
Computer Graphics Chap 3 09/21/99 5:38 PM page 1

(For ECE660 - Fall , 1999)

CHAPTER 3. More Drawing Tools.
Computers are useless.

They can only give you answers.
Pablo Picasso

Even if you are on the right track, you’ ll
get run over if you just sit there.

Will Rogers

Goals of the Chapter
• Introduce viewports and clipping
• Develop the window to viewport transformation
• Develop a classical clipping algorithm
• Create tools to draw in world coordinates
• Develop a C++ class to encapsulate the drawing routines
• Develop ways to select windows and viewports for optimum viewing
• Draw complex pictures using relative drawing, and turtle graphics
• Build figures based on regular polygons and their offspring
• Draw arcs and circles.
• Describe parametricall y defined curves and see how to draw them.

Preview.
Section 3.1 introduces world coordinates and the world window. Section 3.2 describes the window to viewport
transformation. This transformation simpli fies graphics applications by letting the programmer work in a
reasonable coordinate system, yet have all pictures mapped as desired to the display surface. The section also
discusses how the programmer (and user) choose the window and viewport to achieve the desired drawings. A
key property is that the aspect ratios of the window and viewport must agree, or distortion results. Some of the
choices can be automated. Section 3.3 develops a classical clipping algorithm that removes any parts of the
picture that lie outside the world window.

Section 3.4 builds a useful C++ class called Canvas that encapsulates the many detail s of initiali zation and
variable handling required for a drawing program. Its implementation in an OpenGL environment is developed.
A programmer can use the tools in Canvas to make complex pictures, confident that the underlying data is
protected from inadvertent mishandling.

Section 3.5 develops routines for relative drawing and “ turtle graphics” that add handy methods to the
programmer’s toolkit. Section 3.6 examines how to draw interesting figures based on regular polygons, and
Section 3.7 discusses the drawing of arcs and circles. The chapter ends with several Case Studies, including the
development of the Canvas class for a non-OpenGL environment, where all the detail s of clipping and the
window to viewport transformation must be explicitl y developed.

Section 3.8 describes different representations for curves, and develops the very useful parametric form, that
permits straightforward drawing of complex curves. Curves that reside in both 2D space and 3D space are
considered.

3.1. Introduction.
It is as interesting and as diffi cult to say a thing well as to paint it.

Vincent Van Gogh
In Chapter 2 our drawings used the basic coordinate system of the screen window: coordinates that are
essentiall y in pixels, extending from 0 to some value screenWidth – 1 in x, and from 0 to some value
screenHeight –1 in y. This means that we can use only positi ve values of x and y, and the values must
extend over a large range (several hundred pixels) if we hope to get a drawing of some reasonable size.

Computer Graphics Chap 3 09/21/99 5:38 PM page 2

In a given problem, however, we may not want to think in terms of pixels. It may be much more natural to think
in terms of x varying from, say, -1 to 1, and y varying from –100.0 to 20.0. (Recall how awkward it was to scale
and shift values when making the dot plots in Figure 2.16.) Clearly we want to make a separation between the
values we use in a program to describe the geometrical objects and the size and position of the pictures of them
on the display.

In this chapter we develop methods that let the programmer/user describe objects in whatever coordinate system
best fits the problem at hand, and to have the picture of the object automaticall y scaled and shifted so that it
“comes out right” in the screen window. The space in which objects are described is called wor ld coordinates.
It is the usual Cartesian xy-coordinate system used in mathematics, based on whatever units are convenient.

We define a rectangular wor ld window1 in these world coordinates. The world window specifies which part of
the “world” should be drawn. The understanding is that whatever lies inside the window should be drawn;
whatever lies outside should be clipped away and not drawn.

In addition, we define a rectangular viewpor t in the screen window on the screen. A mapping (consisting of
scalings and shiftings) between the world window and the viewport is establi shed so that when all the objects in
the world are drawn, the parts that lie inside the world window are automaticall y mapped to the inside of the
viewport. So the programmer thinks in terms of “ looking through a window” at the objects being drawn, and
placing a “snapshot” of whatever is seen in that window into the viewport on the display. This window/viewport
approach makes it much easier to do natural things li ke “zooming in” on a detail i n the scene, or “panning
around” a scene.

We first develop the mapping part that provides the automatic change of coordinates. Then we see how clipping
is done.

3.2. World Windows and Viewports.
We use an example to motivate the use of world windows and viewports. Suppose you want to examine the
nature of a certain mathematical function, the “sinc” function famous in the signal processing field. It is defined
by

sinc()
sin()

x
x

x
= π

π
(3.1)

You want to know how it bends and wiggles as x varies. Suppose you know that as x varies from - ∞ to ∞ the
value of sinc(x) varies over much of the range –1 to 1, and that it is particularly interesting for values of x near
0. So you want a plot that is centered at (0, 0), and that shows sinc(x) for closely spaced x-values between, say,
–4.0 to 4.0. Figure 3.1 shows an example plot of the function. It was generated using the simple OpenGL
display function (after a suitable world window and viewport were specified, of course):

Figure 3.1. A plot of the “sinc” function.

void myDisplay(void)

1 As mentioned, the term “window” has a bewildering set of meanings in graphics, which often leads to confusion.
We will t ry to keep the different meanings clear by saying "world window", “screen window", etc., when necessary.

Computer Graphics Chap 3 09/21/99 5:38 PM page 3

{
glBegin(GL_LINE_STRIP);

 for(GLfloat x = -4.0; x < 4.0; x += 0.1)
{

GLfloat y = sin(3.14159 * x) / (3.14159 * x);
glVertex2f(x, y);

}
glEnd();
glFlush();

}

Note that the code in these examples operates in a natural coordinate system for the problem: x is made to vary
in small i ncrements from –4.0 to 4.0. The key issue here is how the various (x, y) values become scaled and
shifted so that the picture appears properly in the screen window.

We accomplish the proper scaling and shifting by setting up a world window and a viewport, and establi shing a
suitable mapping between them. The window and viewport are both aligned rectangles specified by the
programmer. The window resides in world coordinates. The viewport is a portion of the screen window. Figure
3.2 shows an example world window and viewport. The notion is that whatever lies in the world window is
scaled and shifted so that it appears in the viewport; the rest is clipped off and not displayed.

Figure 3.2. A world window and a viewport.

We want to describe not only how to “do it in OpenGL” , which is very easy, but also how it is done, to give
insight into the low-level algorithms used. We will work with only a 2D version here, but will l ater see how
these ideas extend naturall y to 3D “worlds” viewed with a “camera”.

3.2.1. The mapping from the window to the viewport.
Figure 3.3 shows a world window and viewport in more detail . The world window is described by its left, top,

right, and bottom borders as W.l, W.t, W.r, and W.b, respectively2. The viewport is described li kewise in the
coordinate system of the screen window (opened at some place on the screen), by V.l, V.t, V.r, and V.b, which
are measured in pixels.

2For the sake of brevity we use ‘ l’ f or ‘ left’ , ‘ t’ f or ‘ top’ , etc. in mathematical formulas.

Computer Graphics Chap 3 09/21/99 5:38 PM page 4

Figure 3.3. Specifying the window and viewport.

The world window can be of any size and shape and in any position, as long as it is an aligned rectangle.
Similarly, the viewport can be any aligned rectangle, although it is of course usually chosen to lie entirely
within the screen window. Further, the world window and viewport don’ t have to have the same aspect ratio,
although distortion results if their aspect ratios differ. As suggested in Figure 3.4, distortion occurs because the
figure in the window must be stretched to fit in the viewport. We shall see later how to set up a viewport with an
aspect ratio that always matches that of the window, even when the user resizes the screen window.

sx
sy

x

y

graphics
window

window

W.l W.r

W.t

W.b

viewpor t

V.r

V.b

V.l

V.t

Figure 3.4. A picture mapped from a window to a viewport. Here some distortion is produced.

Given a description of the window and viewport, we derive a mapping or transformation, called the window-
to-viewpor t mapping. This mapping is based on a formula that produces a point (sx, sy) in the screen window
coordinates for any given point (x, y) in the world. We want it to be a “proportional” mapping, in the sense that
if x is, say, 40% of the way over from the left edge of the window, then sx is 40% of the way over from the left
edge of the viewport. Similarly if y is some fraction, f, of the window height from the bottom, sy must be the
same fraction f up from the bottom of the viewport.

Proportionalit y forces the mappings to have a li near form:

sx = A * x + C (3.2)
sy = B * y + D

for some constants A, B, C and D. The constants A and B scale the x and y coordinates, and C and D shift (or
translate) them.

How can A, B, C, and D be determined? Consider first the mapping for x. As shown in Figure 3.5,
proportionalit y dictates that (sx - V.l) is the same fraction of the total (V.r - V.l) as (x - W.l) is of the total (W.r -
W.l), so that

W.l V.rV.lW.r

sxx

Computer Graphics Chap 3 09/21/99 5:38 PM page 5

Figure 3.5. Proportionalit y in mapping x to sx.

sx− V.l
V.r −V .l = x − W.l

W.r − W.l
or

sx = V.r − V.l

W.r − W.l
x + (V.l − V.r − V.l

W.r − W.l
W.l)

Now identifying A as the part that multiplies x and C as the constant part, we obtain:

A
V r V l

W r W l
C V l A W l= −

−
= − ⋅. .

. .
, . .

Similarly, proportionalit y in y dictates that

sy−V .b
V.t − V.b = y − W.b

W.t − W.b

and writing sy as B y + D yields:

B
V t V b

W t W b
D V b B W b= −

−
= − ⋅. .

. .
, . .

Summarizing, the window to viewpor t transformation is:
sx = A x + C, sy = B y + D

with (3.3)

A
V r V l

W r W l
C V l A W l

B
V t V b

W t W b
D V b B W b

= −
−

= − ⋅

= −
−

= − ⋅

. .

. .
, . .

. .

. .
, . .

The mapping can be used with any point (x, y) inside or outside the window. Points inside the window map to
points inside the viewport, and points outside the window map to points outside the viewport.

(Important!) Carefull y check the following properties of this mapping using Equation 3.3:

a). if x is at the window’s left edge: x = W.l, then sx is at the viewport’s left edge: sx = V.l.
b). if x is at the window’s right edge then sx is at the viewport’s right edge.
c). if x is fraction f of the way across the window, then sx is fraction f of the way across the viewport.
d). if x is outside the window to the left, (x < w.l), then sx is outside the viewport to the left (sx < V.l), and
similarly if x is outside to the right.

Also check similar properties for the mapping from y to sy.

Example 3.2.1: Consider the window and viewport of Figure 3.6. The window has (W.l, W.r, W.b, W.t) = (0,
2.0, 0, 1.0) and the viewport has (V.l, V.r, V.b, V.t) = (40, 400, 60, 300).

Computer Graphics Chap 3 09/21/99 5:38 PM page 6

Figure 3.6. An example of a window and viewport.

Using the formulas in Equation 3.2.2 we obtain

A = 180, C = 40,
B = 240, D = 60

Thus for this example, the window to viewport mapping is:

sx = 180 x + 40
sy = 240 y + 60

Check that this mapping properly maps various points of interest, such as:

• Each corner of the window is indeed mapped to the corresponding corner of the viewport. For example, (2.0,
1.0) maps to (400, 300).

• The center of the window (1.0, 0.5) maps to the center of the viewport (220, 180).

Practice Exercise 3.2.1. Building the mapping. Find values of A, B, C, and D for the case of a world window
10.0, 10.0, -6.0, 6.0) and a viewport (0, 600, 0, 400).

Doing it in OpenGL.
OpenGL makes it very easy to use the window to viewport mapping: it automaticall y passes each vertex it is
given (via a glVertex2 * () command) through a sequence of transformations that carry out the desired
mapping. It also automaticall y clips off parts of objects lying outside the world window. All we need do is to set
up these transformations properly, and OpenGL does the rest.

For 2D drawing the world window is set by the function gluOrtho2D (), and the viewport is set by the function
glViewport (). These functions have prototypes:

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble
top);

which sets the window to have lower left corner (left , bottom) and upper right corner (right , top), and

void glViewport(GLint x, GLint y, GLint width, GLint height);

which sets the viewport to have lower left corner (x , y) and upper right corner (x + width , y + height).

By default the viewport is the entire screen window: if W and H are the width and height of the screen window,
respectively, the default viewport has lower left corner at (0, 0) and upper right corner at (W, H) .

Computer Graphics Chap 3 09/21/99 5:38 PM page 7

Because OpenGL uses matrices to set up all it s transformations, gluOrtho2D ()3 must be preceded by two “set
up” functions glMatrixMode(GL_PROJECTION) and glLoadIdentity (). (We discuss what is going on
behind the scenes here more full y in Chapter 5.)

Thus to establi sh the window and viewport used in Example 3.2.1 we would use:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 2.0, 0.0, 1.0); // sets the window
glViewport(40, 60, 360, 240); // sets the viewport

Hereafter every point (x, y) sent to OpenGL using glVertex2*(x, y) undergoes the mapping of Equation 3.3, and
edges are automaticall y clipped at the window boundary. (In Chapter 7 we see the detail s of how this is done in
3D, where it also becomes clear how the 2D version is simply a special case of the 3D version.)

It will make programs more readable if we encapsulate the commands that set the window into a function
setWindow () as shown in Figure 3.7. We also show setViewport () that hides the OpenGL detail s of
glViewport (..). To make it easier to use, its parameters are slightly rearranged to match those of
setWindow (), so they are both in the order left , right , bottom , top .

Note that for convenience we use simply the type float for the parameters to setWindow (). The parameters left,
right, etc. are automaticall y cast to type Gldouble when they are passed to gluOrtho2D (), as specified by
this function's prototype. Similarly we use the type int for the parameters to setViewport (), knowing the
arguments to glViewport () will be properly cast.
//--------------- setWindow ---------------------
void setWindow(float left, float right, float bottom, float top)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(left, right, bottom, top);

}
//---------------- setViewport ------------------
void setViewport(float left, float right, float bottom, float top)
{

glViewport(left, bottom, right – left, top - bottom);
}

Figure 3.7. Handy functions to set the window and viewport.

It is worthwhile to look back and see what we used for a window and viewport in the early OpenGL programs
given in Chapter 2. In Figures 2.10 and 2.17 the programs used:

1). in main() :

glutInitWindowSize(640,480); // set screen window size

 which set the size of the screen window to 640 by 480. The default viewport was used since no
glViewport () command was issued; the default viewport is the entire screen window.

2). in myInit():
 glMatrixMode(GL_PROJECTION);

glLoadIdentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);

3 The root “ortho” appears because setting the window this way is actuall y setting up a so-called
“orthographic” projection in 3D, as we’ ll see in Chapter 7.

Computer Graphics Chap 3 09/21/99 5:38 PM page 8

This set the world window to the aligned rectangle with corners (0,0) and (640.0, 480.0), just matching the
viewport size. So the underlying window to viewport mapping didn’ t alter anything. This was a reasonable
first choice for getting started.

Example 3.2.2: Plott ing the sinc function – revisited.
Putting these ingredients together, we can see what it takes to plot the sinc() function shape of Figure 3.1. With
OpenGL it is just a matter of defining the window and viewport. Figure 3.8 shows the required code, assuming
we want to plot the function from closely spaced x-values between –4.0 and 4.0, into a viewport with width 640
and height 480. (The window is set to be a littl e wider than the plot range to leave some cosmetic space around
the plot.)
void myDisplay(void) // plot the sinc function, using world coordinates
{

setWindow(-5.0, 5.0, -0.3, 1.0); // set the window
setViewport(0, 640, 0, 480); // set the viewport
glBegin(GL_LINE_STRIP);

 for(GLfloat x = -4.0; x < 4.0; x += 0.1) // draw the plot
glVertex2f(x, sin(3.14159 * x) / (3.14159 * x));

glEnd();
glFlush();

}

Figure 3.8. Plotting the sinc function.

Example 3.2.3: Drawing polylines from a file.
In Chapter 2 we drew the dinosaur shown in Figure 3.9 using the routine drawPolylineFile (
“dino.dat ”) of Figure 2.22. The polyline data for the figure was stored in a file “dino .dat ” . The world
window and viewport had not yet been introduced, so we just took certain things on faith or by default, and
luckil y still got a picture of the dinosaur.

Figure 3.9. The dinosaur inside its world window.

Now we can see why it worked: the world window we used happened to enclose the data for the dinosaur (see
Case Study 2.4): All of the polylines in dino.dat li e inside a rectangle with corners (0, 0) and (640, 480), so
none are clipped with this choice of a window.

Armed with tools for setting the window and viewport, we can take more control of the situation. The next two
examples ill ustrate this.

Example 3.2.4. Tili ng the screen window with the dinosaur motif.
To add some interest, we can draw a number of copies of the dinosaur in some pattern. If we lay them side by
side to cover the entire screen window it’s called tili ng the screen window. The picture that is copied at
different positions is often called a motif. Tili ng a screen window is easil y achieved by using a different
viewport for each instance of the motif. Figure 3.10a shows a tili ng involving 25 copies of the motif. It was
generated using:
a). b).

Computer Graphics Chap 3 09/21/99 5:38 PM page 9

Figure 3. 10. Tili ng the display with copies of the dinosaur.

setWindow(0, 640.0, 0, 480.0); // set a fixed window
for(int i = 0; i < 5; i++) // for each column
 for(int j = 0; j < 5; j++) // for each row
 {

glViewport(i * 64, j * 44, 64, 44); // set the next viewport
drawPolylineFile(“ dino.dat”); // draw it again

 }

(It’s easier to use glViewport () here than setViewport (). What would the arguments to setViewport ()
be if we chose to use it instead?) Each copy is drawn in a viewport 64 by 48 pixels in size, whose aspect ratio
64/48 matches that of the world window. This draws each dinosaur without any distortion.

Figure 3.10b shows another tili ng, but here alternate motifs are flipped upside down to produce an intriguing effect. This was
done by flipping the window upside down every other iteration: interchanging the top and bottom values in
setWindow ()4. (Check that this flip of the window properly affects B and D in the window to viewport transformation of
Equation 3.3 to flip the picture in the viewport.) Then the preceding double loop was changed to:

for(int i = 0; i < 5; i++)
 for(int j = 0; j < 5; j++)
 {

if((i + j) % 2 == 0) // if (i + j) is even
 setWindow(0.0, 640.0, 0.0, 480.0); // right side up window
else

 setWindow(0.0, 640.0, 480.0, 0.0); // upside down window
glViewport(i * 64, j * 44, 64, 44); // set the next viewport
drawPolylineFile(“ dino.dat”); // draw it again

 }

Example 3.2.5. Clipping par ts of a figure.
A picture can also be clipped by proper setting of the window. OpenGL automaticall y clips off parts of objects
that lie outside the world window. Figure 3.11a shows a figure consisting of a collection of hexagons of different
sizes, each slightly rotated relative to its neighbor. Suppose it is drawn by executing some function hexSwirl ().
(We see how to write hexSwirl () in Section 3.6.) Also shown in part a are two boxes that indicate different
choices of a window. Parts b and c show what is drawn if these boxes are used for the world windows. It is
important to keep in mind that the same entire object is drawn in each case, using the code:

4 It might seem easier to invert the viewport, but OpenGL does not permit a viewport to have a negative
height.

Computer Graphics Chap 3 09/21/99 5:38 PM page 10

Figure 3.11. Using the window to clip parts of a figure.

setWindow(…); // the window is changed for each picture
setViewport(…); // use the same viewport for each picture
hexSwirl(); // the same function is called

What is displayed, on the other hand, depends on the setting of the window.

Zooming and roaming.
The example in Figure 3.11 points out how changing the window can produce useful effects. Making the window
smaller is much li ke zooming in on the object with a camera. Whatever is in the window must be stretched to fit
in the fixed viewport, so when the window is made smaller there must be greater enlargement of the portion
inside. Similarly making the window larger is equivalent to zooming out from the object. (Visualize how the
dinosaur would appear if the window were enlarged to twice the size it has in Figure 3.9.) A camera can also
roam (sometimes called “pan”) around a scene, taking in different parts of it at different times. This is easil y
accomplished by shifting the window to a new position.

Example 3.2.6. Zooming in on a figure in an animation.
Consider putting together an animation where the camera zooms in on some portion of the hexagons in figure
3.11. We make a series of pictures, often called frames, using a slightly smaller window for each one. When the
frames are displayed in rapid succession the visual effect is of the camera zooming in on the object.

Figure 3.12 shows a few of the windows used: they are concentric and have a fixed aspect ratio, but their size
diminishes for each successive frame. Visualize what is drawn in the viewport for each of these windows.

Figure 3.12. Zooming in on the swirl of hexagons. (file: fig3.12.bmp)

Computer Graphics Chap 3 09/21/99 5:38 PM page 11

A skeleton of the code to achieve this is shown in Figure 3.13. For each new frame the screen is cleared, the
window is made smaller (about a fixed center, and with a fixed aspect ratio), and the figure within the window is
drawn in a fixed viewport.
float cx = 0.3, cy = 0.2; //center of the window
float H, W = 1.2, aspect = 0.7; // window properties
set the viewport
for(int frame = 0; frame < NumFrames; frame++) // for each frame
{

clear the screen // erase the previous figure
W *= 0.7; // reduce the window width
H = W * aspect; // maintain the same aspect ratio
setWindow(cx - W, cx + W, cy - H, cy + H); //set the next window
hexSwirl(); // draw the object

}

Figure 3.13. Making an animation.

Achieving a Smooth Animation.
The previous approach isn’ t completely satisfying, because of the time it takes to draw each new figure. What the
user sees is a repetiti ve cycle of:

a). Instantaneous erasure of the current figure;
b). A (possibly) slow redraw of the new figure.

The problem is that the user sees the line-by-line creation of the new frame, which can be distracting. What the
user would li ke to see is a repetiti ve cycle of:

a). A steady display of the current figure;
b). Instantaneous replacement of the current figure by the finished new figure;

The trick is to draw the new figure “somewhere else” while the user stares at the current figure, and then to
move the completed new figure instantaneously onto the user’s display. OpenGL offers double-buffering
to accomplish this. Memory is set aside for an extra screen window which is not visible on the actual display,
and all drawing is done to this buffer. (The use of such “off-screen memory” is discussed full y in Chapter 10.)
The command glutSwapBuffers () then causes the image in this buffer to be transferred onto the screen
window visible to the user.

To make OpenGL reserve a separate buffer for this, use GLUT_DOUBLE rather than GLUT_SINGLE in the
routine used in main () to initiali ze the display mode:

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // use double buffering

The command glutSwapBuffers () would be placed directly after drawPolylineFile () in the code of
Figure 3.13. Then, even if it takes a substantial period for the polyline to be drawn, at least the image will
change abruptly from one figure to the next in the animation, producing a much smoother and visually
comfortable effect.

Practice Exercise 3.2.2. Whir ling swir ls. As another example of clipping and tili ng, Figure 3.14a shows the
swirl of hexagons with a particular window defined. The window is kept fixed in this example, but the viewport
varies with each drawing. Figure 3.14b shows a number of copies of this figure laid side by side to tile the
display. Try to pick out the individual swirls. (Some of the swirls have been flipped: which ones?) The result is
dazzling to the eye, in part due to the eye’s yearning to synthesize many small elements into an overall pattern.

Computer Graphics Chap 3 09/21/99 5:38 PM page 12

Figure 3.14. a). Whirling hexagons in a fixed window. b). A tili ng formed using many viewports.

Except for the flipping, the code shown next creates this pattern. Function myDisplay () sets the window once,
then draws the clipped swirl again and again in different viewports.

void myDisplay(void)
{

clear the screen
setWindow(-0.6, 0.6, -0.6, 0.6); // the portion of the swirl to draw
for(int i = 0; i < 5; i++) // make a pattern of 5 by 4 copies
 for(int j = 0; j < 4; j++)
 {

 int L = 80; // the amount to shift each viewport
 setViewport(i * L, L + i * L, j * L, L + j * L); // the next viewport
 hexSwirl();

 }
}
Type this code into an OpenGL environment, and experiment with the figures it draws. Taking a cue from a
previous example, determine how to flip alternating figures upside down.

3.2.2. Setting the Window and Viewport Automatically.
We want to see how to choose the window and viewport in order to produce appropriate pictures of a scene. In
some cases the programmer (or possibly the user at run-time) can input the window and viewport specifications
to achieve a certain effect; in other cases one or both of them are set up automaticall y, according to some
requirement for the picture. We discuss a few alternatives here.

Sett ing of the Window.
Often the programmer does not know where or how big the object of interest lies in world coordinates. The
object might be stored in a file li ke the dinosaur earlier, or it might be generated procedurall y by some
algorithm whose detail s are not known. In such cases it is convenient to let the application determine a good
window to use.

The usual approach is to find a window that includes the entire object: to achieve this the object’s extent must
be found. The extent (or bounding box) of an object is the aligned rectangle that just covers it. Figure 3.15
shows a picture made up of several li ne segments. The extent of the figure, shown as a dashed line, is (left,
right, bottom, top) = (0.36, 3.44, -0.51, 1.75).

Computer Graphics Chap 3 09/21/99 5:38 PM page 13

x

y
sx

sy

extent(0.36, 1.75)

(3.44, -0.51)

Figure 3.15. Using the Extent as the Window.

How can the extent be computed for a given object? If all the endpoints of its lines are stored in an array pt [i],
for i = 0, 2, ..., n -1 the extent can be computed by finding the extreme values of the x- and y- coordinates in this
array. For instance, the left side of the extent is the smallest of the values pt[i].x . Once the extent is known,
the window can be made identical to it.

If , on the other hand, an object is procedurall y defined, there may be no way to determine its extent ahead of
time. In such a case the routine may have to be run twice:

Pass 1: Execute the drawing routine, but do no actual drawing; just compute the extent. Then set the window.
Pass 2: Execute the drawing routine again. Do the actual drawing.

Automatic sett ing of the viewpor t to Preserve Aspect Ratio.
Suppose you want to draw the largest undistorted version of a figure that will fit in the screen window. For this
you need to specify a viewport that has the same aspect ratio as the world window. A common wish is to find
the largest such viewport that will fit inside the screen window on the display.

Suppose the aspect ratio of the world window is know to be R, and the screen window has width W and height
H. There are two distinct situations: the world window may have a larger aspect ratio than the screen window (R
> W/H), or it may have a smaller aspect ratio (R < W/H). The two situations are shown in Figure 3.16.

Figure 3.16. Possible aspect ratios for the world and screen windows.

Case a): R > W/H. Here the world window is short and stout relative to the screen window, so the viewport with
a matching aspect ratio R will extend full y across the screen window, but will l eave some unused space above
or below. At its largest, therefore, it will have width W and height W/R, so the viewport is set using (check that
this viewport does indeed have aspect ratio R):

setViewport(0, W, 0, W/R);

Case b): R < W/H. Here the world window is tall and narrow relative to the screen window, so the viewport of
matching aspect ratio R will reach from the top to the bottom of the screen window, but will l eave some unused
space to the left or right. At its largest it will have height H but width HR, so the viewport is set using:

Computer Graphics Chap 3 09/21/99 5:38 PM page 14

setViewport(0, H * R, 0, H);

Example 3.2.7: A tall window. Suppose the window has aspect ratio R = 1.6 and the screen window has H =
200 and W = 360, and hence W/H = 1.8. Therefore Case b) applies, and the viewport is set to have a height of
200 pixels and a width of 320 pixels.

Example 3.2.8: A shor t window. Suppose R = 2 and the screen window is the same as in the example above.
Then case a) applies, and the viewport is set to have a height of 180 pixels and a width of 360 pixels.

Resizing the screen window, and the resize event.
In a windows-based system the user can resize the screen window at run-time, typicall y by dragging one of its
corners with the mouse. This action generates a resize event that the system can respond to. There is a function
in the OpenGL utilit y toolkit, glutReshape () that specifies a function to be called whenever this event
occurs:

glutReshape(myReshape); //specifies the function called on a resize event

(This statement appears in main () along with the other call s that specify callback functions.) The registered
function is also called when the window is first opened. It must have the prototype:

void myReshape(GLsizei W, GLsizei H);

When it is executed the system automaticall y passes it the new width and height of the screen window, which it
can use in its calculations. (GLsizei is a 32 bit integer – see Figure 2.7.)

What should myReshape() do? If the user makes the screen window bigger the previous viewport could still be
used (why?), but it might be desired to increase the viewport to take advantage of the larger window size. If the
user makes the screen window smaller, crossing any of the boundaries of the viewport, you almost certainly want
to recompute a new viewport.

Making a matched viewpor t.
One common approach is to find a new viewport that a) fits in the new screen window, and b) has the same
aspect ratio as the world window. “Matching” the aspect ratios of the viewport and world window in this way
will prevent distortion in the new picture. Figure 3.17 shows a version of myReshape() that does this: it finds
the largest “matching” viewport (matching the aspect ratio, R, of the window), that will fit in the new screen
window. The routine obtains the (new) screen window width and height through its arguments. Its code is a
simple embodiment of the result in Figure 3.16.
void myReshape(GLsizei W, GLsizei H)
{

if(R > W/H) // use (global) window aspect ratio
setViewport(0, W, 0, W/R);

else
 setViewport(0, H * R, 0, H);
}

Figure 3.17. Using a reshape function to set the largest matching viewport upon a resize event.

Practice Exercises.
3.2.3. Find the bounding box for a polyline. Write a routine that computes the extent of the polyline stored in the
array of points pt[i] , for i = 0, 2, ..., n –1.
3.2.4. Matching the Viewpor t. Find the matching viewport for a window with aspect ratio .75 when the screen
window has width 640 and height 480.
3.2.5. Centering the viewpor t. (Don’t skip this one!) Adjust the myReshape() routine above so that the
viewport, rather than lying in the lower left corner of the display, is centered both verticall y and horizontall y in
the screen window.
3.2.6. How to squash a house. Choose a window and a viewport so that a square is squashed to half its proper
height. What are the coeff icients A, B, C, and D in this case?

Computer Graphics Chap 3 09/21/99 5:38 PM page 15

3.2.7. Calculation of the mapping. Find the coeff icients A, B, C, and D of the window to viewport mapping for
a window given by (-600, 235, -500, 125) and a viewport (20, 140, 30, 260). Does distortion occur for figures
drawn in the world? Change the right border of the viewport so that distortion will not occur.

3.3. Clipping Lines.
Clipping is a fundamental task in graphics, needed to keep those parts of an object that lie outside a given

region from being drawn. A large number of clipping algorithms have been developed. In an OpenGL
environment each object is automaticall y clipped to the world window using a particular algorithm
(which we examine in detail i n Chapter 7 for both 2D and 3D objects.)

Because OpenGL clips for you there may be a temptation to skip a study of the clipping process. But the ideas
that are used to develop a clipper are basic and arise in diverse situations; we will see a variety of approaches to
clipping in later chapters. And it’s useful to know how to pull together a clipper as needed when a tool li ke
OpenGL is not being used.

We develop a clipping algorithm here that clips off outlying parts of each line segment presented to it. This
algorithm can be incorporated in a line-drawing routine if we do not have the benefit of the clipping performed
by OpenGL. An implementation of a class that draws clipped lines is developed in Case Study 3.3.

3.3.1. Clipping a Line.
In this section we describe a classic line-clipping algorithm, the Cohen-Sutherland clipper, that computes which
part (if any) of a line segment with endpoints p1 and p2 li es inside the world window, and reports back the
endpoints of that part.

We’ ll develop the routine clipSegment (p1, p2, window) that takes two 2D points and an aligned
rectangle. It clips the line segment defined by endpoints p1 and p2 to the window boundaries. If any portion of
the line remains within the window, the new endpoints are placed in p1 and p2, and 1 is returned (indicating
some part of the segment is visible). If the line is completely clipped out, 0 is returned (no part is visible).

Figure 3.18 shows a typical situation covering some of the many possible actions for a clipper. clipSegment(
) does one of four things to each line segment:

A

D

E

C

B window

Figure 3.18. Clipping Lines at window boundaries.

• If the entire line lies within the window, (e.g. segment CD): it returns 1.

• If the entire line lies outside the window, (e.g. segment AB): it returns 0.

• If one endpoint is inside the window and one is outside (e.g. segment ED): the function clips the portion of the
segment that lies outside the window and returns 1.

• If both endpoints are outside the window, but a portion of the segment passes through it, (e.g. segment AE): it
clips both ends and returns 1.

There are many possible arrangements of a segment with respect to the window. The segment can lie to the left,
to the right, above, or below the window; it can cut through any one (or two) window edges, and so on. We
therefore need an organized and eff icient approach that identifies the prevaili ng situation and computes new
endpoints for the clipped segment. Eff iciency is important because a typical picture contains thousands of line

Computer Graphics Chap 3 09/21/99 5:38 PM page 16

segments, and each must be clipped against the window. The Cohen–Sutherland algorithm provides a rapid
divide-and-conquer attack on the problem. Other clipping methods are discussed beginning in Chapter 4.

3.3.2. The Cohen-Sutherland Clipping Algorithm
The Cohen-Sutherland algorithm quickly detects and dispenses with two common cases, called “ trivial accept”
and “ trivial reject” . As shown in Figure 3.19, both endpoints of segment

A

D

C

B

window

Figure 3.19. Trivial acceptance or rejection of a line segment.

AB li e within window W, and so the whole segment AB must lie inside. Therefore AB can be “triviall y
accepted” : it needs no clipping. This situation occurs frequently when a large window is used that encompasses
most of the line segments. On the other hand, both endpoints C and D li e entirely to one side of W, and so
segment CD must lie entirely outside. It is triviall y rejected, and nothing is drawn. This situation arises
frequently when a small window is used with a dense picture that has many segments outside the window.

Testing for a tr ivial accept or tr ivial reject.
We want a fast way to detect whether a line segment can be triviall y accepted or rejected. To facilit ate this, an
“ inside-outside code word” is computed for each endpoint of the segment. Figure 3.20 shows how it is done.
Point P is to the left and above the window W. These two facts are recorded in a code word for P: a T (for
TRUE) is seen in the field for “ is to the left of” , and “ is above”. An F (for FALSE) is seen in the other two
fields, “ is to the right of” , and “ is below” .

P

window

T T F F

is P to the right of W?
is P above W?

is P to the left of W?

code for P:

Figure 3.20. Encoding how point P is disposed with respect to the window.

For example, if P is inside the window its code is FFFF; if P is below but neither to the left nor right its code is
FFFT. Figure 3.21 shows the nine different regions possible, each with its code.

TTFF FTFF FTTF

FFTF

FFTT

TFFF

TFFT FFFT

FFFF

window

Figure 3.21. Inside-outside codes for a point.

We form a code word for each of the endpoints of the line segment being tested. The conditions of trivial accept
and reject are easil y related to these code words:

Computer Graphics Chap 3 09/21/99 5:38 PM page 17

• Trivial accept: Both code words are FFFF;
• Trivial reject: the code words have an F in the same position: both points are to the left of the window, or

both are above, etc.

The actual formation of the code words and tests can be implemented very eff iciently using the bit
manipulation capabiliti es of C/ C++, as we describe in Case Study 3.3.

Chopping when there is neither tr ivial accept nor reject.
The Cohen-Sutherland algorithm uses a divide-and-conquer strategy. If the segment can neither be triviall y
accepted nor rejected it is broken into two parts at one of the window boundaries. One part lies outside the
window and is discarded. The other part is potentiall y visible, so the entire process is repeated for this segment
against another of the four window boundaries. This gives rise to the strategy:

do{
form the code words for p1 and p2
if (trivial accept) return 1;
if (trivial reject) return 0;

 chop the line at the “ next” window border; discard the “ outside” part;
} while(1);

The algorithm terminates after at most four times through the loop, since at each iteration we retain only the
portion of the segment that has “survived” testing against previous window boundaries, and there are only four
such boundaries. After at most four iterations trivial acceptance or rejection is assured.

How is the chopping at each boundary done? Figure 3.22 shows an example involving the right edge of the
window.

P1

P2

dely

delx

top

bottom

lef t right

window
d

e
A

Figure 3.22. Clipping a segment against an edge.

Point A must be computed. Its x-coordinate is clearly W.right , the right edge position of the window. Its y-
coordinate requires adjusting p1.y by the amount d shown in the figure. But by similar triangles

d

dely

e

delx
=

where e is p1.x - W.right and:

delx = p2.x - p1.x; (3.4)
dely = p2.y - p1.y;

are the differences between the coordinates of the two endpoints. Thus d is easil y determined, and the new
p1.y is found by adding an increment to the old as

p1.y += (W.right - p1.x) * dely / delx (3.5)

Computer Graphics Chap 3 09/21/99 5:38 PM page 18

Similar reasoning is used for clipping against the other three edges of window.

In some of the calculations the term dely/ delx occurs, and in others it is delx/ dely . One must always be
concerned about dividing by zero, and in fact delx is zero for a vertical li ne, and dely is 0 for a horizontal
li ne. But as discussed in the exercises the perilous lines of code are never executed when a denominator is zero,
so division by zero will not occur.

These ideas are collected in the routine clipSegment () shown in Figure 3.23. The endpoints of the segment
are passed by reference, since changes made to the endpoints by clipSegment () must be visible in the
calli ng routine. (The type Point2 holds a 2D point, and the type RealRect holds an aligned rectangle. Both
types are described full y in Section 3.4.)
int clipSegment(Point2& p1, Point2& p2, RealRect W)
{

do{
if(trivial accept) return 1; // some portion survives
if(trivial reject) return 0; // no portion survives

 if(p1 is outside)
{

if(p1 is to the left) chop against the left edge
else if(p1 is to the right) chop against the right edge
else if(p1 is below) chop against the bottom edge
else if(p1 is above) chop against the top edge

}
else // p2 is outside
{

if(p2 is to the left) chop against the left edge
else if(p2 is to the right) chop against the right edge
else if(p2 is below) chop against the bottom edge
else if(p2 is above) chop against the top edge

}
 }while(1);
}
Figure 3.23. The Cohen-Sutherland line clipper (pseudocode).

Each time through the do loop the code for each endpoint is recomputed and tested. When trivial acceptance
and rejection fail , the algorithm tests whether p1 is outside, and if so it clips that end of the segment to a
window boundary. If p1 is inside then p2 must be outside (why?) so p2 is clipped to a window boundary.

This version of the algorithm clips in the order left, then right, then bottom, and then top. The choice of order is
immaterial i f segments are equally li kely to lie anywhere in the world. A situation that requires all four clips is
shown in Figure 3.24. The first clip

p2

p1

B
D

CA

Figure 3.24. A segment that requires four clips.

Computer Graphics Chap 3 09/21/99 5:38 PM page 19

changes p1 to A ; the second alters p2 to B; the third finds p1 still outside and below and so changes A to C ;
and the last changes p2 to D. For any choice of ordering for the chopping tests, there will always be a situation
in which all four clips are necessary.

Clipping is a fundamental operation that has received a lot of attention over the years. Several other approaches
have been developed. We examine some of them in the Case Studies at the end of this chapter, and in Chapter
4.

3.3.2. Hand Simulation of clipSegment().
Go through the clipping routine by hand for the case of a window given by (left, right, bottom, top) = (30, 220,
50, 240) and the following line segments:
1). p1=(40,140), p2=(100,200); 2). p1=(10,270), p2=(300,0);
3). p1=(20,10), p2=(20,200); 4). p1=(0,0), p2=(250,250);
In each case determine the endpoints of the clipped segment, and for a visual check, sketch the situation on
graph paper.

3.4. Developing the Canvas Class.
“ One must not always think that feeling is everything.

Art is nothing without form” .
Gustave Flaubert

There is significant freedom in working in world coordinates, and having primiti ves be clipped and properly
mapped from the window to the viewport. But this freedom must be managed properly. There are so many
interacting ingredients (points, rectangles, mappings, etc.) in the soup now we should encapsulate them and
restrict how the application programmer accesses them, to avoid subtle bugs. We should also insure that the
various ingredients are properly initiali zed.

It is natural to use classes and the data hiding they offer. So we develop a class called Canvas that provides a
handy drawing canvas on which to draw the lines, polygons, etc. of interest. It provides simple methods to
create the desired screen window and to establi sh a world window and viewport, and it insures that the window
to viewport mapping is well defined. It also offers the routines moveTo() and lineTo () that many
programmers find congenial, as well as the useful “ turtle graphics” routines we develop later in the chapter.

There are many ways to define the Canvas class: the choice presented here should be considered only as a
starting point for your own version. We implement the class in this section using OpenGL, exploiting all of the
operations OpenGL does automaticall y (such as clipping). But in Case Study 3.4 we describe an entirely
different implementation (based on Turbo C++ in a DOS environment), for which we have to supply all of the
tools. In particular an implementation of the Cohen Sutherland clipper is used.

3.4.1. Some useful Supporting Classes.
It will be convenient to have some common data types available for use with Canvas and other classes. We
define them here as classes5, and show simple constructors and other functions for handling objects of each
type. Some of the classes also have a draw function to make it easy to draw instances of the class. Other
member functions (methods) will be added later as the need arises. Some of the methods are implemented
directly in the class definitions; the implementation of others is requested in the exercises, and only the
declaration of the method is given.

class Point2: A point having real coordinates.
The first supporting class embodies a single point expressed with floating point coordinates. It is shown with two
constructors, the function set () to set the coordinate values, and two functions to retrieve the individual
coordinate values.

class Point2
{

5 Students preferring to write in C can define similar types using struct's .

Computer Graphics Chap 3 09/21/99 5:38 PM page 20

 public:
Point2() {x = y = 0.0f;} // constructor1
Point2(float xx, float yy) {x = xx; y = yy;} // constructor2
void set(float xx, float yy) {x = xx; y = yy;}
float getX() {return x;}
float getY() {return y;}
void draw(void) { glBegin(GL_POINTS); // draw this point

glVertex2f((Glfloat)x, (Glfloat)y);
glEnd();}

 private:
float x, y;

};

Note that values of x and y are cast to the type Glfloat when glVertex2f () is called. This is mot likely
unnecessary since the type Glfloat is defined on most systems as float anyway.

class IntRect: An aligned rectangle with integer coordinates.
To describe a viewport we need an aligned rectangle having integer coordinates. The class IntRect provides
this.

class IntRect
{
 public:

IntRect () {l = 0; r = 100; b = 0; t = 100;}// constructors
IntRect (int left, int right, int bottom, int top)

{ l = left; r = right; b = bottom; t = top;}
void set(int left, int right, int bottom, int top)

{ l = left; r = right; b = bottom; t = top;}
void draw(void); // draw this rectangle using OpenGL

 private:
int l, r, b, t;

};

class RealRect: An aligned rectangle with real coordinates.
A world window requires the use of an aligned rectangle having real values for its boundary position. (This
class is so similar to IntRect some programmers would use templates to define a class that could hold either
integer or real coordinates.)

class RealRect
{
 same as intRect except use float instead of int
};

Practice Exercise 3.4.1. Implementing the classes. Flesh out these classes by adding other functions you think
would be useful, and by implementing the functions, such as draw () for intRect , that have only been
declared above.

3.4.2. Declaration of Class Canvas.
We declare the interface for Canvas in Canvas.h as shown in Figure 3.25. Its data members include the
current position, a window, a viewport, and the window to viewport mapping.
class Canvas {
 public:

 Canvas(int width, int height, char* windowTitle); // constructor
 void setWindow(float l, float r, float b, float t);
 void setViewport(int l, int r, int b, int t);

 IntRect getViewport (void); // divulge the viewport data
 RealRect getWindow (void); // divulge the window data

Computer Graphics Chap 3 09/21/99 5:38 PM page 21

 float getWindowAspectRatio(void);
 void clearScreen();

 void setBackgroundColor(float r, float g, float b);
 void setColor(float r, float g, float b);
 void lineTo(float x, float y);
 void lineTo(Point2 p);
 void moveTo(float x, float y);
 void moveTo(Point2 p);
 others later

 private:
 Point2 CP; // current position in the world

 IntRect viewport; // the current window
 RealRect window; // the current viewport
 others later

};

Figure 3.25. The header file Canvas.h.

The Canvas constructor takes the width and height of the screen window along with the title string for the
window. As we show below it creates the screen window desired, performing all of the appropriate
initiali zations. Canvas also includes functions to set and return the dimensions of the window and the viewport,
and to control the drawing and background color. (There is no explicit mention of data for the window to
viewport mapping in this version, as this mapping is managed “silently” by OpenGL. In Case Study 3.4 we add
members to hold the mapping for an environment that requires it.). Other functions shown are versions of
lineTo () and moveTo() that do the actual drawing (in world coordinates, of course). We add “relative drawing
tools” in the next section.

Figure 3.26 shows how the Canvas class might typicall y be used in an application. A single global object cvs is
created, which initiali zes and opens the desired screen window. It is made global so that callback functions such
as display () can “see” it. (We cannot pass cvs as a parameter to such functions, as their prototypes are fixed
by the rules of the OpenGL utilit y toolkit.) The display () function here sets the window and viewport, and
then draws a line, using Canvas member functions. Then a rectangle is created and drawn using its own member
function.
Canvas cvs (640, 480, “try out Canvas”); // create a global canvas object

//<<<<<<<<<<<<<<<<<<<<<<<<<<<<< display >>>>>>>>>>>>>>>>>>>>>>
void display(void)
{

cvs.clearScreen(); // clear screen
cvs.setWindow(-10.0, 10.0, -10.0, 10.0);
cvs.setViewport(10, 460, 10, 460);
cvs.moveTo(0, -10.0); // draw a line
cvs.lineTo(0, 10.0);
RealRect box (-2.0, 2.0, -1.0, 1.0); // construct a box
box.draw(); // draw the box
. . .

}
//<<<<<<<<<<<<<<<<<<<<<< main >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
void main(void)
{

// the window has already been opened in the Canvas constructor
cvs.setBackgroundColor(1.0, 1.0, 1.0); // background is white
cvs.setColor(0.0, 0.0, 0.0); // set drawing color
glutDisplayFunc(display);
glutMainLoop();

}

Figure 3.26. Typical usage of the Canvas class.

Computer Graphics Chap 3 09/21/99 5:38 PM page 22

The main () routine doesn’ t do any initiali zation: this has all been done in the Canvas constructor. The routine
main () simply sets the drawing and background colors, registers function display (), and enters the main
event loop. (Could these OpenGL-specific functions also be “buried” in Canvas member functions?) Note that
this application makes almost no OpenGL-specific call s, so it could easil y be ported to another environment
(which used a different implementation of Canvas, of course).

3.4.3. Implementation of Class Canvas.
We show next some detail s of an implementation of this class when OpenGL is available. (Case Study 3.4
discusses an alternate implementation.) The constructor, shown in Figure 3.27, passes the desired width and
height (in pixels) to glutInitWindowSize (), and the desired title string to glutCreateWindow (). Some
fussing must be done to pass glutInit () the arguments it needs, even though they aren’ t used here. (Normally
main () passes glutInit () the command line arguments, as we saw earlier. This can’ t be done here since we
will use a global Canvas object , cvs , which is constructed before main () is called.)
//<<<<<<<<<<<<<<<<<<<<< Canvas constructor >>>>>>>>>>>>>>>>
Canvas :: Canvas(int width, int height, char* windowTitle)
{

char* argv[1]; // dummy argument list for glutInit()
char dummyString[8];
argv[0] = dummyString; // hook up the pointer
int argc = 1; // to satisfy glutInit()

 glutInit(& argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(width, height);
glutInitWindowPosition(20, 20);
glutCreateWindow(windowTitle); // open the screen window
setWindow(0, (float)width, 0, (float)height); //default world window
setViewport(0, width, 0, height); // default viewport
CP.set (0.0f, 0.0f); // initialize the CP to (0, 0)

}

Figure 3.27. The constructor for Canvas – OpenGL version.

Figure 3.28 shows the implementation of some of the remaining Canvas member functions. (Others are
requested in the exercises.) Function moveTo() simply updates the current position; lineTo () sends the CP as
the first vertex, and the new point (x, y) as the second vertex. Note that we don’ t need to use the window to
viewport mapping explicitl y here, since OpenGL automaticall y applies it. The function setWindow () passes its
arguments to gluOrtho2D () – after properly casting their types – and loads them into Canvas’s window .
//<<<<<<<<<<<<<<<<<<<<<<<<<< moveTo >>>>>>>>>>>>>>>>>>
void Canvas:: moveTo(float x, float y)
{

CP.set (x, y);
}
//<<<<<<<<<<<<<<<<<<<<<<< lineTo >>>>>>>>>>>>>>>>>>>>>>>
void Canvas:: lineTo(float x, float y)
{

glBegin(GL_LINES);
glVertex2f((GLfloat) CP.x, (GLfloat) CP.y);
glVertex2f((GLfloat)x, (GLfloat)y); // draw the line

glEnd();
CP.set (x, y); // update the CP
glFlush();

}
//<<<<<<<<<<<<<<<<<<<<<<<< set Window >>>>>>>>>>>>>>>>>>>>
void Canvas:: setWindow(float l, float r, float b, float t)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

Computer Graphics Chap 3 09/21/99 5:38 PM page 23

gluOrtho2D((GLdouble)l, (GLdouble)r, (GLdouble)b, (GLdouble)t);
window.set(l, r, b, t);

}

Figure 3.28. Implementation of some Canvas member functions.

Practice Exercises.
 3.4.2. Flesh out each of the member functions:
a). void setViewport(int l, int r, int b, int t);
b). IntRect getViewport (void);
c). RealRect getWindow (void);
d). void clearScreen(void);
e). void setBackgroundColor(float r, float g, float b);
f). void setColor(float r, float g, float b);
g). void lineTo(Point2 p);
h). void moveTo(Point2 p);
i). float getWindowAspectRatio(void)

3.4.3. Using Canvas for a simulation: Fibonacci numbers. The growth in the size of a rabbit population is
said to be modeled by the following equation [gardner61]:

 y
k = y

k-1 + y
k-2

where y
k
 is the number of bunnies at the k-th generation. This model says that the number in this generation is

the sum of the numbers in the previous two generations. The initial populations are y
0 = 1 and y

1 = 1. Successive
values of y

k
 are formed by substituting earlier values, and the resulting sequence is the well -known Fibonacci

sequence; 1, 1, 2, 3, 5, 8, 13. . . . A plot of the sequence y
k
 versus k reveals the nature of this growth pattern.

Use the Canvas class to write a program that draws such a plot for a sequence of length N. Adjust the size of
the plot appropriately for different N. (The sequence grows very rapidly, so you may instead wish to plot the
logarithm of yk versus k.) Also plot the sequence of ratios p

k
 = y

k / yk-1
 and watch how quickly this ratio

converges to the golden ratio.
3.4.4. Another Simulation: sinusoidal sequences. The following difference equation generates a sinusoidal
sequence:

y
k
 = a • y

k-1 - yk-2
 for k = 1, 2, . . .

where a is a constant between 0 and 2; y
k
 is 0 for k < 0; and y

0 = 1 (see [oppenheim83]). In general, one cycle

consists of S points if we set a = 2 • cos(2π/S). A good picture results with S = 40. Write a routine that draws
sequences generated in this fashion, and test it for various values of S.

3.5. Relative Drawing.
If we add just a few more drawing tools to our tool bag (which is the emerging class Canvas) certain drawing
tasks become much simpler. It is often convenient to have drawing take place at the current position (CP), and
to describe positions relative to the CP. We develop functions, therefore, whose parameters specify changes in
position: the programmer specifies how far to go along each coordinate to the next desired point.

3.5.1. Developing moveRel() and lineRel().
Two new routines are moveRel () and lineRel (). The function moveRel () is easy: it just “moves” the CP
through the displacement (dx , dy). The function lineRel (float dx, float dy) does this too, but it
first draws a line from the old CP to the new one. Both functions are shown in Figure 3.29.
void Canvas :: moveRel(float dx, float dy)
{

CP.set (CP.x + dx, CP.y + dy);

Computer Graphics Chap 3 09/21/99 5:38 PM page 24

}

void Canvas :: lineRel(float dx, float dy)
{

float x = CP.x + dx, y = CP.y + dy;
lineTo(x, y);
CP.set (x, y);

}

Figure 3.29. The functions moveRel () and lineRel ().

Example 3.5.1. An arr ow marker. Markers of different shapes can be placed at various points in a drawing to
add emphasis. Figure 3.30 shows pentagram markers used to highlight the data points in a line graph.

x

y

1 2 3 4 5 6

2

3

4

Figure 3.30. Placing markers for emphasis.

Because the same figure is drawn at several different points it is convenient to be able to say simply
drawMarker () and have it be drawn at the CP. Then the line graph of Figure 3.30 can be drawn along with the
markers using code suggested by the pseudocode:

moveTo(first data point);
drawMarker(); // draw a marker there
for(each remaining data point)
{

lineTo(the next point); // draw the next line segment
drawMarker(); // draws it at the CP

}

Figure 3.31 shows an arrow-shaped marker, drawn using the routine in Figure 3.32. The arrow is positioned
with its uppermost point at the CP. For flexibilit y the arrow shape is parameterized through four size parameters
f, h, t, and w as shown. Function arrow() uses only lineRel (), and no reference is made to absolute
positions. Also note that although the CP is altered while drawing is going on, at the end the CP has been set
back to its initial position. Hence the routine produces no “side effects” (beyond the drawing itself).

f

h

t ww

worldCP

Figure 3.31. Model of an arrow.

void arrow(float f, float h, float t, float w)
{ // assumes global Canvas object: cvs

cvs.lineRel(-w - t / 2, -f); // down the left side
cvs.lineRel(w, 0);

Computer Graphics Chap 3 09/21/99 5:38 PM page 25

cvs.lineRel(0, -h);
cvs.lineRel(t, 0); // across
cvs.lineRel(0, h); // back up
cvs.lineRel(w, 0);
cvs.lineRel(-w - t / 2, f);

}
Figure 3.32. Drawing an arrow using relative moves and draws.

3.5.2. Turtle Graphics.
The last tool we add for now is surprisingly convenient. It keeps track not only of “where we are” with the CP,
but also “ the direction in which we are headed” . This is a form of tur tlegraphics, which has been found to be a

natural way to program in graphics6. The notion is that a “turtle”, which is conceptually similar to the pen in a
pen plotter, migrates over the page, leaving a trail behind itself which appears as a line segment. The turtle is
positioned at the CP, headed in a certain direction called the current direction, CD. CD is the number of
degrees measured counterclockwise (CCW) from the positi ve x-axis.

It is easy to add functionalit y to the Canvas class to “control the turtle”. First, CD is added as a private data
member. Then we add three methods:

1). turnTo(float angle). Turn the turtle to the given angle , implemented as:

void Canvas:: turnTo(float angle) {CD = angle;}

2). turn(float angle). Turn the turtle through angle degrees counterclockwise:

void Canvas:: turn(angle){CD += angle;}

Use a negative argument to make a right turn. Note that a turn is a relative direction change: we don’ t specify
a direction, only a change in direction. This simple distinction provides enormous power in drawing complex
figures with the turtle.

3). forward(float dist, int isVisible) . Move the turtle forward in a straight line from the CP
through a distance dist in the current direction CD, and update the CP. If isVisible is nonzero a visible
line is drawn; otherwise nothing is drawn.

Figure 3.33 shows that in going forward in direction CD the turtle just moves in x through the amount dist *
cos(π * CD/180) and in y through the amount dist * sin(π * CD/180), so the implementation of forward () is
immediate:

.

CD

old worldCP

dis
t�

new worldCP

Figure 3.33. Effect of the forward() routine.

void Canvas:: forward(float dist, int isVisible)
{

6Introduced by Seymour Papert at MIT as part of the LOGO language for teaching children how to program. See
e.g. [Abel81]

Computer Graphics Chap 3 09/21/99 5:38 PM page 26

const float RadPerDeg = 0.017453393; //radians per degree
float x = CP.x + dist * cos(RadPerDeg * CD);
float y = CP.y + dist * sin(RadPerDeg * CD);
if(isVisible)

lineTo(x, y);
else

moveTo(x, y);
}

Turtle graphics makes it easy to build complex figures out of simpler ones, as we see in the next examples.

Example 3.5.2. Building a figure upon a hook motif. The 3-segment “hook” motif shown in Figure 3.34a can
be drawn using the commands:

forward(3 * L, 1); // L is the length of the short sides
turn(90);
forward(L, 1);
turn(90);
forward(L, 1);
turn(90);

for some choice of L. Suppose that procedure hook () encapsulates these instructions. Then the shape in Figure
3.34b is drawn using four repetitions of hook() . The figure can be positioned and oriented as desired by
choices of the initial CP and CD.

a). b).

motif
Figure 3.34. Building a figure out of several turtle motions.

Example 3.5.3. Polyspirals. A large family of pleasing figures called polyspirals can be generated easil y using
turtlegraphics. A polyspiral is a polyline where each successive segment is larger (or smaller) than its
predecessor by a fixed amount, and oriented at some fixed angle to the predecessor. A polyspiral is rendered by
the following pseudocode:

for(<some number of iterations>)
{

forward(length,1); // draw a line in the current direction
turn(angle); // turn through angle degrees
length += increment; // increment the line length

}

Each time a line is drawn both its length and direction are incremented. If increment is 0, the figure neither
grows nor shrinks.. Figure 3.35 shows several polyspirals. The implementation of this routine is requested in the
exercises.

Computer Graphics Chap 3 09/21/99 5:38 PM page 27

Figure 3.35. Examples of polyspirals. Angles are: a). 60, b). 89.5, c). -144, d). 170.

Practice Exercises.
 3.5.1. Drawing Tur tle figures. Provide routines that use turtle motions to draw the three figures shown in
Figure 3.36. Can the turtle draw the shape in part c without “ li fting the pen” and without drawing any line
twice?

a). b). c).

Figure 3.36. Other Simple Turtle Figures.

3.5.2. Drawing a well -known logo. Write a routine that makes a turtle draw the outline of the logo shown in
Figure 3.37. (It need not fill t he polygons.)

Figure 3.37. A famous logo.

3.5.3. Dr iving the Tur tle with Str ings. We can use a shorthand notation to describe a figure. Suppose
F means forward(d, 1); { for some distance d}
L means turn(60); { left turn}
R means turn(-60). { right turn}
What does the following sequence of commands produce?
FLFLFLFRFLFLFLFRFLFLFLFR. (See Chapter 9 for a generali zation of this that produces fractals!)

3.5.4. Drawing Meanders. A meander7 is a pattern li ke that in Figure 3.38a, often made up of a continuous
line meandering along some path. One frequently sees meanders on Greek vases, Chinese plates, or floor tili ngs
from various countries. The motif for the meander here is shown in Figure 3.38b. After each motif is drawn the
turtle is turned (how much?) to prepare it for drawing the next motif.

7Based on the name Maeander (which has modern name Menderes), a winding river in Turkey [Janson 86].

Computer Graphics Chap 3 09/21/99 5:38 PM page 28

a). b).

Figure 3.38. Example of a meander.

Write a routine that draws this motif, and a routine that draws this meander. (Meanders are most attractive if the
graphics package at hand supports the control of line thickness -- as OpenGL does -- so that forward() draws
thick lines.) A dazzling variety of more complex meanders can be designed, as suggested in later exercises. A
meander is a particular type of fr ieze pattern. Friezes are studied further in Chapter ???.
3.5.5. Other Classes of Meanders. Figure 3.39 shows two additional types of meanders. Write routines that
employ turtle graphics to draw them.

Figure 3.39. Additional figures for meanders.

3.5.6. Drawing Elaborate Meanders. Figure 3.40 shows a sequence of increasingly complex motifs for
meanders. Write routines that draw a meander for each of these motifs. What does the “next most complicated”
motif in this sequence look li ke, and what is the general principal behind constructing these motifs?

Figure 3.40. Hierarchy of meander motifs.

 3.5.7. Implementing polyspiral. Write the routine polyspiral(float length, float angle,
float incr, int num) that draws a polyspiral consisting of num segments, the first having length
length . After each segment is drawn length is incremented by incr and the turtle turns through angle
angle .
3.5.8. Is a Polyspiral an IFS? Can a polyspiral be described in terms of an iterated function system as defined
in Chapter 2? Specify the function that is iterated by the turtle at each iteration.
3.5.9. Recursive form for Polyspiral(). Rewrite polyspiral() in a recursive form, so that
polyspiral() with argument dist call s polyspiral() with argument dist+inc. Put a suitable
stopping criterion in the routine.

3.6. Figures based on Regular Polygons.
To generali ze is to be an idiot.

Willi am Blake

 “ Bees...by virtue of certain geometrical forethought...know that the hexagon is greater than the square and
triangle, and will hold more honey for the same expenditure of material.”

Pappus of Alexandr ia

The regular polygons form a large and important family of shapes, often encountered in computer graphics. We
need eff icient ways to draw them. In this section we examine how to do this, and how to create a number of
figures that are variations of the regular polygon.

3.6.1. The Regular Polygons.
First recall the definition of a regular polygon:

Computer Graphics Chap 3 09/21/99 5:38 PM page 29

Definition: A polygon is regular if it is simple, if all it s sides have equal lengths, and if adjacent sides meet at
equal interior angles.

As discussed in Chapter 1, a polygon is simple if no two of its edges cross each other (more precisely: only
adjacent edges can touch, and only at their shared endpoint). We give the name n-gon to a regular polygon
having n sides. Familiar examples are the 4-gon (a square), a 5-gon (a regular pentagon), 8-gon (a regular
octagon), and so on. A 3-gon is an equilateral triangle. Figure 3.41 shows various examples. If the number of
sides of an n-gon is large the polygon approximates a circle in appearance. In fact this is used later as one way
to implement the drawing of a circle.

n : 3 4 5 6 40

Figure 3.41. Examples of n-gons.

The vertices of an n-gon lie on a circle, the so-called “parent circle“ of the n-gon, and their locations are easil y

calculated. The case of the hexagon is shown in Figure 3.42 where the vertices lie equispaced every 60o around
the circle. The parent circle of radius R (not shown) is centered at the origin, and the first vertex P0 has been
placed on the positi ve x-axis. The other vertices follow accordingly, as Pi = (R cos(i ⋅a), R sin(i ⋅ a)), for i =

1,...,5, where a is 2π/6 radians. Similarly, the vertices of the general n-gon lie at:
y

x
R

a

P1 = (R cos(a), R sin(a))P2

P0

Figure 3.42. Finding the vertices of an 6-gon.

Pi = (R cos(2πi / n), R sin(2πi / n)), for i = 0,..., n-1 (3.6)

It’s easy to modify this n-gon. To center it at position (cx, cy) we need only add cx and cy to the x- and y-
coordinates, respectively. To scale it by factor S we need only multiply R by S. To rotate through angle A we
need only add A to the arguments of cos() and sin(). More general methods for performing geometrical
transformations are discussed in Chapter 6.

It is simple to implement a routine that draws an n-gon, as shown in Figure 3.43. The n-gon is drawn centered at
(cx, cy), with radius radius , and is rotated through rotAngle degrees.
void ngon(int n, float cx, float cy, float radius, float rotAngle)
{ // assumes global Canvas object, cvs

if(n < 3) return; // bad number of sides
 double angle = rotAngle * 3.14159265 / 180; // initial angle
 double angleInc = 2 * 3.14159265 /n; //angle increment

cvs. moveTo(radius + cx, cy);
for(int k = 0; k < n; k++) // repeat n times
{

angle += angleInc;
cvs.lineTo(radius * cos(angle) + cx, radius * sin(angle) + cy);

}
}

Figure 3.43. Building an n-gon in memory.

Computer Graphics Chap 3 09/21/99 5:38 PM page 30

Example 3.6.1: A Tur tle-dr iven n-gon. It is also simple to draw an n-gon using turtlegraphics. Figure 3.44
shows how to draw a regular hexagon. The initial position and direction of the turtle is indicated by the small
triangle. The turtle simply goes forward six times, making a CCW turn of 60 degrees between each move:

360 / n

L

R

Figure 3.44. Drawing a hexagon.

for (i = 0; i < 6; i++)
{

cvs.forward(L, 1);
cvs.turn(60);

}
One vertex is situated at the initial CP, and both CP and CD are left unchanged by the process. Drawing the
general n-gon, and some variations of it, is discussed in the exercises.

3.6.2. Variations on n-gons.
Interesting variations based on the vertices of an n-gon can also be drawn. The n-gon vertices may be connected
in various ways to produce a variety of f igures, as suggested in Figure 3.45. The standard n-gon is drawn in
Figure 3.45a by connecting adjacent vertices, but Figure 3.45b shows a stellation (or star-li ke figure) formed by
connecting every other vertex. And Figure 3.45c shows the interesting rosette, formed by connecting each
vertex to every other vertex. We discuss the rosette next. Other figures are described in the exercises.
a). b). c).

Figure 3.45. A 7-gon and its offspring. a). the 7-gon, b). a stellation, c). a “7-rosette”.

Example 3.6.2. The rosette, and the Golden 5-rosette.
The rosette is an n-gon with each vertex joined to every other vertex. Figure 3.46 shows 5-, 11-, and 17-
rosettes. A rosette is sometimes used as a test pattern for computer graphics devices. Its orderly shape readily
reveals any distortions, and the resolution of the device can be determined by noting the amount of “crowding”
and blurring exhibited by the bundle of lines that meet at each vertex.

Figure 3.46. The 5-, 11-, and 17-rosettes.

Computer Graphics Chap 3 09/21/99 5:38 PM page 31

Rosettes are easy to draw: simply connect every vertex to every other. In pseudocode this looks li ke

void Rosette(int N, float radius)
{

Point2 pt[big enough value for largest rosette];
 generate the vertices pt[0],. . .,pt[N-1], as in Figure 3.43

for(int i = 0; i < N - 1; i++)
for(int j = i + 1; j < N ; j++)
{

 cvs.moveTo(pt[i]); // connect all the vertices
cvs.lineTo(pt[j]);

}
}

The 5-rosette is particularly interesting because it embodies many instances of the golden ratio φ (recall Chapter
2). Figure 3.47a shows a 5-rosette, which is made up of an outer pentagon and an inner pentagram. The Greeks
saw a mystical significance in this figure. Its segments have an interesting relationship: Each segment is φ times
longer than the next smaller one (see the exercises). Also, because the edges of the star pentagram form an inner
pentagon, an infinite regression of pentagrams is possible, as shown in Figure 3.47b.

1
φ

φ2

a). b).

Figure 3.47. 5-rosette and Infinite regressions - pentagons and pentagrams.

Example 3.6.3. Figures based on two concentr ic n-gons.
Figures 3.48 shows some shapes built upon two concentric parent circles, the outer of radius R, and the inner of
radius fR for some fraction f. Each figure uses a variation of an n-gon whose radius alternates between the inner
and outer radii . Parts a) and b) show familiar company logos based on 6-gons and 10-gons. Part c) is based on
the 14-gon, and part d) shows the inner circle explicitl y.

b) c)a).

radius R radius f R

d).

Figure 3.48. A family of Famous Logos.

Practice Exercises.
3.6.1. Stellations and rosettes. The pentagram is drawn by connecting “every other” point as one traverses
around a 5-gon. Extend this to an arbitrary odd-valued n-gon and develop a routine that draws this so-called
“stellated” polygon. Can it be done with a single initial moveTo() followed only by lineTo() ’ s (that is,
without “ li fting the pen”)? What happens if n is even?
3.6.2. How Many Edges in an N-rosette? Show that a rosette based on an N-gon, an N-rosette, has N(N - 1) / 2
edges. This is the same as the number of “clinks” one hears when N people are seated around a table and
everybody clinks glasses with everyone else.

Computer Graphics Chap 3 09/21/99 5:38 PM page 32

3.6.3. Pr ime Rosettes. If a rosette has a prime number N of sides, it can be drawn without “ li fting the pen,” that
is, by using only lineTo (). Start at vertex v

0
 and draw to each of the others in turn: v1,v2

, v3, . . . until v
0
 is

again reached and the polygon is drawn. Then go around again drawing lines, but skip a vertex each time – that
is, increment the index by 2– thereby drawing to v

2
, v

4
, . . . , v

0
. This will require going around twice to arrive

back at v
0
. (A modulo operation is performed on the indices so that their values remain between 0 and N-1.)

Then repeat this, incrementing by 3: v
3
, v

6
, v

0
, . . . , v

0
. Each repeat draws exactly N li nes. Because there are N(N

- 1) / 2 lines in all , the process repeats (N - 1) / 2 times. Because the number of vertices is a prime, no pattern is
ever repeated until the drawing is complete. Develop and test a routine that draws prime rosettes in this way.
3.6.4. Rosettes with an odd number of sides. If n is prime we know the n-rosette can be drawn as a single
polyline without “ li fting the pen” . It can also be drawn as a single polyline for any odd value of n. Devise a
method that does this.
3.6.5. The Geometry of the Star Pentagram. Show that the length of each segment in the 5-rosette stands in
the golden ratio to that of the next smaller one. One way to tackle this is to show that the triangles of the star
pentagram are “golden triangles” with an inner angle of π / 5 radians. Show that 2 * cos(π / 5) = φ and 2 *
cos(2π / 5) = 1 / φ. Another approach uses only two families of similar triangles in the pentagram and the

relation φ3 = 2φ + 1 satisfied by φ.
3.6.6. Erecting Tr iangles on n-gon legs. Write a routine that draws figures li ke the logo in part a of Figure 3.48
for any value of f, positi ve or negative. What is a reasonable geometric interpretation of negative f?
3.6.7. Drawing the Star with Relative Moves and Draws. Write a routine to draw a pentagram that uses only
relative moves and draws, centering the star at the CP.
3.6.8. Draw a pattern of stars. Write a routine to draw the pattern of 21 stars shown in Figure 3.49. The small
stars are positioned at the vertices of an n-gon.

Figure 3.49. A star pattern.

3.6.9. New points on the “7-gram” . Figure 3.50 shows a figure formed from the 7 points of a 7-gon, centered
at the origin. The first point lies at (R, 0). Instead of connecting consecutive points around the 7-gon, two
intermediary points are skipped. (This is a form of “stellation” of an n-gon.) Find the coordinates of point P,
where two of the edges intersect.

(R, 0)

P

Figure 3.50. A “7-gram” .

Computer Graphics Chap 3 09/21/99 5:38 PM page 33

3.6.10. Tur tle drawings of the n-gon. Write turtleNgon (int numSides, float length) that uses
turtlegraphics to draw an n-gon with numSides sides and a side of length length.
3.6.11. Polygons shar ing an edge. Write a routine that draws n-gon’ s, for n = 3,…, 12, on a common edge, as
in Figure 3.51.

Figure 3.51. N-gons sharing a common edge.

3.6.12. A more elaborate figure. Write a routine that draws the shape in Figure 3.52 by drawing repeated
hexagons rotated relative to one another.

Figure 3.52. Repeated use of turtle commands.

3.6.13. Drawing a famous logo. The esteemed logo shown in Figure 3.53 consists of three instances of a motif,
rotated a certain amount with respect to each other. Show a routine that draws this shape using turtlegraphics.

Figure 3.53. Logo of the University of Massachusetts.

3.6.14. Rotating Pentagons: animation. Figure 3.54 shows a pentagram oriented with some angle of rotation
within a pentagon, with corresponding vertices joined together. Write a program that “animates” this figure. The
configuration is drawn using some initial angle A of rotation for the pentagram. After a short pause it is erased
and then redrawn but with a slightly larger angle A. This process repeats until a key is pressed.

Figure 3.54. Rotating penta-things.

Computer Graphics Chap 3 09/21/99 5:38 PM page 34

3.7. Drawing Circles and Arcs.
Drawing a circle is equivalent to drawing an n-gon that has a large number of vertices. The n-gon resembles a
circle (unless it is scrutinized too closely). The routine drawCircle () shown in Figure 3.55 draws a 50-sided
n-gon, by simply passing its parameters on to ngon (). It would be more eff icient to write drawCircle () from
scratch, basing it on the code of Figure 3.43.
void drawCircle(Point2 center, float radius)
{
 const int numVerts = 50; // use larger for a better circle
 ngon(numVerts, center.getX(), center.getY(), radius, 0);
}
Figure 3.55. Drawing a circle based on an 50-gon.

3.7.1. Drawing Arcs.
Many figures in art, architecture, and science involve arcs of circles placed in pleasing or significant
arrangements. An arc is conveniently described by the position of the center, c,and radius, R, of its “parent”
circle, along with its beginning angle a and the angle b through which it “sweeps” . Figure 3.56 shows such an
arc. We assume that if b is positi ve the arc sweeps in a CCW direction from a. If b is negative it sweeps in a
CW fashion. A circle is a special case of an arc, with a sweep of 360o.

a
bR

y

x

c

Figure 3.56. Defining an arc.

We want a routine, drawArc (), that draws an arc of a circle. The function shown in Figure 3.57 approximates
the arc by part of an n-gon, using moveTo() and lineTo(). Successive points along the arc are found by
computing a cos() and sin() term each time through the main loop. If sweep is negative the angle automaticall y
decreases each time through.
void drawArc(Point2 center, float radius, float startAngle, float sweep)
{ // startAngle and sweep are in degrees
 const int n = 30; // number of intermediate segments in arc

float angle = startAngle * 3.14159265 / 180; // initial angle in radians
float angleInc = sweep * 3.14159265 /(180 * n); // angle increment
float cx = center.getX(), cy = center.getY();
cvs.moveTo(cx + radius * cos(angle), cy + radius * sin(angle));

 for(int k = 1; k < n; k++, angle += angleInc)
cvs.lineTo(cx + radius * cos(angle), cy + radius * sin(angle));

}
Figure 3.57. Drawing an arc of a circle.

The CP is left at the last point on the arc. (In some cases one may wish to omit the initial moveTo() to the first
point on the arc, so that the arc is connected to whatever shape was being drawn when drawArc() is called.)

A much faster arc drawing routine is developed in Chapter 5 that avoids the repetiti ve calculation of so many
sin() and cos() functions. It may be used freely in place of the procedure here.

With drawArc () in hand it is a simple matter to build the routine drawCircle(Point2 center,
float radius) that draws an entire circle (how?).

Computer Graphics Chap 3 09/21/99 5:38 PM page 35

The routine drawCircle () is called by specifying a center and radius, but there are other ways to describe a
circle, which have important applications in interactive graphics and computer-aided design. Two familiar ones
are:

1). The center is given, along with a point on the circle. Here drawCircle () can be used as soon as the
radius is known. If c is the center and p is the given point on the circle, the radius is simply the distance from c
to p, found using the usual Pythagorean Theorem.

2). Three points are given through which the circle must pass. It is known that a unique circle passes through
any three points that don't lie in a straight line. Finding the center and radius of this circle is discussed in
Chapter 4.

Example 3.7.1. Blending Arcs together. More complex shapes can be obtained by using parts of two circles
that are tangent to one another. Figure 3.58 ill ustrates the underlying principle. The two circles are tangent at
point A, where they share tangent line L. Because of this the two arcs shown by the thick curve “blend” together
seamlessly at A with no visible break or corner. Similarly the arc of a circle blends smoothly with any tangent
li ne, as at point B.

A

L

B

Figure 3.58. Blending arcs using tangent circles.

Practice Exercises.
 3.7.1. Circle Figures in Philosophy. In Chinese philosophy and religion the two principles of yin and yang
interact to influence all creatures’ destinies. Figure 3.59 shows the exquisite yin–yang symbol. The dark portion,
yin, represents the feminine aspect, and the light portion, yang, represents the masculine. Describe in detail the
geometry of this symbol, supposing it is centered in some coordinate system.

 use figure 4.3 from 1st edition
Figure 3.59. The yin-yang symbol.

3.7.2. The Seven Pennies. Describe the configuration shown in Figure 3.60 in which six pennies fit snugly
around a center penny. Use symmetry arguments to explain why the fit is exact; that is, why each of the outer
pennies exactly touches its three neighbors.

Computer Graphics Chap 3 09/21/99 5:38 PM page 36

Figure 3.60. The seven circles.

3.7.3. A famous logo. Figure 3.61 shows a well -known automobile logo. It is formed by erecting triangles
inside an equilateral triangle, but the outer triangle is replaced by two concentric circles. After determining the
“proper” positions for the three inner points, write a routine to draw this logo.

Figure 3.61. A famous logo.

3.7.4. Drawing clocks and such. Circles and lines may be made tangent in a variety of ways to create pleasing
smooth curves, as in Figure 3.62a. Figure 3.62b shows the underlying lines and circles. Write a routine that
draws this basic clock shape
a). b).

Figure 3.62. Blending arcs to form smooth curves.

3.7.5. Drawing rounded rectangles. Figure 3.63 shows an aligned rectangle with rounded corners. The
rectangle has width W and aspect ratio R, and each corner is described by a quarter-circle of radius r = g W for
some fraction g. Write a routine drawRoundRect (float W, float R, float g) that draws this
rectangle centered at the CP. The CP should be left at the center when the routine exits.

R W

W

r

Figure 3.63. A rounded rectangle.

3.7.6. Shapes involving arcs. Figure 3.64 shows two interesting shapes that involve circles or arcs. One is
similar to the Atomic Energy Commission symbol (How does it differ form the standard symbol?). Write and
test two routines that draw these figures.

caution radiation

Figure 3.64. Shapes based on arcs.

Computer Graphics Chap 3 09/21/99 5:38 PM page 37

3.7.7. A tear drop. A “ tear drop” shape that is used in many ornamental figures is shown in Figure 3.65a. As
shown in part b) it consists of a circle of given radius R snuggled down into an angle φ. What are the
coordinates of the circle’s center C for a given R and φ? What are the initial angle of the arc, and its sweep?
Develop a routine to draw a tear drop at any position and in any orientation.

x

y

R

φ

C

a). b).

Figure 3.65. The tear drop and its construction.

3.7.8. Drawing Patterns of Tear Drops. Figure 3.66 show some uses of the tear drop. Write a routine that
draws each of them.
a). b).

Figure 3.66. Some figures based on the tear drop.

3.7.9. Pie Char ts. A sector is closely related to an arc: each end of the arc is connected to the center of the
circle. The familiar pie chart is formed by drawing a number of sectors. A typical example is shown in Figure
3.67. Pie charts are used to ill ustrate how a whole is divided into parts, as when a pie is split up and distributed.
The eye quickly grasps how big each “sli ce” is relative to the others. Often one or more of the sli ces is
“exploded” away from the pack as well , as shown in the figure. Sectors that are exploded are simply shifted
slightly away from the center of the pie chart in the proper direction

Figure 3.67. A pie chart.

To draw a pie chart we must know the relative sizes of the sli ces. Write and test a routine that accepts data from
the user and draws the corresponding pie chart. The user enters the fraction of the pie each sli ce represents,
along with an ‘e’ if the sli ce is to be drawn exploded, or an ‘n’ otherwise.

3.8. Using the Parametric form for a curve.
There are two principal ways to describe the shape of a curved line: implicitl y and parametricall y. The
implicit form describes a curve by a function F(x, y) that provides a relationship between the x and y
coordinates: the point (x, y) lies on the curve if and only if it satisfies:

F(x, y) = 0 condition for (x, y) to lie on the curve (3.7)

Computer Graphics Chap 3 09/21/99 5:38 PM page 38

For example, the straight line through points A and B has implicit form:

F(x, y) = (y - Ay)(Bx - Ax) - (x - Ax)(By - Ay) (3.8)

and the circle with radius R centered at the origin has implicit form:

F(x, y) = x2 + y2 - R2 (3.9)

A benefit of using the implicit form is that you can easil y test whether a given point lies on the curve:
simply evaluate F(x, y) at the point in question. For certain classes of curves it is meaningful to speak of
an inside and an outside of the curve, in which case F(x, y) is also called the inside-outside function,
with the understanding that

F(x, y) = 0 for all (x, y) on the curve
F(x, y) > 0 for all (x, y) outside the curve (3.10)
F(x, y) < 0 for all (x, y) inside the curve

(Is F(x, y) of Equation 3.9 a legitimate inside-outside function for the circle?)

Some curves are single-valued in x, in which case there is a function g(.) such that all points on the curve
satisfy y = g(x). For such curves the implicit form may be written F(x, y) = y - g(x). (What is g(.) for the
line of Equation 3.8?) Other curves are single-valued in y, (so there is a function h(.) such that points on
the curve satisfy x = h(y). And some curves are not single-valued at all: F(x, y) = 0 cannot be rearranged
into either of the forms y = g(x) nor x = h(y). The circle, for instance, can be expressed as:

y R x= ± −2 2 (3.11)

but here there are two functions, not one.

3.8.1. Parametric Forms for Curves.
A parametric form for a curve produces different points on the curve based on the value of a parameter.
Parametric forms can be developed for a wide variety of curves, and they have much to recommend
them, particularly when one wants to draw or analyze the curve. A parametric form suggests the
movement of a point through time, which we can translate into the motion of a pen as it sweeps out the
curve. The path of the particle traveling along the curve is fixed by two functions, x() and y(), and we
speak of (x(t), y(t)) as the position of the particle at time t. The curve itself is the totalit y of points
“visited” by the particle as t varies over some interval. For any curve, therefore, if we can dream up
suitable functions x() and y() they will represent the curve concisely and precisely.

The familiar Etch-a-Sketch8 shown in Figure 3.68 provides a vivid analogy. As knobs are turned, a stylus
hidden in the box scrapes a thin visible line across the screen. One knob controls the horizontal position,
and the other directs the vertical position of the stylus. If the knobs are turned in accordance with x(t) and
y(t), the parametric curve is swept out. (Complex curves require substantial manual dexterity.)
1`st Ed. Figure 7.11

Figure 3.68. Etch-a-Sketch drawings of parametric curves. (Drawing by Suzanne Casiello.)

Examples: The line and the elli pse.
The straight line of Equation 3.8 passes through points A and B. We choose a parametric form that visits
A at t = 0 and B at t = 1, obtaining:

x(t) = Ax + (Bx - Ax)t (3.12)
y(t) = Ay + (By - Ay)t

8Etch-a-Sketch is a trademark of Ohio Art.

Computer Graphics Chap 3 09/21/99 5:38 PM page 39

Thus the point P(t) = (x(t), y(t)) “sweeps through” all of the points on the line between A and B as t varies
from 0 to 1 (check this out).

Another classic example is the elli pse, a slight generali zation of the circle. It is described parametricall y
by

 x(t) = W cos(t) (3.13)
 y(t) = H sin(t) , for 0 ≤ t ≤ 2π.

Here W is the “half-width” , and H the “half-height” of the elli pse. Some of the geometric properties of
the elli pse are explored in the exercises. When W and H are equal the elli pse is a circle of radius W.
Figure 3.69 shows this elli pse, along with the component functions x(.) and y(.).

@t = π/2

@t = π

@t = 3π/2

x

y

W

H

t
-c c

(x(t), y(t))

x(t)

y(t)

t

t

H

-H

2š

2š

š

WW

Figure 3.69. An elli pse described parametricall y.

As t varies from 0 to 2π the point P(t) = (x(t), y(t)) moves once around the elli pse starting (and finishing)
at (W, 0). The figure shows where the point is located at various “ times” t. It is useful to visualize
drawing the elli pse on an Etch-a-Sketch. The knobs are turned back and forth in an undulating pattern,
one mimicking W cos(t) and the other H sin(t). (This is surprisingly diff icult to do manually.)

• Finding an implicit form from a parametr ic form - “ implicitization” .
Suppose we want to check that the parametric form in Equation 3.13 truly represents an elli pse. How
do we find the implicit form from the parametric form? The basic step is to combine the two
equations for x(t) and y(t) to somehow eliminate the variable t. This provides a relationship that must
hold for all t . It isn’ t always easy to see how to do this — there are no simple guidelines that apply
for all parametric forms. For the elli pse, however, square both x/W and y/H and use the well -known

fact cos(t)2 + sin(t)2 = 1 to obtain the familiar equation for an elli pse:

x

W







2

+ y

H







2

=1 (3.14)

The following exercises explore properties of the elli pse and other “classical curves” . They develop
useful facts about the conic sections, which will be used later. Read them over, even if you don’ t stop to
solve each one.

Practice Exercises

Computer Graphics Chap 3 09/21/99 5:38 PM page 40

3.8.1. On the geometry of the Elli pse. An elli pse is the set of all points for which the sum of the
distances to two foci is constant. The point (c, 0) shown in Figure 3.69 forms one “focus” , and (-c, 0)

forms the other. Show that H, W, and c are related by: W2 = H2 + c2.
3.8.2. How eccentr ic. The eccentr icity, e = c / W, of an elli pse is a measure of how non circular the
elli pse is, being 0 for a true circle. As interesting examples, the planets in our solar system have very
nearly circular orbits, with e ranging from 1/143 (Venus) to 1/4 (Pluto). Earth’s orbit exhibits e = 1/60.
As the eccentricity of an elli pse approaches 1, the elli pse flattens into a straight line. But e has to get very
close to 1 before this happens. What is the ratio H / W of height to width for an elli pse that has e = 0.99?
3.8..3. The other Conic Sections.
The elli pse is one of the three conic sections, which are curves formed by cutting (“sectioning”) a circular
cone with a plane, as shown in Figure 3.70. The conic sections are:
• elli pse: if the plane cuts one “nappe” of the cone;
• hyperbola: if the plane cuts both nappes
• parabola: if the plane is parallel to the side of the cone;

Figure 3.70. The classical conic sections.

The parabola and hyperbola have interesting and useful geometric properties. Both of them have simple
implicit and parametric representations.

Show that the following parametric representations are consistent with the implicit forms given:

• Parabola: Implicit form: y2 - 4 a x = 0

 x(t) = a t2 (3.15)
 y(t) = 2 a t

• Hyperbola: Implicit form: (x/a)2 - (y/b)2 = 1
x(t)=a sec(t) (3.16)
y(t)=b tan(t)

What range in the parameter t is used to sweep out this hyperbola? Note: A hyperbola is defined as the
locus of all points for which the difference in its distances from two fixed foci is a constant. If the foci

here are at (-c, 0) and (+c, 0), show that a and b must be related by c2 = a2 + b2.

3.8.2. Drawing curves represented parametrically.
It is straightforward to draw a curve when its parametric representation is available. This is a major
advantage of the parametric form over the implicit form. Suppose a curve C has the parametric
representation P(t) = (x(t), y(t)) as t varies from 0 to T (see Figure 3.71a). We want to draw a good
approximation to it, using only straight lines. Just take samples of P(t) at closely spaced “ instants” . A
sequence { ti} of times are chosen, and for each ti the position Pi = P(ti) = (x(ti), y(ti)) of the curve is
found. The curve P(t) is then approximated by the polyline based on this sequence of points Pi, as shown
in Figure 3.71b.

a). b).

P1

Pm

P2

P(t) = (x(t), y(t))
@ t = 0

@ t = T

Figure 3.71. Approximating a curve by a polyline.

Figure 3.72 shows a code fragment that draws the curve (x(t), y(t)) when the desired array of sample
times t[i] is available.

Computer Graphics Chap 3 09/21/99 5:38 PM page 41

// draw the curve (x(t), y(t)) using
// the array t[0],..,t[n-1] of “sample-times”

glBegin(GL_LINES);
 for(int i = 0; i < n; i++)
 glVertex2f((x(t[i]), y(t[i]));
glEnd();

Figure 3.72. Drawing the elli pse using points equispaced in t.

If the samples are spaced suff iciently close together, the eye will naturall y blend together the line
segments and will see a smooth curve. Samples must be closely spaced in t-intervals where the curve is
“wiggling” rapidly, but may be placed less densely where the curve is undulating slowly. The required
“closeness” or “qualit y” of the approximation depends on the situation.

Code can often be simpli fied if it is needed only for a specific curve. The elli pse in Equation 3.13 can be
drawn using n equispaced values of t with:

#define TWOPI 2 * 3.14159265
glBegin(GL_LINES);
 for(double t = 0; t <= TWOPI; t += TWOPI/n)
 glVertex2f(W * cos(t), H * sin(t));
glEnd();

For drawing purposes, parametric forms circumvent all of the diff iculties of implicit and explicit forms.
Curves can be multi -valued, and they can self-intersect any number of times. Verticalit y presents no
special problem: x(t) simply becomes constant over some interval in t. Later we see that drawing curves
that lie in 3D space is just as straightforward: three functions of t are used, and the point at t on the curve
is (x(t), y(t), z(t)).

Practice Exercises.
3.8.4. An Example Curve. Compute and plot by hand the points that would be drawn by the fragment
above for W = 2, H = 1, at the 5 values of t = 2πi/9, for i = 0, 1, ...,4.
3.8.5. Drawing a logo. A well -known logo consists of concentric circles and elli pses, as shown in Figure
3.73. Suppose you have a drawing tool: drawEllipse (W, H, color) that draws the elli pse of
Equation 3.13 fill ed with color color. (Assume that as each color is drawn it completely obscures any
previously drawn color.) Choose suitable dimensions for the elli pses in the logo and give the sequence of
commands required to draw it.

Figure 3.73. A familiar “eye” made of circles and elli pses.

Some specific examples of curves used in computer graphics will help to cement the ideas.

3.8.3. Superellipses
An excellent variation of the elli pse is the superelli pse, a family of elli pse-li ke shapes that can produce
good effects in many drawing situations. The implicit formula for the superelli pse is

x

W

y

H

n n�� ��
+ �� �� = 1 (3.17)

Computer Graphics Chap 3 09/21/99 5:38 PM page 42

where n is a parameter called the bulge. Looking at the corresponding formula for the elli pse in Equation
3.14, the superelli pse is seen to become an elli pse when n = 2. The superelli pse has the following
parametric representation:

 x(t) = W cos(t)|cos(t)2/n -1|
(3.18)

y(t) = H sin(t)|sin(t)2/n-1|

for 0 ≤ t ≤ 2π. The exponent on the sin() and cos() is reall y 2/n, but the peculiar form as shown is used
to avoid trying to raise a negative number to a fractional power. A more precise version avoids this.
Check that this form reduces nicely to the equation for the elli pse when n = 2. Also check that the
parametric form for the superelli pse is consistent with the implicit equation.

Figure 3.74a shows a family of supercircles, special cases of superelli pses for which W = H. Figure
3.74b shows a scene composed entirely of superelli pses, suggesting the range of shapes possible.

1st Ed. Figures 4.16 and 4.17 together

Figure 3.74. Family of supercircles. b). Scene composed of superelli pses.

For n > 1 the bulge is outward, whereas for n < 1 it is inward. When n = 1, it becomes a square. (In
Chapter 6 we shall l ook at three-dimensional “superquadrics,” surfaces that are sometimes used in CAD
systems to model solid objects.)

Superelli pses were first studied in 1818 by the French physicist Gabriel Lamé. More recently in 1959, the
extraordinary inventor Piet Hein (best known as the originator of the Soma cube and the game Hex) was
approached with the problem of designing a traff ic circle in Stockholm. It had to fit inside a rectangle
(with W/ H = 6 / 5) determined by other roads, and had to permit smooth traff ic flow as well as be
pleasing to the eye. An elli pse proved to be too pointed at the ends for the best traff ic patterns, and so
Piet Hein sought a fatter curve with straighter sides and dreamed up the superelli pse. He chose n = 2.5 as
the most pleasing bulge. Stockholm quickly accepted the superelli pse motif for its new center. The curves
were “strangely satisfying, neither too rounded nor too orthogonal, a happy blend of elli ptical and
rectangular beauty” [Gardner75, p. 243]. Since that time, superelli pse shapes have appeared in furniture,
textile patterns, and even sil verware. More can be found out about them in the references, especiall y in
[Gardner75] and [Hill 79b].

The superhyperbola can also be defined [Barr81]. Just replace cos(t) by sec(t), and sin(t) by tan(y), in
Equation 3.18. When n = 2, the familiar hyperbola is obtained. Figure 3.75 shows example
superhyperbolas. As the bulge n increases beyond 2, the curve bulges out more and more, and as it
decreases below 2, it bulges out less and less, becoming straight for n = 1 and pinching inward for n < 1.
1st Ed. Figure 9.14.
Figure 3.75. The superhyperbola family.

3.8.4. Polar Coordinate Shapes
Polar coordinates may be used to represent many interesting curves. As shown in Figure 3.76, each point
on the curve is represented by an angle θ and a radial distance r. If r and θ are each made a function of t,
then as t varies the curve (r(t), θ(t)) is swept out. Of course this curve also has the Cartesian
representation (x(t), y(t)) where:

Computer Graphics Chap 3 09/21/99 5:38 PM page 43

�
	

 � � � ΘΘ

ΘΘ

Figure 3.76. Polar coordinates.

x(t) = r(t) cos(θ(t)) (3.19)
y(t) = r(t) sin(θ(t)).

But a simpli fication is possible for a large number of appealing curves. In these instances the radius r is
expressed directly as a function of θ, and the parameter that “sweeps” out the curve is θ itself. For each
point (r, θ) the corresponding Cartesian point (x, y) is given by

x = f(θ) ⋅ cos(θ) (3.20)
y = f(θ) ⋅ sin(θ)

Curves given in polar coordinates can be generated and drawn as easil y as any others: The parameter is θ,
which is made to vary over an interval appropriate to the shape. The simplest example is a circle with
radius K: f(θ) = K. The form f(θ) = 2K cos(θ) is another simple curve (which one?). Figure 3.77 shows
some shapes that have simple expressions in polar coordinates:
1st Ed. Figure 4.19
Figure 3.77. Examples of curves with simple polar forms..

• Cardioid: f(θ) = K (1 + cos(θ)).

• Rose curves: f(θ) = K cos(n θ), where n specifies the number of petals in the rose. Two cases are
shown.

• Archimedian spiral: f(θ) = K⋅θ.

In each case, constant K gives the overall size of the curve. Because the cardioid is periodic, it can be
drawn by varying θ from 0 to 2π. The rose curves are periodic when n is an integer, and the Archimedian
spiral keeps growing forever as θ increases from 0. The shape of this spiral has found wide use as a cam
to convert rotary motion to linear motion (see [Yates46] and [Seggern90].

The conic sections (elli pse, parabola, and hyperbola) all share the following polar form:

f
e

()
cos()

θ
θ

=
± ⋅

1

1
(3.21)

where e is the eccentricity of the conic section. For e = 1 the shape is a parabola; for 0 ≤ e <1 it is an
elli pse; and for e > 1 it is a hyperbola.

• The Logar ithmic Spiral

The logar ithmic spiral (or “equiangular spiral”) f(θ) = Keaθ, shown in Figure 3.78a, is also of particular
interest [Coxeter61]. This curve cuts all radial li nes at a constant angle α, where a = cot(α). This is the
only spiral that has the same shape for any change of scale: Enlarge a photo of such a spiral any amount,
and the enlarged

Computer Graphics Chap 3 09/21/99 5:38 PM page 44

1st Ed Figures 4.20 and 4.21
Figure 3.78. The logarithmic spiral and b). chambered nautilus

spiral will fit (after a rotation) exactly on top of the original. Similarly, rotate a picture of an equiangular
spiral, and it will seem to grow larger or smaller [Steinhaus69]9. This preservation of shape seems to be
used by some animals such as the mollusk inside a chambered nautilus (see Figure 3.78b). As the animal
grows, its shell also grows along a logarithmic spiral in order to provide a home of constant shape
[Gardner61].

Other families of curves are discussed in the exercises and Case Studies, and an exhaustive li sting and
characterization of interesting curves is given in [yates46, seggern90, shikin95].

3.8.5. 3D Curves.
Curves that meander through 3D space may also be represented parametricall y, and will be discussed
full y in later chapters. To create a parametric form for a 3D curve we invent three functions x(.), y(.), and
z(.), and say the curve is “at” P(t) = (x(t), y(t), z(t)) at time t.

Some examples are:

The helix: The circular heli x is given parametricall y by:

x(t) = cos(t)
y(t)= sin(t) (3.22)
z(t) = bt

for some constant b. It ill ustrated in Figure 3.79 as a stereo pair. See the Preface for viewing stereo pairs.
If you find this unwieldy, just focus on one of the figures.

Figure 3.79. The helix, displayed as a stereo pair.

Many variations on the circular heli x are possible, such as the elli ptical heli x P(t) = (W cos(t), H sin(t),
bt), and the conical heli x P(t) = (t cos(t), t sin(t), bt) (sketch these). Any 2D curve (x(t), y(t)) can of
course be converted to a heli x by appending z(t) = bt, or some other form for z(t).

The toroidal spiral. A toroidal spiral, given by

x(t) = (a sin(ct) + b) cos(t)
y(t) = (a sin(ct) + b) sin(t) (3.23)
z(t) = a cos(ct)

9This curve was first described by Descartes in 1638. Jacob Bernoulli (1654---1705)
was so taken by it that his tombstone in Basel, Switzerland, was engraved with it, along with the
inscription Eadem mutata resurgo: “Though changed I shall arise the same.”

Computer Graphics Chap 3 09/21/99 5:38 PM page 45

is formed by winding a string about a torus (doughnut). Figure 3.80 shows the case c = 10, so the string
makes 10 loops around the torus. We examine tubes based on this spiral in Chapter 6.

Figure 3.80. A toroidal spiral, displayed as a stereo pair.

Practice Exercises
3.8.6. Drawing superelli pses. Write a routine drawSuperEllipse (...) that draws a superelli pse. It
takes as parameters c, the center of the superelli pse, size parameters W and H, the bulge n, and m, the
number of “samples” of the curve to use in fashioning the polyline approximation.
3.8.7. Drawing polar forms. Write routines to draw an n-petaled rose and an equiangular spiral.
3.8.8. Golden Cuts. Find the specific logarithmic spiral that makes “golden cuts” through the
intersections of the infinite regression of golden rectangles, as shown in Figure 3.81 (also recall Chapter
2). How would a picture li ke this be drawn algorithmicall y?
1st Ed. Figure 4.22
Figure 3.81. The spiral and the golden rectangle.
3.8.9. A useful implicit form function. Define a suitable implicit form for the rose curve defined earlier
in polar coordinate form: f(θ) = K cos(n θ).
3.8.10. Inside-outside functions for polar curves. Discuss whether there is a single method that will
yield a suitable inside-outside function for any curve given in polar coordinate form as in Equation 3.20.
Give examples or counter-examples.

3.9. Summary of the Chapter.
In this chapter we developed several tools that make it possible for the applications programmer to “ think” and
work directly in the most convenient “world” coordinate system for the problem at hand. Objects are defined
(“modeled”) using high precision real coordinates, without concern for “where” or “how big” the picture of the
object will be on the screen. These concerns are deferred to a later selection of a window and a viewport –
either manually or automaticall y – that define both how much of the object is to be drawn, and how it is to
appear on the display. This approach separates the modeling stage from the viewing stage, allowing the
programmer or user to focus at each phase on the relevant issues, undistracted by detail s of the display device.

The use of windows makes it very easy to “zoom” in or out on a scene, or “ roam” around to different parts of a
scene. Such actions are familiar from everyday li fe with cameras. The use of viewports allows the programmer
to place pictures or collections of pictures at the desired spots on the display in order to compose the final
picture. We described techniques for insuring that the window and viewport have the same aspect ratio, in order
to prevent distortion.

Clipping is a fundamental technique in graphics, and we developed a classical algorithm for clipping line
segments against the world window. This allows the programmer to designate which portion of the picture will
actuall y be rendered: parts outside the window are clipped off . OpenGL automaticall y performs this clipping,
but in other environments a clipper must be incorporated explicitl y.

We developed the Canvas class to encapsulate many underlying detail s, and provide the programmer with a
single uniform tool for fashioning drawing programs. This class hides the OpenGL detail s in convenient

Computer Graphics Chap 3 09/21/99 5:38 PM page 46

routines such as setWindow (), setViewport (), moveTo(), lineTo (), and forward (), and insures that all
proper initiali zations are carried out. In a Case Study we implement Canvas for a more basic non-OpenGL
environment, where explicit clipping and window-to-viewport mapping routines are required. Here the value of
data-hiding within the class is even more apparent.

A number of additional tools were developed for performing relative drawing and turtle graphics, and for
creating drawings that include regular polygons, arcs and circles. The parametric form for a curve was
introduced, and shown to be a very natural description of a curve. It makes it simple to draw a curve, even those
that are multi -valued, cross over themselves, or have regions where the curve moves verticall y.

3.10. Case Studies.
One of the symptoms of an approaching

nervous breakdown is the belief that
one’s work is terr ibly important.

Bertrand Russell

3.10.1. Case Study 3.1. Studying the Logistic Map and Simulation of
Chaos.
(Level of Effort: II) I terated function systems (IFS's) were discussed at the end of Chapter 2. Another IFS
provides a fascinating look into the world of chaos (see [Gleick87, Hofs85]), and requires proper setting of a
window and viewport. A sequence of values is generated by the repeated application of a function f(.), called
the logistic map. It describes a parabola:

f(x)= 4 λx (1 - x) (3.24)

where λ is some chosen constant between 0 and 1. Beginning at a given starting point, x
0, between 0 and 1,

function f(.) is applied iteratively to generate the orbit (recall it s definition in Chapter 2):

x
k
 = f

[k]

(x
0
)

How does this sequence behave? A world of complexity lurks here. The action can be made most vivid by
displaying it graphicall y in a certain fashion, as we now describe. Figure 3.82 shows the parabola y = 4 λ x (1 -
x) for λ = 0.7 as x varies from 0 to 1.

1srt Ed. Figure 3.28

Figure 3.82. The logistic map for λ = 0.7.

The starting point x
0 = 0.1 is chosen here, and at x = 0.1 a vertical li ne is drawn up to the parabola, showing the

value f(x
0
) = 0.252. Next we must apply the function to the new value x

1 = 0.252. This is shown visually by
moving horizontall y over to the line y = x, as ill ustrated in the figure. Then to evaluate f() at this new value a
line is again drawn up verticall y to the parabola. This process repeats forever as in other IFS's. From the
previous position (x

k-1
, x

k
) a horizontal li ne is drawn to (x

k
, x

k
) from which a vertical li ne is drawn to (x

k
, x

k+1
).

The figure shows that for λ = 0.7, the values quickly converge to a stable “attractor,” a fixed point so that f(x) =
x. (What is its value for λ = 0.7?) This attractor does not depend on the starting point; the sequence always
converges quickly to a final value.

If λ is set to small values, the action will be even simpler: There is a single attractor at x = 0. But when the “λ-
knob” is increased, something strange begins to happen. Figure 3.83a shows what results when λ = 0.85. The
“orbit” that represents the sequence fall s into an endless repetiti ve cycle, never settling down to a final value.
There are several attractors here, one at each vertical li ne in the limit cycle shown in the figure. And when λ is
increased beyond the criti cal value λ = 0.892486418… the process becomes truly chaotic.

1st Ed. Figure 3.29

Computer Graphics Chap 3 09/21/99 5:38 PM page 47

Figure 3.83. The logistic map for a). λ = 0.85 and b). λ = 0.9.

The case of λ = 0.9 is shown in Figure 3.83b. For most starting points the orbit is still periodic, but the number
of orbits observed between the repeats is extremely large. Other starting points yield truly aperiodic motion, and
very small changes in the starting point can lead to very different behavior. Before the truly remarkable
character of this phenomenon was first recognized by Mitchell Feigenbaum in 1975, most researchers believed
that very small adjustments to a system should produce correspondingly small changes in its behavior and that
simple systems such as this could not exhibit arbitraril y complicated behavior. Feigenbaum's work spawned a
new field of inquiry into the nature of complex nonlinear systems, known as chaos theory [Gleick87]. It is
intriguing to experiment with this logistic map.

Write and exercise a program that permits the user to study the behavior of repeated iterations of the logistic
map, as shown in Figure 3.83. Set up a suitable window and viewport so that the entire logistic map can be
clearly seen. The user gives the values of x

0
 and λ and the program draws the limit cycles produced by the

system.

3.10.2. Case Study 3.2. Implementation of the Cohen Sutherland Clipper in
C/C++.
(Level of Effort: II) The basic flow of the Cohen Sutherland algorithm was described in Section 3.3.2. Here we
flesh out some detail s of its implementation in C or C++, exploiting for eff iciency the low-level bit
manipulations these languages provide.

We first need to form the “inside-outside” code words that report how a point P is positioned relative to the
window (see Figure 3.20). A single 8-bit word code suff ices: four of its bits are used to capture the four pieces
of information. Point P is tested against each window boundary in turn; if it li es outside this boundary, the
proper bit of code is set to 1 to represent TRUE. Figure 3.84 shows how this can be done. code is initiali zed
to 0, and then its individual bits are set as appropriate using a bit-wise OR operation. The values 8, 4, 2, and 1
are simple masks. For instance, since 8 in binary is 00001000, bit-wise OR-ing a value with 8 sets the fourth bit
from the right end to 1.
unsigned char code = 0; // initially all bits are 0
...
if(P.x < window.l) code |= 8; // set bit 3
if(P.y > window.t) code |= 4; // set bit 2
if(P.x > window.r) cod e |= 2; // set bit 1
if(P.y < window.b) code |= 1; // set bit 0
Figure 3.84. Setting bits in the “inside-outside code word” for a point P.

In the clipper both endpoints P1 and P2 (see Figure 3.22) are tested against the window, and their code words
code1 and code2 are formed. We then must test for “ trivial accept” and “ trivial reject” .

• tr ivial accept: Both endpoints are inside, so both codes code1 and code2 are identicall y 0. In C/C++ this
is quickly determined using the bit-wise OR: a trivial accept occurs if (code1 | code2) is 0.

• tr ivial reject: A trivial reject occurs if both endpoints lie outside the window on the same side: both to the
left of the window, both above, both below, or both to the right. This is equivalent to their codes having at least
one 1 in the same bit position. For instance if code1 is 0110 and code2 is 0100 then P1 li es both above and to
the right of the window, while P2 li es above but neither to the left nor right. Since both points lie above, no part
of the line can lie inside the window. So trivial rejection is easil y tested using the bit-wise AND of code1 and
code2 : if they have some 1 in the same position then code1 & code2 does also, and (code1 & code2)
will be nonzero.

Chopping when there is neither tr ivial accept nor reject.
Another implementation issue is eff icient chopping of the portion of a line segment that lies outside the
window, as in Figure 3.22. Suppose it is known that point P with code word code li es outside the window. The

Computer Graphics Chap 3 09/21/99 5:38 PM page 48

individual bits of code can be tested to see on which side of the window P li es, and the chopping can be
accomplished as in Equation 3.5. Figure 3.85 shows a chop routine that finds the new point (such as A in Figure
3.22) and replaces P with it. It uses the bit-wise AND of code with a mask to determine where P li es relative to
the window.
ChopLine (Point2 &P, unsigned char code)
{

if(code & 8){ // to the Left
P.y += (window.l - P.x) * dely / delx);
P.x = window.l;

}
else if(code & 2){ // to the Right

P.y += (window.r - P.x) * dely / delx;
P.x = window.r;

}
else if(code & 1){ // below

P.x += (window.b - P.y) * delx / dely;
P.y = window.b;

}
else if(code & 4){ // above

P.x += (window.t - P.y) * delx / dely;
P.y = window.t;

}
}

Figure 3.85. Chopping the segment that lies outside the window.

Write a complete implementation of the Cohen Sutherland algorithm, putting together the pieces described here
with those in Section 3.3.2. If you do this in the context of a Canvas class implementation as discussed in the
next Case Study, consider how the routine should best access the private data members of the window and the
points involved, and develop the code accordingly.

Test the algorithm by drawing a window and a large assortment of randomly chosen lines , showing the parts
that lie inside the window in red, and those that lie outside in black.

Practice Exercises.
3.10.1. Why will a “divide by zero” never occur? Consider a vertical li ne segment such that delx is zero.
Why is the code P.y += (window.l - P.x) * dely / delx) that would cause a divide by zero
never reached? Similarly explain why each of the four statements that compute delx/ dely or dely/ delx
are never reached if the denominator happens to be zero.
3.10.2. Do two chops in the same iteration? It would seem to improve performance if we replaced lines such
“else if(code & 2) ” with “ if(c & 2) ” and tried to do two line “chops” in succession. Show that this
can lead to erroneous endpoints being computed, and hence to disaster.

3.10.3. Case Study 3.3. Implementing Canvas for Turbo C++.
(Level of Effort: III) I t is interesting to develop a drawing class li ke Canvas in which all the detail s are worked
out, to see how the many ingredients go together. Sometimes it is even necessary to do this, as when a
supporting library li ke OpenGL is not available. We design Canvas here for a popular graphics platform that
uses Borland’s Turbo C++.

We want an implementation of the Canvas class that has essentiall y the same interface as that in Figure 3.25.
Figure 3.86 shows the version we develop here (omitting parts that are simple repeats of Figure 3.25). The
constructor takes a desired width and height but no title, since Turbo C++ does not support titled screen
windows. There are several new private data members that internally manage clipping and the window to
viewport mapping.
class Canvas {
 public:

 Canvas(int width, int height); // constructor
 setWindow(),setViewport(), lineTo(), etc .. as before

Computer Graphics Chap 3 09/21/99 5:38 PM page 49

private:
 Point2 CP; // current position in the world

 IntRect viewport; // the current window
 RealRect window; // the current viewport

 float mapA, mapB, mapC, mapD; // data for the window to viewport mapping
 void makeMap(void); // builds the map

 int screenWidth, screenHeight;
 float delx,dely; // increments for clipper
 char code1, code2; // outside codes for clipper
 void ChopLine(tPoint2 &p, char c);
 int clipSegment(tPoint2 &p1, tPoint2 &p2);
};

Figure 3.86. Interface for the Canvas class for Turbo C++.

Implementation of the Canvas class.
We show some of the Canvas member functions here, to ill ustrate what must be done to manage the window to
viewport mapping and clipping ourselves.

1). The Canvas constructor .
The constructor is passed the desired width and height of the screen. Turbo C++ is placed in graphics mode at
the highest resolution supported by the graphics system. The actual screen width and height available is tested,
and if it is less than was requested, the program terminates. Then a default window and viewport are establi shed,
and the window to viewport mapping is built (inside setViewport ().)

Canvas :: Canvas(int width, int height)
{

int gdriver = DETECT, gmode; //Turbo C++ : use best resolution screen
initgraph(& gdriver, & gmode, ""); // go to “graphics” mode
screenWidth = getmaxx() + 1; // size of available screen
screenHeight = getmaxy() + 1;
assert(screenWidth >= width); // as wide as asked for?
assert(screenHeight >= height); // as high as asked for?
CP.set (0.0, 0.0);
window.set(-1.0,1.0,-1.0,1.0); // default window
setViewport(0,screenWidth, 0, screenHeight); // sets default map too

}

2). Sett ing the window and viewpor t and the mapping.
Whenever either the window or viewport is set, the window to viewport mapping is updated to insure that it is current.
A degenerate window of zero height causes an error. The mapping uses window and viewport data to compute the four
coeff icients A, B, C, and D required.

//<<<<<<<<<<<<<<<<<<<<<<<< set Window >>>>>>>>>>>>>>>>>>>>
void Canvas:: setWindow(float l, float r, float b, float t)
{

window.set(l, r, b, t);
assert(t != b); //degenerate !
makeMap(); // update the mapping

}
//<<<<<<<<<<<<<<<<<<<< setViewport >>>>>>>>>>>>>>>>>>>
void Canvas:: setViewport(int l, int r, int b, int t)
{

viewport.set(l, r, b, t);
makeMap(); // update the mapping

}
//<<<<<<<<<<<<<<<< makeMap >>>>>>>>>>>>>>>>>>>>>
void Canvas:: makeMap(void)
{ // set mapping from window to viewport

Computer Graphics Chap 3 09/21/99 5:38 PM page 50

intRect vp = getViewport(); // local copy of viewport
RealRect win = getWindow (); // local copy of window
float winWid = win.r - win.l;
float winHt = win.t - win.b;
assert(winWid != 0.0); assert(winHt != 0.0); // degenerate!
mapA = (vp.r - vp.l)/ winWid; // fill in mapping values
mapB = vp.l - map.A * win.l;
mapC = (vp.t - vp.b)/ winHt;
mapD = vp.b - map.B * win.b;

}

3). moveTo(), and lineTo() with clipping.
The routine moveTo() converts its point from world coordinates to screen coordinates, and call s the Turbo C++
specific moveto () to update the internal current position maintained by Turbo C++. It also updates Canvas’
world coordinate CP. Routine lineTo () works similarly, but it must first determine which part if any of the
segment lies within the window. To do this it uses clipSegment () described in Section 3.3 and in Case Study
3.2, which returns the first and second endpoints of the inside portion. If so it moves to first and draws a
line to second . It finishes with a moveTo() to insure that the CP will be current (both the Canvas CP and the
internal Turbo C++ CP).

ChopLine and ClipSegment are same as in Case Study 3.2.

//<<<<<<<<<<<<<<<<<<<<<<<<<< moveTo >>>>>>>>>>>>>>>>>>
void Canvas:: moveTo(float x, float y)
{

int sx = (int)(mapA * x + mapC);
int sy = (int)(mapB * y + mapD);
moveto(sx, sy); // a Turbo C++ routine
CP.set (x, y);

}
//<<<<<<<<<<<<<<<<<<<< lineTo >>>>>>>>>>>
void Canvas:: lineTo(float x, float y)
{ // Draw a line from CP to (x,y), clipped to the window

Point2 first = CP; // initial value of first
Point2 second(x, y); // initial value of second
if(clipSegment(first, second)) // any part inside?
{
 moveTo(first.x, first.y); // to world CP
 int sx = (int)(mapA * second.x + mapC);
 int sy = (int)(mapB * second.y + mapD);
 lineto(sx,sy); // a Turbo C++ routine
}
moveTo(x, y); // update CP

}

Write a full implementation of the Canvas class for Turbo C++ (or a similar environment that requires you to
implement clipping and mapping). Cope appropriately with setting the drawing and background colors (this is
usually quite system-specific). Test your class by using it in an application that draws polyspirals as specified by
the user.

3.10.4. Case Study 3.4. Drawing Arches.
(Level of Effort: II) Arches have been used throughout history in architectural compositions. Their structural
strength and ornamental beauty make them very important elements in structural design, and a rich variety of
shapes have been incorporated into cathedrals, bridges, doorways, etc.

Figure 3.87 shows two basic arch shapes. The arch in part a) is centered at the origin, and has a width of 2W .
The arch begins at height H above the base line. Its principal element is a half-circle with a radius R = W. The
ratio H/W can be adjusted according to taste. For instance, H/W might be related to the golden ratio.

Computer Graphics Chap 3 09/21/99 5:38 PM page 51

R

x

y

W

-H

R

x

y

W

-H

a) Rounded Arch b). Pointed Arch

Figure 3.87. Two basic arch forms.

Figure 3.73b shows an idealized version of the second most famous arch shape, the pointed or “equilateral”
arch, often seen in cathedrals10. Here two arcs of radius R = 2W meet directly above the center. (Through what
angle does each arc sweep?)

The ogee11 (or “keel”) arch is shown in Figure 3.88. This arch was introduced about 1300 AD, and was popular
in architectural structures throughout the late Middle Ages. Circles of radius f R rest on top of a rounded arch of
radius R for some fraction f. This fixes the position of the two circles. (What are the coordinates of point C?)
On each side two arcs blend together to form a smooth pointed top. It is interesting to work out the parameters
of the various arcs in terms of W and f.

y

x

H

W

C
f R

R

Figure 3.88. The Ogee arch.

Develop routines that can draw each of the arch types described above. Also write an application that draws an
interesting collection of such arches in a castle, mosque, or bridge of your design.

3.10.5. Case Study 3.5. Some Figures used in Physics and Engineering.
(Level of Effort: II) This Case Study works with a collection of interesting pictures that arise in certain topics
within physics and engineering. The first ill ustrates a physical principal of circles intersecting at right angles;
the second creates a chart that can be used to study electromagnetic phenomena; the third develops symbols that
are used in designing digital systems.

1). Electrostatic Fields. The pattern of circles shown in Figure 3.89 is studied in physics and electrical
engineering, as the electrostatic field lines that surround electricall y charged wires. It also appears in
mathematics in connection with the analytic functions of a complex variable. In Chapter 5 these families also
are found when we examine a fascinating set of transformations, “ inversions in a circle.” Here we view them
simply as an elegant array of circles and consider how to draw them.

10From J.Fleming, H. Honour, N. Pevsner: Dictionary of Architecture. Penguin Books, London 1980

11From the old French ogive meaning an S-shaped curve.

Computer Graphics Chap 3 09/21/99 5:38 PM page 52

two-pointers

surrounders

-a a

Figure 3.89. Families of orthogonal circles..

There are two families of circles, which we will call “ two-pointers” and “surrounders” . The two-pointers family
consists of circles that pass through two given points. Suppose the two points are (-a, 0) and (a, 0). The two-
pointers can be distinguished by some parameter m, and for each value of m two different circles are generated
(see Figure 3.75). The circles have centers and radii given by:

 center= (0, ± a m2 - 1) and radius = am

as m varies from 1 to infinity.

Circles in the surrounders family surround one of the points (-a, 0) or (a, 0). The centers and radii of the
surrounders are also distinguished by a parameter n and have the values

center = (± an, 0) and radius = a n2-1

as n varies from 1 to infinity. The surrounder circles are also known as “circles of Appolonius,” and they arise
in problems of pursuit [Ball & Coxeter]. The distances from any point on a circle of Appolonius to the points
 (-a, 0) and (a, 0) have a constant ratio. (What is this ratio in terms of a and n?)

The “surrounder” family is intimately related to the two-pointer family: Every surrounder circle “cuts” through
every two-pointer circle at a right angle. The families of circles are thus said to be or thogonal to one another.

Write and exercise a program that draws the two families of orthogonal circles. Choose sets of values of m and
n so that the picture is well balanced and pleasing.

2). Smith Char ts. Another pattern of circles is found in Smith charts, familiar in electrical engineering in
connection with electromagnetic transmission lines. Figure 3.90 shows the two orthogonal families found in
Smith charts. Here all members of the families pass through a common point (1, 0). Circles in family A have
centers at (1 -m, 0) and radii m, and circles in family B have centers at (1, ±n) and radii n, where both m and n
vary from 0 to π. Write and exercise a program that draws these families of circles.

1st Ed. Figure 4.31

Figure 3.90. The Smith Chart.

3). Logic Gates for Digital Circuits. Logic gates are familiar to scientists and engineers who study basic
electronic circuits found in computers. Each type of gate is symbolized in a circuit diagram by a characteristic
shape, several of which are based on arcs of circles. Figure 3.91a shows the shape of the so-called

Computer Graphics Chap 3 09/21/99 5:38 PM page 53

13

32

26

10

26

a). NAND gate b). NOR gate

32

Figure 3.91. Standard Graphic Symbol for the Nand and Nor Gates.

NAND gate, according to a world-wide standard12. The NAND gate is basicall y a rounded arch placed on its
side. The arc has radius 13 units relative to the other elements, so the NAND gate must be 26 units in height.

Figure 3.91b shows the standard symbol for a NOR gate. It is similar to a pointed arch turned on its side. Three
arcs are used, each having a radius of 26 units. (The published standard as shown has an error in it, that makes it
impossible for certain elements to fit together. What is the error?)

Write a program that can draw both of these circuit types at any size and position in the world. (For the NOR
gate find and implement a reasonable correction to the error in Figure 3.77b.) Also arrange matters so that your
program can draw these gates rotated by 90° , 180°, or 270°.

3.10.6. Case Study 3.6. Tilings.
(Level of Effort: II) Computer graphics offers a powerful tool for creating pleasing pictures based on geometric
objects. One of the most intriguing types of pictures are those that apparently repeat forever in all directions.
They are called variously tili ngs, and repeat patterns. They are studied in greater detail i n Chapter ???.

A). Basic Tili ngs. Figure 3.92 shows a basic tili ng. A motif, in this case four quarter circles in a simple
arrangement, is designed in a square region of the world. To draw a tili ng over the plane based on this motif, a
collection of viewports are created side by side that cover the display surface, and the motif is drawn once
inside each viewport.
a). b).

Figure 3.92. A motif and the resulting tili ng.

Write a program that:
a). chooses a square window in the world, and draws some interesting motif (possibly clipping portions of it, as
in Figure 3.14);
b). successively draws the picture in a set of viewports that abut one another and together cover the display
surface.
Exercise your program with at least two motifs.

12The Institute of Electrical and Electronic Engineers (IEEE) publi shes many things, including standard definiti ons
of terminology and graphic shapes of circuit elements. These drawings are taken from the standard document: IEEE
Std. 91-1984 .

Computer Graphics Chap 3 09/21/99 5:38 PM page 54

B). Truchet Tiles. A slight variation of the method above selects successive motifs randomly from a “pool” of

candidate motifs. Figure 3.93a shows the well -known Truchet tiles13, which are based on two quarter circles
centered at opposite corners of a square. Tile 0 and tile 1 differ only by a 90° rotation.

artist sketches the two tiles here

Figure 3.93. Truchet Tiles. a). the two tiles. b). A truchet pattern

.
Figure 3.93.b.

Write an application that draws Truchet tiles over the entire viewport. Each successive tile uses tile 0 or tile 1,
selected at random.

Curves other than arcs can be used as well , as suggested in Figure 3.94. What conditions should be placed on
the angle with which each curve meets the edge of the tile in order to avoid sharp corners in the resulting curve?
This notion can also be extended to include more than two tiles.

Figure 3.94. Extension of Truchet tiles.

Extend the program above so that it introduces random selections of two or more motifs, and exercise it on the
motifs you have designed. Design motifs that “blend” together properly.

3.10.7. Case Study 3.7. Playful Variations on a Theme.
(Estimate of time required: four hours). In Section 3.8 we discussed how to draw a curve represented
parametricall y by P(t): take a succession of instants { ti} and connect the successive "samples" (x(ti), y(ti))
by straight lines. A wide range of pictures can be created by varying the way in which the samples are
taken. We suggest some possibiliti es here.

13Smith, C. “The Tili ng Patterns of Sebastian Truchet and the topology of structural hierarchy.” Leonardo, 20:4, pp:
373-385, 1987. (refd in Pickover, p.386)

Computer Graphics Chap 3 09/21/99 5:38 PM page 55

Write a program that draws each of the four shapes:
a). an elli pse
b). a hyperbola
c). a logarithmic spiral
d). a 5-petal rose curve

for each of the methods described below for obtaining t-samples.

1). Unevenly Spaced Values of t. Instead of using a constant increment between values of t when
sampling the functions x() and y(), use a varying increment. It is interesting to experiment with different
choices to see what visual effects can be achieved. Some possibiliti es for a sequence of (n+1) t-values
between 0 and T (suitably chosen for the curve shape at hand) are

• ti = T i / n : The samples cluster closer and closer together as i increases.

• ti = T(i / n)2
: The samples spread out as i increases.

• ti = T(i / n) + Asin(ki / n) The samples cycli call y cluster together or spread apart. Constants A and

k are chosen to vary the amount and speed of the variation.

2). Randomly Selected t-Values. The t-values can be chosen randomly as in

•ti = randChoose(0,T)

Here randChoose(0,T) is a function (devised by you) that returns a value randomly selected from the
range 0 to T each time it is called. (See Appendix 3 for a basic random number generator.)

Figure 3.95 shows the polyline generated in this fashion for points on an elli pse. It is interesting to watch
such a picture develop on a display. A flurry of seemingly unrelated lines first appears, but soon the eye
detects some order in the chaos and “sees” an elli ptical “envelope” emerging around the cloud of lines.
1st Ed. Figure 4.26

Figure 3.95. A random elli pse polyline.

Alternatively, a sequence of increasing t-values can be used, generated by

•ti = ti-1 + randChoose(0, r)

where r is some small positi ve value.

3). Connecting Vertices in Different Orders
In a popular children’s game, pins are driven into a board in some pattern, and a piece of thread is woven
around the pins in some order. The t-values here define the positions of the pins in the board, and
worldLineTo () plays the role of the thread.

The samples of P(t) are prestored in a suitable array P[i], i = 0,1,..,n. The polyline is drawn by
sequencing in an interesting way through values of i. That is, the sequence i0, i1, is generated from
values between 0 and n, and for each index ik a call to worldLineTo(P[i k]) is made. Some
possibiliti es are:

• ”Random Deal” : the sequence i0, i1, is a random permutation of the values 0,1,..,n, as in dealing a
fixed set of cards from a shuff led deck.

• Every pair of points is connected by a straight line. So every pair of values in the range 0,1,..,n appears
in adjacent spots somewhere in the sequence i0, i1, The prime rosette of Chapter 5 gave one example,
where lines were drawn connecting each point to every other.

Computer Graphics Chap 3 09/21/99 5:38 PM page 56

• One can also draw “webs,” as suggested in Figure 3.96. Here the index values cycle many times
through the possible values, skipping by some M each time. This is easil y done by forming the next index
from the previous one using i = (i + M) mod (n+1).
1st Ed. Figure 4.27
Figure 3.96. Adding webs to a curve.

3.10.8. Case Study 3.8. Circles Rolling around Circles.
(Level of Effort: II) Another large family of interesting curves can be useful in graphics. Consider the
path traced by a point rigidly attached to a circle as the circle roll s around another fixed circle [thomas53,
Yates46]. These are called trochoids, and Figure 3.97 shows how they are generated. The tracing point is
attached to the rolli ng circle (of radius b) at the end of a rod k units from the center. The fixed circle has
radius a. There are two basic kinds: When the circle roll s externally (Figure 3.97a), an epitrochoid is
generated, and when it roll s internally (Figure 3.97b), a hypotrochoid is generated. The children’s game
Spirograph14 is a familiar tool for drawing trochoids, which have the following parametric forms:
1st Ed. Figure 4.23
Figure 3.97. Circles rolli ng around circles.

The epitrochoid:

x(t) = (a+ b)cos(2πt) − kcos(2π
(a + b)t

b
)

y(t) = (a + b)sin(2πt) − ksin(2π
(a+ b)t

b
)

(3.24)

The hypotrochoid:

x(t) = (a− b)cos(2πt) + kcos(2π
(a − b)t

b
)

y(t) = (a − b)sin(2πt) − ksin(2π
(a− b)t

b
)

(3.25)

An elli pse results from the hypotrochoid when a = 2b for any k.

When the tracing point lies on the rolli ng circle (k = b) these shapes are called cycloids. Some familiar
special cases of cycloids are

Epicycloids:
Cardioid: b = a
Nephroid: 2b = a

Hypocycloids:15

Line segment: 2b = a
Deltoid: 3b = a
Astroid: 4b = a.

Some of these are shown in Figure 3.98. Write a program that can draw both epitrochoids and
hypotrochoids. The user can choose which family to draw, and can enter the required parameters.
Exercise the program to draw each of the special cases li sted above.
1st Ed. Figure 4.24.
Figure 3.98. Examples of cycloids: a) nephroid, b) a/b = 10, c) deltoid, d) astroid.

14A trademark of Kenner Products.
15Note that the astroid is also a superelli pse! It has a bulge of 2/3.

Computer Graphics Chap 3 09/21/99 5:38 PM page 57

3.10.9. Case Study 3.9. Superellipses.
(Level of Effort: I) Write and exercise a program to draw superelli pses. To draw each superelli pse, the
user indicates opposite corners of its bounding, and types a value for the bulge, whereupon the specified
superelli pse is drawn.

(Optional). Extend the program so that it can draw rotated superelli pses. The user types an angle after
typing the bulge.

3.11. For Further Reading.
When getting started with graphics it is very satisfying to write applications that produce fascinating curves and
patterns. This leads you to explore the deep connection between mathematics and the visual arts. Many books
are available that offer guidance and provide myriad examples. McGregor and Watt’s THE ART OF
GRAPHICS FOR THE IBM PC, [mcgregor86] offers many algorithms for creating interesting patterns. Some
particularly noteworthy books on curves and geometry are Jay Kappraff’ s CONNECTIONS [kappraff91],
Dewdney’s THE ARMCHAIR UNIVERSE [dewdney88], Stan Ogilvy’s EXCURSIONS IN
GEOMETRY[ogilvy69], Pedoe’s GEOMETRY AND THE VISUAL ARTS [pedoe76], Roger Sheperd’s MIND
SIGHTS [shep90], and the series of books on mathematical excursions by Martin Gardner, (such as TIME
TRAVEL [gardner88] and PENROSE TILES TO TRAPDOOR CIPHERS [gardner89]). Coxeter has written
elegant books on geometry, such as INTRODUCTION TO GEOMETRY[Coxeter69] and MATHEMATICAL
RECREATIONS AND ESSAYS [ball74], and Hoggar’s MATHEMATICS FOR COMPUTER GRAPHICS
[hoggar92] discusses many features of iterated function systems.

