(for ECE660 - Fall, 1999)

APPENDIX 2. Some Mathematics for Computer Graphics.

“Mathematics, rightly viewed, possess not only truth,
but supreme beauty - a beauty cold and austere, like that of sculpture.”
Bertrand Russell

This appendix draws together and summarizes various mathematical results that are referred to
throughout the book. In some cases a brief derivation of a result is given, but this material is mainly for
convenient reference.

A2.1 Some Key Definitions for Matrices and their Operations.

In this appendix, we review some fundamental concepts of matrices and ways to manipulate them. More
general treatments are available in many books (for instance, [Birk65], [Faux79].

A matrix is a rectangular array of elements. The elements are most commonly humbers. A matrix with m
rows and n columns is said to berarby n matrix. As an example,

03 2 -3

A (-1 8 0U
=0 0 (A2.1)

DG 3 9D

01 21 20

is a 4 by 3 matrix of integers and
B =[1.34, - 6.275, 0.0, 81.6]

is a 1 by 4 matrix, also called 4-tuple” or a vector. In common parlance, a lrbgnatrix is a row
vector, and an n by 1 matrix is a column vector.

The individual elements of a matrix are conventionally given lowercase symbols and are distinguished by
subscripts: Thgth element of matri is denoted akjj. This is the element in théh row andth

column, so for matrix A abovcaéz =3.

A matrix issquareif it has the same number of rows as columns. In graphics we frequently work with 2
by 2, 3 by 3, and 4 by 4 matrices. Two common square matrices arerthenatrix and thedentity

matrix . All of the elements of the zero matrix are zero. All are zero for the identity matrix too, except
those along thenain diagonal (those elementsjj for whichi = j), which have value 1. The 3 by 3

identity matrix is therefore given by

4 o0 O
|:801d§
M 0 1°

A2.1.1. Manipulations with Matrices

A matrix B of numbers may bscaledby a number s. Each element®is multiplied bys. The resulting
matrix is denotedB. For A as given in Equation A2.1, for instance,
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M8 12 -30C

06 48 00O
- %36 18 545
06 126 12C

Two matricesC andD having the same number of rows and columns are said to have thehsgrae
They may be added together. Tijth element of the surd = C+D is simply the sum of the
corresponding eIementeﬂ:z c + d‘i. Thus:

03 2 -5g M 5 -1 B 7 -6C
(-1 8 oU [® 8 -3 [B 16 -30
6
2

Js 3 95%*2 187 o 27
91 21 20 0 2 70 05 23 OF

Since matrices can be scaled and added, it is meaningful to lilediaecombinations of matrices (of
the same shape), such @s-2B. The following facts about three matrioksB, andC of the same shape
result directly from these definitions:

A+B=B+A
A+(B+C)=(A+B)+C
(f +g9)(A+B)=fA+ B+ gA+gB

Thetransposeof a matrixM, denotecdM T, is formed by interchanging the rows and columnilothe
ijth element oMT is thejith element oM. Thus the transpose Afin Equation A2.1 is

03 -1 6 1C

AT:EZ 8 3 215
05 0 9 2C

The transpose of a row vector is a column vector. For example,

3
(32-5) =| 2
-5

A matrix issymmetric if it is identical to its own transpose. Only square matrices can be symmetric.
Thus am by n matrixM is symmetric ifm, = m, fori andj between 1 and.

A2.1.2 Multiplying Two Matrices.
The transformations first discussed in Chapter 5 involve multiplying a vector by a matrix and multiplying
two matrices together. The first is a special case of the second.

The product AB of two matricesA andB is defined only if the matriceonform. That means that the

number of columns of the first matri&, equals the number of rows of the second 8ndhus, ifAis 3
by 5 andB is 5 by 2, therAB is defined buBAis not. Each term of the product= AB of A with B is
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simply the dot product of some row Afwith some column oB. Specifically, thejth elementij of the

product is the dot product of tli row of A with thejth column ofB. Thus the product of an n by m
matrix with an m by r matrix is amby r matrix. For example:

06 20
@ 0 6 'SEb-l 10 45 -14C
B 1 -4 oE[]3 %:Hss 134
0 5 7 1[%5 o M1 20C

Here, for instanca;u: - 14, since (2,0, 6, -3) - (2,1, 1, 8)=- 14. A routine to multiply square matrices
is given in Appendix 3. It is easily extended to find the product of any two matrices that conform.

We list some useful properties of matrix multiplication. Assume that matid®@sandC conform
properly. Then

(AB)C= A BQ
A(B+C)= AB+ AC

(A+B)C= AC+ BC
(AB)" =BTAT
A(sB)=sAB

wheresis a number.

When forming a product of two matricAsandB, the order in which they are taken makes a difference.
For the expressioAB, we say A premultiplies B” or “A is postmultiplied by B.” If A andB are both
square matrices of the same size they conform both way®} andBA are both well defined, but the
two products may contain different elementsAB= BA for two matrices, we say that thegmmute

(Do two symmetric matrices always commute?)

Multiplying a Vector by a Matrix.

A special case of matrix multiplication occurs when one of the matrices is a row vector or column vector.
In graphics we often see a column4 veetdreing premultiplied by a matri®, in the formMw. For

example, let

2
w=| 5 [=(25-3
-3
and
(2 0 60
M=F8 1 -4
(0 5 70

Thenw conforms withM, and we can form
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[ 0 6m20 G14C
Mw=[B 1 -4FJ5 = H33[
(0 5 7030 0O4LC

By the same rules as those given previously, each componigmt & the dot product of the appropriate
row of M with w. One can also premultiply a matrix by a row veetoms in

@ 0 60
W =G3-178 1 -40=(-2,34,71)
0 5 70

The Dot and Cross Products Revisited.
It is useful in some analytical derivations to write the dot produdt of two n-tuples as a vector times a

matrix. Simply view vectob as a row matrix, and transpose it to formrtgy 1 column matrixo .
Then

alb=ab'

By the same reasoning,[b = ba'.

Similarly, the cross product of two 3-tuplasX b (see Section 4.4) may be written as the product
0o -b, bL

axb=(a,a,a)db, 0 -bH
Ob b OC

The cross product also is some matrix (which one?) postmultiplied by column aed@ore other form,
theouter product or tensor product of two vectors, provides a useful notation:

(i [ Cab, ab, abC
aOb=a'b=la b b,b) =hb ab, ab
ey 0 (B &b, abC

from whichb D a = (al b)" (why?) An easily proved property is:

a(bOc)=(alb)c

A2.1.3 Partitioning a Matrix

It is sometimes convenient to subdivide a matrix into blocks of elements and to give names to the various
blocks. For example,

@ 0 60 M%

M = A= 1 2
Rl VR VS
(B 2 70

where the blocks are identified as:
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M1:52 OEM :569M3=(3 2

B8 10 2 [+40

andMg consists of the single element 7. This is callparition of M into the four blocks shown. Note

that when one block is positioned above another, the two blocks must have the same number of columns.
Similarly, when two blocks lie side by side, they must have the same number of rows. Two matrices that
have been partitioned in the same way (corresponding blocks have the same shape) may be added by
performing these operations on the blocks. To transpose a partitioned matrix, transpose each block
individually and then transpose the arrangement of blocks. For instance:

ML= A
M, | MO O™, | M,C

You can also multiply two partitioned matrices by multiplying their submatrices in the usual way, as long
as the submatrices conform :

= | M, M, | MGD: HML,M; + M;M; | M,M¢ + M,M,
M, | MM, | MO MM, + MM, | MM + M, M,C

A2.1.4 The Determinant of a Matrix

Every square matrix M has a number associated with it calldétigsminant and denoted by|. The
determinant describes the volume of certain geometric shapes and provides information concerning the
effect that a linear transformation has on areas and volumes of objects.

For a 2 by 2 matris, the determinant is simply the difference of two products:

m, m,

M| =
m, My

=m,m,, —m,m,,

If M is a 3 by 3 matrix its determinant has the form

m, m, m
m, m, m, m m, m
MI=im, s, m, =m“‘m; msz_le‘rnsl mj+%‘”h m,
n’!,’l m32 rn?,
For example:
2 0 6
8 1 —4|=294
05 7

Note thatM| here is the sum of three termgM_+m_M_+ m13M13, so it has the form of a dot

product: M|= (mu, m., mm) : (MU, M., Mw). What are thé/ljj terms”Mjj is called thecofactor of

elementmjj for matrixM. We see cofactors emerging again when finding the inverse of a matrix, so it is
convenient to define them formally.
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Definition Each elementn, of a square matrik has a correspondirgpfactor M;. M; is ( -1j+j times
the determinant of the matrix formed by deletingitheow and théth column fromM.

Note that as one moves along a row or column, the value dﬂ dldernates between 1 and -1. One can
visualize a checkerboard pattern of 1's and -1's distributed over the matrix.

The general rule for finding the determinavit pf any n\yn matriM is: Pick any row oM, find the
cofactor of each element in the row, and take the dot product of the row antugie of cofactors.
Alternatively, pick a column d¥1 and do the same thing. (Does this rule hold for a 2 by 2 matrix as
well?)

Some useful properties of determinants are as follows:

-+ M= MT|

» If two rows (or two columns) dl are identical M| = 0.

« If M andB are both square, thevB| = M| B|.

* If Bis formed fromM by interchanging two rows (or columns)Mf then B| = -M|.

* If Bis formed fromM by multiplying one row (or column) dfl by a constark, then B| =k |M|.

« If Bis formed fromM by adding a multiple of one row (or column)Mfto another, therB| = M|.

A2.1.5. The Inverse of a Matrix

An n by n matrixM is said to bewonsingular wheneverNi|s 0. In this caséyl has arinverse, denotedv -1 that
has the property

MMLl=m1m=]
wherel is then by n identity matrix. Also, the inverse of a product of square matrices is

(AB)=BA™

It is simple to specify the elementsMfl in terms of cofactors d¥!:

* Rule for Finding the Inverse ofM:
Denote the inverse &fl by A. ThenA hasij-th element

M
g; =—L

M|

That is, find the cofactor of the tenm and divide it by the determinant of the whole matrix. Carefully
note the subscripts here: The cofactompfs used when determinirgg. An equivalent procedure is as
follows:

1. Build an intermediate matri® of cofactorscjj = Mjj;

2. Find M| as the dot product of any row @fwith the corresponding row o;
3. Transpos€ to getCT;

4. Scale each element©f by 1/M| to formm-L.

Example: Find the inverse of
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@ 0 60

M:Ep 1-45

(o 5 70

Solution : Build the matrixC of cofactors oM:

(27 -56 40C

EFO 14 —105

(-6 56 2L

Find M| as (2,0,6) - (27, - 56,40) = 294. Transp0snd scale each element by M[ {o obtain

(27 -56 400

L1
M7 =-—180 14 -10]
M6 56 20

Check this by multiplying ouvIM-1 andm-1m.
The inverse is often used to solvedt of linear equations

0 hC
5(2 U Eb2 U
No: o= o: o
00 oo
x.0 [bLC
where am by n matrixN is given, along with the column vectorand it is necessary to find the vector

that causes ali of the equations to be satisfied simultaneousli i nonsingular, the solution may be
found as

x =N'b

There are numerical techniques for solving such a system of equations that are faster and more
numerically stable than computingb directly.

Note: Although the use of column vectors is prevalent in graphics, in certain fields it is more common to
use row vectors and to write this same set of equations as

(xl, L ’Xn) M = (bl, bz, .. ,bn)

It is not difficult to show that this is the same set of equations as the previous oneb) windh and
that the solution is given by= bm-L.

Orthogonal Matrices.
For some transformations such as rotations (see Chapter 5), the associated matrix has an inverse that is
particularly easy to find. A matriil is calledorthogonal if simply transposing it produces its inverse:

MT =ML ThereforeMMT =1. If M is orthogonaIMMT =1 implies that each of its rows is a unit length
vector and that the rows are mutually orthogonal. The same is true for its columns (why?). For instance,
if M is 3 by 3, partition it into three rows as follows:
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(Al
M=
Ced

Then the 3-tupleg, b, andc are each of unit length, aad b=a-c=b-c=0.

A Useful Identity for Cross Products.
When studying normal vectors to surfaces it is necessary to work with the cross product of two transformed 3D
vectors, as itMa) x (Mb), wherea andb are 3D vectors, and is a 3 by 3 matrix. The question is how this

cross product is related to the cross prodet b of a andb alone. The answer is:
(Ma) x(Mb) = (detM )M ™" (ax b)

so a X bis scaled by the determinantMf and multiplied by the inverse transpos&/bfTo establish
this result the following steps may prove helpful. (Can you find a more immediate derivation?)

Denote the rows d¥! by the vectors,, r,, andr,.

r, Xry
First show tha(Ma) x (Mb) = W (axb). Then show that
ryxr,
PRl
M (Ma) x (Mb) =| r;xr (7] 7| r,T)a %)
M xr,

finally, show that the product of the first two matrices on the right hand side is a diagonal matrix, with
each diagonal term equal to the determinaM ofHint: use properties of the triple scalar product
discussed below, such a€x a=0.)

A2.2. Some Properties of Vectors and their Operations.

A2.2.1. The Perp of a vector, and the perp dot product.
The perp and perp dot product apply only to two dimensional vectors.

A). The “perp” of a vector. If vectora is given by a = (&, ay), thecounterclockwise perpendicular, or “perp”
of a, denoted byl is given by g0 — (-ay, &) .
a). Vectora and a Uhave the same lengtha| F |aD| .

b). Linearity: & + b)D =al + bl and (%1)D = Aal for any scalad;
c). Two perp’s make a negatio{]l = U= 4

B). The perp dot product & b.
a). The value of the perp dot prodU(a:D M= axby - aybx.

b). al-a=0, (aD is perpendicular ta)
C). |aD|2 = |a|2. (aD anda have the same length)
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d). alb=-pJ g (antisymmetric)
e). all b can be written as the determinant;

& 8

O —
a [ﬂ)_bx b,

f. @b)? + (@b)? = p2pl2

). lfa+b+c=0thenal -b=bU.c=cU.a

h). @~ [b> 0 if and only if there is a CCW turn froato b.

). a” [b=0ifb is parallel or anti-parallel ta

i) |aD [b] is the area of the parallelogram determined by veatarsib.

A2.2.2. The Scalar Triple Product

For vectors, b, andc of 3 dimensions, a very useful quantity combines the cross product with the dot
product. Given three vectoms, b, andc, create the scal&@defined by

S=allbxc) =ax(by cz-bzoy) +ay(bz cx - bxcz) + az(bx cy - bycx)

This can also be written conveniently as the determinant:

a, a g
s=|b, b, b,
c. C C,

Interchanging the rows of a determinant causes only a change in sign, and so interchanging twice
produces no change at all. Hence a cyclic permutation in the vectors has no effect on theSyalné of
it has the following three equivalent forms:

S =as(bxc)=be(cxa)=ce(@axb)

The scalar triple product has a simple geometric interpretation. (It plays the same role in 3D as the perp
dot producth-c plays in 2D.

* Its magnitudg§ is the volume of the parallelepi;@l’brmed by the vectoms, b, andc all bound to the
same point.

 Thesign of the triple scalar product follows that of ags(positive if {ff < 90° and negative ifl|> 90°.
(Question: If we express b, andc instead in a right handed coordinate system, 8adsnge?).

Note that if the three vectors lie in the same plane, the scalar triple product will be zero, as the volume of
the parallelepiped then degenerates to zero. Suppose that rie ofc is the zero vector. Then the

Iparallelepiped (pronounced with the syllable “ep” stressed, as in ‘epithet’ and ‘epicycloid’)

ECE660 - Appendix 2. Math Stuff 10/23/99 page 9



scalar triple producd ¢ (b X ¢) = 0 if, and only if, the three vectors are coplanar. (Corollary: The three
vectors are coplanar if any two of them are parallel.) This property can be used to determine how nearly
planar a polygon is.

The Intersection of Three PlanesTwo planes intersect in a line, and a third plane intersects this line at

a single point. The scalar triple product provides a closed-form expression for this point. If the planes are
given byn er =D, fori = 1, 2, 3, their point of intersection is given (provided that the denominator is

not zero) by:

[ = D,(n, xn,) +D,(n, xn,) + D,(n, X nz))
n, ln, xn,)

This can be checked by seeing théies in each of the three planes: Substitute the expression for each
plane in this formula, and use the properties of the triple scalar product to show that an equality results.

A2.2.4. The Triple Vector Product and products of four vectors.

The triple vector product (TVP) of three 3D vectady, andc, is given by TVP =a x (b x c). It often

arises during pencil-and-paper calculations involving cross products. It can be written as the difference
of the two scaled vectors: TVP & (¢)b - (a - b)c [Faux79].

“Products” of four vectors. For any four 3D vectors, b, ¢, andd the following is true:
(ax b)s(c x d)= (asc)(bed)-(asd)(b+c).

A2.3. The Arithmetic of Complex Numbers.

It is not essential to bring complex numbers into play when studying geometric methods in computer
graphics. Complex numbers and their manipulations lend considerable insight into various facts,
however, making a study of them well worth while. This appendix collects the elementary facts of
complex arithmetic in one place, as a refresher for readers who have some familiarity with them.

A complex number such as z = 3 + 4i has two parts.rital part, denotedRg2), is equal to 3, and its

so-calledmaginary, denotedm(?), is 4. The quantity, defined byi2 = -1, is usually writtem :\/-_1 .
There is nothing either complex or imaginary about these objects: they are simply defined according to a
set of rules by which they operate. In performing arithmetic the usual operations apply:

* addition: @+bi) + (c+di)=(@+c) + (b +di (A.2.1)
» multiplication: @+ bi) * (¢ +di) = (ac- bd) + (ac+ cd)i

where the ternbdiZ has been replaced byd according to the rulé? = -1. For instance, (34pR+ (1+
)=4+3,and(3+D*(1+i)=1+85.

It is in the correspondence between complex numbers and points in the plane that complex numbers and
their operations take on a rich geometric character. The complex nyralyérs associated with the

point (, y) in the usual rectangular coordinate system.xFbeordinate is the real part of the number and
they-coordinate is the imaginary part. Thus 3idedrresponds to (3, 4). Any complex number may be

‘plotted’ in the plane. Such a representation is calledrgand diagram&! Figure A2.2.1a shows the

2 Named after Jean Robert Argand, a Swiss bookeeper, who described it in 1806. The Norwegian
surveyor Casper Wessel had actually described it nine years earlier, and Gauss used it at about the same
time.
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complex number 3 +idlotted as (3,4). The usuahxis is often called the ‘real’ axis, and thpaxis the
‘imaginary’ axis, to reinforce the association.

a). b).
Alm Alm
4T *~~3+4i 57 T3+ 4i
! »R€ /S(p €
3

Figure A2.2.1. The Argand Diagram.

Just as the point (3, 4) is at distance‘\ds2 + 42 from the origin, a complex numberk a + bi is said
to havemagnitude or modulus, denoted byc| and given by

Ic| =\ a2 + B2 (A.2.2)

Not surprisingly theangle or argument of ¢c = a + bi is the anglepshown in Figure A2.1b. The argument
of zis often denotedrg(2), soArg(2 = @ Thus the real part afis | cos@ and the imaginary part i] |
sin @ so we can write the ‘polar’ form:

a).
Alm c+d

Figure A2.2.2. Adding and multiplying complex numbers.
c=|cosp+i|c|sing (A.2.3)

More generally suppose is given by Equation 5.43 and ttztas polar formz= |Z(cosé +i sin ) (i.e.
magnitudeZz and argumerfl). Now multiply them and simplify the result to get:

c*z =i (cosp+ising |z (cosf+i sin6)
= cl | (cos(g+B) +i sin( @+-0)) (A2.2.4)
We conclude:
« the magnitude of the product of two complex numbers is the product of their magnitudes;
« the angle of the product of two complex numbers is the sum of their angles.

This is illustrated in Figure A2.2b. Note that the triangle formed by 0, 1¢ ansimilar to that formed
by 0,z andcz so multiplying by a complex number converts a triangle into a similar triangle.

Lettingz = c in Equation A2.34, we obtairf = |z|2 (cos2¢ +i sin 2¢), which generalizes immediately to
an expression fa! (which one?) Letting] = 1 we get DeMoivre’s reknowned formula:

(cos+i sin @) = cos(ng) +i sin(ng) (A2.2.5)
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We examine the functiomos @+ i sin gmore closely. Call if(¢). The formula says"(¢) = f(ng): raising
the function to a powar is the same as multiplying its argumentrbyrhis is highly suggestive of an
exponential function, and in fact can be proven rigorously to be so. It prafulez’s formula:

d¥®= cosgp+ising (A2.2.6)

(Proof: both sides have the same infinite series expansion.) As special cases, B@f@tﬂ]aéﬂz =1,

and éM= -1, (This last relates in a remarkable way the four fundamental mathematical valugsaed
1.) This provides us with an alternative and very compact polar form for a complex muhavéng
magnituded| and anglen

c=| 9 (A2.2.7)

For example, the n vertices of mgon of radiusR are given by the complex numberp, :
p =R d2rk/n k=1,2,..,n (A2.2.8)

Each complex numberalso has @onjugate, denoted*. If z=x + iy then by definitiorz* = x - iy. Thus
[z| = [4 andArg(z*) = -Arg(2). Taking the conjugate is equivalent to areflection abouk-dnds. (What

are the magnitude and argumentzj (?)
» The square root\/E of a complex numberz.
If the complex numbez has the polar forma = |z| d ?then clearly the square rootois :

Vz =\[|z| d92,

Thus taking the square root takes the square root of the magnitude and halves the arguimbist @dn
also be written without recourse to the polar fornz #fx + iy then:

\Jz =a+ib ifys0 (A2.2.9)
\Jz =a+ib ify<0
where

_ [1z+x
a= >
(A2.2.10)
b= ,|Z|—X
2

Check Squarea +ib and a + ib directly and work out the algebra, to see that the result is z itself.

Practice Exercises.
A2.2.1. The division operationf zandsw are complex numbers, show that

z —14 J(Arg(29 — Arg(W)) _ zw* _ zw* A2.2.11

A2.2.2. Aratio that always has unit magnitude.
Show that &+ib) / (a - ib) has magnitude 1 for aryandb.
A2.2.3. When must four complex numbers lie on a circle?
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Show thaiArg((z3 - zl) / (z2 - zl)) = Arg((z4 - zl) / (z4 - 22)) if and only ile,..,z4 lie on a circle or straight
line, if and only if [(z3 - zl) / (z3 - 22)] / [(z4 - zl) / (z4 -22)] is real.

A2.4. Spherical Coordinates and Direction Cosines.

We review the notion of spherical coordinates, and summarize how you convert back and forth from
spherical coordinates to Cartesian coordinates.

Figure 9.8.1 shows how a poldtis defined in spherical coordinat&is the radial distance &f from
the origin.@is the angle thdt) makes with they-plane, known as the

latitude of pointU. 8 is theazimuth of U: the angle between th&plane and the plane throughand
the z-axis.@lies in the interval@2 < @< 172, andb lies in 0< 6 < 2rL

Az

U

A

[
X 0 J

Figure 9.8.1. Spherical Coordinates.

Using simple trigonometry, it is straightforward to work out the relationships between these quantities
and the Cartesian coordinates,(uy, uz) for U. They are

u, = Rcos@@)cos@)
u, = Rcos() sin(@) (9.8.1)
u, = Rsin()

One can also invert these relations to expri@sg, @) in terms of (i, uy, uz):
R=yu’+u +u
. —1,u
@=sin"(2) (9.8.2)
R
6 = arctan(,,u,)

The function arctan(,) is the two-argument form of the arctangent, defined as
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O tan™*(y/ x) ifx>0

O m+tan™(y/ x) if x<O0
arctanf, x) = O i .(y X) 1

ot/ 2 ifx =0 andy>0

/2 ifx=0andy<O0

(9.8.3)

It can distinguish between the case where Ba@hdy are positive and the case where both of them are

negative, unlike the usual fortﬁm_l(%(/), which always produces angles between -¢/2 and ¢/ 2.

Example 9.8.1.Suppose that poirtd is at distance 2 from the origin, is 60° up fromxielane, and is
along the negative-axis. HencaJ is in thexzplane. TherJ is expressed in spherical coordinates as (2,
60°, 180°). Using Equation 9.8.1 to compUtén Cartesian coordinates, we obtair= (-1, 0, 1.732).

« Direction Cosines.The direction of poinU in the preceding example is given in terms of two angles,

the azimuth and the latitude. Directions are often specified in an alternative useful way through direction
cosines. The direction cosines of a line through the origin are the cosines of the three angles it makes
with thex-, y-, andz-axes, respectively.

Recall that the cosine of the angle between two unit vectors is given by their dot product. Using the given
pointU, form the position vectowug, uy, uz). From the preceding discussion we see that its lengh is

so it must be normalized to the unit length veator (ux / R, uy / R, uz/ R). Then the cosine of the
angle it makes with the-axis is given by the dot produeh - i = uy / R, which is simply the first

component om. Similarly, the second and third componentsnadire the second and third direction
cosines, respectively. Calling the angles made witlxthe, andzaxes byo, 3, andy, respectively, the
three direction cosines for the line from QUia@re therefore

uX

cos@) = R
cos(B) = EF\% (9.8.4)

_Y

cos(y) = =

Note that the three direction cosines are related, since the sum of their squares is always 1.

Practice Exercises.

9.8.1.Convert the pointx y, 2) = (2, 4, -3) to spherical coordinates.
9.8.2.Convert the pointr(g, 6) = (5, 35°, -67°) to rectangular coordinates.
9.8.3.Find the direction cosines of the vectomwhere

i).n=(1, 1, 1),

i). n=(2, 3, 4).
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