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(for ECE660 - Fall, 1999)

APPENDIX 2. Some Mathematics for Computer Graphics.

“Mathematics, rightly viewed, possess not only truth,
but supreme beauty - a beauty cold and austere, like that of sculpture.”

Bertrand Russell

This appendix draws together and summarizes various mathematical results that are referred to
throughout the book. In some cases a brief derivation of a result is given, but this material is mainly for
convenient reference.

A2.1 Some Key Definitions for Matrices and their Operations.
In this appendix, we review some fundamental concepts of matrices and ways to manipulate them. More
general treatments are available in many books (for instance, [Birk65], [Faux79].

A matrix  is a rectangular array of elements. The elements are most commonly numbers. A matrix with m
rows and n columns is said to be an m by n matrix. As an example,

A =

3 2 −5

−1 8 0

6 3 9

1 21 2

 

 

 
 
 

 

 

 
 
 

 (A2.1)

is a 4 by 3 matrix of integers and

B = [1.34,  - 6.275, 0.0, 81.6] 

is a 1 by 4 matrix, also called a “4-tuple” or a vector. In common parlance, a 1 by n matrix is a row
vector, and an n by 1 matrix is a column vector.

The individual elements of a matrix are conventionally given lowercase symbols and are distinguished by
subscripts: The ij th element of matrix B is denoted as bij . This is the element in the ith row and jth
column, so for matrix A above, a

32 = 3.

A matrix is square if it has the same number of rows as columns. In graphics we frequently work with 2
by 2, 3 by 3, and 4 by 4 matrices. Two common square matrices are the zero matrix and the identity
matrix . All of the elements of the zero matrix are zero. All are zero for the identity matrix too, except
those along the main diagonal (those elements aij  for which i = j), which have value 1. The 3 by 3
identity matrix is therefore given by

I =
1 0 0

0 1 0

0 0 1

 

 

 
 

 

 

 
 

A2.1.1. Manipulations with Matrices
A matrix B of numbers may be scaled by a number s. Each element of B is multiplied by s. The resulting
matrix is denoted sB. For A as given in Equation A2.1, for instance,
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6A =

18 12 −30

−6 48 0

36 18 54

6 126 12

 

 

 
 
 

 

 

 
 
 

Two matrices C and D having the same number of rows and columns are said to have the same shape.
They may be added together. The ij th element of the sum E = C+D is simply the sum of the
corresponding elements: e

ij  = c
ij  + d

ij
. Thus:

3 2 −5

−1 8 0

6 3 9

1 21 2

 

 

 
 
 

 

 

 
 
 

+

0 5 −1

9 8 −3

2 6 18

4 2 7

 

 

 
 
 

 

 

 
 
 

=

3 7 −6

8 16 −3

8 9 27

5 23 9

 

 

 
 
 

 

 

 
 
 

Since matrices can be scaled and added, it is meaningful to define linear combinations of matrices (of
the same shape), such as 2A - 4B. The following facts about three matrices A, B, and C of the same shape
result directly from these definitions:

A+ B = B + A

A+ (B + C) = ( A+ B) + C

( f + g)(A+ B) = fA + fB + gA+ gB

The transpose of a matrix M, denoted MT, is formed by interchanging the rows and columns of M: the

ij th element of MT is the ji th element of M. Thus the transpose of A in Equation A2.1 is

AT =
3 −1 6 1

2 8 3 21

−5 0 9 2

 

 
 
 

 

 
 
 

The transpose of a row vector is a column vector. For example,

( ,2, )3 5

3

2

5

− =
−

�

�
�
�

�

�
�
�

T

A matrix is symmetric if it is identical to its own transpose. Only square matrices can be symmetric.
Thus an n by n matrix M is symmetric if mij = mji  for i and j between 1 and n.

A2.1.2 Multiplying Two Matrices.
The transformations first discussed in Chapter 5 involve multiplying a vector by a matrix and multiplying
two matrices together. The first is a special case of the second.

The product AB of two matrices A and B is defined only if the matrices conform. That means that the
number of columns of the first matrix, A, equals the number of rows of the second one, B. Thus, if A is 3
by 5 and B is 5 by 2, then AB is defined but BA is not. Each term of the product C = AB of A with B is
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simply the dot product of some row of A with some column of B. Specifically, the ij th element cij  of the
product is the dot product of the ith row of A with the jth column of B. Thus the product of an n by m
matrix with an m by r matrix is an n by r matrix. For example:

2 0 6 −3

8 1 −4 0

0 5 7 1

 

 
 
 

 

 
 
 

6 2

−1 1

3 1

−5 8

 

 

 
 
 

 

 

 
 
 

=
45 −14

35 13

11 20

 

 
 
 

 

 
 
 

Here, for instance, c
12
= - 14, since (2, 0, 6,  - 3) · (2, 1, 1, 8)= - 14. A routine to multiply square matrices

is given in Appendix 3. It is easily extended to find the product of any two matrices that conform.

We list some useful properties of matrix multiplication. Assume that matrices A, B, and C conform
properly. Then

( ) ( )

( )

( )

AB C A BC

A B C AB AC

A B C AC BC

=
+ = +

+ = +
 

(AB)T = BT AT

A(sB) = sAB

 where s is a number.

When forming a product of two matrices A and B, the order in which they are taken makes a difference.
For the expression AB, we say “A premultiplies B” or “A is postmultiplied by B.” If A and B are both
square matrices of the same size they conform both ways, so AB and BA are both well defined, but the
two products may contain different elements. If AB = BA for two matrices, we say that they commute.
(Do two symmetric matrices always commute?)

Multiplying a Vector by a Matrix.
A special case of matrix multiplication occurs when one of the matrices is a row vector or column vector.
In graphics we often see a column4 vector w being premultiplied by a matrix, M, in the form Mw. For
example, let

w T=
−

�

�
�
�

�

�
�
�

= −
2

5

3

2 5 3( , , )

and

M =
2 0 6

8 1 −4

0 5 7

 

 
 
 

 

 
 
 

Then w conforms with M, and we can form
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Mw =
2 0 6

8 1 −4

0 5 7

 

 
 
 

 

 
 
 

2

5

−3

 

 
 
 

 

 
 
 =

−14

33

4

 

 
 
 

 

 
 
 

By the same rules as those given previously, each component of Mw is the dot product of the appropriate
row of M with w. One can also premultiply a matrix by a row vector v , as in

vM = (3,−1,7)

2 0 6

8 1 −4

0 5 7

 

 
 
 

 

 
 
 = (−2,34,71)

The Dot and Cross Products Revisited.
It is useful in some analytical derivations to write the dot product a · b of two n-tuples as a vector times a

matrix. Simply view vector b as a row matrix, and transpose it to form the n by 1 column matrix bT.
Then

a ⋅ b = abT

By the same reasoning, a ⋅ b = baT
.

Similarly, the cross product of two 3-tuples a × b  (see Section 4.4) may be written as the product

a × b = (a1,a2,a3)

0 −b3 b2

b3 0 −b1

−b2 b1 0

 

 

 
 

 

 

 
  

The cross product also is some matrix (which one?) postmultiplied by column vector aT. One other form,
the outer product or tensor product of two vectors, provides a useful notation:

a ⊗ b = aTb =
a1

a2

a3

 

 

 
 

 

 

 
 (b1,b2,b3) =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 

 

 
 

 

 

 
 

from which b ⊗ a = (a⊗ b)T
 (why?) An easily proved property is:

a(b⊗ c) = (a ⋅ b)c

A2.1.3 Partitioning a Matrix
It is sometimes convenient to subdivide a matrix into blocks of elements and to give names to the various
blocks. For example,

M =
2 0 6

8 1 −4

3 2 7

 

 
 
 

 

 
 
 =

M1 M2

M3 M4

 
 
  

 
 

where the blocks are identified as:
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M1 =
2 0

8 1
 
 
  

 
 ,M2 =

6

−4
 
 
  

 
 , M3 = 3 2( )

and M4 consists of the single element 7. This is called a partition  of M into the four blocks shown. Note
that when one block is positioned above another, the two blocks must have the same number of columns.
Similarly, when two blocks lie side by side, they must have the same number of rows. Two matrices that
have been partitioned in the same way (corresponding blocks have the same shape) may be added by
performing these operations on the blocks. To transpose a partitioned matrix, transpose each block
individually and then transpose the arrangement of blocks. For instance:

M1 M2

M3 M4

 
 
  

 
 

T

=
M1

T M3
T

M2
T M4

T

 
 
  

 
 

You can also multiply two partitioned matrices by multiplying their submatrices in the usual way, as long
as the submatrices conform :

M1 M2

M3 M4

 
 
  

 
M5 M6

M7 M8

 
 
  

 
=

M1M5 + M2M7 M1M6 + M2M8

M3M5 + M4M7 M3M6 + M4M8

 
 
  

 

A2.1.4 The Determinant of a Matrix
Every square matrix M has a number associated with it called its determinant and denoted by |M|. The
determinant describes the volume of certain geometric shapes and provides information concerning the
effect that a linear transformation has on areas and volumes of objects.

For a 2 by 2 matrix M, the determinant is simply the difference of two products:

M =
m11 m12

m21 m22

= m11m22 − m12m21

If M is a 3 by 3 matrix its determinant has the form

M =
m

11
m

12
m

13

m
21

m
22

m
23

m
31

m
32

m
33

= m
11

m22 m23

m32 m33

− m
12

m21 m23

m31 m33

+ m
13

m21 m22

m31 m32

For example:

2 0 6

8 1 −4

0 5 7

= 294

Note that |M| here is the sum of three terms: m11M
11 + m

12 M12 + m13M
13
, so it has the form of a dot

product: |M|= (m
11
, m

12
, m

13
) · (M

11
, M

12
, M

13
). What are the Mij  terms? Mij  is called the cofactor of

element mij  for matrix M. We see cofactors emerging again when finding the inverse of a matrix, so it is
convenient to define them formally.
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Definition Each element mij  of a square matrix M has a corresponding cofactor Mij . Mij  is ( -1)i+j  times
the determinant of the matrix formed by deleting the ith row and the jth column from M.

Note that as one moves along a row or column, the value of ( -1)i+j  alternates between 1 and  -1. One can
visualize a checkerboard pattern of 1's and  -1's distributed over the matrix.

The general rule for finding the determinant |M| of any n\yn matrix M is: Pick any row of M, find the
cofactor of each element in the row, and take the dot product of the row and the n-tuple of cofactors.
Alternatively, pick a column of M and do the same thing. (Does this rule hold for a 2 by 2 matrix as
well?)

Some useful properties of determinants are as follows:

• |M| = |MT|
• If two rows (or two columns) of M are identical, |M| = 0.
• If  M and B are both square, then |MB| = |M| |B|.
• If B is formed from M by interchanging two rows (or columns) of M, then |B| =  -|M|.
• If B is formed from M by multiplying one row (or column) of M by a constant k, then |B| = k |M|.
• If B is formed from M by adding a multiple of one row (or column) of M to another, then |B| = |M|.

A2.1.5. The Inverse of a Matrix
An n by n matrix M is said to be nonsingular whenever |M|• 0. In this case, M has an inverse, denoted M -1, that
has the property

 MM-1 = M-1 M = I  

where I is the n by n identity matrix. Also, the inverse of a product of square matrices is

(AB)−1 = B−1A−1

It is simple to specify the elements of M-1 in terms of cofactors of M:

• Rule for Finding the Inverse of M:
Denote the inverse of M by A. Then A has ij- th element

aij =
Mji

|M|

That is, find the cofactor of the term mji  and divide it by the determinant of the whole matrix. Carefully
note the subscripts here: The cofactor of mji  is used when determining aij . An equivalent procedure is as
follows:

1. Build an intermediate matrix C of cofactors: cij = Mij ;
2. Find |M| as the dot product of any row of C with the corresponding row of M;

3. Transpose C to get CT;

4. Scale each element of CT by 1/|M| to form M-1.

Example: Find the inverse of



ECE660 - Appendix 2. Math Stuff             10/23/99                             page 7

M =
2 0 6

8 1 −4

0 5 7

 

 
 
 

 

 
 
 

Solution : Build the matrix C of cofactors of M:

27 −56 40

30 14 −10

−6 56 2

 

 
 
 

 

 
 
 

Find |M| as (2,0,6) · (27, - 56,40) = 294. Transpose C and scale each element by 1 / |M| to obtain

M−1 =
1

294

27 −56 40

30 14 −10

−6 56 2

 

 
 
 

 

 
 
 

Check this by multiplying out MM-1 and M-1M.

The inverse is often used to solve a set of linear equations:

N

x1

x2

�

xn

 

 

 
 
 

 

 

 
 
 

=

b1

b2

�

bn

 

 

 
 
 

 

 

 
 
 

where an n by n matrix N is given, along with the column vector b, and it is necessary to find the vector x
that causes all n of the equations to be satisfied simultaneously. If N is nonsingular, the solution may be
found as

x = N-1b  

There are numerical techniques for solving such a system of equations that are faster and more
numerically stable than computing N-1b directly.

Note: Although the use of column vectors is prevalent in graphics, in certain fields it is more common to
use row vectors and to write this same set of equations as

(x
1
, x

2
, . . . , x

n
) M = (b

1
, b

2
, . . . , b

n
) 

It is not difficult to show that this is the same set of equations as the previous ones, when M = NT, and

that the solution is given by x = bM-1.

Orthogonal Matrices.
For some transformations such as rotations (see Chapter 5), the associated matrix has an inverse that is
particularly easy to find. A matrix M is called orthogonal if simply transposing it produces its inverse:

MT = M-1. Therefore MMT = I. If M is orthogonal, MMT = I implies that each of its rows is a unit length
vector and that the rows are mutually orthogonal. The same is true for its columns (why?). For instance,
if M is 3 by 3, partition it into three rows as follows:
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M =
a

b

c

 

 
 
 

 

 
 
 

Then the 3-tuples a, b, and c are each of unit length, and a · b = a · c = b · c = 0.

A Useful Identity for Cross Products.
When studying normal vectors to surfaces it is necessary to work with the cross product of two transformed 3D
vectors, as inM Ma b0 5 0 5× , where a and b are 3D vectors, and M is a 3 by 3 matrix. The question is how this

cross product is related to the cross product a b× of a and b alone. The answer is:

M M M M Ta b a b0 5 0 5 0 5× = ×−(det )

so a b× is scaled by the determinant of M, and multiplied by the inverse transpose of M. To establish
this result the following steps may prove helpful. (Can you find a more immediate derivation?)

Denote the rows of M by the vectors r 1, r 2, and r 3.

First show that ( ) ( ) ( )M Ma b

r r

r r

r r

a b× =
×
×
×

�

�
�
�

�

�
�
�

×
2 3

3 1

1 2

.  Then show  that

M M MT T T T− × =
×
×
×

�

�
�
�

�

�
�
�

×( ) ( ) ( )a b

r r

r r

r r

r r r a b
2 3

3 1

1 2

1 2 33 8

finally, show that the product of the first two matrices on the right hand side is a diagonal matrix, with
each diagonal term equal to the determinant of M. (Hint: use properties of the triple scalar product
discussed below, such as a c a⋅ × = 0.)

A2.2. Some Properties of Vectors and their Operations.

A2.2.1. The Perp of a vector, and the perp dot product.

The perp and perp dot product apply only to two dimensional vectors.

A). The “perp” of a vector. If vector a is given by  a = (ax, ay), the counterclockwise  perpendicular, or “perp”

of a, denoted by a⊥,  is given by  a⊥  = (-ay, ax) .

a). Vector a and  a ⊥ have the same length:  |a| = |a⊥| .

b).  Linearity: (a + b)⊥ = a⊥ + b⊥  and (Aa)⊥ = Aa⊥ for any scalar A;

c).  Two perp’s make a negation:  a⊥⊥ = (a⊥)⊥ = -a

B). The perp dot product a⊥. b.

a). The value of the perp dot product:  a⊥ ⋅b = axby − aybx .

b). a⊥.a = 0, (a⊥ is perpendicular to a)

c). |a⊥|2 = |a|2. (a⊥ and a have the same length)
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d). a⊥. b = - b⊥ . a, (antisymmetric)

e).  a⊥. b  can be written as the determinant:

a⊥ ⋅b =
ax ay

bx by

f).  (a⊥.b)2 + (a.b)2 = |a|2|b|2.

g). If a + b + c = 0 then a ⊥ · b =  b ⊥ · c =  c ⊥ · a.

h).  a b⊥ ⋅ > 0 if and only if there is a CCW turn from a to b.

i).  a b⊥ ⋅ = 0 if b is parallel or anti-parallel to a

j). |a b⊥ ⋅ | is the area of the parallelogram determined by vectors a and b.

A2.2.2.  The Scalar Triple Product
For vectors a, b, and c of 3 dimensions, a very useful quantity combines the cross product with the dot
product. Given three vectors, a, b, and c, create the scalar S defined by

S = a ⋅ (b × c)   = ax(by cz - bzcy) + ay(bz cx - bxcz) + az(bx cy - bycx)

This can also be written conveniently as the determinant:

S =
ax ay az

bx by bz

cx cy cz

Interchanging the rows of a determinant causes only a change in sign, and so interchanging twice
produces no change at all. Hence a cyclic permutation in the vectors has no effect on the value of S, and
it has the following three equivalent forms:

S   = a • (b × c) = b • (c × a) = c • (a × b)

The scalar triple product has a simple geometric interpretation. (It plays the same role in 3D as the perp

dot product  b⊥·c plays in 2D.

• Its magnitude |S| is the volume of the parallelepiped1 formed by the vectors a, b, and c all bound to the
same point.

• The sign of the triple scalar product follows that of cos(φ): positive if |φ| < 90° and negative if |φ| > 90°.
(Question: If we express a, b, and c instead in a right handed coordinate system, does S change?).

Note that if the three vectors lie in the same plane, the scalar triple product will be zero, as the volume of
the parallelepiped then degenerates to zero. Suppose that none of a, b, or c is the zero vector. Then the

                                                       
1parallelepiped  (pronounced with the syllable “ep” stressed, as in ‘epithet’ and ‘epicycloid’).
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scalar triple product a • (b X c) = 0 if, and only if, the three vectors are coplanar. (Corollary: The three
vectors are coplanar if any two of them are parallel.) This property can be used to determine how nearly
planar a polygon is.

The Intersection of Three Planes. Two planes intersect in a line, and a third plane intersects this line at
a single point. The scalar triple product provides a closed-form expression for this point. If the planes are
given by ni • r = Di, for i = 1, 2, 3, their point of intersection is given (provided that the denominator is
not zero) by:

r = D1(n2 × n3) + D2(n3 × n1) + D3(n1 × n2)

n1 ⋅(n2 × n3)
) 

This can be checked by seeing that r  lies in each of the three planes: Substitute the expression for each
plane in this formula, and use the properties of the triple scalar product to show that an equality results.

A2.2.4. The Triple Vector Product and products of four vectors.
 The triple vector product (TVP) of three 3D vectors, a, b, and c, is given by TVP = a ×  (b ×  c). It often
arises during pencil-and-paper calculations involving cross products.  It can be written as the difference
of the two scaled vectors: TVP = (a · c)b - (a · b)c [Faux79].
.
 “Products” of four vectors. For any four 3D vectors a, b, c, and d the following is true:
 (a × b)•(c × d)= (a•c)(b•d)-(a•d)(b•c).

A2.3. The Arithmetic of Complex Numbers.
It is not essential to bring complex numbers into play when studying geometric methods in computer
graphics. Complex numbers and their manipulations lend considerable insight into various facts,
however, making a study of them well worth while. This appendix collects the elementary facts of
complex arithmetic in one place, as a refresher for readers who have some familiarity with them.

A complex number z such as z = 3 + 4i has two parts. Its real part, denoted Re(z), is equal to 3, and its

so-called imaginary, denoted Im(z), is 4. The quantity i, defined by i2 = -1, is usually written i = -1 .
There is nothing either complex or imaginary about these objects: they are simply defined according to a
set of rules by which they operate. In performing arithmetic the usual operations apply:

• addition: (a + bi ) + ( c + di) = (a + c) + (b + d)i (A.2.1)
• multiplication: (a + bi ) * ( c + di) = (ac - bd) +  (ac + cd)i

where the term bdi2 has been replaced by -bd according to the rule i2 = -1. For instance, (3 + 2i) +  (1 +
i) = 4 + 3i, and (3 + 2i) * (1 + i) = 1 + 5i.

It is in the correspondence between complex numbers and points in the plane that complex numbers and
their operations take on a rich geometric character. The complex number x + yi is associated with the
point (x, y) in the usual rectangular coordinate system. The x-coordinate is the real part of the number and
the y-coordinate is the imaginary part. Thus 3 + 4i corresponds to (3, 4). Any complex number may be

‘plotted’ in the plane. Such a representation is called an Argand diagram2. Figure A2.2.1a shows the

                                                       
2 Named after Jean Robert Argand, a Swiss bookeeper, who described it in 1806. The Norwegian
surveyor Casper Wessel had actually described it nine years earlier, and Gauss used it at about the same
time.
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complex number 3 + 4i plotted as (3,4). The usual x-axis is often called the ‘real’ axis, and the y-axis the
‘imaginary’ axis, to reinforce the association.

4

3
Re

Im

3 + 4i

a). b).

Re

Im

3 + 4i
φ

5

Figure A2.2.1. The Argand Diagram.

Just as the point (3, 4) is at distance 5 = 32 + 42  from the origin, a complex number c = a + bi is said
to have magnitude or modulus, denoted by |c| and given by

|c| =  a2 + b2 (A.2.2)

Not surprisingly the angle or argument of c = a + bi is the angle φ shown in Figure A2.1b. The argument
of z is often denoted Arg(z), so Arg(z) = φ. Thus the real part of c is |c| cos φ  and the imaginary part is  |c|
sin φ, so we can write the ‘polar’ form:

Re

Im

c

a). b).

Re

Im

d

c + d

c

z

c z

10

Figure A2.2.2. Adding and multiplying complex numbers.

c = |c| cos φ + i |c| sin φ (A.2.3)

More generally suppose c  is given by Equation 5.43 and that z has polar form  z =  |z|(cos θ + i sin θ) (i.e.
magnitude |z| and argument θ). Now multiply them and simplify the result to get:

c * z = |c| (cos φ + i sin φ) |z| (cos θ + i sin θ)
= |c| |z| (cos (φ+θ ) + i sin ( φ+θ )) (A2.2.4)

We conclude:
• the magnitude of the product of two complex numbers is the product of their magnitudes;
• the angle of the product of two complex numbers is the sum of their angles.

This is illustrated in Figure A2.2b. Note that the triangle formed by 0, 1, and c is similar to that formed
by 0, z, and cz, so multiplying by a complex number converts a triangle into a similar triangle.

Letting z = c in Equation A2.34, we obtain z2 = |z|2 (cos 2φ  + i sin 2φ), which generalizes immediately to

an expression for zn (which one?)  Letting |z| = 1 we get DeMoivre’s reknowned formula:

(cos φ + i sin φ )n = cos ( nφ ) + i sin(nφ ) (A2.2.5)
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We examine the function  cos φ + i sin φ more closely. Call it f(φ). The formula says: fn(φ) = f(nφ): raising
the function to a power n is the same as multiplying its argument by n. This is highly suggestive of an
exponential function, and in fact can be proven rigorously to be so. It produces Euler’s formula :

eiφ= cos φ + i sin φ (A2.2.6)

(Proof: both sides have the same infinite series expansion.) As special cases, note that ei0 = 1, eiπ/2 = i,

and eiπ = -1. (This last relates in a remarkable way the four fundamental mathematical values: e, i, π, and
1.) This provides us with an alternative and very compact polar form for a complex number c having
magnitude |c| and angle φ:
c = |c| eiφ (A2.2.7)

For example, the n vertices of an n-gon of radius R are given by the n complex numbers p
k
:

p
k
 = R ei2πk/n     k = 1, 2, ..,n (A2.2.8)

Each complex number z also has a conjugate, denoted z*. If z = x + iy then by definition z* = x - iy. Thus
|z*| = |z| and Arg(z*) = -Arg(z). Taking the conjugate is equivalent to areflection about the x-axis. (What

are the magnitude and argument of (z*)n?)

• The square root z  of a complex number z.

If the complex number z has the polar form z = |z| ejφ then clearly the square root of z is :

z  = |z|  eiφ/2.

Thus taking the square root takes the square root of the magnitude and halves the argument of z. This can
also be written without recourse to the polar form. If z = x + iy then:

z  = a + ib if y • 0 (A2.2.9)

z  = -a + ib if y < 0

where

a = |z|+x
2

b = |z|−x

2

(A2.2.10)

Check: Square a + ib and -a + ib directly and work out the algebra, to see that the result is z itself.

Practice Exercises.
A2.2.1. The division operation.If z ands w are complex numbers, show that

z
w = |z|

|w|e
i(Arg(z) − Arg(w)) = zw*

ww*
= zw*

|w|2
(A2.2.11)

A2.2.2. A ratio that always has unit magnitude.
Show that (a+ib) / (a - ib) has magnitude 1 for any a and b.
A2.2.3. When must four complex numbers lie on a circle?
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Show that Arg((z
3
 - z

1
) / (z

2
 - z

1
)) = Arg((z

4
 - z

1
) / (z

4
 - z

2
)) if and only if z

1
,..,z

4
 lie on a circle or straight

line, if and only if [(z
3
 - z

1
) / (z

3
 - z

2
)] / [(z

4
 - z

1
) / (z

4
 -z

2
)] is real.

A2.4. Spherical Coordinates and Direction Cosines.
We review the notion of spherical coordinates, and summarize how you convert back and forth from
spherical coordinates to Cartesian coordinates.

Figure 9.8.1 shows how a point U is defined in spherical coordinates. R is the radial distance of U from
the origin. φ is the angle that U makes with the xy-plane, known as the
latitude of point U. θ is the azimuth of U: the angle between the xz-plane and the plane through U and

the z-axis. φ lies in the interval -π/2 ≤ φ < π/2, and θ lies in 0 ≤ θ < 2π.

x y

z

U

θ

φ

R

Figure 9.8.1. Spherical Coordinates.

Using simple trigonometry, it is straightforward to work out the relationships between these quantities
and the Cartesian coordinates (ux, uy, uz) for U. They are

ux = Rcos(φ)cos(θ)
uy = Rcos(φ)sin(θ ) (9.8.1)

uz = Rsin(φ)

One can also invert these relations to express (R, φ, θ) in terms of (ux, uy, uz):

R= ux
2 + uy

2 + uz
2

φ = sin
−1(

uz

R
) (9.8.2)

θ = arctan(uy,ux )

The function arctan(,) is the two-argument form of the arctangent, defined as
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arctan(y, x) =

tan−1(y / x)        if x > 0

π + tan−1(y / x)  if x < 0

π / 2        if x = 0 and y > 0

− π / 2      if x = 0 and  y < 0

 

 
 

 
 

(9.8.3)

It can distinguish between the case where both x and y are positive and the case where both of them are

negative, unlike the usual form tan
−1(

y

x
) , which always produces angles between -•/2 and •/ 2.

 Example 9.8.1. Suppose that point U is at distance 2 from the origin, is 60° up from the xy-plane, and is
along the negative x-axis. Hence U is in the xz-plane. Then U is expressed in spherical coordinates as (2,
60°, 180°). Using Equation 9.8.1 to compute U in Cartesian coordinates, we obtain U = (-1, 0, 1.732).

• Direction Cosines. The direction of point U in the preceding example is given in terms of two angles,
the azimuth and the latitude. Directions are often specified in an alternative useful way through direction
cosines. The direction cosines of a line through the origin are the cosines of the three angles it makes
with the x-, y-, and z-axes, respectively.

Recall that the cosine of the angle between two unit vectors is given by their dot product. Using the given
point U, form the position vector (ux, uy, uz). From the preceding discussion we see that its length is R,
so it must be normalized to the unit length vector m = (ux / R, uy / R, uz / R). Then the cosine of the
angle it makes with the x-axis is given by the dot product  m · i = ux / R, which is simply the first
component of m. Similarly, the second and third components of m are the second and third direction
cosines, respectively. Calling the angles made with the x-, y-, and z-axes by α, β, and γ, respectively, the
three direction cosines for the line from 0 to U are therefore

cos(α ) =
ux

R

cos(β ) =
uy

R

cos(γ ) = uz

R

(9.8.4)

Note that the three direction cosines are related, since the sum of their squares is always 1.

Practice Exercises.
9.8.1. Convert the point (x, y, z) = (2, 4, -3) to spherical coordinates.
9.8.2. Convert the point (r,φ, θ ) = (5, 35°, -67°) to rectangular coordinates.
9.8.3. Find the direction cosines of the vector n, where
i). n = (1, 1, 1);
ii). n = (2, 3, 4).
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