertices (4, 3), (5, -2), (4, 0), (3, -2). Sketch (by hand) theRftgfoe t = -1, -0.5, 0.5,

and 1.5.

4.5.5. Extrapolation Versus Tweening.Suppose that five polyline pictures are displayed side by side.

From careful measurement you determine that the middle three are in-betweens of the first and the last, and
you calculate the values blised. But someone claims that the last is actually an extrapolation of the first
and the fourth. Is there any way to tell whether this is true? If it is an extrapolation, can the vakesof

be determined? If so, what is it?

4.5.4. Preview: Quadratic and cubic tweening, and Bezier Curves.

In Chapter 8 we address the problem of designing complex shapes called Bezier curves. It is interesting to
note here that the underlying idea is simply tweening between a collection of points. With linear
interpolation above we “partition unity” into the pieces {Landt, and use these pieces to “weight” the
pointsA andB. We can extend this to quadratic interpolation by partitioning unity into theeepiJust

rewrite 1 as

1= ((14) +1)2

and expand it to produce the three piecestxa, 2(1 -1 t, andt?. They obviously sum to one, so they can
be used to form the affine combination of poiat8, andC:

Pt) = (1-)2A+ 2(1-)B+tC

This is the “Bezier curve” for the poinfs B, andC. Figure 4.26a shows the shapé() ast varies from 0
to 1. It flows smoothly fronA to C. (Notice that the curve misses the middle point.) Going further, one can

expand ((1 %) +t )3 into four pieces (which ones?) which can be used to do “cubic interpolation” between
four pointsA, B, C andD, as shown in Figure 4.26b.
a). b). B

B c

/

P(0) P(t) AZ—p(0) 5
P(1)
A

PA\C
Figure 4.26. Bezier curves as Tweening.
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Practice Exercise 4.5.6. Try it outDraw three point#, B, andC on a piece of graph paper. For each of
the values =0, .1, .2, ..., .9, 1 compute the positiofP@j in Equation 4.38, and draw the polyline that
passes through these points. Is it always a parabola?

4.5.5. Representing Lines and Planes.

We now turn to developing the principal forms in which lines and planes are represented mathematically. It
is quite common to find data structures within a graphics program that capture a line or plane using one of
these forms.

Lines in 2D and 3D space.

A line is defined by two points, s&yandB (see Figure 4.27a). It is infinite in length, passing through the
points and extending forever in both directionding segment(segmentfor short) is also defined by two
points, itsendpoints, but extends only from one endpoint to the other (Figure 4.27Iparést line is the
infinite line that passes through its endpointsa is “semi-infinite.” It is specified by a point and a
direction. It “starts” at a point and extends infinitely far in a given direction (Figure 4.27¢).

a). line b). ine segment c). ray

B
B
B
C
c \
C

staring
point

Figure 4.27. Lines, segments, and rays.

These objects are very familiar, yet it is useful to collect their important representations and properties in
one spot. We also describe the most important representation of all for a line in computer graphics, the
parametric representation.

The parametric representation of a line.

The construction in Equations 4.32 and 4.33 is very useful, becatgarges the poinP traces out all of
the points on the straight line defined®wandB. The construction therefore gives us a way to name and
compute any point along this line.

This is done using parameter t that distinguishes one point on the line from another. Call thé Jined
give the namé.(t) to the position associated withUsingb =B - C we have:

L() =C +bt (4.39)

As t varies so does the positionldf) along the line. (One often thinkstadis “time”, and uses language

such as: “attime 0 ...", “as time goes on..”, or “later” to describe different parts of the line.) Figure 4.28
shows vectob and the lind. passing througl andB. (A 2D version is shown but the 3D version uses the
same ideas.) Note wheké) is located for various values ofif t = 0, L(0) evaluates t€ so att = 0 we are

“at” point C. At t =1thenL(1) =C+ (B - C) =B. Ast varies we add a longer or shorter versiob tf the
point C, resulting in a new point along the linet 1§ larger than 1 this point lies somewhere on the opposite
side ofC from B, and whert is less than 0 it lies on the sidebpposite fronB.
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Figure 4.28. Parametric representatigt) of a line.

For a fixed value of, sayt = 0.6, Equation 4.39 gives a formula for exactly one point along the line through
C andB: the particular point(0.6). Thus it is a description of a point. But since one can view it as a
function oft that generates the coordinategwérypoint onL ast varies, it is called thparametric
representation of lineL.

The line, ray, and segment of Figure 4.26 are all represented by the(spaiéquation 4.39. They differ
parametrically only in the values bfhat are relevant:

segment: @t<1
ray: 0 <t<oco (4.40
line:w<t<oo

The ray “starts” aC whent = 0 and passes throug@hatt = 1, then continues forever tiscreasesC is
often called the “starting point” of the ray.

A very useful fact is thdt(t) lies “fractiont of the way” betweel€ andB whent lies between 0 and 1. For
instance, wheh= 1/2 the point.(0.5) is themidpoint betweenC andB, and whert = 0.3 the point.(0.3) is
30% of the way fronC to B. This is clear from Equation 4.39 sinté&) - C = p| k| andB - C| = p|, so the

value of |t| is the ratio of the distanded)|- C| to B - C|, as claimed.

One can also speak of the “speed” with which the ddift‘moves” along line_. Since it covers distance
[b] tin timet it is moving at constant speddy. |

Example 4.5.2. A line in 2DFind a parametric form for the line that passes thr@g[B, 5) andB = (2,

7). Solution: Build vectorb =B - C = (-1, 2) to obtain the parametric form L(t) = (3-t, 2 + 2 1).

Example 4.5.3. A line in 3DFind a parametric form for the line that passes thragl3, 5,6) and = (2,
7,3). Solution: Build vectorb =B - C= (-1, 2, -3) to obtain the parametric form L(t) = (3-t,2 + 2, 6 - 3t).

Other parametrizations for a straight line are possible, although they are rarely used. For instance, the point
W(t) given by

W(t) =C + bt3

also “sweeps” over every point anlt lies atC whent = 0, and reachéd whent = 1. UnlikeL(t), however,
W() “accelerates” along its path fro@ito B.

Point normal form for a line (the implicit form).
This is the same as the equation for a line, but we rewrite it in a way that better reveals the underlying
geometry. The familiar equation of a line in 2D has the form

fx+gy=1 (4.41)
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wheref andg are some constants. The notion is that every pxig} that satisfies this equation lies on the

line, so it provides a condition for a point to be on the line. Note: This is true only for a line in 2D; a line in
3D requires two equations. So, unlike the parametric form that works perfectly well in 2D and 3D, the point
normal form only applies to lines in 2D.

This equation can be written using a dot proddgct) (- (, y) = 1, so for every point on a line a certain dot
product must have the same value. We examine the geometric interpretation of the “japtanhd in so

doing develop the “point normal” form of a line. It is very useful in such tasks as clipping, hidden line
elimination, and ray tracing. Formally the point normal form makes no mention of dimensionality: A line in
2D has a point normal form, and a plane in 3D has one.

Suppose that we know linepasses through poinandB, as in Figure 4.29. What is its point normal
form? If we can find a vectar that is perpendicular to the line, then for any pBist(x, y) on the line the
vectorR - C must be perpendicular tp so we have the condition &

n

R

A
Figure 4.29. Finding the point normal form for a line.

n-(R-C)=0 (point normal form) (4.42)

This is thepoint normal equation for the line, expressing that a certain dot product must turn out to be zero
for everypointR on the line. It employs as datay point lying on the line, andny normal vector to the
line.

We still must find a suitable. Letb = B - C denote the vector froi@ to B. Thenb® will serve well as the

desiredn. For purposes of building the point normal form, any scalar muItip:bQoWorks just as well for
n.

Example 4.5.4. Find the point normal form.Suppose liné passes through poin@= (3, 4) and = (5, -

2). Thenb=B-C=(2, -6) andbl = (6, 2) (sketch this). Choosirtgas the point on the line, the point
normal formis: (6, 2) . KY) - (3, 4)) =0, or 8+ 2y = 26. Both sides of the equation can be divided by 26
(or any other nonzero number) if desired.

It's also easy to find the normal to a line given the equation of the linef gayg y= 1. Writing this once
again as f(g) - (x, y) = 1itis clear that the normalis simply €, g) (or any multiple thereof). For instance,
the line given by %- 2y = 7 has normal vector (5, -2), or more genei&(ly, -2) for any nonzerK.

It's also straightforward to find the parametric form for a line if you are given its point normal form.
Suppose it is known that linehas point normal form- (P - C) = 0, wheren andC are given explicitly.

The parametric form is ther(t) = C + nCt (why?). You can also obtain the parametric form if the equation
of the line is given. a). find the normaks in the previous paragraph, and b). find a p@iptd,) on the
line by choosing any value f@, and use the equation to find the correspon@ing

Moving from each representation to the others.

We have described three different ways to characterize a line. Each representation uses certain data that
distinguishes one line from another. This is the data that would be stored in a suitable data structure within
a program to capture the specifics of each line being stored. For instance, the data associated with the
representation that specifies a line parametrically &+t would be the poin€ and the directiob. We
summarize this by saying the relevant dataCsh]}.
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The three representations and their data are:

e The two point form: sag andB; data = C, B}

e The parametric formC + bt; data = {C, b}.

*  The point normal (implicit) form (in 2D onlyh- (P - C) = 0; data = C, n}.

Note that a poin€ on the line is common to all three forms. Figure 4.30 shows how the data in each
representation can be obtained from the data in the other representations. For instandg, lgj\afrtH{e

parametric form, the normalof the point normal form is obtained simplyb@

Figure 4.30. Moving between representations of a line.

Practice Exercise 4.5.5. Find the point normal formFind the point normal form for the line that passes
through (-3, 4) and (6, -1). Sketch the line and its normal vector on graph paper.

Planes in 3D space.

Because there is such a heavy use of polygons in 3D graphics, planes seem to appear everywhere. A
polygon (a “face”of an object) lies in its “parent” plane, and we often need to clip objects against planes, or
find the plane in which a certain face lies.

Planes, like lines, have three fundamental forms: the three-point form, the parametric representation and
the point normal form. We examined the three-point form in Section 4.4.2.

The parametric representation of a plane.

The parametric form for a plane is built on three ingredients: one of its fojrsd two (nonparallel)
vectors,a andb, that lie in the plane, as shown in Figure 4.31. If we are given the three (hon-collinear)
pointsA, B, andC in the plane, then takee=A -Candb =B - C.
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T~

Figure 4.31. Defining a plane parametrically.

To construct a parametric form for this plane, note that any point in the plane can be represented by a
vector sumgC plus some multiple ad plus some multiple df. Using parametersandt to specify the
“multiples” we haveC + sa +t b. This provides the desired parametric fde(s,

P(st)= C+as+bt (4.43)

Given any values of andt we can identify the corresponding point on the plane. For example, the position
“at" s= t= 0isCitself, and thatad =1 and = - 2isP(1, -2)=C+a-2b.

Note that two parameters are involved in the parametric expression for a surface, whereas only one
parameter is needed for a curve. In fact if one of the parameters is fixed; shiytherP(3, 1) is a function

of one variable and represents a straight R{g;t) = C+ 3a) +bt.

It is sometimes handy to arrange the parametric form into its “component” form by collecting terms

P(s,t) = (Cx +axs+byt, Cy+ay5+ byt,Cz+azs+ bz t). (4.44)

We can rewrite the parametric form in Equation 4.43 explicitly in terms of the given ppBitandC:
just use the definitions af andb:

P(s,t)=C+5A-C)+t(B-C)
which can be rearranged into thi#&ne combinatiorof points:
P(s, )= sA+tB+ (1-s-t)C (4.45)

Example 4.5.6. Find a parametric form given three points in a plan€Consider the plane passing through
=(3,3,3),B =(5,5,7), ancC = (1, 2, 4). From Equation 4.43 it has parametric form

P(st)= (1,2,4)+ (2,1, -19+ (4, 3, 3. This can be rearranged to the component fég:t) = (1 +2s+4
t) i+ (2+s+3t)j + (4 -s+ 3t) k, or to the affine combination fori(s, t) = 5(3, 3, 3) +(5, 5, 7) + (1 s-t)(1,
2, 4).

The point normal form for a plane.
Planes can also be represented in point normal form, and the classic equation for a plane emerges at once.

Figure 4.32 shows a portion of plaRén three dimensions. A plane is completely specified by giving a
single pointB = (bx, by, bz), that lies within it, and the normal directian= (nx, ny, nz), to the plane. Just

as the normal vector to a line in two dimensions orients the line, the normal to a plane orients the plane in
space.
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Y|
Figure 4.32. Determining the equation of a plane.

The normah is understood to be perpendicular to any line lying in the plane. For an arbitrari pafat
y, 2) in the plane, the vector froRito B must be perpendicular tg giving:

n-R-B)=0 (4.46)

This is the point normal equation of the plane. It is identical in form to that for the line: a dot product set
equal to 0. All points in a plane form vectors wittthat have the same dot product with the normal vector.
By spelling out the dot product and usimg (nx, ny, nz), we see that the point normal form is the
traditional equation for a plane:

Nx X +Nyy+nzz=D (4.47)

whereD =n - B - 0). For example, if given the equation for a plane suckx a&b+ 8z = 2, you know
immediately that the normal to this plane is (5, -2, 8) or any multiple of this. (How do you find a point in
this plane?)

Example 4.5.7. Find a point normal form. Let planeP pass through (1, 2, 3) with normal vector (2, -1, -
2).
Its point normal form is (2, -1, -2) x({y, z) - (1, 2, 3)) = 0. The equation for the plane may be written out
asX-y-2z=6.
Example 4.5.8. Find a parametric form given the equation of the plan&ind a parametric form for the
plane 2x -y + 3z= 8.Solution: By inspection the normal is (2, - 1, 3). There are many parametrizations;
we need only find one. F@&, choose any point that satisfies the equatida; (4, 0, 0) will do. Find two
(noncollinear) vectors, each having a dot product of O with (2, - 1, 3); some hunting firals tijat5, 1)
andb = (0, 3, 1) will work. Thus the plane has parametric fB{st) = (4, 0, 0) + (1, 5, 13+ (0, 3, 1}.
Example 4.5.9. Finding two noncollinear vectorgGiven the normah to a plane, what is an easy way to
find two noncollinear vectora andb that are both perpendicularn@ (In the previous exercise we just
invented two that work.) Here we use the fact that the cross produmy eéctor withn is normal tan. So
we take a simple choice such as (0, 0, 1), and constagits cross product witin

a=(0,0, 1)x n=("y, nx 0)
(Is this indeed normal 1@?). We can use the same idea to forthat is normal to both anda:

b=nxa= (Nnxnz -Nynz, nx2+ny2)
(Check thab O aandb [On.) Sob is certainly not collinear with.

We apply this method to the plane (3, 2, 33--(2,7,0)) = 0. Sea = (0, 0, 1)x n = (-2, 3, 0) andb = (-15,
-10, 13). The plane therefore has parametric form:

P(s t) = (2 -2s- 15t, 7 + 3s- 10t, 13t).
Check IsP(s, 1) -C=(-X%- 15, -35-10t, 13) indeed normal ta for everys andt?

Practice Exercise 4.5.7. Find the Plané=ind a parametric form for the plane coincident withythe
plane.
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Moving from each representation to the others.
Just as with lines, it is useful to be able to move between the three representations of a plane, to manipulate
the data that describes a plane into the form best suited to a problem.

For a plane, the three representations and their data are:

* The three point form: s&y, B, andA; data = , B, A}

e The parametric formC + as + bt; data =, a, b}.

*  The point normal (implicit) formn- (P - C) = 0; data = C, n}.

A point C on the plane is common to all three forms. Figure 4.33 shows how the data in each representation
can be obtained from the data in the other representations. Check each one carefully. Most of these cases
have been developed explicitly in Section 4.4.2 and this section. Some are developed in the exercises. The
trickiest is probably the calculation in Example 4.5.10. Another that deserves some explanation is finding
three points in a plane when given the point normal form. One @iig,already known. The other two

are found using special values in the point normal form itself, which is the eguationy + nz=n- C.

Choose ,for convenienc&,= (0, 0,a,), and use the equation to determine thatn- C /n,. Similarly,

chooseB = (0, by, 0), and use the equation to fing: n- C /n,.

Figure 4.33. Moving between representations of a plane.

Planar Patches.
Just as we can restrict the parameterthe representation of a line to obtain a ray or a segment, we can
restrict the parametessandt in the representation of a plane.

In the parametric form of Equation 4.43 the valuesfandt can range fromos to o, and thus the plane

can extend forever. In some situations we want to deal with only a “piece” of a plane, such as a
parallelogram that lies in it. Such a piece is callpthaar patch, a term that invites us to imagine the

plane as a quilt of many patches joined together. Later we examine curved surfaces made up of patches
which are not necessarily planar. Much of the practice of modeling solids involves piecing together patches
of various shapes to form the skin of an object.
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A planar patch is formed by restricting the range of allowable parameter valsesftir For instance,

one often restrictsandt to lie only between 0 and 1. The patch is positioned and oriented in space by

appropriate choices @f b, andC. Figure 4.34a shows the available rangearfidt as a square in

parameter spaceand Figure 4.34b shows the patch that results from this restriction in object space.
a). b).

Parameter
AU space

world
coordinates

Figure 4.34. Mapping between two spaces to define a planar patch.

To each pointgq t) in parameter space there corresponds one 3D point in theRgatth= C + as + bt.
The patch is a parallelogram whose corners correspond to the four corners of parameter space and are
situated at

P(0, 0) =C;

P(1, 0) =C + a; (4.48)
P(0, 1) =C +b;

P(1,1)=C+a+h.

The vectors andb determine both the size and the orientation of the patataritib are perpendicular,
the grid will become rectangular, and if in additiandb have the same length, the grid will become
square. ChanginG just shifts the patch without changing its shape or orientation.

Example 4.5.10. Make a patchLetC= (1, 3, 2)a= (1, 1, 0), and = (1, 4, 2). Find the corners of the
planar patchSolution: From the preceding table we obtain the four corri®:0) = (1, 3, 2)P(0, 1) =
(2,7,4),P(1,0) = (2,4,2),anB(1, 1) = (3, 8, 4).

Example 4.5.11. Characterize a Patchrinda, b, andC that create a square patch of length 4 on a side
centered at the origin and parallel to ¥he-plane.Solution: The corners of the patch are at (2, 0, 2), (2, 0,
-2),(-2,0,2),and (-2,0, -2). Choose any corner, say (2, 0, - €),Toena andb each have length 4
and are parallel to either tlveor thez-axis. Choosa = (-4, 0, 0) antt = (0, 0, 4).

Practice Exercise 4.5.8. Find a Patcl¥ind pointC and some vectomsandb that create a patch having
the four corners (-4, 2,1), (1,7,4), (-2, -2, 2),and (3, 3, 5).

4.6. Finding the Intersection of two Line Segments.

We often need to compute where two line segments in 2D space intersect. It appears in many other tasks,
such as determining whether or not a polygon is simple. Its solution will illustrate the power of parametric
forms and dot products.

The Problem: Given two line segments, determine whether they intersect, and if they do, find their point
of intersection.
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Suppose one segment has endpddaadB and the other segment has endpoints C and D. As shown in
Figure 4.35 the two segments can be situated in many different ways: They can miss each other (a and b),
overlap in one point (c and d), or even overlap over some region (e). They may or may not be parallel. We
need an organized approach that handles all of these possibilities.

D
a). B b) B 9 B
)
)
A A
C A c
C
d) )
e). //D
B A s B
A C

Figure 4.35. Many cases for two line segments.

Every line segment hasparent line, the infinite line of which it is part. Unless two parent lines are
parallel they will intersect at some point. We first locate this point.

We set up parametric representations for each of the line segments in questidB.takkegment frorm
toB.Then

AB(t)=A+bt (4.49)

where for convenience we defibe= B - A. Ast varies from 0 to 1 all points on the finite line segment are
visited. Ift is allowed to vary fromoe to oo the entire parent line is swept out.

Similarly we call the segment fro@to D by the namé&D, and give it parametric representation (using a
new parameter, sayj)

CD(u) =C+du,
whered =D - C. We use different parameters for the two lindsy one andi for the other, in order to
describe different points on the two lines independently. (If the same parameter were used, the points on the

two lines would be locked together.)

For the parent lines to intersect, there must be specific valuesdé for which the two equations above
are equal:

A+bt=C+du

Definingc = C - A for convenience we can write this condition in terms of three known vectors and two
(unknown) parameter values:

bt=c + du (4.50)

This provides two equations in two unknowns, similar to Equation 4.22. We solve it the same way: dot both
sides withd! to eliminate the term id, giving d” (bt = d" [¢. There are two main cases: the term
d"” b is zero or it is not.

Case 1:The termd" [ is notZero.
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Here we can solve fdrobtaining:

_d'e
d” b

t (4.51)

Similarly “dot” both sides of Equation 4.50 wikh to obtain (after using one additional property of perp-
dot products—which one?):

- b” ¢
d’ (4.52)

Now we know that the two parent lines intersect, and we know where. But this doesn’t mean that the line
segments themselves intersect. lies outside the interval [0, 1], segmé& doesn’t “reach” the other
segment, with similar statementaiifies outside of [0,1]. If bothandu lie between 0 and 1 the line
segmentslointersect at some poirlt, The location of is easily found by substituting the valuet @f

Equation 4.49:

]
[c
= A+ %Eb (the intersection point) (4.53)

Example 4.6.1:Given the endpointa = (0, 6),B = (6, 1),C = (1, 3), and = (5, 5), find the intersection if
it exists.Solution: d--b = -32, sot=7/16 and u = 13/32 which both lie between 0 and 1, and so the

segments do intersect. The intersection lieg,a) € (21/8, 61/16). This result may be confirmed visually
by drawing the segments on graph paper and measuring the observed intersection.

Case 2:The termd" [b is Zero.
In this case we knod andb are parallel (why?). The segments might still overlap, but this can happen
only if the parallel parent lines are identical. A test for this is developed in the exercises.

The exercises discuss developing a routine that performs the complete intersection test on two line
segments.

Practice Exercises.

4.6.1. When the parent lines overlapWe explore case 2 above, where the tekhb = 0, so the parent
lines are parallel. We must determine whether the parent lines are identical, and if so whether the segments
themselves overlap.

To test whether the parent lines are the same, see witdiberon the parent line throughandB.

a). Show that the equation for this parent linéts(y - Ay) - by (x - Ax) = 0.

We then substitut€y for x andCy for y and see whether the left-hand side is sufficiently close to zero (i.e.
its size is less than some tolerance such a%.]IOnot, the parent lines do not coincide, and no intersection
exists. If the parents lines are the same, the final test is to see whether the segments themselves overlap.
b). To do this, show how to find the two valugsnd tq at which this line through A and B reacl@and

D, respectively. Because the parent lines are identical, we can use jusbthponent. SegmeAB

begins at 0 and ends at 1, and by examining the ordering of the four valuesdndt,, we can readily
determine the relative positions of the two lines.

c). Show that there is an overlap unless Iboéimdt, are less than 0 or both are larger than 1. If there is an
overlap, the endpoints of the overlap can easily be found from the valigeandtg.

d). Given the endpoints = (0, 6),B = (6, 2),C = (3, 4), and = (9, 0), determine the nature of any
intersection.
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|4.6.2. The Algorithm for determining the intersection.Write the routinesegintersect
|be used in the contesxf(segintersect(A, B, C, D, InterPt)) <do something>

It takes four points representing the two segments, and returns 0 if the segments do not intersect, and 1 if
they do. If they do intersect the location of the intersection is pladeteit . It returns -1 if the parent

lines are identical.

4.6.3. Testing the Simplicity of a PolygorRecall that a polygoR is simple if there are no edge

intersections except at the endpoints of adjacent edges. Fashion ainbutis8imple(Polygon P)

that takes a brute force approach and tests whether any pair of edges of the list of vertices of the polygon
intersect, returnin@ if so, and 1 if not soRolygon is some suitable class for describing a polygon.) This

is a simple algorithm but not the most efficient one. See [moret91] and [preparata85] for more elaborate
attacks that involve some sorting of edges amd v.

4.6.4. Line Segment IntersectionskFor each of the following segment pairs, determine whether the
segments intersect, and if so where.

() that would

1.A=(1,4), B=(7,1/2), C=(7/25/2), D = (7, 5);
2.A=(1,4), B=(7,12), C=(50), D= (0, 7);
3.A=(0,7), B=(7,0, C=(8, -1), D = (10, - 3);

4.6.1. Application of Line Intersections: the circle through three points.

Suppose a designer wants a tool that draws the unique circle that passes through three given points. The
user specifies three poims B, andC, on the display with the mouse as suggested in Figure 4.36a, and the
circle is drawn automatically as shown in Figure 4.36b. The unique circle that passes through three points is
called theexcircle or circumscribed circle, of the triangle defined by the points. Which circle is it? We

need a routine that can calculate its center and radius.

a). Which circle? b). What it looks like c¢). How to find its center
A A A
? perp.
f S bisector #P
°C C C
perp.
B B bisector #1 g

Figure 4.36. Finding the excircle.

Figure 4.35c shows how to find it. The cerfiaf the desired circle must be equidistant from all three
vertices, so it must lie on therpendicular bisector of eachside of triangléABC (The perpendicular
bisector is the locus of all points that are equidistant from two given points.). Thus we can d&é&mine
we can compute where two of the perpendicular bisectors intersect.

We first show how to find a parametric representation of the perpendicular bisector of a line segment.
Figure 4.37 shows a segmé&with endpointsA andB. Its perpendicular bisectaris the infinite line that
passes through the midpoitof segmeng, and is oriented perpendicular to it. But we know that midpoint

M is given by A +B)/2, and the direction of the normal is given(@®— A)", so the perpendicular
bisector has parametric form:
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Figure 4.37. The perpendicular bisector of a segment.
1 0 : _
L(t) = > (A+B)+(B-A)t (the perpendicular bisector AB) (4.54)

Now we are in a position to compute the excircle of three points. Returning to Figure 4.35b we seek the
intersectionS of the perpendicular bisectorsAB andAC. For convenience we define the vectors:

a=B-
b=C- (4.55)
c=A-

Owm>

To find the perpendicular bisector AB we need the midpoint &B and a direction perpendicularAd.
The midpoint ofABis A +a/ 2 (why?). The direction perpendicularA8 is all. So the parametric form
for the perpendicular bisectorAs+a/ 2 +allt. Similarly the perpendicular bisector of ACAs-c/ 2 +
cHu, using parametar. PointSlies where these meet, at the solution of:

alt=b/2+cHu

(where we have used+ b + c=0). To eliminate the term in take the dot product of both sides with
and obtairt=1/2 o -c)/ (aD- ¢). To findSuse this value farin the representation of the perpendicular
bisectorA+a/ 2 +alt, which yields the simplexplicit forn@

S=A+ —; %ﬂ + 2%: aDE (center of the excircle) (4.56)
a

The radius of the excircle is the distance friSto any of the three vertices, so itSs |A|. Just form the
magnitude of the last term in Equation 4.56. After some manipulation (check this out) we obtain:

2
radius = l%l‘/ Ebbﬂ_%;% +1 (radius of the excircle) (4.57)

OnceSand the radius are known, we can diseevCircle() from Chapter 3 to draw the desired circle.

Example 4.6.2 Find the perpendicular bisectoiof the segmen® having endpointé = (3, 5) andB = (9,
3).

Solution: By direct calculation, midpoiri¥l = (6, 4), and B — A)D = (2, 6), sd- has representatidr(t) =
(6 + 2, 4 + @). It is useful to plot botls andL to see this result.

100ther closed form expressions for S have appeared previously, e.g. in [goldman90] and [lopex92]
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Every triangle also has amscribed circle, which is sometimesatessary to compute in a computer-aided
design context. A case study examines how to do this, and also discusses the lndgeifogt circle.

Practice Exercise 4.6.5. A Perpendicular BisectoFind a parametric expression for the perpendicular
bisector of the segment with endpoits (0, 6) andB = (4, 0). Plot the segment and the line.

4.7. Intersections of Lines with Planes, and Clipping.

The task of finding the intersection of a line with another line or with a plane arises in a surprising variety
of situations in graphics. We have already seen one approach in Section 4.6, that finds where two line
segments intersect. That approach used parametric representations for both the line segments, and solved
two simultaneous equations.

Here we develop an alternative method that works for both lines and planes. It represents the intersecting
line by a parametric representation, and the line or plane being intersected in a point normal form. It is very
direct and clearly reveals what is going on. We develop the method once, and then apply the results to the
problem of clipping a line against a convex polygon in 2D, or a convex polyhedron in 3D. In Chapter 7 we
see that this is an essential step in viewing 3D objects. In Chapter 14 we use the same intersection
technique to get started in ray tracing.

In 2D we want to find where a line intersects another line; in 3D we want to find where a line intersects a
plane. Both of these problems can be solved at once because the formulation is in terms of dot products,
and the same expressions arise whether the involved vectors are 2D or 3D. (We also address the problem of
finding the intersection of two planes in the exercises: it too is based on dot products.)

Consider a line described parametricall\Ré3 = A + ct. We also refer to it as a “ray”. We want to
compute where it intersects the object characterized by the point normail fqfm B) = 0. In 2D this is a
line; in 3D it is a plane. Poif lies on it, and vectan is normal to it. Figure 4.38a shows the ray hitting a
line, and part b) shows it hitting a plane. We want to find the location of the “hit point”.

"hit' point
\n (P-B)=0 /
n.(P-B)=0

Figure 4.38. Where does a ray hit a line or a plane?

Suppose it hits at=ty;, the “hit time”. At this value of the line and ray must have the same coordinates,
SOA + cty must satisfy the equation of the point normal form of the line or plane. Therefore we substitute
this unknown “hit point'into the point normal equation to obtain a conditiort,gn

n-A+ct, -B)=0.

This may be rewritten as

n-A-B)+n-cty=0,

which is a linear equation tg. Its solution is:

_NEB-A)

(hit time — 2D and 3D cases) (4.58)
nce

hit
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As always with a ratio of terms we must examine the eventuality that the denomirigt@ péro. This
occurs whem-c = 0, or when the ray is aimed parallel to the plane, in which case there is no Hitlat all.

When the hit time has been computed, it is simple to find the location of the hit point : Subsiittte
the representation of the ray:

“hit” point: P = A+ ct_ (hit spot — 2D and 3D cases) (4.59)
hit it

In the intersection problems treated below we will also need to know generally which direction the ray
strikes the line or plane: “along with” the nornmabr “counter to’n. (This will be important because we
will need to know whether the ray is exiting from an object or entering it.) Figure 4.39 shows the two
possibilities for a ray hitting a line. In part a) the angle between the ray’s diregtiomn is less than 90

so we say the ray is aimed “along with”In part b) the angle is greater thar? 96 the ray is aimed
“counter to"n.

a). ray is aimed "along with' b). ray is aimed "counter to"
n n
c
. c
A A

Figure 4.39. The direction of the ray is “along” or “againmst”

It is easy to test which of these possibilities occurs, sincgdghef n - c tells immediately whether the
angle between n and c is less than or greater tfaiP@tling these ideas together, we have the three
possibilities:

e ifn-c>0 therayis aimed “along with” the normal;
e ifn-c=0 therayis parallel to the line (4.60)

e ifn-c<0 therayisaimed “counter to” the normal

Practice Exercises.

4.7.1. Intersections of rays with lines and plane&ind when and where the rAy+ ct hits the objech -
(P-B) =0 (linesin the 2D or planes in the 3D).

a).A=(2,3),c=(4,-4),n=(6,8),B=(7,7).

b).A=(2,-4,3)c=(4,0,-49n=(6,9,9),B= (-7, 2, 7).

c).A=(2,0),c=(0-4),n=(0,8),B=(7,0).

d).A=(2,4,3)c=(4,4,-4)h=(6,4,8)B=(7,4,7).

4.7.2.Rays hitting Planes.Find the point where the ray (1,5,2) + (5, -2,18s the planexX-4y + z= 8.
4.7.3. What is the intersection of two planes@eometrically we know that two planes intersect in a
straight line. But which line? Suppose the two planes are givénply — A) =0 andm [[P - B) =0.
Find the parametric form of the line in which they intersect. You may find it easiest to:

a). First obtain a parametric form for one of the planes:Gayas + bt for the second plane.

b). Then substitute this form into the point normal form for the first plane, thereby obtaining a linear
equation that relates parametsesdt.

c). Solve forsin terms oft, says = E + Ft. (Find expressions fdE andF.)

d). Write the desired line &+ a(E + Ft) + bt.

4.8. Polygon Intersection Problems.

11if the numerator is also O the ray lies entirely in the line (2D) or plane (3D). (why?).
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We know polygons are the fundamental objects used in both 2D and 3D graphics. In 2D graphics their
straight edges make it easy to describe them and draw them. In 3D graphics, an object is often modeled as
a polygonal “mesh”: a collection of polygons that fit together to make up its “skin”. If the skin forms a

closed surface that encloses some space the mesh is called a polyhedron. We study meshes and polyhedra
in depth in Chapter 6.

Figure 4.40 shows a 2D polygon and a 3D polyhedron that we might need to analyze or render in a graphics
application. Three important questions that arise are:

Figure 4.40. Intersection problems of a line and a polygonal object.

a). Is a given poinP inside or outside the object?
b). Where does a given r&first intersect the object?
¢). Which part of a given link lies inside the object, and which part lies outside?

As a simple example, which part(s) of the lirye 2x = 6 lie inside the polygon whose vertices are (0, 3), (-
2,-2),(-5,0), (0, -7), (1, 1)?

4.8.1. Working with convex polygons and polyhedra.

The general case of intersecting a line with any polygon or polyhedron is quite complex; we address it in
Section 4.8.4. Things are much simpler when the polygon or polyhedron is convex. They are simpler
because a convex polygon is completely described by a set of “bounding lines”; in 3D a convex polyhedron
is completely described by a set of “bounding planes”. So we need only test the line against a set of
unbounded lines or planes.

Figure 4.41 illustrates this for the 2D case. Part a shows a convex pentagon, and part b) shows the bounding
linesL,, Ly, etc. of the pentagon. Each bounding line defines two half spaces: the inside half space that
contains the polygon, and the outside half space that shares no points with the polygon. Part c) of the figure
shows a portion of the outside half space associated with the boundihg line
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\

Figure 4.41. Convex polygons and polyhedra.

Lo

Example 4.8.1. Finding the bounding linesFigure 4.42a shows a unit square. There are four bounding
lines, given byx = 1,x=-1,y =1, andy = -1. In addition, for each bounding line we can identify the
outward normal vector: the one that points into the outside half space of the bounding line. The outward
normal vector for the ling = 1 is of coursa = (0, 1). (What are the other three?)
a). b).

AY =1 y
1 7/ 1

1

£

X
>

I\ an outward normal
Figure 4.42. Examples of convex polygons.

The triangle in part b) has three bounding lines. (What is the equation for each line?) The point normal
form for each of the three lines is given next; in each case it uses the outward normal (check this):

(-1, 0)-P-(0,0)=0;
(0.-1)-P-(0,0)=0;
1,1)-pP-10)=0;

The big advantage in dealing with convex polygons is that we perform intersection tests only on infinite
lines, and don't need to check whether an intersection lies “beyond” an endpoint — recall the complexity
of the intersection tests in Section 4.7. In addition the point normal form can be used, which simplifies the
calculations.

For a convex polyhedron in 3D, each plane has an inside and an outside half space, and an outward
pointing normal vector. The polyhedron is the intersection of all the inside half spaces, (the set of all points
that are simultaneously in the inside half space of every bounding plane).

4.8.2. Ray Intersections and Clipping for Convex Polygons.
We developed a method in Section 4.7 that finds where a ray hits an individual line or plane. We can use
this method to find where a ray hits a convex polygon or polyhedron.

The Intersection Problenwhere does the rady + ct hit polygonP?
Figure 4.43 shows a ray+ c tintersecting polygo®. We want to know all of the places where the ray
hits P. Becausé is convex the ray hit8 exactly twice: It enters once and exits once. Call the valuest of

which it enters and exitt, andt,, respectively. The ray intersection problem is to compute the values of
tin andtyy. Once these hit times are known we of course know the hit points themselves:
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Figure 4.43. RayA + ct intersecting a convex polygon.

Entering hit point:A + c tj, (4.61)
Exiting hit point:A + c toy

The ray is insid® for allt in the interval {;,, toud-

Note that finding;, andt,, hot only solves the intersection problem, but also the clipping problem. If we
knowt;, andt,,; we know which part of the lin& + ct lies insideP. Usually the clipping problem is stated
as:

The Clipping problemFor the two point& andC which part of segmetC lies insideP?

Figure 4.44 shows several possible situations. Part a) shows the casé aheé€:both lie outsidd®, but
there is a portion of the segmex(® that lies insidd®.

a). b). C).
1

t
tin c/)ut /

/O \ C tin\ 1 0 l /

A A

Figure 4.44. A segment clipped by a polygon.

If we consider segmeiC as part of a ray given by + ct wherec = C - A, then pointA corresponds to

the point on the ray at= 0, andC corresponds to the pointtat 1. These “ray times” are labeled in the
figure. To find the clipped segment we comptitandt,, as described above. The segment that “survives
clipping has end point& + c t, andA + c ty,. In Figure 4.43b point lies insideP and sd, is larger than

1. The clipped segment has end poitsc t;, andC. In part c) bottA andC lie insideP, so the clipped
segment is the sam&cC.

”

In general we computg, and compare it to 0. The larger of the values Qtaglused as the “time” for
the first end point of the clipped segment. Similarly, the smaller of the valuestj@dsed to find the
second end point. So the end points of the clipped segment are:

A = A+cmaxo,ty) (4.62)
C = A+cmin(ty,l)

Now how arg;, andt,,; computed? We must consider each of the bounding linesnofurn, and find
where the ray + c t intersects it. We suppose each bounding line is stored in point normal form as the pair

Hill - Chapter 4 09/23/99 page 43



{B, n}, whereB is some point on the line amds theoutward pointing normalor the line: it points to the
outside of the polygon. Because it is outward pointing the test of Equation 4.60 translates to:

ifn-c>0 the ray is exiting fror®;
ifn-c=0 the ray is parallel to the line (4.63)
ifn-c<0 the ray is entering

For each bounding line we find:
a). The hit time of the ray with the bounding line (use Equation 4.58);
b). Whether the ray is entering or exiting the polygon (use Equation 4.63)

If the ray is entering, we know that the time at which the ray ultimately én{drg enters it at all) cannot
be earlier than this newly found hit time. We keep track of the “earliest possible entering timd-as
each entering hit time,;, we replace;, by max,, tn). Similarly we keep track of thiatestpossible exit
time ast,y, and for each exiting hit we replagg by mintou, thi).

It helps to think of the intervat], t,,J as thecandidate interval of t, the interval ot inside of which the

ray mightlie inside the object. Figure 4.45 shows an example for the clipping problem. We know the point
A + ct cannotbe insideP for anyt in the candidate interval. As each bounding line is tested, the candidate
interval gets reduced §gis increased dr,, is decreased: pieces of it get “chopped” off. To get started we
initialize t;, to 0 and,, to 1 for the line clipping problem, so the candidate interval is [0,1].

candidate

the ray is interval the ray is

outsideP here outside P here
t

Figure 4.45. The candidate interval for a hit.

The algorithm is then:

1). Initialize the candidate interval to [

2). For each bounding line, use Equation 4.58 to find the hitttinpaed determine whether it's an entering

or exiting hit:

« ifit's an entering hit, sef, = max€, thi)

« ifit's an exiting hit, setyy, = Minoy thi)

If at any point;, becomes greater thap, we know the ray misséxentirely, and testing is terminated

3). If candidate interval is not empty, then from Equation 4.62 the segmenAfrant;, to A + C toy IS

known to lie insideP. For the line clipping problem these are the endpoints of the clipped line. For the ray
intersection problem we know the entering and exiting points of the ray.

Note that we stop further testing as soon the candidate interval vanishes. This is adidy @ut: if we
determine early in the processing that the ray is outside of the polygon, we save time by immediately
exiting from the test.

Figure 4.46 shows a specific example of clipping: we seek the portion of sefygiénat lies in polygon
P. We initializet;, to 0 and,;to 1. The ray “starts” & att = 0 and proceeds to poi@it reaching it at =
1. We test it against each bounding linel,, .., in turn and updatg andt,, as necessary.

12 For the ray intersection problem, where the ray extends infinitely far in both directionstyve set
andt,,; = 0. In practice;, is set to a large negative value, angto a large positive value.
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Figure 4.46. Testing when a ray lies inside a convex polygon.
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Suppose when we test it against ligave find an exiting hit at = 0 .83. This setg, to 0.83, and the
candidate interval is now [0, 0.83]. We then test it agaipand find an exiting hit at= 0.66. This reduces
the candidate interval to [0, 0.66]. The test agdipgfives an exiting hit at= 3.4. This tells us nothing
new: we already know the ray is outsidetfor0.66. The test againsigives an entering hit at= -0.47.

So we set;, to -0.47, and the candidate interval is [-0.47, 0.66]. The testwijfves an entering hit &t
0.2, sat, is updated to 0.2. Finally, testing agaibsgives an entering hit at= 0.28, and we are done. The
candidate interval is [0.28, 0.66].In fact the minside P for alt between 0.28 and 0.66.

Figure 4.47 shows the sequence of updatgsdadt,, that occur as each of the lines above is tested.

linetest in tout

0.83
0.66
0.66
0.66
. 0.66
0.28 0.66

I\)CDCDCDCD

o

abhwMNDEFLO

Figure 4.47. Updates on the values,pandt,.

4.8.3. The Cyrus-Beck Clipping Algorithm.

We build a routine from these ideas, that performs the clipping of a line segment against any convex
polygon. The method was originally developed by Cyrus and Beck [cyrus78]. Later a highly efficient
clipper for rectangular windows was devised by Liang and Barsky [liang84] based on similar ideas. It is
discussed in a Case Study at the end of this chapter.

The routine that implements the Cyrus-Beck clipper has interface:
int CyrusBeckClip(Line& seg, LinelList& L);

Its parameters are the line segmeny, to be clipped (which contains the first and second endpoints
namedseg .first  andseg.second ) and the list of bounding lines of the polygon. It ckeg against
each line inL as described above, and places the clipped segment sk in (This is whyseg must be
passed by reference.) The routine returns:

« 0ifno part of the segment liesih( the candidate interval became empty);
* 1if some part of the segment does li€in

Figure 4.48 shows pseudocode for the Cyrus Beck algorithm. Thelipg&egment , LineList , and

Vector2 are suitable data types to hold the quantities in question (see the exercises). \fanadies
anddenom hold the numerator and denominatortfgrof Equation 4.48:
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numer=nl{ B- A

(4.64)
denom=nl¢

int CyrusBeckClip(LineSegment& seg, LineList L)

double numer, denom; // used to find hit time for each line
double tin = 0.0, tOut = 1.0;

Vector2 c, tmp;

form vector: ¢ = seg.second - seg.first

for(inti=0; i< L.num; i++) // chop at each bounding line

form vector tmp = L.line[i].pt - first

numer = dot(L.line[i].norm, tmp);

denom = dot(L.line[i].norm, c);

if('chopCl(numer, denom, tin, tOut)) return O; // early out

/I adjust the endpoints of the segment; do second one 1st.
if (tOut < 1.0) // second endpoint was altered

seg.second.x = seg.first.x + ¢.x * tOut;
seg.second.y = seg.first.y + c.y * tOut;

}

if (tin > 0.0) // first endpoint was altered
seg.first.x =seg.first.x + ¢.x * tIn;
seg.first.y =seg.first.y + c.y * tin;

}
}

return 1; // some segment survives

Figure 4.48. Cyrus-Beck Clipper for a Convex Polygon, 2D case (pseudocode).

Note that the value a&feg.second is updated first, since we must use the old valisegffirst in
the update calculation for bosieg.first andseg.second.

The routinechopCI() is shown in Figure 4.49. It useamer anddenom of Equation 4.64 to calculate

the hit time at which the ray hits a bounding line, uses Equation 4.63 to determine whether the ray is
entering or exiting the polygon, and “chops” off the piece of the candidate interval ClI that is thereby found
to be outside the polygon.

int chopCl(double& tIn, double& tOut, double numer, double
denom)

{
double tHit;

if (denom < 0) /l ray is entering

tHit = numer / denom;

if (tHit > tOut) return O; // early out

else if (tHit > tIn) tin = tHit; // take larger t
else if(denom > 0) Il ray is exiting

tHit = numer / denom;

if(tHit < tin) return O;  // early out

if(tHit < tout) tOut = tHit; // take smaller t

else // denom is O: ray is parallel
if(numer <= 0) return 0; // missed the line

return 1; // Cl is still non-empty

}

Figure 4.49. Clipping against a single bounding line.
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If the ray is parallel to the line it could lie entirely in the inside half space of the line, or entirely out of it. It
turns out thahumer=n - B - A) is exactly the quantity needed to tell which of these cases occurs. See the
exercises.

The 3D case: Clipping a line against a Convex Polyhedron.

The Cyrus Beck clipping algorithm works in three dimensions in exactly the same way. In 3D the edges of
the window become planes defining a convex region in three dimensions, and the line segment is a line
suspended in spadghopCl () needs no changes at all (since it uses only the values of dot products -
throughnumer anddenom ). The data types ilfCyrusBeckClip () must of course be extended to 3D

types, and when the endpoints of the line are adjusted the z-component must be adjusted as well.

Practice Exercises.

4.8.2. Data types for variable in the Cyrus Beck ClipperProvide useful definitions for data types, either as
struct’s or classes, fotineSegment , LineList , andVector2 used in the Cyrus Beck clipping

algorithm.

4.8.3. What does numek=0 do?

Sketch the vectors involved in valuemafmer in chopCl()  and show that when the rAy+ c t moves

parallel to the bounding line - (P - B) = 0, it lies wholly in the inside half space of the line if and only if

numer > 0.

4.8.4. Find the Clipped Line.Find the portion of the segment with endpoints (2, 4) and (20, 8) that lies within
the quadrilateral window with corners at (0, 7), (9, 9), (14,4), and (2, 2).

4.8.4. Clipping against arbitrary polygons.

We saw how to clip a line segment against a convex polygon in the previous section. We generalize this to
a method for clipping a segment agaisy polygon.

The basic problem is to find where the fay ct lies inside polygorP given by the vertex lig®, Py, .., Py.
1. Figure 4.50 shows an example.

Figure 4.50. Where is a ray inside an arbitrary polygen

It is clear that the ray can enter and exit ffldmultiple times in general, and that the result of clipping a
segment against P may result ilisaof segments rather than a single one. Also, of coBriseno longer
described by a collection of infinite bounding lines in point normal form; we must work witt finiée
segments such &5 P, that form its edges.

The problem is close to the problem we dealt with in Section 4.7: finding the intersection of two line
segments. Now we are intersecting one line segment with the sequence of line segments assolated with

We represent each edgePoparametrically (rather than in point normal form). For instance, theRdge
is represented d% + esu wheree; = P, - P; is theedge vectorassociated withs. In general, théth edge
is given byP, + eu, for uin [0,1] andi =0, 1, ...N-1wheree =P, - P,, and as always we equdg with
Po.

Recall from Section 4.7 that the rAy+ ct hits thei-th edge whem andu have the proper values to make
+ct =P, +e u. Calling vectorb; = P, - Awe seek the solution (valuestaindu) of
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ct=b; +eu
Equations 4.51 and 4.52 hold the answers. When converted to the current notation we have:

g" c” b,
t:D_ and u= T .
e’ ¢ e’ [T

If € [t is 0 thei-th edge is parallel to the ray directiomand there is no intersection. There is a true
intersection with théth edge only it falls in the interval [0,1].

We need to find all of the legitimate hits of the ray with edgéy ahd place them in a list of the hit times.
Call this listhitList . Then pseudocode for the process would look like:

initialize hitList to empty
for(inti=0; i< N;i++) /Il for each edge of P

build bi, ei for the i-th edge
solve for t, u
if( uliesin[0,1]
add t to the hitList
}

What we do now with this list depends on the problem at hand.

The ray intersection problem. (Where does the rdirst hit P?)
This is solved by finding the smallest valud,df,, intheList . The hit spot is, as alway&,+ ¢ ty,.

The line clipping problem.

For this we need the sequencé-iitervals in which the ray is insid® This requires sortintpeList

and then taking thievalues in pairs. The ray entd?st the first time in each pair, and exits frémat the
second time of each pair.

Example 4.9.2. ClipAB to polygonP. Suppose the line to be clippedAB as shown in Figure 4.51, for
whichA = (1, 1) and = (8, 2).

Po=(3,2) (6,2) ©82)
B

(6!-1)
Figure 4.51. Clipping a line against a polygon.

P is given by the vertex list: (3, 2), (2, 0), (6, -1), (6, 2), (4, 1). Taking each edge in turn we get for the
values oft andu at the intersections:

edge u t
0 0.3846 0.2308
1 -0.727 -0.2727
2 0.9048 0.7142
3 0.4 0.6
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4 0.375 0.375

The hit with edge 1 occurs abutside of [0,1] so it is discarded. We sort the remaitxvejues and arrive
at the sorted hit list: {0.2308, 0.375, 0.6, 0.7142}. Thus the ray dPtis= 0.2308, exits it at= 0.375,
re-enters it at = 0.6, and exits it for the last time &t 0.7142 .

Practice exercise 4.9.4. Clip a lineFind the portions of the line from= (1, 3.5) tdB = (9, 3.5) that lie
inside the polygon with vertex list: (2, 4), (3, 1), (4, 4), (3, 3).

4.8.5. More Advanced Clipping.

Clipping algorithms are fundamental to computer graphics, and a number of efficient algorithms have been
developed. We have examined two approaches to clipping so faC.ofte@ Sutherlandclipping

algorithm, studied in Chapter 2, clips a line against an aligned rectangl€yfiseBeck clipper

generalizes this to clipping a line against any convex polygon or polyhedron. But situations arise where one
needs more sophisticated clipping. We mention two such methods here, and develop details of both in Case
Studies at the end of this chapter.

The Sutherland—Hodgmanclipper is similar to the Cyrus—Beck method, performing clipping against a
convex polygon. But instead of clipping a single line segment, it clips an entire polygon (which needn't be
convex) against the convex polygon. Most importantly, its output is ageilygon (or possibly a set of
polygons). It can be important to retain the polygon structure during clipping since the clipped polygons
may need to be filled with a pattern or color. This is not possible if the edges of the polygon are clipped
individually.

TheWeiler—Atherton clipping algorithm clips any polygo®, againsiny other polygonW, convex or

not. It can output the part Bfthat lies insid&V (interior clipping ) or the part oP that lies outside W

(exterior clipping). In addition, botH? andW can have “holes” in them. As might be expected, this

algorithm is somewhat more complex than the others we have examined, but its power makes it a welcome
addition to one's toolbox in a variety of applications.

4.9. Summary of the Chapter.

Vectors provide a convenient way to express many geometric relations, and the operations they support
provide a powerful way to manipulate geometric objects algebraically. Many computer graphics algorithms
are simplified and made more efficient through the use of vectors. Because most vector operations are
expressed the same way independent of the dimensionality of the underlying space, it is possible to derive
results that are equally true in 2D or 3D space.

The dot product of two vectors is a fundamental quantity that simplifies finding the length of a vector and
the angle between two vectors. It can be used to find such things as the orthogonal projection of one vector
onto another, the location of the center of the excircle of three points, and the direction of a reflected ray. It
is often used to test whether two vectors are orthogonal to one another, and more generally to test when
they are pointing less than, or more thar,fe@im each other. It is also useful to work with a 2D veator

that lies 98 to the left of a given vectar. In particular the dot produet’- b reports useful information

about howa andb are disposed relative to each other.

The cross product also reveals information about the angle between two vectors in 3D, and in addition
evaluates to a vector that is perpendicular to them both. It is often used to find a vector that is normal to a
plane.

In the process of developing an algorithm it is crucial to have a concise representation of the graphical
objects involved. The two principal forms are the parametric representation, and the implicit form. The
parametric representation “visits” each of the points on the object as a parameter is made to vary, so the
parameter “indexes into” different points on the object. The implicit form expresses an equation that all
points on the object, and only those, must satisfy. It is often given in thé(ionyn= 0 in 2D, orf(x, y, 2

= 0in 3D, wherd() is some function. The value f§j for a given point not only tells when the point is on
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the object, but when a point lies off of the object the sidf) afan reveal omvhichside of the object the

point lies. In this chapter we addressed finding representations of the two fundamental “flat” objects in
graphics: lines and planes. For such objects both the parametric form and implicit form are linear in their
arguments. The implicit form can be revealingly written as the dot product of a normal vector and a vector
lying within the object.

It is possible to form arbitrary linear combinations of vectors, but not of points. For points only affine
combinations are allowed, or else chaos reigns if the underlying coordinate system is ever altered, as it
frequently is in graphics. Affine combinations of points are useful in graphics, and we showed that they
form the basis of “tweening” for animations and for Bezier curves.

The parametric form of a line or ray is particularly useful for such tasks as finding where two lines intersect
or where a ray hits a polygon or polyhedron. These problems are important in themselves, and they also
underlie clipping algorithms that are so prominent in graphics. The Cyrus-Beck clipper, which finds where
a line expressed parametrically shares the same point in space as a line or plane expressed implicitly,
addresses a larger class of problems than the Cohen Sutherland clipper of Chapter 2, and will be seen in
action in several contexts later.

In the Case Studies that are presented next, the vector tools developed so far are applied to some
interesting graphics situations, and their power is seen even more clearly. Whether or not you intend to
carry out the required programming to implement these mini-projects, it is valuable to read through them
and imagine what process you would pursue to solve them.

4.10. Case Studies.

4.10.1. Case Study 4.1: Animation with Tweening.
(Level of Effort: 11.)) Devise two interesting polylines, suchfeandB as shown in Figure 4.52. Ensure
thatA andB have the same number of points, perhaps by adding an artificial extra point in the top segment

of B.
Ay

PAAN
/

>

Y,
/

Figure 4.52. Tweening two polylines.

a). Develop a routine similar to routideawTween(A, B, n, t) of Figure 4.23 that draws the tween
att of the polylinesA andB.

b). Develop a routine that draws a sequence of “tweens” betvardB ast varies from 0 to 1, and
experiment with itlUse the double buffering offered by OpenGL to make the animation smooth.

c¢). Extendthe routine so that aftert increases gradually from O to 1 it decreases gradually back to 0

and then repeats, so the animation repeatedly shawstating intoB then back int@\. This should
continue until a key is pressed.
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d). Arrange so that the user can enter two polylines with the mouse, following which the polylines are
tweened as just described. The user presses key ‘A’ and begins to lay down points to formAdhgine
presses key ‘B’ and lays down the points for polyline B. Pressing ‘T’ terminates that process and begins the
tweening, which continues until the user types ‘Q’. Allow for the case where the user inputs a different
number of points foA than forB: your program automatically creates the required number of extra points
along line segments (perhaps at their midpoints) of the polyline having fewer points.

4.10.2. Case Study 4.2. Circles Galore.

(Level of Effort: II.). Write an application that allows the user to input the points of a triangle with a mouse.
The program then draws the triangle along witlinigsribed circle, excircle and9-point circle, each in a
different color. Arrange matters so the user can then move vertices of the tirangle to new locations with the
mouse, whereupon the new triangle with its three circles are redrawn.

We saw how to draw the excircle in Section 4.6.1. Here we show how to find the inscribed circle and the
nine-point circle.

The inscribed circle This is the circle that just snugs up inside the given triangle, and is tangent to all
three sidﬁl Figure 4.53a shows a triandd8C along with its inscribed circle.

a). b).
A
T
R
C Lp
S
B B
Lp

Figure 4.53. The inscribed circle ABCis the excircle oRST

As was the case with the excircle, the hard part is finding the center of the inscribed circle. A
straightforward methc@ecognizes that the inscribed circleA®Cis simply the excircle of a different set
of three pointsRSTas shown in Figure 4.53a.

We need only find the locations Bf S andT and then use the excircle method of Section 4.6.1. Figure
4.53b shows the distancesRfS, andT from A, B, andC. By the symmetry of a circle the distandgs R|

and B - S|must be equal, and there are two other pairs of lines that have the same length. We therefore
have (using the definitions of Equation 4.55dpb, andc):

|a| =Llp+La |b| =Lp + L |C| =La+Lc

which can be combined to solve for Bnd L

2La=R|+Fl-bl.  2Ly=lal+p| -l

solL, andLy are now known. ThuR, S andT are given by:

13Note: finding the incircle also solves the problem of finding the unique circle that is tangent to 3 noncollinear lines in
the plane.

14 Suggested by Russell Swan.

Hill - Chapter 4 09/23/99 page 51



a

R=A+L,
|al
S—B+L£ (4.65)
“Ib] '
C
T=A-L—
|c|

(Check these expressions!)

Encapsulate the calculationi®fS, andT from A, B, andC in a simple routine having usage
getTangentPoints(A, B, C, R, S, T). The advantage here is that if we have a routine

excircle() that takes three points and computes the center and radius of the excircle defined by them,
we can use thgameroutine to find the inscribed circle. Experiment with these tools.

The nine-point circle.

For any triangle, there are nine particularly distinguished points:

* the midpoints of the 3 sides;

* the feet of the 3 altitudes;

* the midpoints of the lines joining the orthocenter (where the 3 altitudes meet) to the vertices.

Remarkably, a single circle passes through all nine points! Figure 4.54 tsleo9#point circIor an
example triangle. The nine-point circle is perhaps most easily drawn as the excircle of the midpoints of the
sides of the triangle.

Figure 4.54. The 9-point circle.
4.10.3. Case Study 4.3. Is point Q inside convex polygon P?

(Level of Effort: 1.) Suppose you are given the specification of a convex polydien given a poin®
you are asked to determine whether or@dies insideP. But from the discussion on convex polygons in
Section 4.8.1 we know this is equivalent to asking whefhlezs on the inside half spaceefery

bounding line oP. For each bounding linlg we need only test whether the vedfor P, is more than 90
away from the outward pointing normal.

Fact:Qlies inPif (Q-P)-n<0 fori =0, 1, ...N-1. (4.66)
Figure 4.55 illustrates the test for the particular bounding line that passes tRi@arglP,. For the case of

pointQ, which lies inside, the angle wit; is greater than §0For the case of poif@ which lies
outsideP the angle is less than®0

15This circle is the first really exciting one to appear in any couse on elementary geometry.” Danielitetése.
Pergamon Press, New York, 1957
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Figure 4.55. Is poind inside polygorP?

Write and test a program that allows the user to:

a). lay down the vertices of a convex polygBn,with the mouse;

b). successively lay down test points, Q, with the mouse;

¢). prints “is inside” or “is not inside” depending on whether the @iig or is not insidé.

4.10.4. Case Study 4.4. Reflections in a Chamber (2D Ray Tracing)

(Level of Effort: Il.) This case study applies some of the tools and ideas introduced in this chapter to a
fascinating yet simple simulation. The simulation performs a kind of ray tracing, based in a 2D world for
easy visualization. Three dimensional ray tracing is discussed in detail in Chapter 14.

This simulation traces the path of a single tiny "pinball” as it bounces off various walls inside a “chamber.”
Figure 4.56a shows a cross section of a convex chamibieat has six walls and contains three convex
“pillars”. The pinball begins at poirBand moves in a straight line in directionntil it hits a barrier,

whereupon it “reflects” off the barrier and moves in a new direction, again in a straight line. It continues to
do this forever. Figure 4.56b shows an example of the polyline path that a ray traverses.

) b)
v\ ‘A‘ Q

Figure 4.56. A 2D ray-tracing experiment.

For any given positio® and directiorc of the ray, tracing its path requires two operations:

« Finding the first wall of the chamber “hit” by the ray;
* Finding the new direction the ray will take as it reflects off this first line.

Both of these operations have been discussed in the chapter. Note that as each new ray is created, its start
point is always on some wall, the “hit point” of the previously hit wall.

We represent the chamber by a list of convex polygaitiar o, pillar,, ..., and arrange thptllar is the

“chamber” inside which the action takes place. The pillars are stored in suitable arrays of points. For each
ray beginning aSand moving in direction, the entire array of pillars is scanned, and the intersection of

the ray with each pillar is determined. This test is done using the Cyrus-Beck algorithm of Section 4.8.3. If
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there is a hit with a pillar, the “hit time” is taken to be the time at which the ray “enters” the pillar. We
encapsulate this test in the routine:

int rayHit(Ray thisRay, int which, double& tHit);

that calculates the hit tintelit  of the raythisRay againshpillarnich and returns 1 if the ray hits the
pillar, and 0 if it misses. A suitable type feay is struct{Point2 startPt; Vector2 dir;}
or the corresponding class; it captures the starting f@nd directiorc of the ray.

We want to know which pillar the ray hits first. This is done by keeping track of the earliest hit time as we
scan through the list of pillars. Only positive hit times need to be considered: negative hit times correspond
to hits at spots in the opposite direction from the ray’s travel. When the earliest hit point is found, the ray is
drawn fromSto it.

We must find the direction of the reflected ray as it moves away from this latest hit spot. The diteftion
the reflected ray is given in terms of the directarf the incident ray by Equation 4.27:

c' =c-2(ch)n (4.67)

wheren is the unit normal to the wall of the pillar that was hit. If a pillar inside the chamber was hit we
use the outward pointing normal; if the chamber itself was hit, we use the inward pointing normal.

Write and exercise a program that draws the path of a ray as it reflects off the inner walls of stamdber

the walls of the convex pillars inside the chamber. Arrange to read in the list of pillars from an external file
and to have the user specify the ray's starting position and direction. (Also see Chapter 7 for the
“elliptipool” 2D ray tracing simulation.)

4.10.5. Case Study 4.5. Cyrus-Beck Clipping.

(Level of Effort: 1l.) Write and exercise a program that clips a collection of lines against a convex polygon.
The user specifies the polygon by laying down a sequence of points with the mouse (pressing key ‘C’ to
terminate the polygon and begin clipping). Then a sequence of lines is generated, each having randomly
chosen end points.

For each such line, the whole line is first drawn in red, then the portion that lies inside the polygon is drawn
in blue.

4.10.6. Case Study 4.6. Clipping a polygon against a convex polygon —

Sutherland Hodgman Clipping.

(Level of Effort: Ill.) Clipping algorithms studied so far clip individual line segments against polygons.

When instead polygonis clipped against a window it can be fragmented into several polygons in the

clipping process, as suggested in Figure 4.57a. The polygon may need to be filled with a color or pattern,
which means that each of the clipped fragments must be associated with that pattern, as suggested in Figure
4.57b. Therefore a clipping algorithm must keep track of edigesd, and so on, and must fashion a new

polygon (or polygons) out of the original one. It is also important that an algorithm not retain extraneous
edges such dx as part of the new polygon, as such edges would be displayed when they should in fact be
invisible.
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Subject
Polygon

Window

Figure 4.57. Clipping a polygon against a polygon.

The polygon to be clipped will be called the “subject” polygarifhe polygon against whichis clipped
will be called the “clip” polygonC. How do we clip polygors, represented by a vertex list, against
polygonC, to generate a collection of vertex lists that properly represent the set of clipped polygons?

We examine here thutherland—Hodgmanclipping algorithm This method is quite simple and clips any
subject polygon (convex or not) against a convex clip polygon. The algorithm can leave extraneous edges
that must be removed later.

Because of the many different cases that can arise, we need an organized method for keeping track of the
clipping process. The Sutherland—Hodgman algorithm takes a divide-and-conquer approach: It breaks a
difficult problem into a set of simpler ones. It is built on the Cyrus-Beck approach, but must work with a

list of vertices - that represent a polygon - rather than a simple pair of vertices.

Like the Cyrus-Beck algorithm this method clips poly@egainst each bounding line of polygGrin
turn, leaving only the part that is insi@eOnce all of the edges 6fhave been used this wa&will have
been clipped again§&t as desired. Figure 4.58 shows the algorithm in action for

1st edition Figure A6.2 on page 716.

Figure 4.58. Sutherland—Hodgman polygon clipping.

a seven-sided subject polyg8mand a rectangular clip polyg@ We will describe each step in the process
for this exampleSis characterized by the vertex lisb ¢ d e f gSis clipped against the top, right, bottom,
and left edges df in turn, and at each stage a new list of vertices is generated from the old. This list
describes one or more polygons and is passed along as the subject polygon for clipping against the next
edge ofC.

The basic operation, then, is to clip the polygon(s) described by an input verteadainst the current

clip edge ofC and produce an output vertex list. To do this, travérderming successive edges with pairs

of adjacent vertices. Each such e@iggas a first and a second endpoint we €ahdp, respectively. There

are four possible situations for endpoistndp: sandp can both be inside, both can be outside, or they

can be on opposite sides of the clip edge. In each case, certain points are output to (appended onto) the new
vertex list, as shown in Figure 4.59.
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a). inside outside b) inside outside
I p
p S
S
o). inside outside d). inside outside
S
p i S

Figure 4.59. Four cases for each edge of S.

a. Bothsandp are insidep is output.

b. sis inside angb is outside. Find the intersectiband output it.

c. Bothsandp are outside. Nothing is output.

d. sis outside angb is inside. Find intersectidnand output and them.

Now follow the progress of the Sutherland—Hodgman algorithm in Figure 4.58. Consider cBajaimst
the top edge of. The input vertex list for this phasead cd ef g. The first edge from the list is taken for
convenience as that frogto a, the edge that “wraps around” from the end of the list to its first element.
Thus pointsis g and poinfp is a here. Edge, a, meaning the edge fromto a, intersects the clip edge at a
new point "1”, which is output to the new list. (The output list from each stage in the algorithm is shown
below the subsequent figure in Figure 4.58.) The next edge in the inpuglibt Bince both endpoints are
above the clipping edge, nothing is output. The third dolge,generates two output points, 2 anénd

the fourth edges, d, outputs point. This process continues until the last edgg, is tested, producing

The new vertex list for the next clipping stage is therefore &l 2f g. It is illuminating to follow the
example in Figure 4.58 carefully in its entirety to see how the algorithm works.

Notice that extraneous edges 3, 6 and 9, 10 are formed that connect the three polygon fragments formed in
the clipping algorithm. Such edges can cause problems in some polygon filling algorithms. It is possible
but not trivial to remove these offending edges [sutherland74].

Task: Implement the Sutherland-Hodgman clipping algorithm, and test it on a variety of sample polygons.
The user lays down the convex polygomvith the mouse, then lays down the subject polygaonith the

mouse. It is drawn in red as it is being laid down. Clipping is then performed, and the clipped polygon(s)
are drawn in blue.

4.10.7. Case Study 4.7. Clipping a Polygon against another — Weiler Atherton

Clipping.

(Level of Effort: Ill). This method provides the most general clipping mechanism of all we have studied. It
clips any subject polygon against any (possibly non-convex) clip polygon. The polygons may even contain
holes.
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The Sutherland-Hodgman algorithm examined in Case Study 4.6 exploits the convexity of the clipping
polygon through the use of inside-outside half-spaces. In some applications, such as hidden surface
removal and rendering shadows, however, one must clip one concave polygon against another. Clipping is
more complex in such cases. The Weiler—Atherton approach clips any polygon against any other, even
when they have holes. It also allows one to form the set theondtic, intersection, anddifference of

two polygons, as we discuss in Case Study 4.8.

We start with a simple example, shown in Figure 4.60. Here two concave polggisandCLIP, are
represented by the vertex listg, §, ¢, d) and @, B, C, D), respectively. We adopt the convention here of
listing vertices so that the interior of the polygon is to the right of each edge as we move cyclically from
vertex to vertex through the list. For instance, the interi@uJlies to the right of the edge frootod

and to the right of that fromito a. This is akin to listing vertices in “clockwise” order.

D
Figure 4.60 .Weiler—Atherton clipping.

All of the intersections of the two polygons are identified and stored in a list (see later). For the example
here, there are six such intersections. Now toSliiBJagainsiCLIP, traverse aroun8UBJin the

“forward direction” (i.e., so that its interior is to the right) until an “entering” intersection is found: one for
which SUBJis moving from the outside to the insideCifIP. Here we first find 1, and it goes to an output
list that records the clipped polygon(s).

The process is now simple to state in geometric terms: TraverseSiiBigmoving segment by segment,

until an intersection is encountered (2 in the example). The idea now is to turn away from fdBolBihg

and to followCLIP instead. There are two ways to turn. Turn so@4P is traversed in its forward

direction. This keeps the inside of b&kBJandCLIP to the right. Upon finding an intersection, turn and
follow alongSUBJin its forward direction, and so on. Each vertex or intersection encountered is put on the
output list. Repeat the “turn and jump between polygons” process, traversing each polygon in its forward
direction, until the first vertex is revisited. The output list at this point consists mf Z1B).

Now check for any other entering intersectionS§0BJ Number 3 is found and the process repeats,
generating output list (3, 4, 5, 6). Further checks for entering intersections show that they have all been
visited, so the clipping process terminates, yielding the two polygobsZ;B) and (3, 4, 5, 6). An

organized way to implement this “follow in the forward direction and jump” process is to build the two lists

SUBJLISTa, 1,b, 2,¢, 3,4,d, 5,6
CLIPLIST A 6, 3,2B,1,C,D, 4,5

that traverse each polygon (so that its interior is to the right) and list both vertices and intersections in the
order they are encountered. (What should be done if no intersections are detected between the two
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polygons?) Therefore traversing a polygon amounts to traversing a list, and jumping between polygons is
effected by jumping between lists.

Notice that once the lists are available, there is very little geometry in the process—just a “point outside
polygon” test to properly identify an entering vertex. The proper direction in which to traverse each
polygon is embedded in the ordering of its list. For the preceding example, the progress of the algorithm is
traced in Figure 4.61.

start restart
a 1 b 2 (o 3 4 d 5 6
SUB_LIST: o
CLIP_LIST: o
A 6 3 2 B 1 C D 4 5
_ \
visited visited

® = output the point
Figure 4.61. Applying the Weiler—Atherton method.

A more complex example involving polygons with holes is shown in Figure 4.62. The

re|A6.6

&r

Figure 4.62. Weiler—Atherton clipping: polygons with holes.

vertices that describe holes are also listed in order such that the interior of the polygon lies to the right of an
edge. (For holes this is sometimes called “counterclockwise order.”) The same rule is used as earlier: Turn
and follow the other polygon in its forward direction. Beginning with entering intersedgtibe polygon

(1, 2, 3, 4, 5i, 6,H) is formed. Then, starting with entering intersection 7, the polygon (7¢810,F) is

created. What entering intersection should be used to generate the third polygon? It is a valuable exercise to
build SUBJLISTandCLIPLISTand to trace through the operation of the method for this example.

As with many algorithms that base decisions on intersections, we must examine the preceding method for
cases where edges@EIP andSUBJare parallel and overlap over a finite segment.

Task: Implement the Weiler-Atherton clipping algorithm, and test it on a variety of polygons. Generate
SUBJandCLIP polygons, either in files or by letting the user lay down polygons with the mouse. In your
implementation carefully consider how the algorithm will operate in situations such as the following:

* Some edges UBJandCLIP are parallel and overlap over a finite segment,

» SUBJor CLIP or both are nonsimple polygons,
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» Some edges GUBJandCLIP overlap only at their endpoints,
» CLIP andSUBJare disjoint,
» SUBJlies entirely within a hole oCLIP.

4.10.8. Case Study 4.8. Boolean Operations on Polygons.

(Level of Effort: IIl.) If we view polygons as sets of points (the set of all points on the boundary or in the
interior of the polygon), then the result of the previous clipping operation iisténsection of the two

polygons, the set of all points that are in bGtHHP andSUBJ The polygons output by the algorithm

consist of points that lie both within the origirgllBJand within theCLIP polygons. Here we generalize

from intersections to other set theoretic operations on polygons, often called “Boolean” operations. Such
operations arise frequently in modeling [mortenson85] as well as in graphics (see Chapter 14). In general,
for any two sets of points A and B, the three set theoretic operations are

« intersection:A n B = {all points in bothA andB}
« union: A1 B= {all points inA or inB or both}
« difference:A - B= {all points inA but notB}

with a similar definition for the set differenBe- A. Examples of these sets are shown in Figure 4.63.

AXB A+B A-B B-A
a a
A

Figure 4.63. Polygons formed by boolean operations on polygons.

It is not hard to adjust the Weiler-Atherton method, which already performs intersections, to perform the
union and difference operations on polygénandB.

1. Computing the union of A and Braverse around in the forward direction until an exiting intersection
is found: one for whicl\ is moving from the inside to the outsideBofOutput the intersection and traverse
alongA until another intersection witB is found. Now turn to follovB in its forward direction. At each
subsequent intersection, output the vertex and turn to follow the other polygon in its forward direction.
Upon returning to the initial vertex, look for other exiting intersections that have not yet been visited.

2. Computing the difference A - B(outside clippiMyhereas finding the intersection of two polygons

results in clipping one against the other, the difference operation "shields” one polygon from another. That
is, the differenc&UBJ- CLIP consists of the parts 8UBJthat lie outsideCLIP. No parts ofSUBJare

drawn that lie within the border GfLIP, so the region defined IGGLIP is effectively protected, or

shielded.

Traverse around until an entering intersection inBis found. Turn tdB, following it in the reverse

direction, (so thaB's interior is to the left). Upon reaching another intersection, jurmatgain. At each
intersection, jump to the other polygon, always traversiigthe forward direction anB in the reverse
direction. Some examples of forming the union and difference of two polygons are shown in Figure 4.64.
The three set operations generate the following polygons:

POLYA O POLYB:

4, 5,9, h(a hole)
8,B,C,D, 1,bcd

2, 3,i,j(ahole)

6,H, E, F, 7,f (a hole)
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POLYA - POLYB:
4,5,6H,E F 7,6 8B,CD, 1 a
2,3,k

POLYB - POLYA:
l, b! C! d! 81 519! h! 41A! 31i!j! 2
7,1,6,G

1st edition Figure A6.8.

Figure 4.64. Forming the union and difference of two polygons.

Notice how the holes F, G, H) and k, i, j) in the polygons are properly handled, and that the algorithm
generates holes as needed (holes are polygons listed in counterclockwise fashion).

Task: Adapt the Weiler—Atherton method so that it can form the union and difference of two polygons, and
exercise your routines on a variety of polygons. GenératadB polygons, either in files or

algorithmically, to assist in the testing. Draw the polygarsdB in two different colors, and the result of

the operation in a third color.

4.11. For Further Reading

Many books provide a good introduction to vectors. A favoritéomann’s ABOUT VECTORS. The
GRAPHICS GEMS series [gems] provides an excellent source of new approaches and results in vector
arithmetic and geometric algorithms by computer graphics practitioners. Three excellent example articles
are Alan Paeth’s “A Half-Angle Identity for Digital Computation: The Joys of the Half Tangent”

[paeth91], Ron Goldman “Triangles”[goldman90], and Lopez-Lopez’s “Triangles Revisited” [lopez92].
Two books that delve more deeply into the nature of geometric algorithms are Moret and Shapiro’s
ALGORITHMS FROM P TO NP [moret91] and Preparata and Shamos’s COMPUTATIONAL
GEOMETRY, AN INTRODUCTION [preparata85].
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