
Hill - Chapter 4 09/23/99 page 1

(for ECE660, Fall, 1999)

Chapter 4. Vectors Tools for Graphics.
 “The knowledge at which geometry aims is knowledge of the eternal,

and not of aught perishing and transient.”
Plato

For us, whose shoulders sag under the weight of the heritage of Greek thought
and who walk in the paths traced out by the heroes of the Renaissance,

a civilization without mathematics is unthinkable.
Andre Weil

“Let us grant that the pursuit of mathematics is a divine madness of the human spirit.”
Alfred North Whitehead

“All that transcend geometry, transcends our comprehension”.
Blaise Pascal

Goals of the Chapter
• To review vector arithmetic, and to relate vectors to objects of interest in graphics.
• To relate geometric concepts to their algebraic representations.
• To describe lines and planes parametrically.
• To distinguish points and vectors properly.
• To exploit the dot product in graphics topics.
• To develop tools for working with objects in 3D space, including the cross product of two vectors.

Preview
This chapter develops a number of useful tools for dealing with geometric objects encountered in
computer graphics. Section 4.1 motivates the use of vectors in graphics, and describes the principal
coordinate systems used. Section 4.2 reviews the basic ideas of vectors, and describes the key operations
that vectors allow. Although most results apply to any number of dimensions, vectors in 2D and 3D are
stressed. Section 4.3 reviews the powerful dot product operation, and applies it to a number of geometric
tasks, such as performing orthogonal projections, finding the distance from a point to a line, and finding
the direction of a ray “reflected” from a shiny surface. Section 4.4 reviews the cross product of two
vectors, and discusses its important applications in 3D graphics.

Section 4.5 introduces the notion of a coordinate frame and homogeneous coordinates, and stresses that
points and vectors are significantly different types of geometric objects. It also develops the two principal
mathematical representations of a line and a plane, and shows where each is useful. It also introduces
affine combinations of points and describes an interesting kind of animation known as “tweening”. A
preview of Bezier curves is described as an application of tweening.

Section 4.6 examines the central problem of finding where two line segments intersect, which is vastly
simplified by using vectors. It also discusses the problem of finding the unique circle determined by three
points. Section 4.7 discusses the problem of finding where a “ray” hits a line or plane, and applies the
notions to the clipping problem. Section 4.8 focuses on clipping lines against convex polygons and
polyhedra, and develops the powerful Cyrus-Beck clipping algorithm.

The chapter ends with Case Studies that extend these tools and provide opportunities to enrich your
graphics programming skills. Tasks include processing polygons, performing experiments in 2D “ray
tracing”, drawing rounded corners on figures, animation by tweening, and developing advanced clipping
tools.

4.1 Introduction.

Hill - Chapter 4 09/23/99 page 2

In computer graphics we work, of course, with objects defined in a three dimensional world (with 2D objects
and worlds being just special cases). All objects to be drawn, and the “cameras” used to draw them, have shape,
position, and orientation. We must write computer programs that somehow describe these objects, and describe
how light bounces around illuminating them, so that the final pixel values on the display can be computed.
Think of an animation where a camera flies through a hilly scene containing various buildings, trees, roads, and
cars. What does the camera “see”? It all has to be converted ultimately to numbers. It’s a tall order.

The two fundamental sets of tools that come to our aid in graphics are vector analysis and transformations. By
studying them in detail we develop methods to describe the various geometric objects we will encounter, and
we learn how to convert geometric ideas to numbers. This leads to a collection of crucial algorithms that we can
call upon in graphics programs.

In this chapter we examine the fundamental operations of vector algebra, and see how they are used in graphics;
transformations are addressed in Chapter 5. We start at the beginning and develop a number of important tools
and methods of attack that will appear again and again throughout the book. If you have previously studied
vectors much of this chapter will be familiar, but the numerous applications of vector analysis to geometric
situations should still be scrutinized. The chapter might strike you as a mathematics text. But having it all
collected in one place, and related to the real problems we encounter in graphics, may be found useful.

Why are vectors so important?
A preview of some of some situations where vector analysis comes to the rescue might help to motivate the
study of vectors. Figure 4.1 shows three geometric problems that arise in graphics. Many other examples could
be given.

(4,6)

(2,2) (7,1)

center?

a). b). c).

viewplane

Figure 4.1. Three sample geometric problems that yield readily to vector analysis.

Part a) shows a computer-aided design problem: the user has placed three points on the display with the mouse,
and wants to draw the unique circle that passes through them. (Can you visualize this circle?). For the
coordinates given where is the center of the circle located? We see in Section 4.6 that this problem is thorny
without the use of vectors, but almost trivial when the right vector tools are used.

Part b) shows a camera situated in a scene that contains a Christmas tree. The camera must form an image of the
tree on its “viewplane” (similar to the film plane of a physical camera), which will be transferred to a screen
window on the user’s display. Where does the image of the tree appear on this plane, and what is its exact
shape? To answer this we need a detailed study of perspective projections, which will be greatly aided by the
use of vector tools. (If this seems too easy, imagine that you are developing an animation, and the camera is
zooming in on the sphere along some trajectory, and rotating as it does so. Write a routine that generates the
whole sequence of images!)

Part c) shows a shiny cone in which the reflection of a cube can be seen. Given the positions of the cone, cube,
and viewing camera, where exactly does the reflected image appear, and what is its color and shape? When
studying ray tracing in Chapter 15 we will make extensive use of vectors, and we will see that this problem is
readily solved.

Some Basics.
All points and vectors we work with are defined relative to some coordinate system. Figure 4.2 shows the
coordinate systems that are normally used. Each system has an origin called ϑ and some axes emanating from
ϑ . The axes are usually oriented at right angles to one another. Distances are marked along each axis, and a

Hill - Chapter 4 09/23/99 page 3

point is given coordinates according to how far along each axis it lies. Part a) shows the usual two-dimensional
system. Part b) shows a right handed 3D coordinate system, and part c) shows a left handed coordinate system.

Ο

(2 , 3)

x

y

a). b).

xz

y

Ο

c)

x

z

y

Ο

Figure 4.2. The familiar two- and three-dimensional coordinate systems.

In a right handed system, if you rotate your right hand around the z-axis by sweeping from the positive x-
axis around to the positive y-axis, as shown in the figure, your thumb points along the positive z-axis. In a
left handed system, you must do this with your left hand to make your thumb point along the positive z-
axis. Right-handed systems are more familiar and are conventionally used in mathematics, physics, and
engineering discussions. In this text we use a right-handed system when setting up models for objects. But
left-handed systems also have a natural place in graphics, when dealing with viewing systems and
“cameras”.

We first look at the basics of vectors, how one works with them, and how they are useful in graphics. In
Section 4.5 we return to fundamentals and show an important distinction between points and vectors that, if
ignored, can cause great difficulties in graphics programs.

4.2. Review of Vectors.
“Not only Newton’s laws, but also the other laws of physics, so far as we know today, have the two

properties which we call invariance under translation of axes and rotation of axes. These properties are so
important that a mathematical technique has been developed to take advantage of them in writing and using

physical laws.. called vector analysis.”
Richard Feynman

Vector arithmetic provides a unified way to express geometric ideas algebraically. In graphics we work with
vectors of two, three, and four dimensions, but many results need only be stated once and they apply to
vectors of any dimension. This makes it possible to bring together the various cases that arise in graphics
together into a single expression, which can be applied to a broad variety of tasks.

Viewed geometrically, vectors are objects having length and direction. They correspond to various physical
entities such as force, displacement, and velocity. A vector is often drawn as an arrow of a certain length
pointing in a certain direction. It is valuable to think of a vector geometrically as a displacement from one
point to another.

Figure 4.3 uses vectors to show how the stars in the Big Dipper are moving over time [kerr79]. The current
location of each star is shown by a point, and a vector shows the velocity of each star. The “tip” of each
arrow shows the point where its star will be located in 50,000 years: producing a very different Big Dipper
indeed!

Hill - Chapter 4 09/23/99 page 4

Figure 4.3. The Big Dipper now and in AD 50,000.

Figure 4.4a shows, in a 2D coordinate system, the two points P = (1, 3) and Q = (4, 1). The displacement
from P to Q is a vector v having components (3, -2),1 calculated by subtracting the coordinates of the points
individually. To “get from” P to Q we shift down by 2 and to the right by 3. Because a vector is a
displacement it has size and direction but no inherent location: the two arrows labeled v in the figure are in
fact the same vector. Figure 4.4b shows the corresponding situation in three dimensions: v is the vector from
point P to point Q. One often states:

x

y

P

Q

v

v

z x

v

yb).a).

P

Q

1

1

2

2

3

3

4

4 5

Figure 4.4. A vector as a displacement.

• The difference between two points is a vector: v = Q - P;

Turning this around, we also say that a point Q is formed by displacing point P by vector v; we say that v
“offsets” P to form Q. Algebraically, Q is then the sum: Q = P + v.

• The sum of a point and a vector is a point: P + v = Q.

At this point we represent a vector through a list of its components: an n-dimensional vector is given by an
n-tuple:

w = (w1, w2, . . . , wn) (4.1)

Mostly we will be interested in 2D or 3D vectors as in r = (3.4, -7.78) or t = (33, 142.7, 89.1). Later when it
becomes important we will explore the distinction between a vector and its representation, and in fact will
use a slightly expanded notation to represent vectors (and points). Writing a vector as a row matrix like t =
(33, 142.7, 89.1) fits nicely on the page, but when it matters we will instead write vectors as column
matrices:

r t=
−

�
��

�
��

=
�

�

�
�

�

�

�
�

3

7 78

33

142 7

891

.4

.
, .

.

or

It matters when we want to multiply a point or a vector by a matrix, as we shall see in Chapter 5.
4.2.1. Operations with vectors.
Vectors permit two fundamental operations: you can add them, and you can multiply them by scalars (real
numbers)2. So if a and b are two vectors, and s is a scalar, it is meaningful to form both a + b and the
product sa. For example, if a = (2, 5, 6) and b = (-2, 7, 1), we can form the two vectors:

a + b = (0, 12, 7)

1Upper case letters are conventionally used for points, and boldface lower case letters for vectors.
2 There are also systems where the scalars can be complex numbers; we do not work with them here.

Hill - Chapter 4 09/23/99 page 5

6 a = (12, 30, 36)

always performing the operations componentwise. Figure 4.5 shows a two-dimensional example, using a =
(1, -1) and b = (2, 1). We can represent the addition of two vectors graphically in two different ways. In
Figure 4.5a we show both vectors “starting” at the same point, thereby forming two sides of a parallelogram.
The sum of the vectors is then a diagonal of this parallelogram, the diagonal that emanates from the binding
point of the vectors. This view — the “parallelogram rule” for adding vectors — is the natural picture for
forces acting at a point: The diagonal gives the resultant force.

b

a + b

a

b

a + b

a

a). b).

Figure 4.5. The sum of two vectors.

Alternatively, in Figure 4.5b we show one vector starting at the head of the other (i.e., place the tail of b at
the head of a) and draw the sum as emanating from the tail of a to the head of b. The sum completes the
triangle, which is the simple addition of one displacement to another. The components of the sum are clearly
the sums of the components of its parts, as the algebra dictates.

Figure 4.6 shows the effect of scaling a vector. For s = 2.5 the vector s a has the same direction as a but is
2.5 times as long. When s is negative, the direction of s a is opposite that of a: The case s = -1 is shown in
the figure.

a

2.5 a

-a

Figure 4.6. Scaling a vector.

Subtraction follows easily once adding and scaling have been established: a - c is simply a + (-c). Figure 4.7
shows the geometric interpretation of this operation, forming the difference of a and c as the sum of a and -c
(Figure 4.7b). Using the parallelogram rule, this sum is seen to be equal to the vector that

c
-c

a

a - ca - c

a
a

c

a). b). c).

Figure 4.7. Subtracting vectors.

emanates from the head of c and terminates at the head of a (Figure 4.7c). This is recognized as one diagonal
of the parallelogram constructed using a and c. Note too that it is the “other” diagonal from the one that
represents the sum a + c.

4.2.2. Linear Combinations of Vectors.
With methods in hand for adding and scaling vectors, we can define a linear combination of vectors. To
form a linear combination of two vectors, v and w, (having the same dimension) we scale each of them by
some scalars, say a and b, and add the weighted versions to form the new vector, a v + b w. The more
general definition for combining m such vectors is:

Hill - Chapter 4 09/23/99 page 6

Definition:
A linear combination of the m vectors v

1
, v

2
, . . . , v

m
 is a vector of the form

w = a
1
 v

1 + a
2
 v

2
 +. . . + a

m
 v

m
 (4.2)

where a
1
, a

2
, . . . , a

m
 are scalars.

For example, the linear combination 2(3, 4,-1) + 6(-1, 0, 2) forms the vector (0, 8, 10). In later chapters we
shall deal with rather elaborate linear combinations of vectors, especially when representing curves and
surfaces using spline functions.

Two special types of linear combinations, “affine” and “convex” combinations, are particularly important in
graphics.

Affine Combinations of Vectors.
A linear combination is an affine combination if the coefficients a

1
, a

2
, . . . , a

m
 add up to 1. Thus the linear

combination in Equation 4.2 is affine if:

a
1
 + a

2
 + ... + a

m = 1 (4.3)

For example, 3 a + 2 b - 4 c is an affine combination of a, b, and c, but 3 a + b - 4 c is not. The
coefficients of an affine combination of two vectors a and b are often forced to sum to 1 by writing one as
some scalar t and the other as (1-t):

 (1-t) a + (t) b (4.4)

Affine combinations of vectors appear in various contexts, as do affine combinations of points, as we see
later.

Convex Combinations of Vectors.
Convex combinations have an important place in mathematics, and numerous applications in graphics. A
convex combination arises as a further restriction on an affine combination. Not only must the
coefficients of the linear combination sum to one; each one must also be nonnegative. The linear
combination of Equation (4.2.2) is convex if:

a
1
 + a

2
 + ... + a

m = 1, (4.5)

and ai ≥ 0, for i = 1,…,m.. As a consequence all ai must lie between 0 and 1. (Why?).

Thus .3a+.7b is a convex combination of a and b, but 1.8a -.8b is not. The set of coefficients a
1
, a

2
, . . . , a

m

is sometimes said to form a partition of unity , suggesting that a unit amount of “material” is partitioned into
pieces. Convex combinations frequently arise in applications when one is making a unit amount of some
brew and can combine only positive amounts of the various ingredients. They appear in unexpected
contexts. For instance, we shall see in Chapter 8 that “spline” curves are in fact convex combinations of
certain vectors, and in our discussion of color in Chapter 12 we shall find that colors can be considered as
vectors, and that any color of unit brightness may be considered to be a convex combination of three primary
colors!

We will find it useful to talk about the “set of all convex combinations” of a collection of vectors. Consider
the set of all convex combinations of the two vectors v1 and v2. It is the set of all vectors

v = (1 - a) v1 + a v2 (4.6)

as the parameter a is allowed to vary from 0 to 1 (why?) What is this set? Rearranging the equation, v is seen
to be:

Hill - Chapter 4 09/23/99 page 7

v = v1 + a (v2 - v1) (4.7)

Figure 4.8a shows this to be the vector that is v1 plus some fraction of v2 - v1, so the tip of v lies on the line
joining v1 and v2. As a varies from 0 to 1, v takes on all the positions on the line from v1 to v2, and only
those.

v1

v2
.2v1

b v3

.5v2

.3v3

L

v2

v1

v

a (v2 - v1)

a). b).

Figure 4.8. The set of vectors representable by convex combinations.

Figure 4.8b shows the set of all convex combinations of three vectors. Choose two parameters a
1
 and a

2
,

both lying between 0 and 1, and form the following linear combination:

 q = a
1
 v

1 + a
2 v2 + (1 - a

1
 - a

2) v3
 (4.8)

where we also insist that a
1 plus a

2
 does not exceed one. This is a convex combination, since none of the

coefficients is ever negative and they sum to one. Figure 4.9 shows the three position vectors v
1 = (2, 6), v

2 =
(3, 3), and v

3 = (7, 4). By the proper choices of a
1
 and a

2
, any vector lying within the shaded triangle of

vectors can be represented, and no vectors outside this triangle can be reached. The vector b = .2 v
1 + .5 v

2 +
.3 v

3
, for instance, is shown explicitly as the vector sum of the three weighted ingredients. (Note how it is

built up out of “portions” of the three constituent vectors.) So the set of all convex combinations of these
three vectors “spans” the shaded triangle. The proof of this is requested in the exercises.

 If a
2
 = 0, any vector in the line L that joins v

1
 and v

3 can be “reached” by the proper choice of a
1
. For

example, the vector that is 20 percent of the way from v
1
 to v

3
 along L is given by .8 v

1
+ 0 v

2
 +.2 v

3
.

4.2.3. The Magnitude of a vector, and unit vectors.
 If a vector w is represented by the n-tuple (w

1
, w

2
, . . . , wn), how might its magnitude (equivalently, its

length or size) be defined and computed? We denote the magnitude by |w| and define it as the distance from
its tail to its head. Based on the Pythagorean theorem, this becomes

w = + + +w w wn1
2

2
2 2... (4.9)

 For example, the magnitude of w = (4, -2) is 20 , and that of w = (1, -3, 2) is 14 . A vector of zero
length is denoted as 0. Note that if w is the vector from point A to point B, then |w| will be the distance from
A to B (why?).

It is often useful to scale a vector so that the result has a length equal to one. This is called normalizing a
vector, and the result is known as a unit vector. For example, we form the normalized version of a, denoted
ˆ a , by scaling it with the value 1/|a|:

Hill - Chapter 4 09/23/99 page 8

�a
a
a

= (4.10)

Clearly this is a unit vector: | ˆ a | = 1 (why?), having the same direction as a. For example, if a = (3, -4), then
| a | = 5 and the normalized version is

�
a = (3

5 , -4
5) . At times we refer to a unit vector as a direction. Note

that any vector can be written as its magnitude times its direction: If ˆ a is the normalized version of a, vector
a may always be written a =| a |

�
a .

Practice Exercises.
 4.2.1. Representing Vectors as linear combinations. With reference to Figure 4.9, what values, or range of
values, for a

1
 and a

2
 create the following sets?

a. v1
.

b. The line joining v1
 and v2

.
c. The vector midway between v2

 and v3
.

d. The centroid of the triangle.
4.2.2. The set of all convex combinations. Show that the set of all convex combinations of three vectors v1

, v2,
and v3 is the set of vectors whose tips lie in the “triangle” formed by the tips of the three vectors. Hint: Each
point in the triangle is a combination of v1 and some point lying between v2 and v3.
4.2.3. Factoring out a scalar. Show how scaling a vector v by a scalar s changes its length. That is, show that:
 | s v | = | s | | v | . Note the dual use of the magnitude symbol | |, once for a scalar and once for a vector.
 4.2.4. Normalizing Vectors. Normalize each of the following vectors:
a). (1, -2, .5); b). (8, 6); c). (4, 3)

4.3. The Dot Product.
There are two other powerful tools that facilitate working with vectors: the dot (or inner) product, and the
cross product. The dot product produces a scalar; the cross product works only on three dimensional vectors
and produces another vector. In this section we review the basic properties of the dot product, principally to
develop the notion of perpendicularity. We then work with the dot product to solve a number of important
geometric problems in graphics. Then the cross product is introduced, and used to solve a number of 3D
geometric problems.

The dot product of two vectors is simple to define and compute. For two-dimensional vectors, (a
1
, a

2
) and

(b
1
, b

2
), it is simply the scalar whose value is a

1
b

1 + a
2
b

2
. Thus to calculate it, multiply corresponding

components of the two vectors, and add the results. For example, the dot product of (3, 4) and (1, 6) is 27,
and that of (2, 3) and (9, -6) is 0.

The definition of the dot product generalizes easily to n dimensions:
Definition: The Dot Product
The dot product d of two n-dimensional vectors v = (v

1
, v

2
, . . . , v

n
) and w = (w

1
, w

2
, . . . , w

n
) is denoted as

v · w and has the value

d v wi i
i

n

= ⋅ =
=
∑v w

1

(4.11)

Example 4.3.1:
• The dot product of (2, 3, 1) and (0, 4, -1) is 11.
• (2, 2, 2, 2) · (4, 1, 2, 1.1) = 16.2.
• (1, 0, 1, 0, 1) · (0, 1, 0, 1, 0) = 0.
• (169, 0, 43) · (0, 375.3, 0) = 0.

Hill - Chapter 4 09/23/99 page 9

4.3.1. Properties of the Dot Product
The dot product exhibits four major properties that we frequently exploit and that follow easily (see the
exercises) from its basic definition:

1· Symmetry: a · b = b · a
2· Linearity: (a + c) · b = a · b + c· b
3· Homogeneity: (sa) · b = s (a · b)

4· |b|2 = b · b

The first states that the order in which the two vectors are combined does not matter: the dot product is
commutative. The next two proclaim that the dot product is linear; that is, the dot product of a sum of
vectors can be expressed as the sum of the individual dot products, and scaling a vector scales the value of
the dot product. The last property is also useful, as it asserts that taking the dot product of a vector with itself

yields the square of the length of the vector. It appears frequently in the form |b| = b·b .

The following manipulations show how these properties can be used to simplify an expression involving dot
products. The result itself will be used in the next section.

Example 4.3.2: Simplification of |a - b|2.
Simplify the expression for the length (squared) of the difference of two vectors, a and b, to obtain the
following relation:

| a - b |2 = | a |2 - 2 a · b + | b |2 (4.12)

The derivation proceeds as follows: Give the name C to the expression | a - b |2. By the fourth property, C is
the dot product:

C = | a - b |2 = (a - b) · (a - b).
Using linearity: C = a · (a - b) - b · (a - b).
Using symmetry and linearity to simplify this further: C = a · a - 2a · b + b · b.

Using the fourth property above to obtain C = | a |2 - 2 a · b + | b |2 gives the desired result.

By replacing the minus with a plus in this relation, the following similar and useful relation emerges:

| a + b |2 = | a |2 + 2a · b + | b | (4.13)

4.3.2. The Angle Between Two Vectors.
The most important application of the dot product is in finding the angle between two vectors, or between
two intersecting lines. Figure 4.9 shows the 2D case, where vectors b and c lie at angles ϕb, and ϕc,
relative to the x-axis. Now from elementary trigonometry:

c

b

φb
φc

y

x

Figure 4.9. Finding the angle between two vectors.

Hill - Chapter 4 09/23/99 page 10

b = (|b| cos ϕb , |b| sin ϕb)

c = (|c| cos ϕc , |c| sin ϕc).

Thus their dot product is

b c b c b c

b c
c b b c

c b

⋅ = +

= −

| | | |cos cos | | | |sin sin

cos()

ϕ ϕ ϕ ϕ
ϕ ϕ

so we have, for any two vectors b and c:

b · c = |b| |c| cos(θ) (4.14)

where θ is the angle from b to c. Thus b · c varies as the cosine of the angle from b to c. The same result
holds for vectors of three, four, or any number of dimensions.

 To obtain a slightly more compact form, divide through both sides by |b| |c| and use the unit vector notation
ˆ b = b / b to obtain

 cos(θ) = ˆ b ⋅ ˆ c (4.15)

This is the desired result: The cosine of the angle between two vectors b and c is the dot product of their
normalized versions.

Example 4.3.3. Find the angle between b = (3, 4) and c = (5, 2).

Solution: Form |b| = 5 and |c| = 5.385 so that ̂ b = (3 / 5, 4 / 5) and ̂ c = (.9285, .3714). The dot product
ˆ b ⋅ ˆ c = .85422 = cos(θ), so that θ = 31.326o. This can be checked by plotting the two vectors on graph paper
and measuring the angle between them.

4.3.3. The Sign of b·c, and Perpendicularity.
 Recall that cos(θ) is positive if |θ| is less than 90o, zero if |θ| equals 90o, and negative if |θ| exceeds 90o.
Because the dot product of two vectors is proportional to the cosine of the angle between them, we can
therefore observe immediately that two vectors (of any nonzero length) are

• less than 90o apart if b · c > 0;

• exactly 90o apart if b · c = 0; (4.16)

• more than 90o apart if b · c < 0;

This is indicated by Figure 4.10. The sign of the dot product is used in many algorithmic tests.
b

c

b

c

b

c

b • c > 0 b • c < 0b • c = 0
Figure 4.10. The sign of the dot product.

The case in which the vectors are 90o apart, or perpendicular, is of special importance.
Definition:
Vectors b and c are perpendicular if b · c = 0.

(4.17)

Hill - Chapter 4 09/23/99 page 11

Other names for “perpendicular” are orthogonal and normal, and we shall use all three interchangeably.

The most familiar examples of orthogonal vectors are those aimed along the axes of 2D and 3D coordinate
systems, as shown in Figure 4.11. In part a) the 2D vectors (1, 0) and (0, 1) are mutually perpendicular unit
vectors. The 3D versions are so commonly used they are called the “standard unit vectors” and are given
names i, j , and k.

Ο
x

y

a). b).

xz

y

Ο

c)

x

z

y

Ο(1,0)

(0,1)

k

j

i
j

k
i

Figure 4.11. The standard unit vectors.

Definition:
 The standard unit vectors in 3D have components:
i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1). (4.18)

Part b) of the figure shows them for a right-handed system, and part c) shows them for a left-handed
system. Note that k always points in the positive z direction.

Using these definitions any 3D vector such as (a, b, c) can be written in the alternative form:

 (a, b, c) = a i + b j + c k (4.19)

Example 4.3.4. Notice that v = (2, 5, -1) is clearly the same as 2 (1, 0, 0) + 5 (0, 1, 0) -1 (0, 0, 1), which is
recognized as 2 i + 5 j - k.

This form presents a vector as a sum of separate elementary component vectors, so it simplifies various
pencil-and-paper calculations. It is particularly convenient when dealing with the cross product, discussed in
Section 4.4.

Practice Exercises.
4.3.1. Alternate proof of b · c = |b| |c| cos θ. Note that b and c form two sides of a triangle, and the third
side is b - c. Use the law of cosines to obtain the square of the length of b - c in terms of the lengths of b and
c and the cosine of θ. Compare this with Equation 4.13 to obtain the desired result.
4.3.2. Find the Angle. Calculate the angle between the vectors (2, 3) and (-3, 1), and check the result
visually using graph paper. Then compute the angle between the 3D vectors (1, 3, -2) and (3, 3, 1).
4.3.3. Testing for Perpendicularity. Which pairs of the following vectors are perpendicular to one another:
(3, 4, 1), (2, 1, 1), (-3, -4, 1), (0, 0, 0), (1, -2, 0), (4, 4, 4), (0, -1, 4), and (2, 2, 1)?
4.3.4. Pythagorean Theorem. Refer to Equations 4.12 and 4.13. For the case in which a and b are
perpendicular, these expressions have the same value, which seems to make no sense geometrically. Show
that it works all right, and relate the result to the Pythagorean theorem.

4.3.4. The 2D “Perp” Vector.

Hill - Chapter 4 09/23/99 page 12

Suppose the 2D vector a has components (ax, ay). What vectors are perpendicular to it? One way to obtain

such a vector is to interchange the x- and y- components and negate one of them.3 Let b = (-ay, ax). Then
the dot product a · b equals 0 so a and b are indeed perpendicular. For instance, if a = (4,7) then b = (-7, 4)
is a vector normal to a. There are infinitely many vectors normal to any a, since any scalar multiple of b,
such as (-21, 12) and (7, -4) is also normal to a. (Sketch several of them for a given a.)

It is convenient to have a symbol for one particular vector that is normal to a given 2D vector a. We use
the symbol ⊥ (pronounced “perp”) for this.

Definition: Given a = (ax, ay), a ⊥ = (-ay, ax) is the counterclockwise
(4.20)
perpendicular to a.

Note that a and a ⊥ have the same length: |a| = |a⊥| . Figure 4.12a shows an arbitrary vector a and the

resulting a ⊥ . Note that moving from the a direction to direction a ⊥ requires a left turn. (Making a right

turn is equivalent to turning in the direction -a ⊥ .)

a

a⊥

-a ⊥

a

a). b).

Figure 4.12. The vector a ⊥ perpendicular to a.

We show in the next section how this notation can be put to good use. Figure 4.12b shows that in three
dimensions no single vector lies in “the” direction perpendicular to a given 3D vector a, since any of the
vectors lying in the plane perpendicular to a will do. However, the cross product developed later will
provide a simple tool for dealing with such vectors.

Practice Exercises.

4.3.5. Some Pleasant Properties of a⊥. It is useful in some discussions to view the “perp” symbol ⊥ as an

operator that performs a “rotate 90° left” operation on its argument, so that a⊥ is the vector produced by

applying the ⊥ to vector a, much as x is the value produced by applying the square root operator to x.

Viewing ⊥ in this way, show that it enjoys the following properties:

a). Linearity: (a + b)⊥ = a⊥ + b⊥ and (Aa)⊥ = Aa⊥ for any scalar A;

b). a⊥⊥ = (a⊥)⊥ = -a (two perp’s make a reversal)

4.3.6. The “perp dot” product. Interesting things happen when we dot the “perp” of a vector with another

vector, as in a⊥. b. We call this the “perp dot product” [hill95]. Use the basic definition of a⊥ above to
show:

• a⊥ ⋅b = axby − aybx (value of the perp dot product)

• a⊥.a = 0, (a⊥ is perpendicular to a)

• |a⊥|2 = |a|2. (a⊥ and a have the same length) (4.21)

• a⊥. b = - b⊥ . a, (antisymmetric)

3 This is equivalent to the familiar fact that perpendicular lines have slopes that are negative reciprocals of one another.
In Chapter 5 we see the “interchange and negate” operation arise naturally in connection with a rotation of 90 degrees.

Hill - Chapter 4 09/23/99 page 13

The fourth fact shows that the perp dot product is “antisymmetric”: moving the ⊥ from one vector to the
other reverses the sign of the dot product. Other useful properties of the perp dot product will be discussed
as they are needed.

4.3.7. Calculate one. Compute a · b and a⊥. b for a = (3,4) and b = (2,1).

4.3.8. It’s a determinant. Show that a⊥. b can be written as the determinant (for definitions of matrices
and determinants see Appendix 2):

a⊥ ⋅b =
ax ay

bx by

4.3.9. Other goodies.

a). Show that (a⊥.b)2 + (a.b)2 = |a|2|b|2.

b). Show that if a + b + c = 0 then a ⊥ · b = b ⊥ · c = c ⊥ · a.

4.3.5. Orthogonal Projections, and the Distance from a Point to a Line.
Three geometric problems arise frequently in graphics applications: projecting a vector onto a given
vector, resolving a vector into its components in one direction and another, and finding the distance
between a point and a line. All three problems are simplified if we use the perp vector and the perp dot
product.

Figure 4.13a shows the basic ingredients. We are given two points A and C, and a vector v. These questions arise:

c

vA

C

v

K v

M v

F

G

B

c).b).

v
A

C

L

a).

c

Figure 4.13. Resolving a vector into two orthogonal vectors.

a). How far is the point C from the line L that passes through A in the direction v?
b). If we drop a perpendicular from C onto L, where does it hit L?
c). How do we decompose the vector c = C - A into a part along the line L and a part perpendicular to L?

Figure 4.13.b defines some additional quantities: v⊥ is the vector v rotated 90 degrees CCW. Dropping a
perpendicular from C onto line L we say that the vector c is resolved into the portion Kv along v and the

portion M v⊥ perpendicular to v, where K and M are some constants to be determined. Then we have

c = Kv + M v⊥ (4.22)

Given c and v we want to solve for K and M. Once found, we say that the orthogonal projection of c onto

v is Kv, and that the distance from C to the line is |Mv⊥|.

Figure 4.13c shows a situation where these questions might arise. We wish to analyze how the gravitational
force vector G acts on the block to pull it down the incline. To do this we must resolve G into the force F
acting along the incline and the force B acting perpendicular to the incline. That is, find F and B such that
G = F + B.

Equation 4.22 is really two equations: the left and right hand sides must agree for the x-components and
they also must agree for the y-components. There are two unknowns K and M. So we have two equations
in two unknowns, and Cramer’s rule can be applied. But who remembers Cramer’s rule? We use a trick

Hill - Chapter 4 09/23/99 page 14

here that is easy to remember and immediately reveals the solution. It is equivalent to Cramer’s rule, but
simpler to apply.

The trick in solving two equations in two unknowns is to eliminate one of the variables. We do this by
forming the dot product of both sides with the vector v:

c·v = Kv·v + M v⊥·v (4.23)

Happily, the term v⊥·v vanishes, (why?), yielding K immediately:

K = c ⋅ v
v ⋅ v

.

Similarly “dot” both sides of Equation 4.3.12 with v⊥ to obtain M:

M =
c ⋅ v⊥

v ⋅ v

where we have used the third property in Equation 4.21. Putting these together we have

c = v ⋅ c
| v |2



 

 v
+ v⊥ ⋅ c

| v |2


 

 v
⊥

(resolving c into v and v⊥) (4.24)

This equality holds for any vectors c and v. The part along v is known as the orthogonal projection of c
onto the vector v. The second term gives the “difference term” explicitly and compactly. Its size is the
distance from C to the line:

distance =
v⊥ ⋅ c
| v |2

v⊥ =
v⊥ ⋅ c

v
,

(Check that the second form really equals the first). Referring to Figure 4.13b we can say: the distance
from a point C to the line through A in the direction v is:

distance =
v⊥ ⋅ (C− A)

v
. (4.25)

Example 4.3.5. Find the orthogonal projection of the vector c = (6, 4) onto a = (1, 2). (Sketch the relevant
vectors.) Solution: Evaluate the first term in Equation 4.24, obtaining the vector (14, 28) / 5.
Example 4.3.6: How far is the point C = (6,4) from the line that passes through (1,1) and (4,9)? Solution:
Set A = (1, 1), use v = (4, 9) - (1, 1) = (3, 8), and evaluate distance in Equation 4.25. The result is:

d = 31 / 73.

Practice Exercises.

4.3.10. Resolve it. Express vector g = (4, 7) as a linear combination of b = (3, 5) and b⊥. How far is (4, 2)
+ g from the line through (4, 2) that moves in the direction b?
4.3.11. A Block pulled down an incline. A block rests on an incline tilted 30° from the horizontal. Gravity
exerts a force of one newton on the block. What is the force that is “trying” to move the block along the
incline?
4.3.12. How far is it? How far from the line through (2, 5) and (4, -1) does the point (6, 11) lie? Check your
result on graph paper.

Hill - Chapter 4 09/23/99 page 15

4.3.6. Applications of Projection: Reflections.
To display the reflection of light from a mirror, or the behavior of billiard balls bouncing off one another,
we need to find the direction that an object takes upon being reflected at a given surface. In a case study at
the end of this chapter we describe an application to trace a ray of light as it bounces around inside a
reflective chamber, or a billiard ball as it bounces around a pool table. At each bounce a reflection is made
to a new direction, as derived in this section.

When light reflects from a mirror we know that the angle of reflection must equal the angle of incidence.
We next show how to use vectors and projections to compute this new direction. We can think in terms of
two-dimensional vectors for simplicity, but because the derivation does not explicitly state the dimension of
the vectors involved, the same result applies in three dimensions for reflections from a surface.

Figure 4.14a shows a ray having direction a, hitting line L, and reflecting in (as yet unknown) direction r .
The vector n is perpendicular to the line. Angle θ1 in the figure must equal angle θ2. How is r related to a
and n? Figure 4.14b shows a resolved into the portion m along n and the portion e orthogonal to n.
Because of symmetry, r has the same component e orthogonal to n, but the opposite component along n,
and so r = e - m. Because e = a - m, this gives r = a - 2m. Now m is the orthogonal projection of a onto n,
so by Equation 4.24 m is

L

r
a

n

θ1 θ2

ra

n
a). b).

-m
m

e e
4.14. Reflection of a ray from a surface.

m = a ⋅ n
|n|2

n = (a ⋅ ˆ n) ˆ n (4.26)

(recall ̂ n is the unit length version of n) and so we obtain the result

r = a − 2(a ⋅ ˆ n)ˆ n (direction of the reflected ray) (4.27)

In three dimensions physics demands that the reflected direction r must lie in the plane defined by n and a.
The expression for r above indeed supports this, as we show in Chapter five.

Example 4.3.7. Let a = (4, -2) and n = (0, 3). Then Equation 4.27 yields r = (4, 2), as expected. Both the

angle of incidence and reflection are equal to tan-1(2).

Practice Exercises.
4.3.13. Find the Reflected Direction. For a = (2, 3) and n = (-2, 1), find the direction of the reflection.
4.3.14. Lengths of the Incident and Reflected Vectors. Using Equation 4.27 and properties of the dot
product, show that |r | = |a|.

4.4. The Cross Product of Two Vectors.
The cross product (also called the vector product) of two vectors is another vector. It has many useful
properties, but the one we use most often is that it is perpendicular to both of the given vectors. The cross
product is defined only for three-dimensional vectors.

Hill - Chapter 4 09/23/99 page 16

Given the 3D vectors a = (ax, ay, az) and b = (bx, by, bz), their cross product is denoted as a × b . It is
defined in terms of the standard unit vectors i, j , and k (see Equation 4.18) by

Definition of a × b:

a × b = (aybz − azby)i + (azbx − axbz) j + (axby − aybx)k (4.28)

(It can actually be derived from more fundamental principles: See the exercises.) As this form is rather
difficult to remember, it is often written as an easily remembered determinant (see Appendix 2 for a review
of determinants).

a × b =
i j k

ax ay az

bx by bz

(4.29)

Remembering how to form the cross product thus requires only remembering how to form a determinant.

Example 4.4.1. For a = (3, 0, 2) and b = (4, 1, 8), direct calculation shows that a× b = -2i -16j + 3k. What
is b× a?

From this definition one can easily show the following algebraic properties of the cross product:

1.

i × j = k

j × k = i

k × i = j

2. a × b = −b × a (antisymmetry)
3. a × (b + c) = a × b + a × c (linearity) (4.30)

4. (sa) × b = s(a × b) (homogeneity)

These equations are true in both left-handed and right-handed coordinate systems. Note the logical
(alphabetical) ordering of ingredients in the equation i × j = k , which also provides a handy mnemonic
device for remembering the direction of cross products.

Practice Exercises.
4.4.1. Demonstrate the Four Properties. Prove each of the preceding four properties given for the cross
product.
4.4.2. Derivation of the Cross Product. The form in Equation 4.28, presented as a definition, can actually
be derived from more fundamental ideas. We need only assume that:
a. The cross product operation is linear.
b. The cross product of a vector with itself is 0.
c. i × j = k , j × k = i , and k × i = j .
By writing a = ax i + ay j + az k and b = bx i + by j + bz k, apply these rules to derive the proper form for
a × b .
4.4.3. Is a × b perpendicular to a? Show that the cross product of vectors a and b is indeed
perpendicular to a.
4.4.4. Vector Products. Find the vector b = (bx, by, bz) that satisfies the cross product relation a × b = c,
where a = (2, 1, 3) and c = (2, -4, 0). Is there only one such vector?

Hill - Chapter 4 09/23/99 page 17

4.4.5. Nonassociativity of the Cross Product. Show that the cross product is not associative. That is, that
a × (b × c) is not necessarily the same as (a × b) × c .
4.4.6. Another Useful Fact. Show by direct calculation on the components that the length of the cross
product has the form:

a× b = a
2
b

2 − (a ⋅ b)2

4.4.1. Geometric Interpretation of the Cross Product.
By definition the cross product a × b of two vectors is another vector, but how is it related geometrically to the
others, and why is it of interest? Figure 4.15 gives the answer. The cross product a × b has the following useful
properties (whose proofs are requested in the exercises):

a

b

Area = | a × b |

a × b

Figure 4.15. Interpretation of the cross product.

1. a × b is perpendicular (orthogonal) to both a and b.

2. The length of a × b equals the area of the parallelogram determined by a and b. This area is equal to

|a × b|=|a||b|sin(θ) (4.31)

where θ is the angle between a and b, measured from a to b or b to a, whichever produces an angle less than 180
degrees. As a special case, a × b = 0 if, and only if, a and b have the same or opposite directions or if either has
zero length. What is the magnitude of the cross product if a and b are perpendicular?

3. The sense of a × b is given by the right-hand rule when working in a right-handed system. For example,
twist the fingers of your right hand from a to b, and then a × b will point in the direction of your thumb. (When
working in a left-handed system, use your left hand instead.) Note that i × j = k supports this.

Example 4.4.2. Let a = (1, 0, 1) and b = (1, 0, 0). These vectors are easy to visualize, as they both lie in the x, z-
plane. (Sketch them.) The area of the parallelogram defined by a and b is easily seen to be 1. Because a × b is
orthogonal to both a and b, we expect it to be parallel to the y-axis and hence be proportional to ±j . In either a
right-handed or a left-handed system, sweeping the fingers of the appropriate hand from a to b reveals a thumb
pointed along the positive y-axis. Direct calculation based on Equation 4.28 confirms all of this: a × b = j .

Practice Exercise 4.4.7. Proving the Properties. Prove the three properties given above for the cross product.

4.4.2. Finding the Normal to a Plane.
As we shall see in the next section, we sometimes must compute the components of the normal vector n to a
plane.
If the plane is known to pass through three specific points, the cross product provides the tool to accomplish this.

Any three points, P1, P2, P3, determine a unique plane, as long as the points don’t lie in a straight line. Figure
4.16 shows this situation.

Hill - Chapter 4 09/23/99 page 18

a

b

a x b

P3
P1

P2

z

x

y

Figure 4.16. Finding the plane through three given points.

To find the normal vector, build two vectors, a = P2 - P1 and b = P3 - P1. Their cross product, n = a × b ,
must be normal to both a and b, so it is normal to every line in the plane (why?). It is therefore the desired
normal vector. (What happens if the three points do lie in a straight line?) Any scalar multiple of this cross
product is also a normal vector, including b × a , which points in the opposite direction.

Example 4.4.3. Find the normal vector to the plane that passes through the points (1, 0, 2), (2, 3, 0), and (1, 2, 4).
Solution: By direct calculation, a = (2, 3, 0) - (1, 0, 2) = (1, 3, -2), and b = (1, 2, 4) - (1, 0, 2) = (0, 2, 2), and so
their cross product n = (10, -2, 2).

Note: Since a cross product involves the subtraction of various quantities (see Equation 4.28), this method for
finding n is vulnerable to numerical inaccuracies, especially when the angle between a and b is small. We
develop a more robust method later for finding normal vectors in practice.

Practice Exercises.
4.4.8. Does the choice of points matter? Is the same plane obtained as in Example 4.4.3 if we use the points in
a different order, say, a = (1, 0, 2) - (2, 3, 0) and b = (1, 2, 4) - (2, 3, 0)? Show that the same plane does result.
4.4.9. Finding Some Planes. For each of the following triplets of points, find the normal vector to the plane (if it
exists) that passes through the triplet.
a. P

1 = (1, 1, 1), P
2
 = (1, 2, 1), P

3 = (3, 0, 4)
b. P

1 = (8, 9, 7), P
2 = (-8, -9, -7), P

3
 = (1, 2, 1)

c. P
1 = (6, 3, -4), P

2 = (0, 0, 0), P
3 = (2, 1, -1)

d. P
1 = (0, 0, 0), P

2 = (1, 1, 1), P
3 = (2, 2, 2).

4.4.10. Finding the normal vectors. Calculate the normal vectors to each of the faces of the two objects shown
in Figure 4.17. The cube has vertices (±1,±1,±1) and the tetrahedron has vertices (0,0,0), (0,0,1), (1,0,0), and
(0,1,0).
a). b).

Figure 4.17. Finding the normal vectors to faces.

4.5. Representations of Key Geometric Objects.
In the preceding sections we have discussed some basic ideas of vectors and their application to important
geometric problems that arise in graphics. Now we develop the fundamental ideas that facilitate working

Hill - Chapter 4 09/23/99 page 19

with lines and planes, which are central to graphics, and whose “straightness” and “flatness” makes them
easy to represent and manipulate.

What does it mean to “represent” a line or plane, and why is it important? The goal is to come up with a
formula or equation that distinguishes points that lie on the line from those that don’t. This might be an
equation that is satisfied by all points on the line, and only those points. Or it might be a function that returns
different points in the line as some parameter is varied. The representation allows one to test such things as:
is point P on the line?, or where does the line intersect another line or some other object. Very importantly, a
line lying in a plane divides the plane into two parts, and we often need to ask whether point P lies on one
side or the other of the line.

In order to deal properly with lines and planes we must, somewhat unexpectedly, go back to basics and
review how points and vectors differ, and how each is represented. The need for this arises because, to
represent a line or plane we must “add points together”, and “scale points”, operations that for points are
nonsensical. To see what is really going on we introduce the notion of a coordinate frame, that makes clear
the significant difference between a point and a vector, and reveals in what sense it is legitimate to “add
points”. The use of coordinate frames leads ultimately to the notion of “homogeneous coordinates”, which
is a central tool in computer graphics, and greatly simplifies many algorithms. We will make explicit use of
coordinate frames in only a few places in the book, most notably when changing coordinate systems and
“flying” cameras around a scene (see Chapters 5, 6, and 7) 4. But even when not explicitly mentioned, an
underlying coordinate frame will be present in every situation.

4.5.1. Coordinate Systems and Coordinate Frames.
One doesn’t discover new lands without consenting

to lose sight of the shore for a very long time.
Andre Gide

When discussing vectors in previous sections we say, for instance, that a vector v = (3, 2, 7), meaning it is a
certain 3-tuple. We say the same for a point, as in point P = (5, 3, 1). This makes it seem that points and
vectors are the same thing. But points and vectors are very different creatures: points have location but no
size or direction; vectors have size and direction but no location.

What we mean by v = (3, 2, 7), of course, is that the vector v has “components” (3, 2, 7) in the underlying
coordinate system. Similarly, P = (5, 3, 1) means point P has coordinates (5, 3, 1) in the underlying
coordinate system. Normally this confusion between the object and its representation presents no problem.
The problem arises when there is more than one coordinate system (a very common occurrence in graphics),
and when you transform points or vectors from one system into another.

We usually think of a coordinate system as three “axes” emanating from an origin, as in Figure 4.2b. But in
fact a coordinate system is “located” somewhere in “the world”, and its axes are best described by three
vectors that point in mutually perpendicular directions. In particular it is important to make explicit the
“location” of the coordinate system. So we extend the notion of a 3D coordinate system5 to that of a 3D
coordinate “frame.” A coordinate frame consists of a specific point, ϑ , called the origin, and three
mutually perpendicular unit vectors6, a, b, and c. Figure 4.18 shows a coordinate frame “residing” at some

point ϑ within “the world”, with its vectors a, b, and c drawn so they appear to emanate from ϑ like axes.

4 This is an area where graphics programmers can easily go astray: their programs produce pictures that look OK for simple
situations, and become mysteriously and glaringly wrong when things get more complex.
5 The ideas for a 2D system are essentially identical.
6 In more general contexts the vectors need not be mutually perpendicular, but rather only “linearly independent” (such that, roughly,
none of them is a linear combination of the other two). The coordinate frames we work with will always have perpendicular axis
vectors.

Hill - Chapter 4 09/23/99 page 20

Figure 4.18. A coordinate frame positioned in “the world”.

Now to represent a vector v we find three numbers, (v1, v2, v3) such that

v = v1a + v2 b + v3 c (4.32)

and say that v “has the representation” (v1, v2, v3) in this system.

On the other hand, to represent a point, P, we view its location as an offset from the origin by a certain
amount: we represent the vector P - ϑ by finding three numbers (p1, p2, p3) such that:

P - ϑ = p1a + p2b + p3c

and then equivalently write P itself as:

P = ϑ + p1a + p2b + p3c (4.33)

The representation of P is not just a 3-tuple, but a 3-tuple along with an origin. P is “at” a location that is
offset from the origin by p1a + p2b + p3c. The basic idea is to make the origin of the coordinate system
explicit. This becomes important only when there is more than one coordinate frame, and when transforming
one frame into another.

Note that when we earlier defined the standard unit vectors i, j , and k as (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively, we were actually defining their representations in an underlying coordinate frame. Since by
Equation 4.32 i = 1a + 0b + 0c, vector i is actually just a itself! It’s a matter of naming: whether you are
talking about the vector or about its representation in a coordinate frame. We usually don’t bother to
distinguish them.

Note that you can’t explicitly say where ϑ is, or cite the directions of a, b, and c: To do so requires having
some other coordinate frame in which to represent this one. In terms of its own coordinate frame, ϑ has the
representation (0, 0, 0), a has the representation (1, 0, 0), etc.

The homogeneous representation of a point and a vector.
It is useful to represent both points and vectors using the same set of basic underlying objects, (a, b, c, ϑ).
From Equations 4.32 and 4.33 the vector v = v1a + v2 b + v3 c then needs the four coefficients (v1, v2, v3, 0)
whereas the point P = p1a + p2b + p3c + ϑ needs the four coefficients (p1, p2, p3, 1). The fourth component

designates whether the object does or does not include ϑ. We can formally write any v and P using a matrix
multiplication (multiplying a row vector by a column vector - see Appendix 2):

Hill - Chapter 4 09/23/99 page 21

v a b c=

�

�

�
�
�
�

�

�

�
�
�
�

(, , ,)ϑ

v

v

v

1

2

3

0

(4.34)

P

p

p

p
=

�

�

�
�
�
�

�

�

�
�
�
�

(, , ,)a b c ϑ

1

2

3

1

(4.35)

Here the row matrix captures the nature of the coordinate frame, and the column vector captures the
representation of the specific object of interest. Thus vectors and points have different representations: there
is a fourth component of 0 for a vector and 1 for a point. This is often called the homogeneous
representation.7 The use of homogeneous coordinates is one of the hallmarks of computer graphics, as it
helps to keep straight the distinction between points and vectors, and provides a compact notation when
working with affine transformations. It pays off in a computer program to represent the points and vectors of

interest in homogeneous coordinates as 4-tuples, by appending a 1 or 08. This is particularly true when we
must convert between one coordinate frame and another in which points and vectors are represented.

It is simple to convert between the “ordinary” representation of a point or vector (a 3-tuple for 3D objects or
a 2-tuple for 2D objects) and the homogeneous form:

To go from ordinary to homogeneous coordinates:

if it’s a point append a 1;
if it’s a vector, append a 0;

To go from homogeneous coordinates to ordinary coordinates:

If it’s a vector its final coordinate is 0. Delete the 0.
If it’s a point its final coordinate is 1 Delete the 1.

OpenGL uses 4D homogeneous coordinates for all its vertices. If you send it a 3-tuple in the form (x, y, z), it
converts it immediately to (x, y, z, 1). If you send it a 2D point (x, y), it first appends a 0 for the z-component
and then a 1, to form (x, y, 0, 1). All computations are done within OpenGL in 4D homogeneous
coordinates.

Linear Combinations of Vectors .
Note how nicely some things work out in homogeneous coordinates when we combine vectors coordinate-
wise: all the definitions and manipulations are consistent:

• The difference of two points (x, y, z, 1) and (u, v, w, 1) is (x - u, y - v, z - w, 0), which is, as expected, a
vector.
• The sum of a point (x, y, z, 1) and a vector (d, e, f, 0) is (x + d, y + e, z + f, 1), another point;
• Two vectors can be added: (d, e, f, 0) + (m, n, r, 0) = (d + m, e + n, f + r, 0) which produces another vector;
• It is meaningful to scale a vector: 3(d, e, f, 0) = (3d, 3e, 3f, 0);

7 Actually we are only going part of the way in this discussion. As we see in Chapter 7 when studying projections, homogeneous
coordinates in that context permit an additional operation, which makes them truly “homogeneous”. Until we examine projections this
operation need not be introduced.
8 In the 2D case, points are 3-tuples (p1, p2, 1) and vectors are 3-tuples (v1, v2, 0).

Hill - Chapter 4 09/23/99 page 22

• It is meaningful to form any linear combination of vectors. Let the vectors be v = (v1 , v2, v3, 0) and w =
(w1, w2, w3, 0). Then using arbitrary scalars a and b, we form av + bw = (av1 + bw1, av2 + bw2, av3 + bw3, 0),
which is a legitimate vector.

Forming a linear combination of vectors is well defined, but does it make sense for points? The answer is no,
except in one special case, as we explore next.

4.5.2. Affine Combinations of Points.
Consider forming a linear combination of two points, P = (P1, P2, P3,1) and R = (R1, R2, R3, 1) , using the
scalars f and g:

fP + gR = (fP1 + gR1, fP2 + gR2, fP3 + gR3, f + g)

We know this is a legitimate vector if f + g = 0 (why?). But we shall see that it is not a legitimate point
unless f + g = 1! Recall from Equation 4.2 that when the coefficients of a linear combination sum to 1 it is
called an “affine” combination. So we see that the only linear combination of points that is legitimate is an
affine combination. Thus, for example, the object 0.3P + 0.7R is a legitimate point, as are 2.7P - 1.7R and
the midpoint 0.5P + 0.5R, but P + R is not a point. For three points, P, R, and Q we can form the legal point
0.3P + 0.9R - 0.2Q, but not P + Q - 0.9R..

Fact: any affine combination of points is a legitimate point.

But what’s wrong geometrically with forming any linear combination of two points, say

E = fP + gR (4.36)

when f + g is different from 1? The problem arises if we shift the origin of the coordinate system
[Goldman85]. Suppose the origin is shifted by vector u, so that P is altered to P + u and R is shifted to R +
u. If E is a legitimate point, it too must be shifted to the new point E’ = E + u. But instead we have

E’ = fP + gR + (f + g)u

which is not E + u unless f + g = 1.

The failure of a simple sum P1 + P2 of two points to be a true point is shown in Figure 4.19. Points P1 and P2

are shown represented in two coordinate systems, one offset from the other. Viewing each point as the head
of a vector bound to its origin, we see that the sum P1 + P2 yields two different points in the two systems.
Therefore P1 + P2 depends on the choice of coordinate system. Note, by way of contrast, that the affine
combination 0.5(P1 + P2) does not depend on this choice.

P1
System 1

P1

P1

System 2

(P1+ P2)/2

(P1+ P2)

depends on
system

Figure 4.19. Adding points is not legal.

A Point plus a Vector is an Affine Combination of Points.

Hill - Chapter 4 09/23/99 page 23

There is another way of examining affine sums of points that is interesting on its own, and also leads to a
useful tool in graphics. It doesn’t require the use of homogeneous coordinates.

Consider forming a point as a point A offset by a vector v that has been scaled by scalar t: A + tv. This is the
sum of a point and a vector so it is a legitimate point. If we take as vector v the difference between some
other point B and A: v = B - A then we have the point P:

P = A + t(B - A) (4.37)

which is also a legitimate point. But now rewrite it algebraically as:

P = tB + (1 - t)A (4.38)

and it is seen to be an affine combination of points (why?). This further legitimizes writing affine sums of
points. In fact, any affine sum of points can be written as a point plus a vector (see the exercises). If you are
ever uncomfortable writing an affine sum of points as in Equation 4.38 (a form we will use often), simply
understand that it means the point given by Equation 4.37.

Example 4.5.1: The centroid of a triangle. Consider the triangle T with vertices A, B, and C shown in
Figure 4.20. We use the ideas above to show that the three medians of T meet at a point that lies 2/3 of the
way along each median. This is the centroid (center of gravity9) of T.

D

F

E

centroid C

G

Figure 4.20. The centroid of a triangle as an affine combination.

By definition the median from D is the line from D to the midpoint of the opposite side. Thus G = (E + F)/2.
We first ask where the point that is 2/3 of the way from D to G lies? Using the parametric form the desired
point must be D + (G - D)t with t = 2/3, which yields the affine combination C given by

C =
D + E + F

3
(Try it!) Here’s the cute part [pedoe70]. Since this result is symmetrical in D, E, and F, it must also be 2/3 of
the way along the median from E, and 2/3 of the way along the median from F. Hence the 3 medians meet
there, and C is the centroid.

This result generalizes nicely for a regular polygon of N sides: the centroid is simply the average of the N
vertex locations, another affine combination. For an arbitrary polygon the formula is more complex

Practice Exercises.
 4.5.1. Any affine combination of points is legitimate. Consider three scalars a, b, and c that sum to one,
and three points A, B, and C. The affine combination a A + b B + c C is a legal point because using c = 1 - a
- b it is seen to be the same as a A + b B + (1 - a - b) C = C + a (A - C) + b (B - C), the sum of a point and
two vectors (check this out!). To generalize: Given the affine combination of points w1A1 + w2A2 + ... +
wnAn, where w1 + w2 + ... + wn = 1, show that it can be written as a point plus a vector, and is therefore a
legitimate point.
4.5.2. Shifting the coordinate system [Goldman85]. Consider the general situation of forming a linear
combination of m points:

9The reference to gravity arises because if a thin plate is cut in the shape of T, the plate hangs level if suspended by a
thread attached at the centroid. Gravity pulls equally on all sides of the centroid, so the plate is balanced.

Hill - Chapter 4 09/23/99 page 24

E a Pi i
i

m

=
=
∑

1

We ask whether E is a point, a vector, or nothing at all? By considering the effect of a shift in each Pi by u
show that E is “shifted” to E’ = E + S u, where S is the sum of the coefficients:

S ai
i

m

=
=
∑

1

Show that:
i). E is a point if S = 1.
ii). E is a vector if S = 0.
iii). E is meaningless for other values of S.

4.5.3. Linear Interpolation of two points.
The affine combination of points expressed in Equation 4.33:

P = A(1 - t) + Bt

performs linear interpolation between the points A and B. That is, the x-component Px(t)
provides a value that is fraction t of the way between the value Ax and Bx,

and similarly for the
y-component (and in 3D the z-component). This is a sufficiently important operation to warrant
a name, and lerp() (for linear interpolation) has become popular. In one dimension, lerp(a, b,
t) provides a number that is the fraction t of the way from a to b. Figure 4.21 provides a simple
implementation of lerp().

float lerp(float a, float b, float t)
{

return a + (b - a) * t; // return a float
}
Figure 4.21. Linear interpolation effected by lerp().

Similarly, one often wants to compute the point P(t) that is fraction t of the way along the
straight line from point A to point B. This point is often called the “tween” (for “in-between”)
at t of points A and B. Each component of the resulting point is formed as the lerp () of the
corresponding components of A and B. A procedure

Point2 canvas:: Tween(Point2 A, Point2 B, float t) // tween A and B

is easily written (how?) to implement tweening. A 3D version is almost the same.

Example 4.5.2. Let A = (4, 9) and B = (3, 7). Then Tween(A, B, t) returns the point (4 - t, 9 - 2t), so
that Tween(A, B, 0.4) returns (3.6, 8.1). (Check this on graph paper.)

4.5.3. “Tweening” for Art and Animation.
Interesting animations can be created that show one figure being “tweened” into another. It’s simplest if the
two figures are polylines (or families of polylines) based on the same number of points. Suppose the first
figure, A, is based on the polyline with points Ai , and the second polyline, B, is based on points Bi, for i =
0, . . . , n-1. We can form the polyline P(t), called the “tween at t”, by forming the points:

Pi(t) = (1 - t) Ai+t Bi

If we look at a succession of values for t between 0 and 1, say, t = 0, 0.1, 0.2, ..., 0.9, 1.0, we see that this
polyline begins with the shape of A and ends with the shape of B, but in between it is a blend of the two

Hill - Chapter 4 09/23/99 page 25

shapes. For small values of t it looks like A, but as t increases it warps (smoothly) towards a shape close to
B. For t = 0.25, for instance, point Pi(.25) of the tween is 25% of the way from A to B.

Figure 4.22 shows a simple example, in which polyline A has the shape of a house, and polyline B has the
shape of the letter ‘T’. The point R on the house corresponds to point S on the ‘T’. The various tweens of
point R on the house and point S on the T lie on the line between R and S. The tween for t = 1/2 lies at the
midpoint of RS. The in between polylines show the shapes of the tweens for t = 0, 0.25, 0.5, 0.75, and 1.0.

R

S

Figure 4.22. Tweening a "T" into a house.

Figure 4.23 shows drawTween(), that draws a tween of two polylines A and B, each having n vertices, at
the specified value of t.
void canvas:: drawTween(Point2 A[], Point2 B[], int n, float
t)
{ // draw the tween at time t between polylines A and B

for(int i = 0; i < n; i++)
{

Point2 P;
P = Tween(A[i], B[i],t);
if(i == 0) moveTo(P.x, P.y);
else lineTo(P.x, P.y);

 }
}
Figure 4.23. Tweening two Polylines.

drawTween () could be used in an animation loop that tweens A and B back and forth, first as t increases
from 0 to 1, then as t decreases back to 0, etc. Double buffering, as discussed in Chapter 3, is used to make
the transition from one displayed tween to the next instantaneous.

for(t = 0.0, delT = 0.1; ; t += delT) // tween back and forth forever
{

<clear the buffer>
drawTween(A, B, n, t);
glutSwapBuffers();
if(t >= 1.0 || t <= 0.0) delT = - delT; // reverse the flow of t

}

Figure 4.24 shows an artistic use of this technique based on two sets of polylines. Three tweens are shown
(what values of t are used?). Because the two sets of polylines are drawn sufficiently far apart, there is
room to draw the tweens between them with no overlap, so that all five pictures fit nicely on one frame.

see Figure 7.11 from first edition
Figure 4.24. From man to woman. (Courtesy of Marc Infield.)

Susan E. Brennan of Hewlett Packard in Palo Alto, California, has produced caricatures of famous figures
using this method (see [dewdney88]). Figure 4.25 shows an example. The second and fourth faces are
based on digitized points for Elizabeth Taylor and John F. Kennedy. The third face is a tween, and the other
three are based on extrapolation. That is, values of t larger than 1 are used, so that the term (1 - t) is
negative. Extrapolation can produce caricature-like distortions, in some sense “going to the other side” of
polyline B from polyline A. Values of t less than 0 may also be used, with a similar effect.
see Figure 7.12 from 1st edition: Elizabeth Taylor to J.F. Kennedy

Hill - Chapter 4 09/23/99 page 26

Figure 4.25. Face Caricature: Tweening and extrapolation. (Courtesy of Susan Brennan.)

Tweening is used in the film industry to reduce the cost of producing animations such as cartoons. In earlier
days an artist had to draw 24 pictures for each second of film, because movies display 24 frames per
second. With the assistance of a computer, however, an artist need draw only the first and final pictures,
called key-frames, in certain sequences and let the others be generated automatically. For instance, if the
characters are not moving too rapidly in a certain one-half-second portion of a cartoon, the artist can draw
and digitize the first and final frames of this portion, and the computer can create 10 tweens using linear
interpolation, thereby saving a great deal of the artist's time. See the case study at the end of this chapter for
a programming project that produces these effects.

Practice Exercises.
4.5.3. A Limiting Case of Tweening. What is the effect of tweening when all of the points Ai in polyline A
are the same? How is polyline B distorted in its appearance in each tween?
4.5.4. An Extrapolation. Polyline A is a square with vertices (1, 1), (-1, 1), (-1, -1), (1, -1), and polyline B
is a wedge with vertices (4, 3), (5, -2), (4, 0), (3, -2). Sketch (by hand) the shape P(t) for t = -1, -0.5, 0.5,
and 1.5.
4.5.5. Extrapolation Versus Tweening. Suppose that five polyline pictures are displayed side by side.
From careful measurement you determine that the middle three are in-betweens of the first and the last, and
you calculate the values of t used. But someone claims that the last is actually an extrapolation of the first
and the fourth. Is there any way to tell whether this is true? If it is an extrapolation, can the value of t used
be determined? If so, what is it?
4.5.4. Preview: Quadratic and cubic tweening, and Bezier Curves.
In Chapter 8 we address the problem of designing complex shapes called Bezier curves. It is interesting to
note here that the underlying idea is simply tweening between a collection of points. With linear
interpolation above we “partition unity” into the pieces (1 - t) and t, and use these pieces to “weight” the
points A and B. We can extend this to quadratic interpolation by partitioning unity into three pieces. Just
rewrite 1 as

1 = ((1-t) + t)2

and expand it to produce the three pieces (1 - t)2, 2(1 - t) t, and t2. They obviously sum to one, so they can
be used to form the affine combination of points A, B, and C:

P(t) = (1 - t)2 A + 2(1 - t) B + t C

This is the “Bezier curve” for the points A, B, and C. Figure 4.26a shows the shape of P(t) as t varies from 0
to 1. It flows smoothly from A to C. (Notice that the curve misses the middle point.) Going further, one can

expand ((1 - t) + t)3 into four pieces (which ones?) which can be used to do “cubic interpolation” between
four points A, B, C and D, as shown in Figure 4.26b.

A

B

C

A
D

C
Ba). b).

P(0)

P(1)

P(t) P(0)
P(1)

Figure 4.26. Bezier curves as Tweening.

Hill - Chapter 4 09/23/99 page 27

Practice Exercise 4.5.6. Try it out. Draw three points A, B, and C on a piece of graph paper. For each of
the values t = 0, .1, .2, ..., .9, 1 compute the position of P(t) in Equation 4.38, and draw the polyline that
passes through these points. Is it always a parabola?

4.5.5. Representing Lines and Planes.
We now turn to developing the principal forms in which lines and planes are represented mathematically. It
is quite common to find data structures within a graphics program that capture a line or plane using one of
these forms.

Lines in 2D and 3D space.
A line is defined by two points, say C and B (see Figure 4.27a). It is infinite in length, passing through the
points and extending forever in both directions. A line segment (segment for short) is also defined by two
points, its endpoints, but extends only from one endpoint to the other (Figure 4.27b). Its parent line is the
infinite line that passes through its endpoints. A ray is “semi-infinite.” It is specified by a point and a
direction. It “starts” at a point and extends infinitely far in a given direction (Figure 4.27c).

a). line b). line s egm ent

C

B

c). r ay

C

B

s ta rting
point

C

B

Figure 4.27. Lines, segments, and rays.

These objects are very familiar, yet it is useful to collect their important representations and properties in
one spot. We also describe the most important representation of all for a line in computer graphics, the
parametric representation.

The parametric representation of a line.
The construction in Equations 4.32 and 4.33 is very useful, because as t varies the point P traces out all of
the points on the straight line defined by C and B. The construction therefore gives us a way to name and
compute any point along this line.

This is done using a parameter t that distinguishes one point on the line from another. Call the line L, and
give the name L(t) to the position associated with t. Using b = B - C we have:

L(t) = C + b t (4.39)

As t varies so does the position of L(t) along the line. (One often thinks of t as “time”, and uses language
such as: “at time 0 ...”, “as time goes on..”, or “later” to describe different parts of the line.) Figure 4.28
shows vector b and the line L passing through C and B. (A 2D version is shown but the 3D version uses the
same ideas.) Note where L(t) is located for various values of t. If t = 0, L(0) evaluates to C so at t = 0 we are
“at” point C. At t = l then L(1) = C + (B - C) = B. As t varies we add a longer or shorter version of b to the
point C, resulting in a new point along the line. If t is larger than 1 this point lies somewhere on the opposite
side of C from B, and when t is less than 0 it lies on the side of C opposite from B.

Hill - Chapter 4 09/23/99 page 28

x

y

A

B

v

@t = 0

@t = 1

@t > 1

@t < 0

L

Figure 4.28. Parametric representation L(t) of a line.

For a fixed value of t, say t = 0.6, Equation 4.39 gives a formula for exactly one point along the line through
C and B: the particular point L(0.6). Thus it is a description of a point. But since one can view it as a
function of t that generates the coordinates of every point on L as t varies, it is called the parametric
representation of line L.

The line, ray, and segment of Figure 4.26 are all represented by the same L(t) of Equation 4.39. They differ
parametrically only in the values of t that are relevant:

segment : 0 ≤ t ≤ 1
ray: 0 ≤ t < ∞ (4.40)
line : -∞ < t < ∞

The ray “starts” at C when t = 0 and passes through B at t = 1, then continues forever as t increases. C is
often called the “starting point” of the ray.

A very useful fact is that L(t) lies “fraction t of the way” between C and B when t lies between 0 and 1. For
instance, when t = 1/2 the point L(0.5) is the midpoint between C and B, and when t = 0.3 the point L(0.3) is
30% of the way from C to B. This is clear from Equation 4.39 since |L(t) - C = |b| |t| and |B - C| = |b|, so the
value of |t| is the ratio of the distances |L(t) - C| to |B - C|, as claimed.

One can also speak of the “speed” with which the point L(t) “moves” along line L. Since it covers distance
|b| t in time t it is moving at constant speed |b|.

Example 4.5.2. A line in 2D. Find a parametric form for the line that passes through C= (3, 5) and B = (2,
7). Solution: Build vector b = B - C = (-1, 2) to obtain the parametric form L(t) = (3 - t, 2 + 2 t).
Example 4.5.3. A line in 3D. Find a parametric form for the line that passes through C= (3, 5,6) and B = (2,
7,3). Solution: Build vector b = B - C = (-1, 2, -3) to obtain the parametric form L(t) = (3 - t, 2 + 2 t, 6 - 3t).

Other parametrizations for a straight line are possible, although they are rarely used. For instance, the point
W(t) given by

W(t) = C + bt3

also “sweeps” over every point on L. It lies at C when t = 0 , and reaches B when t = 1. Unlike L(t), however,
W(t) “accelerates” along its path from C to B.

Point normal form for a line (the implicit form).
This is the same as the equation for a line, but we rewrite it in a way that better reveals the underlying
geometry. The familiar equation of a line in 2D has the form

f x + g y = 1 (4.41)

Hill - Chapter 4 09/23/99 page 29

where f and g are some constants. The notion is that every point (x, y) that satisfies this equation lies on the
line, so it provides a condition for a point to be on the line. Note: This is true only for a line in 2D; a line in
3D requires two equations. So, unlike the parametric form that works perfectly well in 2D and 3D, the point
normal form only applies to lines in 2D.

This equation can be written using a dot product: (f, g) · (x, y) = 1, so for every point on a line a certain dot
product must have the same value. We examine the geometric interpretation of the “vector” (f, g), and in so
doing develop the “point normal” form of a line. It is very useful in such tasks as clipping, hidden line
elimination, and ray tracing. Formally the point normal form makes no mention of dimensionality: A line in
2D has a point normal form, and a plane in 3D has one.

Suppose that we know line L passes through points C and B, as in Figure 4.29. What is its point normal
form? If we can find a vector n that is perpendicular to the line, then for any point R = (x, y) on the line the
vector R - C must be perpendicular to n, so we have the condition on R:

A
R

n

B

Figure 4.29. Finding the point normal form for a line.

n · (R - C) = 0 (point normal form) (4.42)

This is the point normal equation for the line, expressing that a certain dot product must turn out to be zero
for every point R on the line. It employs as data any point lying on the line, and any normal vector to the
line.

We still must find a suitable n. Let b = B - C denote the vector from C to B. Then b⊥ will serve well as the

desired n. For purposes of building the point normal form, any scalar multiple of b⊥ works just as well for
n.

Example 4.5.4. Find the point normal form. Suppose line L passes through points C = (3, 4) and B = (5, -

2). Then b = B - C = (2, -6) and b⊥ = (6, 2) (sketch this). Choosing C as the point on the line, the point
normal form is: (6, 2) . ((x, y) - (3, 4)) = 0, or 6x + 2y = 26. Both sides of the equation can be divided by 26
(or any other nonzero number) if desired.

It’s also easy to find the normal to a line given the equation of the line, say, f x + g y = 1. Writing this once
again as (f, g) · (x, y) = 1 it is clear that the normal n is simply (f, g) (or any multiple thereof). For instance,
the line given by 5x - 2y = 7 has normal vector (5, -2), or more generally K(5, -2) for any nonzero K.

It’s also straightforward to find the parametric form for a line if you are given its point normal form.
Suppose it is known that line L has point normal form n· (P - C) = 0, where n and C are given explicitly.

The parametric form is then L(t) = C + n⊥t (why?). You can also obtain the parametric form if the equation
of the line is given. a). find the normal n as in the previous paragraph, and b). find a point (Cx, Cy) on the
line by choosing any value for Cx and use the equation to find the corresponding Cy.

Moving from each representation to the others.
We have described three different ways to characterize a line. Each representation uses certain data that
distinguishes one line from another. This is the data that would be stored in a suitable data structure within
a program to capture the specifics of each line being stored. For instance, the data associated with the
representation that specifies a line parametrically as in C + bt would be the point C and the direction b. We
summarize this by saying the relevant data is {C, b}.

Hill - Chapter 4 09/23/99 page 30

The three representations and their data are:
• The two point form: say C and B; data = {C, B}
• The parametric form: C + bt; data = {C, b}.
• The point normal (implicit) form (in 2D only): n· (P - C) = 0; data = {C, n}.

Note that a point C on the line is common to all three forms. Figure 4.30 shows how the data in each
representation can be obtained from the data in the other representations. For instance, given {C, b} of the

parametric form, the normal n of the point normal form is obtained simply as b⊥.

Figure 4.30. Moving between representations of a line.

Practice Exercise 4.5.5. Find the point normal form. Find the point normal form for the line that passes
through (-3, 4) and (6, -1). Sketch the line and its normal vector on graph paper.

Planes in 3D space.
Because there is such a heavy use of polygons in 3D graphics, planes seem to appear everywhere. A
polygon (a “face”of an object) lies in its “parent” plane, and we often need to clip objects against planes, or
find the plane in which a certain face lies.

Planes, like lines, have three fundamental forms: the three-point form, the parametric representation and
the point normal form. We examined the three-point form in Section 4.4.2.

The parametric representation of a plane.
The parametric form for a plane is built on three ingredients: one of its points, C, and two (nonparallel)
vectors, a and b, that lie in the plane, as shown in Figure 4.31. If we are given the three (non-collinear)
points A, B, and C in the plane, then take a = A - C and b = B - C.

Hill - Chapter 4 09/23/99 page 31

b

a

C

Figure 4.31. Defining a plane parametrically.

To construct a parametric form for this plane, note that any point in the plane can be represented by a
vector sum: C plus some multiple of a plus some multiple of b. Using parameters s and t to specify the
“multiples” we have C + s a + t b. This provides the desired parametric form P(s, t)

P(s, t) = C + a s + b t (4.43)

Given any values of s and t we can identify the corresponding point on the plane. For example, the position
“at” s = t = 0 is C itself, and that at s = 1 and t = - 2 is P(1, - 2) = C + a - 2 b.

Note that two parameters are involved in the parametric expression for a surface, whereas only one
parameter is needed for a curve. In fact if one of the parameters is fixed, say s = 3, then P(3, t) is a function
of one variable and represents a straight line: P(3, t) = (C + 3 a) + b t.

It is sometimes handy to arrange the parametric form into its “component” form by collecting terms

P(s, t) = (Cx + ax s + bx t, Cy + ay s + by t , Cz + az s + bz t). (4.44)

We can rewrite the parametric form in Equation 4.43 explicitly in terms of the given points A, B, and C:
just use the definitions of a and b:

P(s, t) = C + s(A - C) + t(B - C)

which can be rearranged into the affine combination of points:

P(s, t) = s A + t B + (1 - s - t)C (4.45)

Example 4.5.6. Find a parametric form given three points in a plane. Consider the plane passing through A
= (3,3,3), B = (5,5,7), and C = (1, 2, 4). From Equation 4.43 it has parametric form
P(s, t) = (1, 2, 4) + (2, 1, - 1) s + (4, 3, 3) t. This can be rearranged to the component form: P(s, t) = (1 + 2 s + 4
t) i + (2 + s + 3 t) j + (4 - s + 3 t) k, or to the affine combination form P(s, t) = s(3, 3, 3) + t(5, 5, 7) + (1 - s - t)(1,
2, 4).

The point normal form for a plane.
Planes can also be represented in point normal form, and the classic equation for a plane emerges at once.

Figure 4.32 shows a portion of plane P in three dimensions. A plane is completely specified by giving a
single point, B = (bx, by, bz), that lies within it, and the normal direction, n = (nx, ny, nz), to the plane. Just
as the normal vector to a line in two dimensions orients the line, the normal to a plane orients the plane in
space.

Hill - Chapter 4 09/23/99 page 32

B

n

z

y
x

Figure 4.32. Determining the equation of a plane.

The normal n is understood to be perpendicular to any line lying in the plane. For an arbitrary point R = (x,
y, z) in the plane, the vector from R to B must be perpendicular to n, giving:

 n · (R - B) = 0 (4.46)

This is the point normal equation of the plane. It is identical in form to that for the line: a dot product set
equal to 0. All points in a plane form vectors with B that have the same dot product with the normal vector.
By spelling out the dot product and using n = (nx, ny, nz), we see that the point normal form is the
traditional equation for a plane:

 nx x + ny y + nz z = D (4.47)

where D = n · (B - 0). For example, if given the equation for a plane such as 5x - 2y + 8z = 2, you know
immediately that the normal to this plane is (5, -2, 8) or any multiple of this. (How do you find a point in
this plane?)

Example 4.5.7. Find a point normal form. Let plane P pass through (1, 2, 3) with normal vector (2, -1, -
2).
Its point normal form is (2, -1, -2) · ((x, y, z) - (1, 2, 3)) = 0. The equation for the plane may be written out
as 2x - y - 2z = 6.
Example 4.5.8. Find a parametric form given the equation of the plane. Find a parametric form for the
plane 2 x - y + 3 z = 8. Solution: By inspection the normal is (2, - 1, 3). There are many parametrizations;
we need only find one. For C, choose any point that satisfies the equation; C = (4, 0, 0) will do. Find two
(noncollinear) vectors, each having a dot product of 0 with (2, - 1, 3); some hunting finds that a = (1, 5, 1)
and b = (0, 3, 1) will work. Thus the plane has parametric form P(s, t) = (4, 0, 0) + (1, 5, 1) s + (0, 3, 1) t.
Example 4.5.9. Finding two noncollinear vectors. Given the normal n to a plane, what is an easy way to
find two noncollinear vectors a and b that are both perpendicular to n? (In the previous exercise we just
invented two that work.) Here we use the fact that the cross product of any vector with n is normal to n. So
we take a simple choice such as (0, 0, 1), and construct a as its cross product with n:

a = (0, 0, 1) × n = (-ny, nx, 0)
 (Is this indeed normal to n?). We can use the same idea to form b that is normal to both n and a:

b = n × a = (-nx nz, -ny nz, nx2 + ny2)

(Check that b ⊥ a and b ⊥ n.) So b is certainly not collinear with a.

We apply this method to the plane (3, 2, 5) · (R- (2,7,0)) = 0. Set a = (0, 0, 1) × n = (-2, 3, 0) and b = (-15,
-10, 13). The plane therefore has parametric form:

 P(s, t) = (2 -2 s - 15 t, 7 + 3 s - 10 t, 13 t).

Check: Is P(s, t) - C = (-2s - 15t, -3s -10 t, 13t) indeed normal to n for every s and t?

Practice Exercise 4.5.7. Find the Plane. Find a parametric form for the plane coincident with the y, z-
plane.

Hill - Chapter 4 09/23/99 page 33

Moving from each representation to the others.
Just as with lines, it is useful to be able to move between the three representations of a plane, to manipulate
the data that describes a plane into the form best suited to a problem.

For a plane, the three representations and their data are:
• The three point form: say C , B, and A; data = {C, B, A}
• The parametric form: C + as + bt; data = {C, a, b}.
• The point normal (implicit) form: n· (P - C) = 0; data = {C, n}.

A point C on the plane is common to all three forms. Figure 4.33 shows how the data in each representation
can be obtained from the data in the other representations. Check each one carefully. Most of these cases
have been developed explicitly in Section 4.4.2 and this section. Some are developed in the exercises. The
trickiest is probably the calculation in Example 4.5.10. Another that deserves some explanation is finding
three points in a plane when given the point normal form. One point, C, is already known. The other two
are found using special values in the point normal form itself, which is the equation nxx + nyy + nzz = n· C.
Choose ,for convenience, A = (0, 0, az), and use the equation to determine that az = n· C /nz. Similarly,
choose B = (0, by, 0), and use the equation to find by= n· C /ny.

Figure 4.33. Moving between representations of a plane.

Planar Patches.
Just as we can restrict the parameter t in the representation of a line to obtain a ray or a segment, we can
restrict the parameters s and t in the representation of a plane.

In the parametric form of Equation 4.43 the values for s and t can range from -∞ to ∞, and thus the plane
can extend forever. In some situations we want to deal with only a “piece” of a plane, such as a
parallelogram that lies in it. Such a piece is called a planar patch, a term that invites us to imagine the
plane as a quilt of many patches joined together. Later we examine curved surfaces made up of patches
which are not necessarily planar. Much of the practice of modeling solids involves piecing together patches
of various shapes to form the skin of an object.

Hill - Chapter 4 09/23/99 page 34

A planar patch is formed by restricting the range of allowable parameter values for s and t. For instance,
one often restricts s and t to lie only between 0 and 1. The patch is positioned and oriented in space by
appropriate choices of a, b, and C. Figure 4.34a shows the available range of s and t as a square in
parameter space, and Figure 4.34b shows the patch that results from this restriction in object space.

b

a

C

u

u

1

1

a). b).

@(1, 1)
@(0, 0)

@(0, 1)

@(1, 0)

Parameter
space

world
coordinates

Figure 4.34. Mapping between two spaces to define a planar patch.

 To each point (s, t) in parameter space there corresponds one 3D point in the patch P(s, t) = C + as + bt.
The patch is a parallelogram whose corners correspond to the four corners of parameter space and are
situated at

P(0, 0) = C;
P(1, 0) = C + a; (4.48)
P(0, 1) = C + b;
P(1, 1) = C + a + b.

The vectors a and b determine both the size and the orientation of the patch. If a and b are perpendicular,
the grid will become rectangular, and if in addition a and b have the same length, the grid will become
square. Changing C just shifts the patch without changing its shape or orientation.

Example 4.5.10. Make a patch. Let C = (1, 3, 2), a = (1, 1, 0), and b = (1, 4, 2). Find the corners of the
planar patch. Solution: From the preceding table we obtain the four corners: P(0, 0) = (1, 3, 2), P(0, 1) =
(2, 7, 4), P(1, 0) = (2, 4, 2), and P(1, 1) = (3, 8, 4).
Example 4.5.11. Characterize a Patch. Find a, b, and C that create a square patch of length 4 on a side
centered at the origin and parallel to the x, z-plane. Solution: The corners of the patch are at (2, 0, 2), (2, 0,
- 2), (- 2, 0, 2), and (- 2, 0, - 2). Choose any corner, say (2, 0, - 2), for C. Then a and b each have length 4
and are parallel to either the x- or the z-axis. Choose a = (- 4, 0, 0) and b = (0, 0, 4).

Practice Exercise 4.5.8. Find a Patch. Find point C and some vectors a and b that create a patch having
the four corners (- 4, 2, 1), (1, 7, 4), (- 2, - 2, 2), and (3, 3, 5).

4.6. Finding the Intersection of two Line Segments.
We often need to compute where two line segments in 2D space intersect. It appears in many other tasks,
such as determining whether or not a polygon is simple. Its solution will illustrate the power of parametric
forms and dot products.

The Problem: Given two line segments, determine whether they intersect, and if they do, find their point
of intersection.

Hill - Chapter 4 09/23/99 page 35

Suppose one segment has endpoints A and B and the other segment has endpoints C and D. As shown in
Figure 4.35 the two segments can be situated in many different ways: They can miss each other (a and b),
overlap in one point (c and d), or even overlap over some region (e). They may or may not be parallel. We
need an organized approach that handles all of these possibilities.

A

B

C

D

a).

A

C

B

D

b). D

A

C

Bc).

D

A C

B

d).

A C
B

De).

Figure 4.35. Many cases for two line segments.

Every line segment has a parent line, the infinite line of which it is part. Unless two parent lines are
parallel they will intersect at some point. We first locate this point.

We set up parametric representations for each of the line segments in question. Call AB the segment from A
to B. Then

AB(t) = A + b t (4.49)

where for convenience we define b = B - A. As t varies from 0 to 1 all points on the finite line segment are

visited. If t is allowed to vary from -∞ to ∞ the entire parent line is swept out.

Similarly we call the segment from C to D by the name CD, and give it parametric representation (using a
new parameter, say, u)

CD(u) = C + d u,

where d = D - C. We use different parameters for the two lines, t for one and u for the other, in order to
describe different points on the two lines independently. (If the same parameter were used, the points on the
two lines would be locked together.)

For the parent lines to intersect, there must be specific values of t and u for which the two equations above
are equal:

A + bt = C + du

Defining c = C - A for convenience we can write this condition in terms of three known vectors and two
(unknown) parameter values:

 bt = c + du (4.50)

This provides two equations in two unknowns, similar to Equation 4.22. We solve it the same way: dot both

sides with d⊥ to eliminate the term in d, giving d b d c⊥ ⊥⋅ = ⋅t . There are two main cases: the term
d b⊥ ⋅ is zero or it is not.

Case 1: The term d b⊥ ⋅ is not Zero.

Hill - Chapter 4 09/23/99 page 36

Here we can solve for t obtaining:

t = d⊥ ⋅ c
d⊥ ⋅ b

(4.51)

Similarly “dot” both sides of Equation 4.50 with b⊥ to obtain (after using one additional property of perp-
dot products—which one?):

u =
b⊥ ⋅ c
d⊥ ⋅b (4.52)

Now we know that the two parent lines intersect, and we know where. But this doesn’t mean that the line
segments themselves intersect. If t lies outside the interval [0, 1], segment AB doesn’t “reach” the other
segment, with similar statements if u lies outside of [0,1]. If both t and u lie between 0 and 1 the line
segments do intersect at some point, I. The location of I is easily found by substituting the value of t in
Equation 4.49:

I = A +
d⊥ ⋅ c
d⊥ ⋅ b



 


b (the intersection point) (4.53)

Example 4.6.1: Given the endpoints A = (0, 6), B = (6, 1), C = (1, 3), and D = (5, 5), find the intersection if

it exists. Solution: d⊥·b = -32, so t = 7/16 and u = 13/32 which both lie between 0 and 1, and so the
segments do intersect. The intersection lies at (x, y) = (21/8, 61/16). This result may be confirmed visually
by drawing the segments on graph paper and measuring the observed intersection.

Case 2: The term d b⊥ ⋅ is Zero.
In this case we know d and b are parallel (why?). The segments might still overlap, but this can happen
only if the parallel parent lines are identical. A test for this is developed in the exercises.

The exercises discuss developing a routine that performs the complete intersection test on two line
segments.

Practice Exercises.

4.6.1. When the parent lines overlap. We explore case 2 above, where the term d⊥·b = 0, so the parent
lines are parallel. We must determine whether the parent lines are identical, and if so whether the segments
themselves overlap.

To test whether the parent lines are the same, see whether C lies on the parent line through A and B.
a). Show that the equation for this parent line is bx (y - Ay) - by (x - Ax) = 0.
We then substitute Cx for x and Cy for y and see whether the left-hand side is sufficiently close to zero (i.e.

its size is less than some tolerance such as 10-8). If not, the parent lines do not coincide, and no intersection
exists. If the parents lines are the same, the final test is to see whether the segments themselves overlap.
b). To do this, show how to find the two values tc and td at which this line through A and B reaches C and
D, respectively. Because the parent lines are identical, we can use just the x-component. Segment AB
begins at 0 and ends at 1, and by examining the ordering of the four values 0, 1, t

c
, and t

d
, we can readily

determine the relative positions of the two lines.
c). Show that there is an overlap unless both t

c
 and t

d
 are less than 0 or both are larger than 1. If there is an

overlap, the endpoints of the overlap can easily be found from the values of tc and td.
d). Given the endpoints A = (0, 6), B = (6, 2), C = (3, 4), and D = (9, 0), determine the nature of any
intersection.

Hill - Chapter 4 09/23/99 page 37

4.6.2. The Algorithm for determining the intersection. Write the routine segIntersect () that would
be used in the context: if(segIntersect(A, B, C, D, InterPt)) <do something>
It takes four points representing the two segments, and returns 0 if the segments do not intersect, and 1 if
they do. If they do intersect the location of the intersection is placed in interPt . It returns -1 if the parent
lines are identical.
4.6.3. Testing the Simplicity of a Polygon. Recall that a polygon P is simple if there are no edge
intersections except at the endpoints of adjacent edges. Fashion a routine int isSimple(Polygon P)
that takes a brute force approach and tests whether any pair of edges of the list of vertices of the polygon
intersect, returning 0 if so, and 1 if not so. (Polygon is some suitable class for describing a polygon.) This
is a simple algorithm but not the most efficient one. See [moret91] and [preparata85] for more elaborate
attacks that involve some sorting of edges in x and y.
4.6.4. Line Segment Intersections. For each of the following segment pairs, determine whether the
segments intersect, and if so where.
1. A = (1, 4), B = (7, 1/2), C = (7/2, 5/2), D = (7, 5);
2. A = (1, 4), B = (7, 1/2), C = (5, 0), D = (0, 7);
3. A = (0, 7), B = (7, 0), C = (8, - 1), D = (10, - 3);

4.6.1. Application of Line Intersections: the circle through three points.
Suppose a designer wants a tool that draws the unique circle that passes through three given points. The
user specifies three points A, B, and C, on the display with the mouse as suggested in Figure 4.36a, and the
circle is drawn automatically as shown in Figure 4.36b. The unique circle that passes through three points is
called the excircle or circumscribed circle, of the triangle defined by the points. Which circle is it? We
need a routine that can calculate its center and radius.

C

B

A

b). What it looks like

C

B

A

a). Which circle?

C

B

A

c). How to find its center

perp.
bisector #1

perp.
bisector #2

? ?
S

Figure 4.36. Finding the excircle.

Figure 4.35c shows how to find it. The center S of the desired circle must be equidistant from all three
vertices, so it must lie on the perpendicular bisector of each side of triangle ABC (The perpendicular
bisector is the locus of all points that are equidistant from two given points.). Thus we can determine S if
we can compute where two of the perpendicular bisectors intersect.

We first show how to find a parametric representation of the perpendicular bisector of a line segment.
Figure 4.37 shows a segment S with endpoints A and B. Its perpendicular bisector L is the infinite line that
passes through the midpoint M of segment S, and is oriented perpendicular to it. But we know that midpoint

M is given by (A + B)/2, and the direction of the normal is given by (B− A)⊥
, so the perpendicular

bisector has parametric form:

Hill - Chapter 4 09/23/99 page 38

A

B

M

S

L

Figure 4.37. The perpendicular bisector of a segment.

L(t) =
1

2
(A+ B) + (B− A)⊥ t (the perpendicular bisector of AB) (4.54)

Now we are in a position to compute the excircle of three points. Returning to Figure 4.35b we seek the
intersection S of the perpendicular bisectors of AB and AC. For convenience we define the vectors:

a = B - A
b = C - B (4.55)
c = A - C

To find the perpendicular bisector of AB we need the midpoint of AB and a direction perpendicular to AB.

The midpoint of AB is A + a / 2 (why?). The direction perpendicular to AB is a⊥ . So the parametric form

for the perpendicular bisector is A + a / 2 + a⊥ t. Similarly the perpendicular bisector of AC is A - c / 2 +

c⊥ u, using parameter u. Point S lies where these meet, at the solution of:

a⊥t = b / 2 + c⊥ u

(where we have used a + b + c = 0). To eliminate the term in u take the dot product of both sides with c,

and obtain t = 1/2 (b · c) / (a⊥· c). To find S use this value for t in the representation of the perpendicular

bisector: A + a / 2 + a⊥ t, which yields the simple explicit form10:

S = A + 1

2
a + b ⋅ c

a⊥ ⋅ c
a⊥



 (center of the excircle) (4.56)

The radius of the excircle is the distance from S to any of the three vertices, so it is |S - A|. Just form the
magnitude of the last term in Equation 4.56. After some manipulation (check this out) we obtain:

radius= a
2

b ⋅ c
a⊥ ⋅ c







2

+1 (radius of the excircle) (4.57)

Once S and the radius are known, we can use drawCircle() from Chapter 3 to draw the desired circle.

Example 4.6.2. Find the perpendicular bisector L of the segment S having endpoints A = (3, 5) and B = (9,
3).

Solution: By direct calculation, midpoint M = (6, 4), and (B− A)
⊥

 = (2, 6), so L has representation L(t) =
(6 + 2t, 4 + 6t). It is useful to plot both S and L to see this result.

10Other closed form expressions for S have appeared previously, e.g. in [goldman90] and [lopex92]

Hill - Chapter 4 09/23/99 page 39

Every triangle also has an inscribed circle, which is sometimes necessary to compute in a computer-aided
design context. A case study examines how to do this, and also discusses the beguiling nine-point circle.

Practice Exercise 4.6.5. A Perpendicular Bisector. Find a parametric expression for the perpendicular
bisector of the segment with endpoints A = (0, 6) and B = (4, 0). Plot the segment and the line.

4.7. Intersections of Lines with Planes, and Clipping.
The task of finding the intersection of a line with another line or with a plane arises in a surprising variety
of situations in graphics. We have already seen one approach in Section 4.6, that finds where two line
segments intersect. That approach used parametric representations for both the line segments, and solved
two simultaneous equations.

Here we develop an alternative method that works for both lines and planes. It represents the intersecting
line by a parametric representation, and the line or plane being intersected in a point normal form. It is very
direct and clearly reveals what is going on. We develop the method once, and then apply the results to the
problem of clipping a line against a convex polygon in 2D, or a convex polyhedron in 3D. In Chapter 7 we
see that this is an essential step in viewing 3D objects. In Chapter 14 we use the same intersection
technique to get started in ray tracing.

In 2D we want to find where a line intersects another line; in 3D we want to find where a line intersects a
plane. Both of these problems can be solved at once because the formulation is in terms of dot products,
and the same expressions arise whether the involved vectors are 2D or 3D. (We also address the problem of
finding the intersection of two planes in the exercises: it too is based on dot products.)

Consider a line described parametrically as R(t) = A + c t. We also refer to it as a “ray”. We want to
compute where it intersects the object characterized by the point normal form n · (P - B) = 0. In 2D this is a
line; in 3D it is a plane. Point B lies on it, and vector n is normal to it. Figure 4.38a shows the ray hitting a
line, and part b) shows it hitting a plane. We want to find the location of the “hit point”.

A

n

n . (P - B) = 0

c

a). b).

n . (P - B) = 0

n

A

c
'hit' point

'hit' pointB

B

Figure 4.38. Where does a ray hit a line or a plane?

Suppose it hits at t = thit, the “hit time”. At this value of t the line and ray must have the same coordinates,
so A + c thit must satisfy the equation of the point normal form of the line or plane. Therefore we substitute
this unknown “hit point” into the point normal equation to obtain a condition on thit:

n · (A + c t
hit

 - B) = 0.

This may be rewritten as

n · (A - B) + n · c thit = 0,

which is a linear equation in thit. Its solution is:

 thit =
n ⋅ (B− A)

n ⋅ c
(hit time — 2D and 3D cases) (4.58)

Hill - Chapter 4 09/23/99 page 40

As always with a ratio of terms we must examine the eventuality that the denominator of t
hit

 is zero. This

occurs when n·c = 0, or when the ray is aimed parallel to the plane, in which case there is no hit at all.11

When the hit time has been computed, it is simple to find the location of the hit point : Substitute t
hit into

the representation of the ray:

“hit” point: Phit = A+ cthit (hit spot — 2D and 3D cases) (4.59)

In the intersection problems treated below we will also need to know generally which direction the ray
strikes the line or plane: “along with” the normal n or “counter to” n. (This will be important because we
will need to know whether the ray is exiting from an object or entering it.) Figure 4.39 shows the two
possibilities for a ray hitting a line. In part a) the angle between the ray’s direction, c, and n is less than 900

so we say the ray is aimed “along with” n. In part b) the angle is greater than 90o so the ray is aimed
“counter to” n.

A

n

c
A

n

c

a). ray is aimed "along with" n b). ray is aimed "counter to" n

Figure 4.39. The direction of the ray is “along” or “against” n.

It is easy to test which of these possibilities occurs, since the sign of n · c tells immediately whether the
angle between n and c is less than or greater than 90o. Putting these ideas together, we have the three
possibilities:

• if n · c > 0 the ray is aimed “along with” the normal;
• if n · c = 0 the ray is parallel to the line (4.60)

• if n · c < 0 the ray is aimed “counter to” the normal

Practice Exercises.
4.7.1. Intersections of rays with lines and planes. Find when and where the ray A + ct hits the object n ·
(P - B) = 0 (lines in the 2D or planes in the 3D).
a). A = (2, 3), c = (4, -4), n = (6,8), B = (7,7).
b). A = (2, -4, 3), c = (4, 0, -4), n = (6,9, 9), B = (-7, 2, 7).
c). A = (2, 0), c = (0 -4), n = (0,8), B = (7,0).
d). A = (2, 4, 3), c = (4, 4, -4), n = (6,4, 8), B = (7, 4, 7).
4.7.2. Rays hitting Planes. Find the point where the ray (1,5,2) + (5, -2, 6)t hits the plane 2x -4y + z = 8.
4.7.3. What is the intersection of two planes? Geometrically we know that two planes intersect in a
straight line. But which line? Suppose the two planes are given by n ⋅ − =()P A 0 and m ⋅ − =()P B 0.
Find the parametric form of the line in which they intersect. You may find it easiest to:
a). First obtain a parametric form for one of the planes: say, C + as + bt for the second plane.
b). Then substitute this form into the point normal form for the first plane, thereby obtaining a linear
equation that relates parameters s and t.
c). Solve for s in terms of t, say s = E + Ft. (Find expressions for E and F.)
d). Write the desired line as C + a(E + Ft) + bt.

4.8. Polygon Intersection Problems.

11If the numerator is also 0 the ray lies entirely in the line (2D) or plane (3D). (why?).

Hill - Chapter 4 09/23/99 page 41

We know polygons are the fundamental objects used in both 2D and 3D graphics. In 2D graphics their
straight edges make it easy to describe them and draw them. In 3D graphics, an object is often modeled as
a polygonal “mesh”: a collection of polygons that fit together to make up its “skin”. If the skin forms a
closed surface that encloses some space the mesh is called a polyhedron. We study meshes and polyhedra
in depth in Chapter 6.

Figure 4.40 shows a 2D polygon and a 3D polyhedron that we might need to analyze or render in a graphics
application. Three important questions that arise are:

Figure 4.40. Intersection problems of a line and a polygonal object.

a). Is a given point P inside or outside the object?
b). Where does a given ray R first intersect the object?
c). Which part of a given line L lies inside the object, and which part lies outside?

As a simple example, which part(s) of the line 3y - 2x = 6 lie inside the polygon whose vertices are (0, 3), (-
2, -2), (-5, 0), (0, -7), (1, 1)?

4.8.1. Working with convex polygons and polyhedra.
The general case of intersecting a line with any polygon or polyhedron is quite complex; we address it in
Section 4.8.4. Things are much simpler when the polygon or polyhedron is convex. They are simpler
because a convex polygon is completely described by a set of “bounding lines”; in 3D a convex polyhedron
is completely described by a set of “bounding planes”. So we need only test the line against a set of
unbounded lines or planes.

Figure 4.41 illustrates this for the 2D case. Part a shows a convex pentagon, and part b) shows the bounding
lines L0, L1, etc. of the pentagon. Each bounding line defines two half spaces: the inside half space that
contains the polygon, and the outside half space that shares no points with the polygon. Part c) of the figure
shows a portion of the outside half space associated with the bounding line L2.

Hill - Chapter 4 09/23/99 page 42

L1

L2

L0

b).a). c). outside
half space

L2

Figure 4.41. Convex polygons and polyhedra.

Example 4.8.1. Finding the bounding lines. Figure 4.42a shows a unit square. There are four bounding
lines, given by x = 1, x = -1, y = 1, and y = -1. In addition, for each bounding line we can identify the
outward normal vector: the one that points into the outside half space of the bounding line. The outward
normal vector for the line y = 1 is of course n = (0, 1). (What are the other three?)

1

1

y
y = 1

x

1

1

y

x

a). b).

an outward normal
Figure 4.42. Examples of convex polygons.

The triangle in part b) has three bounding lines. (What is the equation for each line?) The point normal
form for each of the three lines is given next; in each case it uses the outward normal (check this):

(-1, 0) · (P - (0, 0)) = 0;
(0 , -1) · (P - (0, 0)) = 0;
(1 , 1) · (P - (1, 0)) = 0;

The big advantage in dealing with convex polygons is that we perform intersection tests only on infinite
lines, and don’t need to check whether an intersection lies “beyond” an endpoint — recall the complexity
of the intersection tests in Section 4.7. In addition the point normal form can be used, which simplifies the
calculations.

For a convex polyhedron in 3D, each plane has an inside and an outside half space, and an outward
pointing normal vector. The polyhedron is the intersection of all the inside half spaces, (the set of all points
that are simultaneously in the inside half space of every bounding plane).

4.8.2. Ray Intersections and Clipping for Convex Polygons.
We developed a method in Section 4.7 that finds where a ray hits an individual line or plane. We can use
this method to find where a ray hits a convex polygon or polyhedron.

The Intersection Problem. Where does the ray A + ct hit polygon P?

Figure 4.43 shows a ray A + c t intersecting polygon P. We want to know all of the places where the ray
hits P. Because P is convex the ray hits P exactly twice: It enters once and exits once. Call the values of t at
which it enters and exits tin and tout, respectively. The ray intersection problem is to compute the values of
tin and tout. Once these hit times are known we of course know the hit points themselves:

Hill - Chapter 4 09/23/99 page 43

L1

P2

P0

A
c

n1

P1

Figure 4.43. Ray A + ct intersecting a convex polygon.

Entering hit point: A + c tin (4.61)
Exiting hit point: A + c tout

The ray is inside P for all t in the interval [tin, tout].

Note that finding tin and tout not only solves the intersection problem, but also the clipping problem. If we
know tin and tout we know which part of the line A + ct lies inside P. Usually the clipping problem is stated
as:

The Clipping problem: For the two points A and C which part of segment AC lies inside P?

Figure 4.44 shows several possible situations. Part a) shows the case where A and C both lie outside P, but
there is a portion of the segment AC that lies inside P.

A

C

A C

tin 1

A C

0
1

a).
1

c).b).

0
tin

tout

Figure 4.44. A segment clipped by a polygon.

If we consider segment AC as part of a ray given by A + ct where c = C - A, then point A corresponds to
the point on the ray at t = 0, and C corresponds to the point at t = 1. These “ray times” are labeled in the
figure. To find the clipped segment we compute tin and tout as described above. The segment that “survives”
clipping has end points A + c tin and A + c tout. In Figure 4.43b point C lies inside P and so tout is larger than
1. The clipped segment has end points A + c tin and C. In part c) both A and C lie inside P, so the clipped
segment is the same: AC.

In general we compute tin, and compare it to 0. The larger of the values 0 and tin is used as the “time” for
the first end point of the clipped segment. Similarly, the smaller of the values 1 and tout is used to find the
second end point. So the end points of the clipped segment are:

 A’ = A + c max(0, tin) (4.62)
C’ = A + c min(tout,1)

Now how are tin and tout computed? We must consider each of the bounding lines of P in turn, and find
where the ray A + c t intersects it. We suppose each bounding line is stored in point normal form as the pair

Hill - Chapter 4 09/23/99 page 44

{ B, n}, where B is some point on the line and n is the outward pointing normal for the line: it points to the
outside of the polygon. Because it is outward pointing the test of Equation 4.60 translates to:

if n · c > 0 the ray is exiting from P;
if n · c = 0 the ray is parallel to the line (4.63)
if n · c < 0 the ray is entering P

For each bounding line we find:
a). The hit time of the ray with the bounding line (use Equation 4.58);
b). Whether the ray is entering or exiting the polygon (use Equation 4.63)

If the ray is entering, we know that the time at which the ray ultimately enters P (if it enters it at all) cannot
be earlier than this newly found hit time. We keep track of the “earliest possible entering time as tin. For
each entering hit time, thit, we replace tin by max(tin, thit). Similarly we keep track of the latest possible exit
time as tout, and for each exiting hit we replace tout by min(tout, thit).

It helps to think of the interval [tin, tout] as the candidate interval of t, the interval of t inside of which the
ray might lie inside the object. Figure 4.45 shows an example for the clipping problem. We know the point
A + ct cannot be inside P for any t in the candidate interval. As each bounding line is tested, the candidate
interval gets reduced as tin is increased or tout is decreased: pieces of it get “chopped” off. To get started we
initialize tin to 0 and tout to 1 for the line clipping problem, so the candidate interval is [0,1].

t
tin tout

the ray is
outside P here

candidate
interval

the ray is
outside P here

0 1

Figure 4.45. The candidate interval for a hit.

The algorithm is then:
1). Initialize the candidate interval to [0,1]12.
2). For each bounding line, use Equation 4.58 to find the hit time thit and determine whether it’s an entering
or exiting hit:
• if it’s an entering hit, set tin = max(tin, thit)
• if it’s an exiting hit, set tout = min(tout thit)
If at any point tin becomes greater than tout we know the ray misses P entirely, and testing is terminated
3). If candidate interval is not empty, then from Equation 4.62 the segment from A + c tin to A + c tout is
known to lie inside P. For the line clipping problem these are the endpoints of the clipped line. For the ray
intersection problem we know the entering and exiting points of the ray.

Note that we stop further testing as soon the candidate interval vanishes. This is called an early out: if we
determine early in the processing that the ray is outside of the polygon, we save time by immediately
exiting from the test.

Figure 4.46 shows a specific example of clipping: we seek the portion of segment AC that lies in polygon
P. We initialize tin to 0 and tout to 1. The ray “starts” at A at t = 0 and proceeds to point C, reaching it at t =
1. We test it against each bounding line L0, L1, .., in turn and update tin and tout as necessary.

12 For the ray intersection problem, where the ray extends infinitely far in both directions, we set tin = - ∞
and tout = ∞. In practice tin is set to a large negative value, and tout to a large positive value.

Hill - Chapter 4 09/23/99 page 45

L1 L3

L0 L4

L5
@0

@1

@.2

@.28

@.83

@.66

intersects L2
@3.4

intersects L3
@ -4.7

A

C

Figure 4.46. Testing when a ray lies inside a convex polygon.

Suppose when we test it against line L0 we find an exiting hit at t = 0 .83. This sets tout to 0.83, and the
candidate interval is now [0, 0.83]. We then test it against L1 and find an exiting hit at t = 0.66. This reduces
the candidate interval to [0, 0.66]. The test against L2 gives an exiting hit at t = 3.4. This tells us nothing
new: we already know the ray is outside for t > 0.66. The test against L3 gives an entering hit at t = -0.47.
So we set tin to -0.47, and the candidate interval is [-0.47, 0.66]. The test with L4 gives an entering hit at t =
0.2, so tin is updated to 0.2. Finally, testing against L5 gives an entering hit at t = 0.28, and we are done. The
candidate interval is [0.28, 0.66].In fact the ray is inside P for all t between 0.28 and 0.66.

Figure 4.47 shows the sequence of updates to tin and tout that occur as each of the lines above is tested.
line test tin tout

0 0 0.83
1 0 0.66
2 0 0.66
3 0 0.66
4 0.2 0.66
5 0.28 0.66

Figure 4.47. Updates on the values of tin and tout.

4.8.3. The Cyrus-Beck Clipping Algorithm.
We build a routine from these ideas, that performs the clipping of a line segment against any convex
polygon. The method was originally developed by Cyrus and Beck [cyrus78]. Later a highly efficient
clipper for rectangular windows was devised by Liang and Barsky [liang84] based on similar ideas. It is
discussed in a Case Study at the end of this chapter.

The routine that implements the Cyrus-Beck clipper has interface:
int CyrusBeckClip(Line& seg, LineList& L);

Its parameters are the line segment, seg , to be clipped (which contains the first and second endpoints
named seg .first and seg .second) and the list of bounding lines of the polygon. It clips seg against
each line in L as described above, and places the clipped segment back in seg. (This is why seg must be
passed by reference.) The routine returns:

• 0 if no part of the segment lies in P (the candidate interval became empty);
• 1 if some part of the segment does lie in P.

Figure 4.48 shows pseudocode for the Cyrus Beck algorithm. The types LineSegment , LineList , and
Vector2 are suitable data types to hold the quantities in question (see the exercises). Variables numer
and denom hold the numerator and denominator for thit of Equation 4.48:

Hill - Chapter 4 09/23/99 page 46

numer B A

denom

= ⋅ −
= ⋅

n

n c

()
(4.64)

int CyrusBeckClip(LineSegment& seg, LineList L)
{

double numer, denom; // used to find hit time for each line
double tIn = 0.0, tOut = 1.0;
Vector2 c, tmp;

 form vector: c = seg.second - seg.first
for(int i = 0; i < L.num; i++) // chop at each bounding line
{

form vector tmp = L.line[i].pt - first
numer = dot(L.line[i].norm, tmp);
denom = dot(L.line[i].norm, c);
if(!chopCI(numer, denom, tIn, tOut)) return 0; // early out

}
 // adjust the endpoints of the segment; do second one 1st.

if (tOut < 1.0) // second endpoint was altered
{

 seg.second.x = seg.first.x + c.x * tOut;
 seg.second.y = seg.first.y + c.y * tOut;

}
if (tIn > 0.0) // first endpoint was altered
{

 seg.first.x = seg.first.x + c.x * tIn;
 seg.first.y = seg.first.y + c.y * tIn;

}
return 1; // some segment survives

}
Figure 4.48. Cyrus-Beck Clipper for a Convex Polygon, 2D case (pseudocode).

Note that the value of seg.second is updated first, since we must use the old value of seg.first in
the update calculation for both seg.first and seg.second.

The routine chopCI() is shown in Figure 4.49. It uses numer and denom of Equation 4.64 to calculate
the hit time at which the ray hits a bounding line, uses Equation 4.63 to determine whether the ray is
entering or exiting the polygon, and “chops” off the piece of the candidate interval CI that is thereby found
to be outside the polygon.
int chopCI(double& tIn, double& tOut, double numer, double
denom)
{

double tHit;
if (denom < 0) // ray is entering
{

tHit = numer / denom;
if (tHit > tOut) return 0; // early out
else if (tHit > tIn) tIn = tHit; // take larger t

}
else if(denom > 0) // ray is exiting
{

tHit = numer / denom;
if(tHit < tIn) return 0; // early out
if(tHit < tout) tOut = tHit; // take smaller t

}
else // denom is 0: ray is parallel
if(numer <= 0) return 0; // missed the line

return 1; // CI is still non-empty
}
Figure 4.49. Clipping against a single bounding line.

Hill - Chapter 4 09/23/99 page 47

If the ray is parallel to the line it could lie entirely in the inside half space of the line, or entirely out of it. It
turns out that numer = n · (B - A) is exactly the quantity needed to tell which of these cases occurs. See the
exercises.

The 3D case: Clipping a line against a Convex Polyhedron.
The Cyrus Beck clipping algorithm works in three dimensions in exactly the same way. In 3D the edges of
the window become planes defining a convex region in three dimensions, and the line segment is a line
suspended in space. ChopCI () needs no changes at all (since it uses only the values of dot products -
through numer and denom). The data types in CyrusBeckClip () must of course be extended to 3D
types, and when the endpoints of the line are adjusted the z-component must be adjusted as well.

Practice Exercises.
4.8.2. Data types for variable in the Cyrus Beck Clipper. Provide useful definitions for data types, either as
struct’s or classes, for LineSegment , LineList , and Vector2 used in the Cyrus Beck clipping
algorithm.
4.8.3. What does numer <= 0 do?
Sketch the vectors involved in value of numer in chopCI() and show that when the ray A + c t moves
parallel to the bounding line n · (P - B) = 0, it lies wholly in the inside half space of the line if and only if
numer > 0.
4.8.4. Find the Clipped Line. Find the portion of the segment with endpoints (2, 4) and (20, 8) that lies within
the quadrilateral window with corners at (0, 7), (9, 9), (14,4), and (2, 2).
4.8.4. Clipping against arbitrary polygons.
We saw how to clip a line segment against a convex polygon in the previous section. We generalize this to
a method for clipping a segment against any polygon.

The basic problem is to find where the ray A + ct lies inside polygon P given by the vertex list P0, P1, .., PN-

1. Figure 4.50 shows an example.

P

A
c

P3

P4

Figure 4.50. Where is a ray inside an arbitrary polygon P?

It is clear that the ray can enter and exit from P multiple times in general, and that the result of clipping a
segment against P may result in a list of segments rather than a single one. Also, of course, P is no longer
described by a collection of infinite bounding lines in point normal form; we must work with the N finite
segments such as P3 P4 that form its edges.

The problem is close to the problem we dealt with in Section 4.7: finding the intersection of two line
segments. Now we are intersecting one line segment with the sequence of line segments associated with P.

We represent each edge of P parametrically (rather than in point normal form). For instance, the edge P3 P4

is represented as P3 + e3u where e3 = P4 - P3 is the edge vector associated with P3. In general, the i-th edge
is given by Pi + eiu, for u in [0,1] and i = 0, 1, ..., N-1where ei = Pi+1 - Pi , and as always we equate PN with
P0.

Recall from Section 4.7 that the ray A + ct hits the i-th edge when t and u have the proper values to make A
+ ct = Pi + ei u. Calling vector bi = Pi - A we seek the solution (values of t and u) of

Hill - Chapter 4 09/23/99 page 48

ct = bi + eiu

Equations 4.51 and 4.52 hold the answers. When converted to the current notation we have:

t =
ei

⊥ ⋅bi

ei
⊥ ⋅ c

 and u =
c⊥ ⋅ bi

ei
⊥ ⋅ c

.

If ei
⊥ ⋅ c is 0 the i-th edge is parallel to the ray direction c and there is no intersection. There is a true

intersection with the i-th edge only if u falls in the interval [0,1].

We need to find all of the legitimate hits of the ray with edges of P, and place them in a list of the hit times.
Call this list hitList . Then pseudocode for the process would look like:

initialize hitList to empty
for(int i = 0; i < N; i++) // for each edge of P
{

build bi, ei for the i-th edge
solve for t, u
if(u lies in [0,1])

add t to the hitList
}

What we do now with this list depends on the problem at hand.

The ray intersection problem. (Where does the ray first hit P?)
This is solved by finding the smallest value of t, tmin, in theList . The hit spot is, as always, A + c tmin.

The line clipping problem.
For this we need the sequence of t-intervals in which the ray is inside P. This requires sorting theList
and then taking the t-values in pairs. The ray enters P at the first time in each pair, and exits from P at the
second time of each pair.

Example 4.9.2. Clip AB to polygon P. Suppose the line to be clipped is AB as shown in Figure 4.51, for
which A = (1, 1) and B = (8, 2).

(8,2)P0 = (3,2)

 (4,1)

P1
(6,-1)

(6,2)

1

1
A

B

Figure 4.51. Clipping a line against a polygon.

P is given by the vertex list: (3, 2), (2, 0), (6, -1), (6, 2), (4, 1). Taking each edge in turn we get for the
values of t and u at the intersections:

edge u t
0 0.3846 0.2308
1 -0.727 -0.2727
2 0.9048 0.7142
3 0.4 0.6

Hill - Chapter 4 09/23/99 page 49

4 0.375 0.375

The hit with edge 1 occurs at t outside of [0,1] so it is discarded. We sort the remaining t-values and arrive
at the sorted hit list: {0.2308, 0.375, 0.6, 0.7142}. Thus the ray enters P at t = 0.2308, exits it at t = 0.375,
re-enters it at t = 0.6, and exits it for the last time at t = 0.7142 .

Practice exercise 4.9.4. Clip a line. Find the portions of the line from A = (1, 3.5) to B = (9, 3.5) that lie
inside the polygon with vertex list: (2, 4), (3, 1), (4, 4), (3, 3).

4.8.5. More Advanced Clipping.
Clipping algorithms are fundamental to computer graphics, and a number of efficient algorithms have been
developed. We have examined two approaches to clipping so far. The Cohen Sutherland clipping
algorithm, studied in Chapter 2, clips a line against an aligned rectangle. The Cyrus-Beck clipper
generalizes this to clipping a line against any convex polygon or polyhedron. But situations arise where one
needs more sophisticated clipping. We mention two such methods here, and develop details of both in Case
Studies at the end of this chapter.

The Sutherland–Hodgman clipper is similar to the Cyrus–Beck method, performing clipping against a
convex polygon. But instead of clipping a single line segment, it clips an entire polygon (which needn't be
convex) against the convex polygon. Most importantly, its output is again a polygon (or possibly a set of
polygons). It can be important to retain the polygon structure during clipping since the clipped polygons
may need to be filled with a pattern or color. This is not possible if the edges of the polygon are clipped
individually.

The Weiler–Atherton clipping algorithm clips any polygon, P, against any other polygon, W, convex or
not. It can output the part of P that lies inside W (interior clipping) or the part of P that lies outside W
(exterior clipping). In addition, both P and W can have “holes” in them. As might be expected, this
algorithm is somewhat more complex than the others we have examined, but its power makes it a welcome
addition to one's toolbox in a variety of applications.

4.9. Summary of the Chapter.
Vectors provide a convenient way to express many geometric relations, and the operations they support
provide a powerful way to manipulate geometric objects algebraically. Many computer graphics algorithms
are simplified and made more efficient through the use of vectors. Because most vector operations are
expressed the same way independent of the dimensionality of the underlying space, it is possible to derive
results that are equally true in 2D or 3D space.

The dot product of two vectors is a fundamental quantity that simplifies finding the length of a vector and
the angle between two vectors. It can be used to find such things as the orthogonal projection of one vector
onto another, the location of the center of the excircle of three points, and the direction of a reflected ray. It
is often used to test whether two vectors are orthogonal to one another, and more generally to test when
they are pointing less than, or more than, 900 from each other. It is also useful to work with a 2D vector a⊥

that lies 900 to the left of a given vector a. In particular the dot product a⊥· b reports useful information
about how a and b are disposed relative to each other.

The cross product also reveals information about the angle between two vectors in 3D, and in addition
evaluates to a vector that is perpendicular to them both. It is often used to find a vector that is normal to a
plane.

In the process of developing an algorithm it is crucial to have a concise representation of the graphical
objects involved. The two principal forms are the parametric representation, and the implicit form. The
parametric representation “visits” each of the points on the object as a parameter is made to vary, so the
parameter “indexes into” different points on the object. The implicit form expresses an equation that all
points on the object, and only those, must satisfy. It is often given in the form f(x, y) = 0 in 2D, or f(x, y, z)
= 0 in 3D, where f() is some function. The value of f() for a given point not only tells when the point is on

Hill - Chapter 4 09/23/99 page 50

the object, but when a point lies off of the object the sign of f() can reveal on which side of the object the
point lies. In this chapter we addressed finding representations of the two fundamental “flat” objects in
graphics: lines and planes. For such objects both the parametric form and implicit form are linear in their
arguments. The implicit form can be revealingly written as the dot product of a normal vector and a vector
lying within the object.

It is possible to form arbitrary linear combinations of vectors, but not of points. For points only affine
combinations are allowed, or else chaos reigns if the underlying coordinate system is ever altered, as it
frequently is in graphics. Affine combinations of points are useful in graphics, and we showed that they
form the basis of “tweening” for animations and for Bezier curves.

The parametric form of a line or ray is particularly useful for such tasks as finding where two lines intersect
or where a ray hits a polygon or polyhedron. These problems are important in themselves, and they also
underlie clipping algorithms that are so prominent in graphics. The Cyrus-Beck clipper, which finds where
a line expressed parametrically shares the same point in space as a line or plane expressed implicitly,
addresses a larger class of problems than the Cohen Sutherland clipper of Chapter 2, and will be seen in
action in several contexts later.

In the Case Studies that are presented next, the vector tools developed so far are applied to some
interesting graphics situations, and their power is seen even more clearly. Whether or not you intend to
carry out the required programming to implement these mini-projects, it is valuable to read through them
and imagine what process you would pursue to solve them.

4.10. Case Studies.

4.10.1. Case Study 4.1: Animation with Tweening.
(Level of Effort: II.)) Devise two interesting polylines, such as A and B as shown in Figure 4.52. Ensure
that A and B have the same number of points, perhaps by adding an artificial extra point in the top segment
of B.

x

y

A

B

Figure 4.52. Tweening two polylines.

a). Develop a routine similar to routine drawTween(A, B, n, t) of Figure 4.23 that draws the tween
at t of the polylines A and B.

b). Develop a routine that draws a sequence of “tweens” between A and B as t varies from 0 to 1, and
experiment with it. Use the double buffering offered by OpenGL to make the animation smooth.

c). Extend the routine so that after t increases gradually from 0 to 1 it decreases gradually back to 0
and then repeats, so the animation repeatedly shows A mutating into B then back into A. This should
continue until a key is pressed.

Hill - Chapter 4 09/23/99 page 51

d). Arrange so that the user can enter two polylines with the mouse, following which the polylines are
tweened as just described. The user presses key ‘A’ and begins to lay down points to form polyline A, then
presses key ‘B’ and lays down the points for polyline B. Pressing ‘T’ terminates that process and begins the
tweening, which continues until the user types ‘Q’. Allow for the case where the user inputs a different
number of points for A than for B: your program automatically creates the required number of extra points
along line segments (perhaps at their midpoints) of the polyline having fewer points.

4.10.2. Case Study 4.2. Circles Galore.
(Level of Effort: II.). Write an application that allows the user to input the points of a triangle with a mouse.
The program then draws the triangle along with its inscribed circle, excircle, and 9-point circle, each in a
different color. Arrange matters so the user can then move vertices of the tirangle to new locations with the
mouse, whereupon the new triangle with its three circles are redrawn.

We saw how to draw the excircle in Section 4.6.1. Here we show how to find the inscribed circle and the
nine-point circle.

The inscribed circle. This is the circle that just snugs up inside the given triangle, and is tangent to all
three sides13. Figure 4.53a shows a triangle ABC along with its inscribed circle.

A

B

C

R

S

T

A

B

C

R

S

T

Lb

Lb

Lc

La

a). b).

Figure 4.53. The inscribed circle of ABC is the excircle of RST.

As was the case with the excircle, the hard part is finding the center of the inscribed circle. A
straightforward method14 recognizes that the inscribed circle of ABC is simply the excircle of a different set
of three points, RST as shown in Figure 4.53a.

We need only find the locations of R, S, and T and then use the excircle method of Section 4.6.1. Figure
4.53b shows the distances of R, S, and T from A, B, and C. By the symmetry of a circle the distances |B - R|
and |B - S| must be equal, and there are two other pairs of lines that have the same length. We therefore
have (using the definitions of Equation 4.55 for a, b, and c):

|a| = Lb + La, |b| = Lb + Lc, |c| = La + Lc

which can be combined to solve for La and Lb:

2 La = |a| + |c| - |b|, 2 Lb = |a| + |b| - |c|

so La and Lb are now known. Thus R, S, and T are given by:

13Note: finding the incircle also solves the problem of finding the unique circle that is tangent to 3 noncollinear lines in
the plane.
14 Suggested by Russell Swan.

Hill - Chapter 4 09/23/99 page 52

R= A+ La

a
| a |

S = B+ Lb

b
| b |

T = A − La

c
| c |

(4.65)

(Check these expressions!)

Encapsulate the calculation of R, S, and T from A, B, and C in a simple routine having usage
getTangentPoints(A, B, C, R, S, T). The advantage here is that if we have a routine
excircle() that takes three points and computes the center and radius of the excircle defined by them,
we can use the same routine to find the inscribed circle. Experiment with these tools.

The nine-point circle.
For any triangle, there are nine particularly distinguished points:
• the midpoints of the 3 sides;
• the feet of the 3 altitudes;
• the midpoints of the lines joining the orthocenter (where the 3 altitudes meet) to the vertices.

Remarkably, a single circle passes through all nine points! Figure 4.54 shows the 9-point circle15 for an
example triangle. The nine-point circle is perhaps most easily drawn as the excircle of the midpoints of the
sides of the triangle.

Figure 4.54. The 9-point circle.

4.10.3. Case Study 4.3. Is point Q inside convex polygon P?

(Level of Effort: II.) Suppose you are given the specification of a convex polygon, P. Then given a point Q
you are asked to determine whether or not Q lies inside P. But from the discussion on convex polygons in
Section 4.8.1 we know this is equivalent to asking whether Q lies on the inside half space of every
bounding line of P. For each bounding line Li we need only test whether the vector Q - Pi is more than 900

away from the outward pointing normal.

Fact: Q lies in P if (Q - Pi) · ni < 0 for i = 0, 1, ..., N-1. (4.66)

Figure 4.55 illustrates the test for the particular bounding line that passes through P1 and P2. For the case of
point Q, which lies inside P, the angle with n1 is greater than 900. For the case of point Q’ which lies
outside P the angle is less than 900.

15“This circle is the first really exciting one to appear in any couse on elementary geometry.” Daniel Pedoe. Circles,
Pergamon Press, New York, 1957

Hill - Chapter 4 09/23/99 page 53

P1

P2

P0n1

n0

Q

Q'

Figure 4.55. Is point Q inside polygon P?

Write and test a program that allows the user to:
a). lay down the vertices of a convex polygon, P, with the mouse;
b). successively lay down test points, Q, with the mouse;
c). prints “is inside” or “is not inside” depending on whether the point Q is or is not inside P.

4.10.4. Case Study 4.4. Reflections in a Chamber (2D Ray Tracing)
(Level of Effort: II.) This case study applies some of the tools and ideas introduced in this chapter to a
fascinating yet simple simulation. The simulation performs a kind of ray tracing, based in a 2D world for
easy visualization. Three dimensional ray tracing is discussed in detail in Chapter 14.

This simulation traces the path of a single tiny ”pinball” as it bounces off various walls inside a “chamber.”
Figure 4.56a shows a cross section of a convex chamber W that has six walls and contains three convex
“pillars”. The pinball begins at point S and moves in a straight line in direction c until it hits a barrier,
whereupon it “reflects” off the barrier and moves in a new direction, again in a straight line. It continues to
do this forever. Figure 4.56b shows an example of the polyline path that a ray traverses.

S
c W

B1

B2

B3

B1

B2

B3

a). b).

Figure 4.56. A 2D ray-tracing experiment.

For any given position S and direction c of the ray, tracing its path requires two operations:

• Finding the first wall of the chamber “hit” by the ray;
• Finding the new direction the ray will take as it reflects off this first line.

Both of these operations have been discussed in the chapter. Note that as each new ray is created, its start
point is always on some wall, the “hit point” of the previously hit wall.

We represent the chamber by a list of convex polygons, pillar0, pillar1, ..., and arrange that pillar0 is the
“chamber” inside which the action takes place. The pillars are stored in suitable arrays of points. For each
ray beginning at S and moving in direction c, the entire array of pillars is scanned, and the intersection of
the ray with each pillar is determined. This test is done using the Cyrus-Beck algorithm of Section 4.8.3. If

Hill - Chapter 4 09/23/99 page 54

there is a hit with a pillar, the “hit time” is taken to be the time at which the ray “enters” the pillar. We
encapsulate this test in the routine:

int rayHit(Ray thisRay, int which, double& tHit);

that calculates the hit time tHit of the ray thisRay against pillarwhich and returns 1 if the ray hits the
pillar, and 0 if it misses. A suitable type for Ray is struct{Point2 startPt; Vector2 dir;}
or the corresponding class; it captures the starting point S and direction c of the ray.

We want to know which pillar the ray hits first. This is done by keeping track of the earliest hit time as we
scan through the list of pillars. Only positive hit times need to be considered: negative hit times correspond
to hits at spots in the opposite direction from the ray’s travel. When the earliest hit point is found, the ray is
drawn from S to it.

We must find the direction of the reflected ray as it moves away from this latest hit spot. The direction c’ of
the reflected ray is given in terms of the direction c of the incident ray by Equation 4.27:

′ c = c − 2(c ⋅ ˆ n)ˆ n (4.67)

where ̂ n is the unit normal to the wall of the pillar that was hit. If a pillar inside the chamber was hit we
use the outward pointing normal; if the chamber itself was hit, we use the inward pointing normal.

Write and exercise a program that draws the path of a ray as it reflects off the inner walls of chamber W and
the walls of the convex pillars inside the chamber. Arrange to read in the list of pillars from an external file
and to have the user specify the ray's starting position and direction. (Also see Chapter 7 for the
“elliptipool” 2D ray tracing simulation.)

4.10.5. Case Study 4.5. Cyrus-Beck Clipping.
(Level of Effort: II.) Write and exercise a program that clips a collection of lines against a convex polygon.
The user specifies the polygon by laying down a sequence of points with the mouse (pressing key ‘C’ to
terminate the polygon and begin clipping). Then a sequence of lines is generated, each having randomly
chosen end points.
For each such line, the whole line is first drawn in red, then the portion that lies inside the polygon is drawn
in blue.

4.10.6. Case Study 4.6. Clipping a polygon against a convex polygon —
Sutherland Hodgman Clipping.
(Level of Effort: III.) Clipping algorithms studied so far clip individual line segments against polygons.
When instead a polygon is clipped against a window it can be fragmented into several polygons in the
clipping process, as suggested in Figure 4.57a. The polygon may need to be filled with a color or pattern,
which means that each of the clipped fragments must be associated with that pattern, as suggested in Figure
4.57b. Therefore a clipping algorithm must keep track of edges ab, cd, and so on, and must fashion a new
polygon (or polygons) out of the original one. It is also important that an algorithm not retain extraneous
edges such as bc as part of the new polygon, as such edges would be displayed when they should in fact be
invisible.

Hill - Chapter 4 09/23/99 page 55

a b c d

Subject
Polygon

Window

a b c d

Clipped
Polygons

a). b).

Figure 4.57. Clipping a polygon against a polygon.

The polygon to be clipped will be called the “subject” polygon, S. The polygon against which S is clipped
will be called the “clip” polygon, C. How do we clip polygon S, represented by a vertex list, against
polygon C, to generate a collection of vertex lists that properly represent the set of clipped polygons?

We examine here the Sutherland–Hodgman clipping algorithm. This method is quite simple and clips any
subject polygon (convex or not) against a convex clip polygon. The algorithm can leave extraneous edges
that must be removed later.

Because of the many different cases that can arise, we need an organized method for keeping track of the
clipping process. The Sutherland–Hodgman algorithm takes a divide-and-conquer approach: It breaks a
difficult problem into a set of simpler ones. It is built on the Cyrus-Beck approach, but must work with a
list of vertices - that represent a polygon - rather than a simple pair of vertices.

Like the Cyrus-Beck algorithm this method clips polygon S against each bounding line of polygon C in
turn, leaving only the part that is inside C. Once all of the edges of C have been used this way, S will have
been clipped against C as desired. Figure 4.58 shows the algorithm in action for

1st edition Figure A6.2 on page 716.

Figure 4.58. Sutherland–Hodgman polygon clipping.

a seven-sided subject polygon S and a rectangular clip polygon C. We will describe each step in the process
for this example. S is characterized by the vertex list a b c d e f g. S is clipped against the top, right, bottom,
and left edges of C in turn, and at each stage a new list of vertices is generated from the old. This list
describes one or more polygons and is passed along as the subject polygon for clipping against the next
edge of C.

The basic operation, then, is to clip the polygon(s) described by an input vertex list V against the current
clip edge of C and produce an output vertex list. To do this, traverse V, forming successive edges with pairs
of adjacent vertices. Each such edge E has a first and a second endpoint we call s and p, respectively. There
are four possible situations for endpoints s and p: s and p can both be inside, both can be outside, or they
can be on opposite sides of the clip edge. In each case, certain points are output to (appended onto) the new
vertex list, as shown in Figure 4.59.

Hill - Chapter 4 09/23/99 page 56

p

s

inside outside
p

s

inside outside

p

s
inside outside

p
s

inside outside

i

i

a). b)

d).c).

Figure 4.59. Four cases for each edge of S.

a. Both s and p are inside: p is output.
b. s is inside and p is outside. Find the intersection i and output it.
c. Both s and p are outside. Nothing is output.
d. s is outside and p is inside. Find intersection i, and output i and then p.

Now follow the progress of the Sutherland–Hodgman algorithm in Figure 4.58. Consider clipping S against
the top edge of C. The input vertex list for this phase is a b c d e f g. The first edge from the list is taken for
convenience as that from g to a, the edge that “wraps around” from the end of the list to its first element.
Thus point s is g and point p is a here. Edge g, a, meaning the edge from g to a, intersects the clip edge at a
new point ”1”, which is output to the new list. (The output list from each stage in the algorithm is shown
below the subsequent figure in Figure 4.58.) The next edge in the input list is a, b. Since both endpoints are
above the clipping edge, nothing is output. The third edge, b, c, generates two output points, 2 and c, and
the fourth edge, c, d, outputs point d. This process continues until the last edge, f, g, is tested, producing g.
The new vertex list for the next clipping stage is therefore 1 2 c d e f g. It is illuminating to follow the
example in Figure 4.58 carefully in its entirety to see how the algorithm works.

Notice that extraneous edges 3, 6 and 9, 10 are formed that connect the three polygon fragments formed in
the clipping algorithm. Such edges can cause problems in some polygon filling algorithms. It is possible
but not trivial to remove these offending edges [sutherland74].

Task: Implement the Sutherland-Hodgman clipping algorithm, and test it on a variety of sample polygons.
The user lays down the convex polygon C with the mouse, then lays down the subject polygon S with the
mouse. It is drawn in red as it is being laid down. Clipping is then performed, and the clipped polygon(s)
are drawn in blue.

4.10.7. Case Study 4.7. Clipping a Polygon against another — Weiler Atherton
Clipping.
(Level of Effort: III). This method provides the most general clipping mechanism of all we have studied. It
clips any subject polygon against any (possibly non-convex) clip polygon. The polygons may even contain
holes.

Hill - Chapter 4 09/23/99 page 57

The Sutherland-Hodgman algorithm examined in Case Study 4.6 exploits the convexity of the clipping
polygon through the use of inside-outside half-spaces. In some applications, such as hidden surface
removal and rendering shadows, however, one must clip one concave polygon against another. Clipping is
more complex in such cases. The Weiler–Atherton approach clips any polygon against any other, even
when they have holes. It also allows one to form the set theoretic union, intersection, and difference of
two polygons, as we discuss in Case Study 4.8.

We start with a simple example, shown in Figure 4.60. Here two concave polygons, SUBJ and CLIP, are
represented by the vertex lists, (a, b, c, d) and (A, B, C, D), respectively. We adopt the convention here of
listing vertices so that the interior of the polygon is to the right of each edge as we move cyclically from
vertex to vertex through the list. For instance, the interior of SUBJ lies to the right of the edge from c to d
and to the right of that from d to a. This is akin to listing vertices in “clockwise” order.

A

d

D

B

C

a

b

c
6

1
5

2

3
4

CLIP

SUBJ

Figure 4.60 .Weiler–Atherton clipping.

All of the intersections of the two polygons are identified and stored in a list (see later). For the example
here, there are six such intersections. Now to clip SUBJ against CLIP, traverse around SUBJ in the
“forward direction” (i.e., so that its interior is to the right) until an “entering” intersection is found: one for
which SUBJ is moving from the outside to the inside of CLIP. Here we first find 1, and it goes to an output
list that records the clipped polygon(s).

The process is now simple to state in geometric terms: Traverse along SUBJ, moving segment by segment,
until an intersection is encountered (2 in the example). The idea now is to turn away from following SUBJ
and to follow CLIP instead. There are two ways to turn. Turn so that CLIP is traversed in its forward
direction. This keeps the inside of both SUBJ and CLIP to the right. Upon finding an intersection, turn and
follow along SUBJ in its forward direction, and so on. Each vertex or intersection encountered is put on the
output list. Repeat the “turn and jump between polygons” process, traversing each polygon in its forward
direction, until the first vertex is revisited. The output list at this point consists of (1, b, 2, B).

Now check for any other entering intersections of SUBJ. Number 3 is found and the process repeats,
generating output list (3, 4, 5, 6). Further checks for entering intersections show that they have all been
visited, so the clipping process terminates, yielding the two polygons (1, b, 2, B) and (3, 4, 5, 6). An
organized way to implement this “follow in the forward direction and jump” process is to build the two lists

SUBJLIST: a, 1, b, 2, c, 3, 4, d, 5, 6
CLIPLIST: A, 6, 3, 2, B, 1, C, D, 4, 5

that traverse each polygon (so that its interior is to the right) and list both vertices and intersections in the
order they are encountered. (What should be done if no intersections are detected between the two

Hill - Chapter 4 09/23/99 page 58

polygons?) Therefore traversing a polygon amounts to traversing a list, and jumping between polygons is
effected by jumping between lists.

Notice that once the lists are available, there is very little geometry in the process—just a “point outside
polygon” test to properly identify an entering vertex. The proper direction in which to traverse each
polygon is embedded in the ordering of its list. For the preceding example, the progress of the algorithm is
traced in Figure 4.61.

SUB_LIST:

CLIP_LIST:

a 1 b 2 c 3 4 d 5 6

6 3 2 B 1 C D 4 5A

start restart

visited visited

= output the point
Figure 4.61. Applying the Weiler–Atherton method.

A more complex example involving polygons with holes is shown in Figure 4.62. The

fsh: old Figure A6.6

Figure 4.62. Weiler–Atherton clipping: polygons with holes.

vertices that describe holes are also listed in order such that the interior of the polygon lies to the right of an
edge. (For holes this is sometimes called “counterclockwise order.”) The same rule is used as earlier: Turn
and follow the other polygon in its forward direction. Beginning with entering intersection 1, the polygon
(1, 2, 3, 4, 5, i, 6, H) is formed. Then, starting with entering intersection 7, the polygon (7, 8, 9, c, 10, F) is
created. What entering intersection should be used to generate the third polygon? It is a valuable exercise to
build SUBJLIST and CLIPLIST and to trace through the operation of the method for this example.

As with many algorithms that base decisions on intersections, we must examine the preceding method for
cases where edges of CLIP and SUBJ are parallel and overlap over a finite segment.

Task: Implement the Weiler-Atherton clipping algorithm, and test it on a variety of polygons. Generate
SUBJ and CLIP polygons, either in files or by letting the user lay down polygons with the mouse. In your
implementation carefully consider how the algorithm will operate in situations such as the following:
• Some edges of SUBJ and CLIP are parallel and overlap over a finite segment,
• SUBJ or CLIP or both are nonsimple polygons,

Hill - Chapter 4 09/23/99 page 59

• Some edges of SUBJ and CLIP overlap only at their endpoints,
• CLIP and SUBJ are disjoint,
• SUBJ lies entirely within a hole of CLIP.

4.10.8. Case Study 4.8. Boolean Operations on Polygons.
(Level of Effort: III.) If we view polygons as sets of points (the set of all points on the boundary or in the
interior of the polygon), then the result of the previous clipping operation is the intersection of the two
polygons, the set of all points that are in both CLIP and SUBJ. The polygons output by the algorithm
consist of points that lie both within the original SUBJ and within the CLIP polygons. Here we generalize
from intersections to other set theoretic operations on polygons, often called “Boolean” operations. Such
operations arise frequently in modeling [mortenson85] as well as in graphics (see Chapter 14). In general,
for any two sets of points A and B, the three set theoretic operations are

• intersection: A∩ B = {all points in both A and B}
• union: A∪ B= {all points in A or in B or both}
• difference: A - B= {all points in A but not B}

with a similar definition for the set difference B - A. Examples of these sets are shown in Figure 4.63.

A

B

A

B

A

B

A

B

A - B B - A
A X B A + B

Figure 4.63. Polygons formed by boolean operations on polygons.

It is not hard to adjust the Weiler-Atherton method, which already performs intersections, to perform the
union and difference operations on polygons A and B.

1. Computing the union of A and B. Traverse around A in the forward direction until an exiting intersection
is found: one for which A is moving from the inside to the outside of B. Output the intersection and traverse
along A until another intersection with B is found. Now turn to follow B in its forward direction. At each
subsequent intersection, output the vertex and turn to follow the other polygon in its forward direction.
Upon returning to the initial vertex, look for other exiting intersections that have not yet been visited.

2. Computing the difference A - B(outside clipping). Whereas finding the intersection of two polygons
results in clipping one against the other, the difference operation ”shields” one polygon from another. That
is, the difference SUBJ - CLIP consists of the parts of SUBJ that lie outside CLIP. No parts of SUBJ are
drawn that lie within the border of CLIP, so the region defined by CLIP is effectively protected, or
shielded.

Traverse around A until an entering intersection into B is found. Turn to B, following it in the reverse
direction, (so that B's interior is to the left). Upon reaching another intersection, jump to A again. At each
intersection, jump to the other polygon, always traversing A in the forward direction and B in the reverse
direction. Some examples of forming the union and difference of two polygons are shown in Figure 4.64.
The three set operations generate the following polygons:

POLYA ∪ POLYB:
4, 5, g, h(a hole)
8, B, C, D, 1, b, c, d
2, 3, i, j(a hole)
6, H, E, F, 7, f (a hole)

Hill - Chapter 4 09/23/99 page 60

POLYA - POLYB:
4, 5, 6, H, E, F, 7, e, 8, B, C, D, 1, a
2, 3, k

POLYB - POLYA:
1, b, c, d, 8, 5, g, h, 4, A, 3, i, j, 2
7, f, 6, G

1st edition Figure A6.8.

Figure 4.64. Forming the union and difference of two polygons.

Notice how the holes (E, F, G, H) and (k, i, j) in the polygons are properly handled, and that the algorithm
generates holes as needed (holes are polygons listed in counterclockwise fashion).

Task: Adapt the Weiler–Atherton method so that it can form the union and difference of two polygons, and
exercise your routines on a variety of polygons. Generate A and B polygons, either in files or
algorithmically, to assist in the testing. Draw the polygons A and B in two different colors, and the result of
the operation in a third color.

4.11. For Further Reading
Many books provide a good introduction to vectors. A favorite is Hoffmann’s ABOUT VECTORS. The
GRAPHICS GEMS series [gems] provides an excellent source of new approaches and results in vector
arithmetic and geometric algorithms by computer graphics practitioners. Three excellent example articles
are Alan Paeth’s “A Half-Angle Identity for Digital Computation: The Joys of the Half Tangent”
[paeth91], Ron Goldman “Triangles”[goldman90], and Lopez-Lopez’s “Triangles Revisited” [lopez92].
Two books that delve more deeply into the nature of geometric algorithms are Moret and Shapiro’s
ALGORITHMS FROM P TO NP [moret91] and Preparata and Shamos’s COMPUTATIONAL
GEOMETRY, AN INTRODUCTION [preparata85].

	Chapter 4. Vectors Tools for Graphics.
	
	Goals of the Chapter
	Preview

	4.1 Introduction.
	4.2. Review of Vectors.
	4.2.1. Operations with vectors.
	4.2.2. Linear Combinations of Vectors.
	Affine Combinations of Vectors.
	Convex Combinations of Vectors.

	4.2.3. The Magnitude of a vector, and unit vectors.

	4.3. The Dot Product.
	4.3.1. Properties of the Dot Product
	4.3.2. The Angle Between Two Vectors.
	4.3.3. The Sign of b·c, and Perpendicularity.
	4.3.4. The 2D ﬁPerpﬂ Vector.
	4.3.5. Orthogonal Projections, and the Distance from a Point to a Line.
	4.3.12. How far is it? How far from the line through (2, 5) and (4, -1) does the point (6, 11) lie? Check your result on graph paper.
	4.3.6. Applications of Projection: Reflections.

	4.4. The Cross Product of Two Vectors.
	4.4.1. Geometric Interpretation of the Cross Product.
	4.4.2. Finding the Normal to a Plane.

	4.5. Representations of Key Geometric Objects.
	4.5.1. Coordinate Systems and Coordinate Frames.
	4.5.2. Affine Combinations of Points.
	4.5.3. Linear Interpolation of two points.
	4.5.3. ﬁTweeningﬂ for Art and Animation.
	4.5.4. Preview: Quadratic and cubic tweening, and Bezier Curves.
	4.5.5. Representing Lines and Planes.
	Lines in 2D and 3D space.
	Planes in 3D space.
	Planar Patches.

	4.6. Finding the Intersection of two Line Segments.
	4.6.1. Application of Line Intersections: the circle through three points.

	4.7. Intersections of Lines with Planes, and Clipping.
	4.8. Polygon Intersection Problems.
	4.8.1. Working with convex polygons and polyhedra.
	4.8.2. Ray Intersections and Clipping for Convex Polygons.
	4.8.3. The Cyrus-Beck Clipping Algorithm.
	4.8.4. Clipping against arbitrary polygons.
	4.8.5. More Advanced Clipping.

	4.9. Summary of the Chapter.
	4.10. Case Studies.
	4.10.1. Case Study 4.1: Animation with Tweening.
	4.10.2. Case Study 4.2. Circles Galore.
	4.10.3. Case Study 4.3. Is point Q inside convex polygon P?
	4.10.4. Case Study 4.4. Reflections in a Chamber (2D Ray Tracing)
	4.10.5. Case Study 4.5. Cyrus-Beck Clipping.
	4.10.6. Case Study 4.6. Clipping a polygon against a convex polygon Š Sutherland Hodgman Clipping.
	4.10.7. Case Study 4.7. Clipping a Polygon against another Š Weiler Atherton Clipping.
	4.10.8. Case Study 4.8. Boolean Operations on Polygons.

	4.11. For Further Reading

