(For ECE660- Fall, 1999

CHAPTER 3. More Drawing Tools.

Computers are useless

They can only give you answers.

Pablo Picas®

Evenif youare ontheright trad, you'll
get run ower if you just sit there.

Will Rogers

Goals of the Chapter

Introduce viewports and clipping

Develop the window to viewport transformation

Develop aclasscal clipping algorithm

Create todsto draw in world coordinates

Develop a C++ classto encapsul ate the drawing routines

Develop ways to seled windows and viewports for optimum viewing
Draw complex pictures using relative drawing, and turtle graphics
Build figures based on regular polygons and their off spring

Draw arcs and circles.

Describe parametricall y defined curves and seehow to draw them.

Preview.

Sedion 31 introduces world coordinates and the world window. Sedion 32 describes the window to viewport
transformation. This transformation simplifies graphics appli cations by letting the programmer work in a
reasonable mordinate system, yet have dl pictures mapped as desired to the display surface The sedion also
discusses how the programmer (and wser) choose the window and viewport to achieve the desired drawings. A
key property isthat the asped ratios of the window and viewport must agree or distortion results. Some of the
choices can be automated. Secion 33 developsa dasscd clipping algorithm that removes any parts of the
picture that lie outside the world window.

Sedion 34 buldsauseful C++ classcdled Canvas that encapsul ates the many detail s of initiali zation and
variable handling required for a drawing program. Itsimplementationin an OpenGL environment is devel oped.
A programmer can use the todsin Canvas to make complex pictures, confident that the underlying datais
proteded from inadvertent mishandling.

Sedion 35 developsroutines for relative drawing and “turtle graphics’ that add handy methods to the
programmer’ stoalkit. Sedion 36 examines how to draw interesting figures based onregular polygors, and
Sedion 37 discusses the drawing d arcs and circles. The chapter ends with several Case Studies, including the
development of the Canvas classfor anon-OpenGL environment, where dl the detail s of clipping and the
window to viewport transformation must be explicitly developed.

Sedion 38 describes diff erent representations for curves, and develops the very useful parametric form, that
permits graightforward drawing o complex curves. Curves that reside in bah 2D space ad D space ae
considered.

3.1. Introduction.
It isasinteresting and & diffi cult to say a thing well asto pant it.
Vincent Van Gogh
In Chapter 2 ou drawings used the basic coordinate system of the screen window: coordinates that are
esentialy in pixels, extending from 0 to some value screenWidth — 1in x, and from O to some value
screenHeight —1iny. Thismeansthat we can use only pasitive values of x andy, and the values must
extend ower alarge range (several hunded pixels) if we hope to get adrawing d some reasonable size.

Computer Graphics Chap 3 09/21/99 5:38 PM page 1

In agiven problem, however, we may na want to think in terms of pixels. It may be much more natural to think
in terms of x varying from, say, -1 to 1, andy varying from —10Q0 to 200. (Recdl how awkward it wasto scde
and shift values when making the dat plotsin Figure 2.16.) Clealy we want to make aseparation between the
values we use in a program to describe the geometrica objeds and the size and pasition d the pictures of them
onthedisplay.

In this chapter we develop methods that let the programmer/user describe objedsin whatever coordinate system
best fits the problem at hand, and to have the picture of the objed automaticdly scded and shifted so that it
“comes out right” in the screen window. The spacein which oljeds are described is cdl ed world coor dinates.
It isthe usual Cartesian xy-coordinate system used in mathematics, based onwhatever units are cnvenient.

We define aredanguar world window? in these world coordinates. The world window spedfies which part of
the “world” shoud be drawn. The understanding is that whatever liesinside the window shoud be drawn;
whatever lies outside shoud be dipped away and nd drawn.

In addition, we define aredanguar viewport in the screen window on the screen. A mapping (consisting o
scdings and shiftings) between the world window and the viewport is establi shed so that when all the objedsin
the world are drawn, the parts that lie inside the world window are automaticaly mapped to the inside of the
viewport. So the programmer thinksin terms of “looking throughawindow” at the objeds being dawn, and
pladng a “snapshat” of whatever is e in that window into the viewport on the display. This window/viewport
approach makes it much easier to do retural thingslike “zoomingin” onadetail in the scene, or “panning
around a scene.

We first develop the mapping pert that provides the automatic change of coordinates. Then we seehow clipping
isdore.

3.2. World Windows and Viewports.
We use an example to motivate the use of world windows and viewports. Suppae you want to examine the
nature of a catain mathematica function, the “sinc” function famousin the signal processng field. It is defined

by

sinc(x) = Sin(7) (3.1

Youwant to knowv how it bends and wiggles as x varies. Suppase you knaw that as x varies from - o t0 o the
value of sinc(x) varies over much of therange—1to 1, andthat it is particularly interesting for values of x nea
0. So youwant a plot that is centered at (0, 0), and that shows sinc(x) for closely spaced x-values between, say,
—4.0to 4.0. Figure 3.1 shows an example plot of the function. It was generated using the simple OpenGL
display function (after a suitable world window and viewport were spedfied, of course):

Figure 3.1. A plot of the “sinc” function.

void myDisplay(void)

las mentioned, the term “window” has a bewil dering set of meanings in graphics, which dften leads to confusion.
We will try to keep the diff erent meanings clea by saying "world window", “screen window", etc., when necessary.

Computer Graphics Chap 3 09/21/99 5:38 PM page 2

glBegin(GL_LINE_STRIP);
for(GLfloat x =-4.0; x < 4.0; x +=0.1)

Glfloaty = sin(3.14159 * x) / (3.14159 * x);
glVertex2f(x, y);

glEnd();
glFlush();

}

Note that the code in these examples operatesin a natural coordinate system for the problem: x is made to vary
in small i ncrements from —4.0 to 4.0. The key isaue here is how the various (x, y) values become scded and
shifted so that the picture gopeas properly in the screen window.

We acomplish the proper scding and shifting bysetting upa world window and a viewport, and establishing a
suitable mapping ketween them. The window and viewport are both aligned redangles gedfied by the
programmer. The window residesin world coordinates. The viewport isa portion o the screen window. Figure
3.2 shows an example world window and viewport. The nationis that whatever liesin the world window is
scaed and shifted so that it appeasin the viewport; the rest is clipped off and nd displayed.

4. b, ——

A SEVAN “x N
vmorld | 4 f__r.qewp-:-rt
wrmdonar

FaNd B

T |
- 7 L
sm&wmdmv

Figure 3.2. A world window and a\'/iewport.

We want to describe nat only how to “doit in OpenGL”, which is very easy, but also how it isdore, to gve
insight into the low-level algorithms used. We will work with orly a 2D version here, but will | ater seehow
these ideas extend returally to 3D “worlds’ viewed with a “camera”.

3.2.1. The mapping from the window to the viewport.

Figure 3.3 shows aworld window and viewport in more detail . The world window is described by its|eft, top,
right, and bottom barders as W.I, W.t, W.r, and W.b, respedivelyz. The viewport is described likewise in the
coordinate system of the screen window (opened at some placeon the screen), by V., V.t, V.r, and V.b, which
are measured in pixels.

2For the sake of brevity we use ‘I’ for ‘left’, ‘t’ for ‘top’, etc. in mathematica formulas.

Computer Graphics Chap 3 09/21/99 5:38 PM page 3

o g
1) Y & k). ;
Wt
il Vil
W
w1 f;rx
ps - YL o
-___\-_"Wh 1 1 -
V1 VI

Figure 3.3. Spedfying the window and viewport.

The world window can be of any size and shape andin any pdsition, aslongasit is an aligned redange.
Similarly, the viewport can be ay aligned redangle, althoughit is of course usualy chosento lie entirely
within the screen window. Further, the world window and viewport dor't have to have the same aped ratio,
athough dstortionresultsif their asped ratios differ. As suggested in Figure 3.4, distortion cccurs because the
figure in the window must be stretched to fit in the viewport. We shall seelater how to set up a viewport with an
asped ratio that always matches that of the window, even when the user resizes the screen window.

Ay A V.| Vir
W.t
V.t
W.I \q W.r @
n= X V.b - .
\V|eV\Lp0rt
W.b| Ny >
window s graphics
windows

Figure 3.4. A picture mapped from awindow to a viewport. Here some distortionis produced.

Given adescription d the window and viewport, we derive amapping or transfor mation, cdled the window-
to-viewport mapping. This mappingis based onaformulathat produces a paint (sx, sy) in the screen window
coordinates for any given pdnt (x, y) in the world. We want it to be a ‘propartional” mapping, in the sense that
if xis, say, 40% of the way over from the left edge of the window, then sx is 40% of the way over from the left
edge of the viewport. Similarly if y is sme fradion, f, of the window height from the bottom, sy must be the
same fradion f up from the bottom of the viewport.

Propartionality forces the mappingsto have alinear form:

X=A*x+C (3.2)
y=B*y+D

for some @mnstants A, B, C and D. The anstants A and B scd e the x andy coordinates, and C and D shift (or
trandate) them.

How can A, B, C, and D be determined? Consider first the mapping for x. As siown in Figure 3.5,
propationality dictates that (sx - V.I) isthe same fradion d thetotal (V.r - V.I) as (x - W.l) is of the total (W.r -
W.I), so that

R ol

W.I W.r V. V.r

Computer Graphics Chap 3 09/21/99 5:38 PM page 4

Figure 3.5. Propartionality in mapping x to sx.

sx=V.I __x-W.
V.r=V.I W.r -W.l
or
V.r=V.l V.r = V.|
sx=—x + (V.| ———W.I)
W.r -W.I W.r -W.|
Now identifying A as the part that multi plies x and C as the constant part, we obtain:
:V'r—_v'l’C:VJ - AMW.I
W.r-W.1

Similarly, propationality in y dictates that

sy-V.b _ y-W.b
V.t-V.b ™ W.t-W.b

andwritingsy asBy + D yields:

B:L\/'b’D =V.b—-BW.b
W.t-W.b
Summarizing, the window to viewport transformation is.
x=Ax+C, sy=By+D
with (3.3
:V.I'——V.|’ C=V.Il-AIW.I
W.r -W.|
:L\/'b’D =V.b—-BW.b
W.t-W.b

The mapping can be used with any paint (x, y) inside or outside the window. Points inside the window map to
pointsinside the viewport, and pants outside the window map to pdnts outside the viewport.

(Important!) Carefully chedk the following properties of this mapping wsing Equation 33:

a). if x isat the window’sleft edge: x = W.I, then sxis at the viewport’sleft edge: sx = V.I.

b). if xisat the window’sright edge then sx is at the viewport’sright edge.

). if xisfradionf of the way aadossthe windaw, then sxisfradionf of the way aadossthe viewport.

d). if x isoutside the windaw to the left, (x < w.l), then sx is outside the viewport to the left (sx < V.I), and
similarly if x is outside to the right.

Also chedk similar properties for the mapping fromy to sy.

Example 3.2.1: Consider the window and viewport of Figure 3.6. The window has (W.I, W.r, W.b, W.t) = (0,
2.0, 0, 1.0) and the viewport has (V.I, V.r, V.b, V.t) = (40, 400, 60, 300).

Computer Graphics Chap 3 09/21/99 5:38 PM page 5

Fy 300

40 400
Figure 3.6. An example of awindow and viewport.

Using the formulas in Equation 32.2 we obtain

A =180 C =40,
B=240D =60

Thus for this example, the window to viewport mappingis:

sx =180 x+ 40
sy =240y + 60

Chedk that this mapping properly maps various points of interest, such as.

 Each corner of the window isindeed mapped to the correspondng corner of the viewport. For example, (2.0,
1.0) mapsto (400, 300).

 The ceanter of the window (1.0, 0.5) maps to the ceanter of the viewport (220, 180).

Practice Exercise 3.2.1. Building the mapping. Find values of A, B, C, and D for the case of aworld window
10.0, 10.0, -6.0, 6.0) and aviewport (0, 600, 0, 400).

Doing it in OpenGL.
OpenGL makesit very easy to use the window to viewport mapping: it automaticaly passes ead vertex it is
given (via aglVertex2 *() command) througha sequence of transformations that carry out the desired

mapping. It also automaticdly clips off parts of objeds lying ouside the world window. All we need doisto set
up these transformations properly, and OpenGL does the rest.

For 2D drawing the world window is st by the function gluOrtho2D (), and the viewport is st by the function
glViewport (). These functions have prototypes:

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble
top);

which sets the window to have lower left corner (left , bottom) and upper right corner (right , top), and
void glViewport(GLint x, GLinty, GLint width, GLint height);
which sets the viewport to have lower |eft corner (x, y) and uppger right corner (x + width , y + height).

By default the viewport is the entire screen window: if W and H are the width and height of the screen window,
respedively, the default viewport has lower left corner at (0, 0) and upper right corner at (W H) .

Computer Graphics Chap 3 09/21/99 5:38 PM page 6

Because OpenGL uses matricesto set up al its transformations, gluOrtho2D ()3 must be preceded by two “ set
up’ functions giMatrixMode(GL_PROJECTION) and glLoadldentity (). (Wediscusswhat is going on
behind the scenes here more fully in Chapter 5.)

Thusto establi sh the window and viewport used in Example 3.2.1 we would use:

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluOrtho2D(0.0, 2.0, 0.0, 1.0); I sets the window
glViewport(40, 60, 360, 240); I sets the viewport

Hereafter every point (X, y) sent to OpenGL using g Vertex2*(x, y) undergoes the mapping of Equation 3.3, and
edges are automatically clipped at the window boundary. (In Chapter 7 we seethe detail s of how thisis donein
3D, whereit also beaomes clear how the 2D version is Smply a spedal case of the 3D version.)

It will make programs more readable if we encapsulate the mommands that set the window into a function
setWindow () as $own in Figure 3.7. We also show setViewport () that hides the OpenGL detail s of
glViewport (..). Tomakeit easier to use, its parameters are dightly rearranged to match those of
setWindow (), sothey are bath in the order left , right , bottom , top .

Note that for conveniencewe use simply the type float for the parameters to setWindow (). The parameters | eft,
right, etc. are automatically cast to type Gldouble when they are passed to gluOrtho2D (), as pedfied by
this function's prototype. Similarly we use thetypeint for the parametersto setViewport (), knowing the
arguments to glViewport () will be properly cast.

e setWindow ---------------------
void setWindow(float left, float right, float bottom, float top)

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(left, right, bottom, top);

R setViewport ------------------
void setViewport(float left, float right, float bottom, float top)

glViewport(left, bottom, right — left, top - bottom);
}

Figure 3.7. Handy functions to set the window and viewport.

It is worthwhil e to ook badk and seewhat we used for awindow and viewport in the ealy OpenGL programs
given in Chapter 2. In Figures 2.10 and 217 the programs used:

1).inmain() :
glutinitWindowSize(640,480); // set screen window size

which set the size of the screen window to 640by 480. The default viewport was used since no
glViewport () command was isaued; the default viewport isthe entire screen window.

2). in mylnit():
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);

3 Theroat “ortho” appeas because setting the window this way is acually setting upa so-caled
“orthographic” projedionin 3D, aswe'll seein Chapter 7.

Computer Graphics Chap 3 09/21/99 5:38 PM page 7

This st the world window to the aligned redangle with corners (0,0) and (640.0, 480.0), just matching the
viewport size. So the underlying window to viewport mapping ddn’t alter anything. This was a reasonable
first choicefor getting started.

Example 3.2.2: Plotting the sinc function —revisited.

Putting these ingredients together, we can seewhat it takes to plot the sinc() function shape of Figure 3.1. With
OpenGL it isjust a matter of defining the window and viewport. Figure 3.8 shows the required code, assuming
we want to plot the function from closely spaced x-values between —40 and 4.0, into a viewport with width 640
and height 480. (Thewindow is st to be alittl e wider than the plot range to leave some msmetic space aound
the plot.)

void myDisplay(void) // plot the sinc function, using world coordinates
setWindow(-5.0, 5.0, -0.3, 1.0); Il set the window
setViewport(0, 640, 0, 480); Il set the viewport

glBegin(GL_LINE_STRIP);

for(GLfloat x =-4.0; x <4.0; x +=0.1) // draw the plot
glVertex2f(x, sin(3.14159 * x) / (3.14159 * x));

glEnd();

glFlush();

}

Figure 3.8. Plotting the sinc function.

Example 3.2.3: Drawing polylinesfrom afile.

In Chapter 2 we drew the dinasaur shown in Figure 3.9 using the routine drawPolylineFile (
“dino.dat ") of Figure 2.22. The palyli ne data for the figure was gored in afile “dino .dat ". Theworld
window and viewport had not yet been introduced, so we just took certain things on faith or by default, and
luckily still got a picture of the dinosaur.

o}

Figure 3.9. The dinosaur inside its world window.

Now we an seewhy it worked: the world window we used happened to enclose the data for the dinosaur (see
Case Study 24): All of the palylinesin dino.dat lieinside aredangle with corners (0, 0) and (640, 480), so
none are dipped with this choiceof a window.

Armed with tods for setting the window and viewport, we an take more wntrol of the situation. The next two
examplesill ustrate this.

Example 3.2.4. Tiling the screen window with the dinosaur motif.

To add some interest, we can draw a number of copies of the dinasaur in some pattern. If we lay them side by
side to cover the entire screen window it’s cdled tili ng the screen window. The picture that is copied at
different positionsis often cdled amotif. Tiling a screen window is easily achieved by wsing a different
viewport for ead instance of the motif. Figure 3.10a shows atilinginvolving 25copies of the motif. It was
generated using;

a). b).

Computer Graphics Chap 3 09/21/99 5:38 PM page 8

el S e
[,
[T N
et Sl
[.

Figure 3. 10. Tili ng the display with copies of the dinosaur.

setWindow(0, 640.0, 0, 480.0); I set a fixed window
for(int i=0; i <5;i++) I/ for each column
for(intj=0;j<b5;j++) /I for each row

glViewport(i*64,|* 44, 64, 44); // set the next viewport
drawPolylineFile(* dino.dat”); I/l draw it again

}

(It'seasier to use glViewport () here than setViewport (). What would the aguments to setViewport ()
beif we choseto use it instead?) Each copyisdrawn in aviewport 64 by 48 jpxelsin size, whose aped ratio
64/48 matches that of the world window. This draws ead dinosaur withou any distortion.

Figure 3.10b shows ancther tili ng, but here dternate motifs are flipped upside down to produce an intriguing effed. Thiswa
dore by fli pping the window upside down every other iteration: interchangingthe top and bottom valuesin

setWindow ()%. (Ched that thisflip of the window properly affeds B and D in the window to viewport transformation of
Equation 3.3 to flip the picture in the viewport.) Then the precaling double logp was changed to:

for(int i=0; i <5;i++)
for(intj=0;j<b5;j++)
if((1+))%2==0) i (i +])is even
setWindow(0.0, 640.0, 0.0, 480.0); // right side up window
else

setWindow(0.0, 640.0, 480.0, 0.0); // upside down window
glViewport(i*64,* 44, 64, 44); [/ set the next viewport
drawPolylineFile(* dino.dat”); // draw it again

}

Example 3.2.5. Clipping partsof a figure.

A picture @an also be clipped by proper setting of the window. OpenGL automatically clips off parts of objeds
that lie outside the world window. Figure 3.11a shows a figure onsisting of a coll edion of hexagons of different
sizes, each dightly rotated relative to its neighbor. Suppose it is drawn by exeaiting some function hexSwirl ().
(We seehow to write hexSwirl () in Sedion 3.6.) Also shown in part a ae two boaxes that indicate different
choices of awindow. Parts b and ¢ show what is drawn if these boxes are used for the world windows. It is
important to keeo in mind that the same entire ohjed is drawn in each case, using the amde:

4|t might seem easier to invert the viewport, but OpenGL does not permit a viewport to have anegative
height.

Computer Graphics Chap 3 09/21/99 5:38 PM page 9

|

a

Figure 3.11. Using the window to clip perts of afigure.

setWindow(...); // the window is changed for each picture
setViewport(...); // use the same viewport for each picture
hexSwirl(); // the same function is called

What is displayed, on the other hand, depends on the setting of the window.

Zooming and roaming.

The examplein Figure 3.11 points out how changing the window can produce useful effeds. Making the window
smaller is much like zooming in on the objed with a camera. Whatever isin the window must be stretched to fit
in the fixed viewport, so when the window is made small er there must be greater enlargement of the portion
inside. Similarly making the window larger is equivalent to zooming out from the objed. (Visualize how the
dinosaur would appear if the window were enlarged to twicethe sizeit hasin Figure 3.9.) A camera can also
roam (sometimes called “pan”) around a scene, taking in different parts of it at different times. Thisiseasily
accompli shed by shifting the window to a new position.

| Example 3.2.6. Zooming in on afigure in an animation.
Consider putting together an animation where the amera z0ms in on some portion of the hexagonsin figure
3.11. We make a series of pictures, often call ed frames, using a dightly smaller window for each one. When the
frames are displayed in rapid successon the visual effed is of the amera zooming in on the objed.

Figure 3.12 shows a few of the windows used: they are amncentric and have a fixed asped ratio, but their size
diminishes for each successve frame. Visualize what is drawn in the viewport for each of these windows.

N

AN

 —— e AR R Y

G
=i
nwes

Figure 3.12. Zooming in on the swirl of hexagons. (file: fig3.12.bmp)

Computer Graphics Chap 3 09/21/99 5:38 PM page 10

A skeleton of the @mde to achieve thisis sown in Figure 3.13. For each new frame the screen is cleared, the
window is made smaller (about a fixed center, and with afixed asped ratio), and the figure within the window is
drawn in afixed viewport.

float ¢cx=0.3, cy = 0.2; //center of the window
float H, W = 1.2, aspect = 0.7; // window properties
set the viewport
for(int frame = 0; frame < NumFrames; frame++) // for each frame
{
clear the screen Il erase the previous figure
W *= 0.7, // reduce the window width
H =W * aspect; // maintain the same aspect ratio

setWindow(cx-W, cx+W, cy-H, cy + H); //set the next window
hexSwirl(); // draw the object
}

Figure 3.13. Making an animation.

Achieving a Smoath Animation.
The previous approach isn’t completdy satisfying, because of the time it takes to draw each new figure. What the
user seesisarepetitive o/cle of:

a). Instantaneous erasure of the arrent figure;
b). A (posshly) dow redraw of the new figure.

The problem isthat the user seesthe line-by-line aeation of the new frame, which can be distracting. What the
user would like to seeis a repetitive gycle of:

a). A steady display of the arrent figure;
b). Instantaneous replacement of the airrent figure by the finished new figure;

Thetrick isto draw the new figure “somewhere dse”’ whil e the user stares at the arrent figure, and then to
move the mmpleted new figure instantaneoudly onto the user’s display. OpenGL offers double-buffering

to accomplish this. Memory is st aside for an extra screen window which is not visible on the actual display,
and all drawing isdone to this buffer. (The use of such “off-screen memory” is discussed fully in Chapter 10.)
The oommand glutSwapBuffers () then causes theimage in this buffer to be transferred onto the screen
window visibleto the user.

To make OpenGL reserve a separate buffer for this, use GLUT DOUBLEather than GLUT SINGLE in the
routine used in main () to initiali ze the display mode:

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // use double buffering

The oommand glutSwapBuffers () would be placed dreadly after drawPolylineFile () in the ade of
Figure 3.13. Then, even if it takes a substantial period for the polyline to be drawn, at least the image will
change abruptly from one figure to the next in the animation, producing a much smoather and visually
comfortable dfed.

Practice Exercise 3.2.2. Whirling swirls. As ancther example of clipping and tili ng, Figure 3.14a shows the
swirl of hexagons with a particular window defined. The window is kept fixed in this example, but the viewport
varies with ead drawing. Figure 3.14b shows a number of copies of thisfigure laid side by sideto tile the
display. Try to pick out the individual swirls. (Some of the swirls have been fli pped: which ores?) Theresult is
dazdingto the gye, in part due to the eye'syeaning to synthesize many small elementsinto an overall pattern.

Computer Graphics Chap 3 09/21/99 5:38 PM page 11

Figure 3.14. a). Whirling hexagorsin afixed window. b). A tiling formed using many viewports.

Except for the fli pping, the ade shown next creaes this pattern. Function myDisplay () setsthe window once,
then draws the dipped swirl again and again in dfferent viewports.

void myDisplay(void)

clear the screen

setWindow(-0.6, 0.6, -0.6, 0.6); // the portion of the swirl to draw

for(int i=0;i<5;i++) /I make a pattern of 5 by 4 copies
for(intj=0;j<4;j++)

int L = 80; // the amount to shift each viewport
setViewport(i*L,L+ i*L,j*L,L+j*L); // the next viewport
hexSwirl();
}
}
Type this code into an OpenGL environment, and experiment with the figuresit draws. Takinga aie from a
previous example, determine how to fli p aternating figures upside down.

3.2.2. Setting the Window and Viewport Automatically.

We want to seehow to chocse the window and viewport in order to produce gpropriate pictures of ascene. In
some caes the programmer (or possbly the user at run-time) can inpu the window and viewport spedficaions
to achieve a cetain effed; in ather cases one or both of them are set up automaticdly, acording to some
requirement for the picture. We discussa few alternatives here.

Setting of the Window.

Often the programmer does not know where or how big the objed of interest liesin world coordinates. The
objeda might be stored in afil e like the dinosaur ealier, or it might be generated procedurally by some
algorithm whose detail s are not known. In such casesit is convenient to let the gplication determine agood
window to use.

The usual approach isto find awindow that includes the entire objed: to achieve thisthe objed’ s extent must
be found The extent (or bounding box) of an ojed isthe digned redangle that just coversit. Figure 3.15
shows a picture made up d several line segments. The extent of the figure, shown as a dashed line, is (left,
right, battom, top) = (0.36, 3.44, -0.51, 1.75).

Computer Graphics Chap 3 09/21/99 5:38 PM page 12

A (036175 extent

Figure 3.15. Using the Extent as the Window.

How can the extent be computed for a given oljed? If all the endpdnts of its lines are stored in an array pt [i],
fori =0, 2, ...,n-1the extent can be cmmputed byfinding the extreme values of the x- and y- coordinatesin this
array. For instance, the left side of the extent isthe smallest of the valuespt[i].x . Oncethe extent is known,
the window can be made identicd to it.

If, onthe other hand, an oljed is procedurally defined, there may be noway to determine its extent ahead of
time. In such a cae the routine may have to be runtwice

Pass1: Exeaute the drawing routine, but do noacual drawing; just compute the extent. Then set the window.
Pass2: Exeaute the drawing routine ajain. Do the adual drawing.

Automatic setting of the viewport to Preserve Asped Ratio.

Suppase you want to draw the largest undstorted version d afigure that will fit in the screen window. For this
you reed to spedfy aviewport that has the same aped ratio as the world windowv. A commonwish isto find
the largest such viewport that will fit inside the screen window on the display.

Suppase the asped ratio of the world window is know to be R, and the screen window has width W and height
H. There aetwo dgtinct situations: the world window may have alarger asped ratio than the screen window (R
> W/H), or it may have asmall er asped ratio (R < W/H). The two situations are shown in Figure 3.16.

LL.F = WH bl = WH _
: . ort. Screety writd ooar
acpect ratio ; B -] H
W@ aspect Tatio © o HE o
-‘—.w—h-

Figure 3.16. Possble asped ratios for the world and screen windows.

Case §: R> W/H. Here the world window is short and stout relative to the screen window, so the viewport with
amatching asped ratio R will extend fully acossthe screen window, but will | eave some unused space &ove
or below. At itslargest, therefore, it will have width W and height W/R, so the viewport is %t using (chedk that
this viewport doesindeed have asped ratio R):

setViewport(0, W, 0, W/R);
Case b): R < W/H. Here the world window istall and rerrow relative to the screen window, so the viewport of

matching asped ratio R will read from the top to the bottom of the screen window, but will | eave some unused
spaceto the left or right. At itslargest it will have height H but width HR, so the viewport is %t using:;

Computer Graphics Chap 3 09/21/99 5:38 PM page 13

setViewport(0, H * R, 0, H);

Example 3.2.7: A tall window. Suppcse the window has asped ratio R = 1.6 and the screen window hasH =
200 and W= 360 and hence W/H = 1.8. Therefore Case b) applies, and the viewport is st to have aheight of
200 pxelsand awidth of 320 pxels.

Example 3.2.8: A short window. Suppce R = 2 and the screen window is the same asin the example aowve.
Then case g applies, and the viewport is %t to have aheight of 180 pxelsand awidth of 360 pixels.

Resizing the screen window, and the resize event.

In awindows-based system the user can resize the screen window at run-time, typicdly by dragging ore of its
corners with the mouse. Thisadion generates aresize event that the system can respondto. Thereisafunction
in the OpenGL utility toadlkit, glutReshape () that spedfiesafunctionto be cdl ed whenever this event
occurs:

glutReshape(myReshape); //specifies the function called on a resize event

(This gatement appearsin main () along with the other call sthat spedfy call back functions.) The registered
function is also call ed when the window is first opened. It must have the prototype:

void myReshape(GLsizei W, GLsizei H);

When it is exeauted the system automaticall y passes it the new width and height of the screen window, which it
can usein itscalculations. (GLsizei isa32hit integer — seeFigure 2.7.)

What should myReshape() do? If the user makes the screen window bigger the previous viewport could till be
used (why?), but it might be desired to increase the viewport to take advantage of the larger window size. If the
user makes the screen window small er, crossng any of the boundaries of the viewport, you amost certainly want
to recompute a new viewport.

Making amatched viewport.

One common approach isto find a new viewport that a) fitsin the new screen window, and b) has the same
asped ratio as the world window. “Matching” the asped ratios of the viewport and world window in this way
will prevent distortion in the new picture. Figure 3.17 shows a version of myReshape () that does this: it finds
the largest “matching” viewport (matching the asped ratio, R, of the window), that will fit in the new screen
window. The routine obtains the (new) screen window width and height through its arguments. Its codeisa
simple anbodiment of the result in Figure 3.16.

void myReshape(GLsizei W, GLsizei H)

if(R > W/H) // use (global) window aspect ratio
setViewport(0, W, 0, W/R);
else
setViewport(0, H * R, 0, H);
}

Figure 3.17. Using a reshape function to set the largest matching viewport uponaresize event.

Practice Exercises.

3.2.3. Find the bounding box for a polyline. Write a routine that computes the extent of the palyline stored in the
array of points pt[i] ,fori=0,2, ...,.n-1

3.2.4. Matching the Viewport. Find the matching viewport for awindow with asped ratio .75 when the screen
window has width 640and height 480

3.2.5. Centering the viewport. (Don’t skip thisone!) Adjust the myReshape() routine éove so that the
viewport, rather than lyingin the lower left corner of the display, is centered bah verticdly and haizontally in
the screen window.

3.2.6. How to sguash a house. Chocse awindow and a viewport so that a square is gjuashed to half its proper

height. What are the wefficients A, B, C, andD inthiscase?

Computer Graphics Chap 3 09/21/99 5:38 PM page 14

3.2.7. Calculation of the mapping. Find the cefficients A, B, C, and D of the window to viewport mapping for
awindaw given by (-600, 235 -500, 125 and a viewport (20, 140, 30, 260). Does distortion accur for figures
drawn in the world? Change the right border of the viewport so that distortion will not occur.

3.3. Clipping Lines.

Clippingisafundamental task in graphics, needed to keep those parts of an ojed that lie outside agiven
region from being dawn. A large number of clipping algorithms have been developed. In an OpenGL
environment ead ohjed isautomaticaly clipped to the world window using a particular algorithm
(which we examine in detail in Chapter 7 for bath 2D and 2D objeds.)

Because OpenGL clips for you there may be atemptationto skip a study d the dipping process But the ideas
that are used to develop a dipper are basic and arise in diverse situations; we will see avariety of approachesto
clippingin later chapters. Andit’s useful to knav how to pul together a dipper as needed when atod like
OpenGL isnat being used.

We develop a dipping algorithm here that cli ps off outlying parts of ead line segment presented to it. This
algorithm can be incorporated in aline-drawing routine if we do not have the benefit of the dipping performed
by OpenGL. Animplementation d a dassthat draws clipped linesis developed in Case Study 33.

3.3.1. Clipping a Line.

In this dionwe describe a ¢assc line-clipping algorithm, the Cohen-Sutherland cli pper, that computes which
part (if any) of aline segment with endpdnts p1 and p2 liesinside the world window, and reports bad the
endpdnts of that part.

WEe'll developthe routine clipSegment (pl1, p2, window) that takestwo 2D points and an aligned
redangle. It clipsthe line segment defined by endpdnts p1 and p2 to the window boundiries. If any pation o
the line remains within the window, the new endpdnts are placed in p1 and p2, and lisreturned (indicaing
some part of the segment isvisible). If the line is completely clipped ou, O isreturned (no pert isvisible).

Figure 3.18 shows atypicd situation covering some of the many passble adionsfor a dipper. clipSegment(
does one of four things to ead line segment:

Figure 3.18. Clipping Lines at window boundries.

« If the antire line lies within the window, (e.g. segment CD): it returns 1.
« If the antire line lies outside the window, (e.g. segment AB): it returns 0.

« If one endpdnt isinside the window and oreis outside (e.g. ssgment ED): the function clips the portion o the
segment that lies outside the window and returns 1.

« If bath endpdnts are outside the window, but a portion d the segment passes throughit, (e.g. segment AE): it
clips both ends and returns 1.

There ae many passhble arangements of a segment with resped to the window. The segment can lie to the left,
to the right, abowve, or below the windaw; it can cut throughany ore (or two) window edges, and so on We
therefore need an arganized and efficient approach that identifies the prevaili ng situation and computes new
endpadnts for the dipped segment. Efficiency isimportant because atypicd picture containsthousands of line

Computer Graphics Chap 3 09/21/99 5:38 PM page 15

segments, and ead must be dipped against the window. The Cohen—Sutherland algorithm provides a rapid
divide-and-conquer attadk onthe problem. Other clipping methods are discussed beginning in Chapter 4.

3.3.2. The Cohen-Sutherland Clipping Algorithm
The Cohen-Sutherland algorithm quickly deteds and d spenses with two common cases, caled “trivial accept”
and “trivial rejed”. As shown in Figure 3.19, both endpdnts of segment

C

T
1
window :
1

Figure 3.19. Trivia accepta'nce or rgjedion d aline segment.

AB lie within window W, and so the whole segment AB must lie inside. Therefore AB can be “trivially
accepted”: it needs no clipping. This stuation occurs frequently when a large window is used that encompasses
most of the line segments. On the other hand, bath endpdnts C and D lie entirely to ore side of W, and so
segment CD must lie entirely outside. It istrivially rejeded, and ndhingis drawn. This stuation arises
frequently when a small window is used with a dense picture that has many segments outside the window.

Testing for atrivial accept or trivial rejed.

We want afast way to deted whether aline segment can be trivially acceted o rejeded. To fadlit ate this, an
“inside-outside aode word” is computed for ead endpant of the segment. Figure 3.20 shows how it is dore.
Point P isto the left and above the window W. These two fads are recorded in a code word for P: aT (for
TRUE) is ®enin thefield for “isto the left of”, and “isabove”. An F (for FALSE) is £en in the other two
fields, “isto theright of”, and“ isbelow”.

Fmm e e - - - isP hel f W? .
isP totheleft o is P balow W?

isP above W? .
____________ is P to theright of W7

Figure |3.20. Encoding hav point P is dispased with resped to the window.

For example, if Pisinsidethewindow itscodeis FFFFE if P isbelow but neither to the left nor right its code is
FFFT. Figure 3.21 shows the nine diff erent regions possble, ead with its code.

TTFF FTFF FTTF

TFFF FFTF

TFFT FFFT FFTT

Figure 3.21. Inside-outside ades for a paint.

We form a code word for ead of the endpants of the line segment being tested. The condtions of trivial accept
andrejed are eaily related to these aode words:

Computer Graphics Chap 3 09/21/99 5:38 PM page 16

» Trivial accept: Both code words are FFFF,
» Trivia rejed: the mde words have an F in the same paosition: both pdnts are to the left of the window, or
bath are éowe, etc.

The adual formation of the mde words and tests can be implemented very efficiently using the bit
manipulation cgpabiliti es of C/ C++, as we describe in Case Study 33.

Chopping when thereis neither trivial accept nor rejed.

The Cohen-Sutherland algorithm uses a divide-and-conquer strategy. If the segment can neither be trivially
acceted na rejeded it is broken into two parts at one of the window boundaries. One part lies outside the
window andis discarded. The other part is potentially visible, so the entire processis repeaed for this egment
against ancther of the four window boundxries. This givesrise to the strategy:

do
{ formthe code wordsfor p1 and p2
if (trivial accept) return 1;
if (trivial rgjed) return O;
choptheline at the “ next” window border; discard the “ outside” part;
} while(2);

The dgorithm terminates after at most four times throughthe loop, since at ead iteration we retain orly the
portion d the segment that has “ survived” testing against previous window boundxries, and there ae only four
such boundries. After at most four iterationstrivial accetanceor rejedionis asaured.

How isthe choppng at ead boundry dore?Figure 3.22 shows an example invalving the right edge of the
window.

1
4 L]
Window\ ! 0¢
tep | R N
: Se>" |aey
I
1
| P2 4—
bottom } @ -------------- | delx
1
1
1
] 1 =
left right

Figure 3.22. Clipping a segment against an edge.

Point A must be omputed. Its x-coordinate is clealy W.right , theright edge position of the window. Itsy-

coordinate requires adjustingpl.y by the anourt d shown in the figure. But by similar triangles
d e

dely delx
whereeispl.x - W.ight and:

delx = p2.x - pl.x; (3.9
dely = p2.y - pl.y;

are the diff erences between the mordinates of the two endpdnts. Thusd is easily determined, and the new
pl.y isfound byaddinganincrement to the old as

ply+=(W.right-plx) * dely/ delx (3.5)

Computer Graphics Chap 3 09/21/99 5:38 PM page 17

Similar reasoning is used for clipping against the other three @lges of window.

In some of the cdculationstheterm dely/ delx occurs, andin ahersitisdelx/ dely . One must awaysbe
concerned abou dividing byzero, andin fad delx iszerofor averticd line, anddely isO0for ahorizonta
line. But asdiscussed in the exercises the peril ous lines of code ae never exeauted when a denominator is zero,
so division byzero will not occur.

Theseideas are wlleded in the routine clipSegment () shown in Figure 3.23. The endpdnts of the segment
are passd byreference, since danges made to the endpdnts by clipSegment () must be visiblein the
cdlingroutine. (Thetype Point2 hddsa?2D point, and the type RealRect hddsan aligned redangle. Both
types are described fully in Sedion 34.)

int clipSegment(Point2& p1, Point2& p2, RealRect W)

dof
if(trivial accept) return 1; // some portion survives
if(trivial rgjed) return O; // no portion survives

if(plisoutside)
{

if(plistotheleft) chop aganst the left edge

else if(plistotheright) chop aganst theright edge
else if(plisbelow) chop aganst the bottom edge
else if(plisabove) chop aganst thetop edge

else I/l p2 is outside

{
if(p2istotheleft) chop aganst the left edge

else if(p2isto theright) chop aganst the right edge
else if(p2isbelow) chop aganst the bottom edge
else if(p2isabove) chop aganst the top edge

)
Ywhile(1);

Figure 3.23. The Cohen-Sutherland line dipper (pseudacode).

Each time throughthe do loopthe ade for ead endpant is recomputed and tested. When trivial acceptance
andregjedionfail, the dgorithm tests whether p1 isoutside, andif so it clipsthat end d the segment to a
window boundxy. If pl isinside then p2 must be outside (why?) so p2 isclipped to awindow boundxy.

Thisversion d the dgorithm clipsin the order left, then right, then batom, and then top. The choice of order is
immaterial if segments are equally likely to lie anywhere in the world. A situation that requires all four clipsis
shown in Figure 3.24. Thefirst clip

P2

P1 .
Figure 3.24. A segment that requires four clips.

Computer Graphics Chap 3 09/21/99 5:38 PM page 18

changes p1 to A ; the secondalters p2 to B; the third finds p1 still outside and below and so changesAto C;

andthe last changes p2 to D. For any choice of ordering for the chopping tests, there will always be asituation
in which all four clips are necessary.

Clippingisafundamental operation that has recaved alot of attention ower the yeas. Several other approaches
have been developed. We examine some of them in the Case Studies at the end d this chapter, and in Chapter
4.

3.3.2. Hand Simulation of cl i pSegnent ().

Go throughthe dipping routine by hand for the case of awindow given by (left, right, bottom, top) = (30, 220,
50, 240) and the foll owing li ne segments:

1). p1=(40,140), p2=(100200; 2). p1=(10,270), p2=(300,0);

3). p1=(20,10), p2=(20,200); 4). p1=(0,0), p2=(250,250);

In ead case determine the endpdnts of the dipped segment, and for avisual chedk, sketch the situation on
graph paper.

3.4. Developing the Canvas Class.
“ One must nat always think that fedingis eveaything.
Art isnothing without form” .
Gustave Flaubert

Thereis sgnificant freedom in working in world coordinates, and having primitives be dipped and properly
mapped from the window to the viewport. But this freedom must be managed properly. There ae so many
interading ingredients (points, recdangles, mappings, etc.) in the soup nav we shoud encgpsulate them and
restrict how the gplicaion programmer accesses them, to avoid subtle bugs. We shoud also insure that the
various ingredients are properly initialized.

It is natural to use dasses and the data hiding they offer. So we develop a dasscal ed Canvas that provides a
handy drawing canvas on which to draw the lines, palygors, etc. of interest. It provides smple methods to
crede the desired screen window and to establi sh a world window and viewport, and it insures that the window
to viewport mappingiswell defined. It also dfersthe routines moveTo() and lineTo () that many
programmers find congenial, as well as the useful “turtle graphics’ routines we develop later in the chapter.

There ae many ways to define the Canvas class the choice presented here shoud be cnsidered orly asa
starting pant for your own version. We implement the dassin this dion wsing OpenGL, exploiting all of the
operations OpenGL does automaticdly (such as clipping). But in Case Study 34 we describe an entirely

diff erent implementation (based onTurbo C++ in a DOS environment), for which we have to supgy all of the
todls. In particular an implementation o the Cohen Sutherland clipper is used.

3.4.1. Some useful Supporting Classes.

It will be convenient to have some cmmon dhta types avail able for use with Canvas and aher classes. We
define them here & classes®, and show simple cnstructors and ather functions for handing oljeds of eah
type. Some of the dasses also have adraw functionto make it easy to draw instances of the dass Other
member functions (methods) will be alded later as the nead arises. Some of the methods are implemented
diredly in the dassdefinitions; the implementation o othersis requested in the exercises, and oy the
dedaration d the methodis given.

cl ass Poi nt 2: A point having real coordinates.

Thefirst supporting classembaodies a single point expressed with floating point coordinates. It is iown with two
constructors, the function set () to set the @ordinate values, and two functions to retrieve the individual
coordinate val ues.

class Point2

{

5 Students preferring to write in C can define simil ar types using struct's

Computer Graphics Chap 3 09/21/99 5:38 PM page 19

public:
Point2() {x =y = 0.0f;} // constructorl
Point2(float xX, float yy) {x = XX,y = yy;} /l constructor2
void set(float xX, float yy) {x = XX,y = yy:}
float getX() {return x;}
float getY() {returny;}
void draw(void) { gIBegin(GL_POINTS); // draw this point
glVertex2f((Glfloat)x, (Glfloat)y);
glEnd();}
private:
float x, y;

3

Notethat valuesof x andy are ast tothetype Glfloat ~ when glVertex2f () iscalled. Thisismot likely
unnecessary sincethetype Glfloat isdefined on most systemsasfloat anyway.

cl ass | nt Rect: An aligned redangle with integer coordinates.
To describe a viewport we need an ali gned redangle having integer coardinates. The dassIntRect provides
this.

class IntRect

public:
IntRect () {I=0;r=100; b =0;t=100;}// constructors
IntRect (int left, int right, int bottom, int top)
{I =left; r = right; b = bottom; t = top;}
void set(int left, int right, int bottom, int top)

{I = left; r = right; b = bottom; t = top;}
void draw(void); // draw this rectangle using OpenGL
private:
intl, r, b, t
h

cl ass Real Rect: An aligned redangle with real coordinates.

A world window requires the use of an aligned redangle having real values for its boundary position. (This
classis © similar to IntRect some programmers would use templates to define a classthat could hold either
integer or real coordinates.)

class RealRect

{

same asi nt Rect excetusef | oat instead di nt

3

Practice Exercise 3.4.1. Implementing the dasss. Flesh out these dasses by adding other functions you think
would be useful, and by implementing the functions, such asdraw () for intRect , that have only been
dedared abowe.

3.4.2. Declaration of Class Canvas.
We dedaretheinterfacefor Canvasin Canvas.h as siown in Figure 3.25. Its data members include the
current position, a window, a viewport, and the window to viewport mapping.

class Canvas {

public:
Canvas(int width, int height, char* windowTitle); // constructor
void setWindowf(float |, float r, float b, float t);
void setViewport(intl, intr, int b, int t);

IntRect getViewport (void); // divulge the viewport data
RealRect getWindow (void); // divulge the window data

Computer Graphics Chap 3 09/21/99 5:38 PM page 20

float getWindowAspectRatio(void);
void clearScreen();
void setBackgroundColor(float r, float g, float b);
void setColor(float r, float g, float b);
void lineTo(float x, float y);
void lineTo(Point2 p);
void moveTo(float x, float y);
void moveTo(Point2 p);
others later
private:
Point2 CP; /I current position in the world
IntRect viewport; // the current window
RealRect window; // the current viewport
others later

}

Figure 3.25. The header file Canvas.h.

The Carnvas constructor takes the width and height of the screen window along with the titl e string for the
window. Aswe show below it creates the screen window desired, performing al of the appropriate

initi ali zations. Canvas also includes functions to set and return the dimensions of the window and the viewport,
and to control the drawing and background color. (Thereis no explicit mention of data for the window to
viewport mapping in this version, as this mapping is managed “silently” by OpenGL. In Case Study 3.4 we add
members to hold the mapping for an environment that requiresit.). Other functions sown are versions of

lineTo () and moveTo() that do the actual drawing (in world coordinates, of course). We add “relative drawing
tods’ in the next sedion.

Figure 3.26 shows how the Canvas classmight typicall y be used in an application. A single global ohjed cvsis
created, which initiali zes and opens the desired screen window. It is made global so that call back functions sich
asdisplay () can“se€' it. (We @nnot passcvs as aparameter to such functions, astheir prototypes are fixed
by the rules of the OpenGL utility todkit.) Thedisplay () function here sets the window and viewport, and
then draws a line, using Canvas member functions. Then aredangleis created and drawn using its own member
function.

Canvas cvs (640, 480, “try out Canvas”); /I create a global canvas object

[1<<<<<<<LLLLLLLLLLLLLLLLLLLL LKL display SSS553S555333555555>5>5>
void display(void)

cvs.clearScreen(); I clear screen
cvs.setWindow(-10.0, 10.0, -10.0, 10.0);
cvs.setViewport(10, 460, 10, 460);

cvs.moveTo(0, -10.0); // draw a line

cvs.lineTo(0, 10.0);

RealRect box (-2.0, 2.0, -1.0, 1.0); // construct a box
box.draw(); I/l draw the box

}

fl<<<<gggLLLLLLLLLLLL<L<L main >>>>>>>>>>S>>>5SSSS>SSSSSSSSSSS>>>
void main(void)

/I the window has already been opened in the Canvas constructor
cvs.setBackgroundColor(1.0, 1.0, 1.0); // background is white
cvs.setColor(0.0, 0.0, 0.0); // set drawing color
glutDisplayFunc(display);
glutMainLoop();

}

Figure 3.26. Typicd usage of the Canvas class

Computer Graphics Chap 3 09/21/99 5:38 PM page 21

The main () routine doesn’'t do any initi ali zaion: thishas all been dore in the Canvas constructor. The routine
main () smply setsthe drawing and badkgroundcolors, registers functiondisplay (), and enters the main
event loop. (Could these OpenGL-spedfic functions also be “buried” in Canvas member functions?) Note that
this appli cation makes almost no OpenGL -spedfic cdls, so it could easily be ported to another environment
(which used a different implementation d Canvas, of course).

3.4.3. Implementation of Class Canvas.

We show next some detail s of an implementation d this classwhen OpenGL is avail able. (Case Study 34
discusses an alternate implementation.) The wnstructor, shown in Figure 3.27, passs the desired width and
height (in pixels) to glutinitWindowSize (), and the desired titl e string to glutCreateWindow (). Some
fusdng must be dore to passglutinit () the agumentsiit needs, even thoughthey aren’t used here. (Normally
main () passes glutlnit () the ommmand line aguments, as we saw ealier. Thiscan't be dore here sincewe
will use aglobal Canvasobjed, cvs , which isconstructed before main () is cdled.)

fl<<<gggggggLLLLLLLL<<< Canvas CoONStructor >>>>>>555>>>>>>>

Canvas: Canvas(int width, int height, char* windowTitle)
{
char* argv[1]; /l dummy argument list for glutinit()
char dummyString[8];
argv[0] = dummysString; // hook up the pointer
int argc =1; /I to satisfy glutinit()

glutinit(& argc, argv);

glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutinitWindowSize(width, height);

glutinitWindowPaosition(20, 20);

glutCreateWindow(windowTitle); // open the screen window
setWindow(O0, (float)width, O, (float)height); //default world window
setViewport(0, width, 0, height); // default viewport

CP.set (0.0f, 0.0f); /l initialize the CP to (0, 0)

}

Figure 3.27. The monstructor for Canvas — OpenGL version.

Figure 3.28 shows the implementation of some of the remaining Canvas member functions. (Others are
requested in the exercises.) Function moveTo() smply updates the arrent position; lineTo () sendsthe CP as
thefirst vertex, and the new paint (x, y) as the second vertex. Note that we don’t need to use the window to
viewport mapping explicitly here, since OpenGL automatically appliesit. The function setWindow () pasesits
arguments to gluOrtho2D () — after properly casting their types— and loads them into Canvas s window .

<< LLLLLLLLLLL LKL LKL moveTo >>>>>5>5>5>5555>>>>55>>
void Canvas:: moveTo(float x, float y)

CP.set (x,Y);

[l LLLLLLLLLLLL<L iNeTo >>>>>>>>>>>5>>5>>5>5>>>5>>>>
void Canvas:: lineTo(float x, float y)
{
glBegin(GL_LINES);
glVertex2f((GLfloat) CP.x,(GLfloat) CP.y);

glVertex2f((GLfloat)x, (GLfloat)y); I/l draw the line
glEnd();
CP.set (x,Y); // update the CP
glFlush();
;/<<<<<<<<<<<<<<<<<<<<<<<< set Window >>>>>>>>>>>>5>5>5>>>5>>>
void Canvas:: setWindow(float |, float r, float b, float t)

gIMatrixMode(GL_PROJECTION);
glLoadldentity();

Computer Graphics Chap 3 09/21/99 5:38 PM page 22

gluOrtho2D((GLdouble)l, (GLdouble)r, (GLdouble)b, (GLdouble)t);
window.set(l, r, b, t);

}

Figure 3.28. Implementation of some Canvas member functions.

Practice Exercises.

3.4.2. Flesh out each of the member functions:

a). void setViewport(intl, intr, int b, int t);
b). IntRect getViewport (void);

c). RealRect getWindow (void);

d). void clearScreen(void);

€). void setBackgroundColor(float r, float g, float b);
f). void setColor(float r, float g, float b);

g). void lineTo(Point2 p);

h). void moveTo(Point2 p);

i). float getWindowAspectRatio(void)

3.4.3. Using Canvasfor a simulation: Fibonacc numbers. The growth in the size of arabbit popuationis
said to be modeled by the foll owing equation [gardner61]:

yk = yk-l + yk-2

where Y, isthe number of bunries at the k-th generation. This model says that the number in this generationis
the sum of the numbersin the previous two generations. The initial popuations are y,=1 and y =1 Successve
values of y, are formed by substituting ealier values, and the resulting sequenceis the well-known Fibonacd
sequence 1, 1, 2, 3,5, 8, 13. . . .A plot of the sequencey versusk revedsthe nature of this growth pattern.
Use the Canvas classto write aprogram that draws sich a plot for a sequence of length N. Adjust the size of
the plot appropriately for different N. (The sequence grows very rapidly, so youmay insteal wish to plot the
logarithm of y, versusk.) Also plot the sequence of ratios P.=Y, / Y, and watch haw quickly thisratio
converges to the golden ratio.

3.4.4. Another Simulation: sinusoidal sequences. The following dfference guation generates a sinusoidal
sequence

y=ay -y, fork=12 ...

where aisa mnstant between Oand 2 Y, isOfor k< 0; and y,=1 (see[oppenheim83)). In general, one g/cle

consists of Spaintsif we set a= 2« cog(217S). A good pcture results with S=40. Write aroutine that draws
sequences generated in this fashion, and test it for various values of S

3.5. Relative Drawing.

If we aldjust afew more drawingtoadlsto ou tod bag (which isthe emerging classCanvas) certain drawing
tasks beacome much simpler. It is often convenient to have drawing take place &the aurrent position (CP), and
to describe pasiti ons relative to the CP. We develop functions, therefore, whose parameters gedfy changesin
pasition: the programmer spedfies how far to goalongead coordinate to the next desired pant.

3.5.1. Developing moveRel() and lineRel().

Two new routines are moveRel () andlineRel (). The function moveRel () iseasy: it just “moves’ the CP
throughthe displacement (dx, dy). The function lineRel (float dx, float dy) doesthistoo, but it
first draws aline from the old CP to the new one. Both functions are shown in Figure 3.29.

void Canvas :: moveRel(float dx, float dy)

CP.set (CP.x+ dx, CP.y+ dy);

Computer Graphics Chap 3 09/21/99 5:38 PM page 23

}

void Canvas :: lineRel(float dx, float dy)
float x = CPx+ dx,y= CP.y+ dy;
lineTo(x, y);
CP.set (x,Y);

}

Figure 3.29. The functions moveRel () and lineRel ().

Example 3.5.1. An arr ow marker. Markers of different shapes can be placed at various pointsin a drawing to
add emphasis. Figure 3.30 shows pentagram markers used to highlight the data pointsin aline graph.

> X

1 2 3 4 5 6
Figure 3.30. Pladng markers for emphasis.

Because the same figure is drawn at several different pointsit is convenient to be ale to say smply
drawMarker () and haveit be drawn at the CP. Then the line graph o Figure 3.30 can be drawn alongwith the
markers using code suggested by the pseudocode:

moveTo(first data point);
drawMarker(); /l draw a marker there
for(each remaining data point)

lineTo(the next point); I/l draw the next line segment
drawMarker(); I/l draws it at the CP

}

Figure 3.31 shows an arrow-shaped marker, drawn using the routine in Figure 3.32. The arow is positioned
with its uppermost point at the CP. For flexibility the arow shape is parameterized throughfour size parameters
f, h, t, andw as shown. Functionarrow() usesonlylineRel (), and noreferenceis made to absolute
positions. Also nde that althoughthe CP is altered while drawingis going on at the end the CP has been set
back toitsinitial position. Hencethe routine produces no “side dfeds’ (beyondthe drawing itself).

—— worldCP

]

> <—><c<>
w t w

Figure 3.31. Model of an arrow.

void arrow(float f, float h, float t, float w)

{ /I assumes global Canvas object: cvs
cvs.lineRel(-w - t/ 2, -f); // down the left side
cvs.lineRel(w, 0);

Computer Graphics Chap 3 09/21/99 5:38 PM page 24

cvs.lineRel(0, -h);

cvs.lineRel(t, 0); Il across
cvs.lineRel(0, h); I/l back up
cvs.lineRel(w, 0);

cvs.lineRel(-w -t/ 2,);

}

Figure 3.32. Drawing an arrow using relative moves and draws.

3.5.2. Turtle Graphics.

The last tod we ald for now is surprisingly convenient. It kegpstradk nat only of “where we ae” with the CP,
but also “the diredionin which we ae headed”. Thisisaform of turtlegraphics, which has been foundto be a
natural way to program in gaphics6. The nationisthat a “turtle”, which is conceptually similar tothe penina
pen plotter, migrates over the page, leaving atrail behinditself which appeas asaline segment. The turtleis
positioned at the CP, healed in a cetain dredion cdled the curre nt direction, CD. CDisthe number of
degrees measured courterclockwise (CCW) from the positive x-axis.

It iseasy to add functionality to the Canvas classto “control the turtle”. First, CDis added as a private data
member. Then we add threemethodk:

1). turnTo(float angle). Turn the turtle to the given angle , implemented as:
void Canvas:: turnTo(float angle) {CD = angle;}
2). turn(float angle). Turn theturtle through angle degrees courterclockwise:

void Canvas:: turn(angle){CD += angle;}

Use anegative agument to make aright turn. Note that aturn isarelative diredion change: we don't spedfy
adiredion, only a change in diredion. This smple distinction grovides enormous power in drawing complex
figures with the turtle.

3). forward(float dist, int isVisible) . Movetheturtle forward in a straight line from the CP
throughadistancedist inthe aurrent direcion CD, and updite the CP. If isVisible isnorzero avisible
line is drawn; otherwise nothingis drawn.

Figure 3.33 shows that in gdng forward in dredion CD the turtle just movesin x throughthe anourt dist *
cos(tt * CD/180) and in y through the amount dist * sin(rt * CD/180), so theimplementation of forward () is
immediate:

new worldCP

5
CD

old worldCP

Figure 3.33. Effed of the forward() routine.

void Canvas:: forward(float dist, int isVisible)

{

8 ntroduced by Seymour Papert at MIT as part of the LOGO languege for teading chil dren how to program. See
e.g. [Abel81]

Computer Graphics Chap 3 09/21/99 5:38 PM page 25

const float RadPerDeg = 0.017453393; //radians per degree

float x = CP.x+ dist* cos(RadPerDeg * CD);
floaty = CP.y + dist * sin(RadPerDeg * CD);
if(isVisible)

lineTo(X, y);
else

moveTo(X, y);

}

Turtle graphics makes it easy to buld complex figures out of smpler ones, as we seein the next examples.

Example 3.5.2. Building afigure upon a hook motif. The 3-segment “hook’ motif shown in Figure 3.34a can
be drawn using the commands:

forward(3 * L, 1); // L is the length of the short sides
turn(90);

forward(L, 1);

turn(90);

forward(L, 1);

turn(90);

for some choice of L. Suppase that procedure hook () encapsulates these instructions. Then the shape in Figure
3.34bisdrawn using four repetitions of hook() . The figure can be positioned and aiented as desired by
choices of theinitial CP and CD.

a). b).

motif

Figure 3.34. Building afigure out of several turtle motions.

Example 3.5.3. Polyspirals. A large family of pleasing figures call ed palyspirals can be generated easily using
turtlegraphics. A polyspiral isa polyline where each successve segment islarger (or smaller) than its
predecessor by afixed amount, and oriented at some fixed angle to the predecessor. A polyspiral isrendered by
the foll owing pseudocode:

for(<some number of iterations>)

forward(length,1); // draw a line in the current direction
turn(angle); // turn through angle degrees
length += increment; I/l increment the line length

}

Each time alineisdrawn bah itslength and dredion are incremented. If increment s 0, the figure neither
grows nor shrinks.. Figure 3.35 shows sveral palyspirals. The implementation d thisroutine is requested in the
exercises.

Computer Graphics Chap 3 09/21/99 5:38 PM page 26

Figure 3.35. Examples of payspiras. Angles are: a). 60, b). 89.5,). -144, d). 170

Practice Exercises.

3.5.1. Drawing Turtlefigures. Provide routines that use turtle motionsto draw the threefigures siownin
Figure 3.36. Can the turtle draw the shapein part ¢ withou “lifting the pen” and withou drawing any line
twice?

a). b). c).

Figure 3.36. Other Simple Turtle Figures.

3.5.2. Drawing awell-known logo. Write aroutine that makes a turtle draw the outline of the logoshown in
Figure 3.37. (It nea na fill the palygors.)

Figure 3.37. A famous loga

3.5.3. Driving the Turtle with Strings. We can use ashorthand ndationto describe afigure. Suppose

F means forward(d, 1); {for some distanced}
L means turn(60); {left turn}
R means turn(-60). {right turn}

What does the foll owing sequence of commands produce?
FLFLFLFRFLFLFLFRFLFLFLFR. (SeeChapter 9 for ageneralizaion o thisthat produces fradal)

3.5.4. Drawing Meanders. A meander’ isa pattern like that in Figure 3.38a, often made up d a continuows
line meandering along some path. One frequently sees meanders on Greek vases, Chinese plates, or floor tili ngs
from various courtries. The motif for the meander hereis shown in Figure 3.38b. After eady motif isdrawn the
turtle is turned (how much?) to prepare it for drawing the next motif.

"Based onthe name Maeander (which has modern name Menderes), awinding river in Turkey [Janson 8.

Computer Graphics Chap 3 09/21/99 5:38 PM page 27

a). b).EI

Figure 3.38. Example of a meander.

Write aroutine that draws this motif, and a routine that draws this meander. (Meanders are most attradive if the
graphics padkage & hand suppatsthe ontrol of line thickness-- as OpenGL does-- so that forward() draws
thick lines.) A dazding variety of more complex meanders can be designed, as suggested in later exercises. A
meander is a particular type of friezepattern. Friezes are studied further in Chapter 2?72

3.5.5. Other Classs of Meanders. Figure 3.39 shows two additional types of meanders. Write routines that
employ turtle graphicsto draw them.

B Y i
5265252

Figure 3.39. Additional figuresfor meanders.

3.5.6. Drawing Elaborate Meanders. Figure 3.40 shows a sequence of increasingly complex motifs for
meanders. Write routines that draw a meander for ead o these motifs. What does the “next most compli cated”
motif in this ssquencelook like, and what is the general principal behind constructing these motifs?

&1 5] &)]

Figure 3.40. Hierarchy of meander motifs.

3.5.7. Implementing polyspiral. Write the routine polyspiral(float length, float angle,

float incr, int num) that draws apadyspiral consisting d num segments, the first having length
length . After ead segment isdrawn length isincremented byincr andthe turtle turns throughangle
angle .

3.5.8. Is a Polyspiral an IFS? Can apdyspiral be described in terms of an iterated function system as defined
in Chapter 2? Spedfy the function that isiterated bythe turtle at ead iteration.

3.5.9. Reaursive form for Pol yspi ral (). Rewrite polyspiral() in areaursive form, so that
polyspiral() with argument dist cdls polyspiral() with argument dist+inc. Put a suitable
stoppng criterionin the routine.

3.6. Figures based on Regular Polygons.
To generalizeisto be anidiot.
Willi am Blake

“ Bees...by virtue of certain geometrical forethougti...know that the hexagonis greater thanthe square and
triande, andwill hold more horeyfor the same exenditure of material.”
Pappus of Alexandria

The regular paygons form alarge and important family of shapes, often encourtered in computer graphics. We

ned efficient waysto draw them. In this ssdionwe examine how to dothis, and hav to creae anumber of
figures that are variations of the regular polygon

3.6.1. The Regular Polygons.
First recdl the definition o aregular polygon

Computer Graphics Chap 3 09/21/99 5:38 PM page 28

Definition: A pdygonisregular if it is Smple, if al its $des have equal lengths, andif adjacent sides med at
equal interior angles.

Asdiscussd in Chapter 1, a paygonissimple if notwo dof its edges crossead ather (more predsely: only
adjacent edges can touch, and orly at their shared endpadnt). We give the name n-gon to aregular palygon
having n sides. Familiar examples are the 4-gon(a square), a 5-gon(aregular pentagon), 8-gon (aregular
octagon), and so on A 3-gonisan equil ateral triangle. Figure 3.41 shows various examples. If the number of
sides of an n-gonislarge the paygonapproximates a drcle in appeaance. In fad thisis used later as one way
to implement the drawing d a drcle.

n: 3 4 5 6 40

Figure 3.41. Examples of n-gors.

The vertices of an n-gonlieona drcle, the so-cdled “parent circle” of the n-gon andtheir locations are eaily

caculated. The cae of the hexagonis $iown in Figure 3.42 where the vertices lie eguispacel every 60° around
the drcle. The parent circle of radius R (not shown) is centered at the origin, and the first vertex P, has been
placeal onthe positive x-axis. The other vertices foll ow acwordingly, as Pj = (Rcos(i @), Rsin(i [R)), fori =

1,...5, where ais 2176 radians. Simil arly, the vertices of the general n-gonlie &:

y
Pz\ 4 /Plz(Rcos(a),Rsin(a))

/ a X
\R\
Po

Figure 3.42. Finding the vertices of an 6-gon

Pi=(Rcos(2mi /n),Rsin(2mi / n)), fori=0,...,n-1 (3.6)

It's easy to modify this n-gon To center it at position (cx, cy) we need only add cx and cy to the x- and y-
coordinates, respedively. To scdeit by facdor Swe nead orly multiply R by S. To rotate throughangle A we
neal orly add A to the aguments of cos() and sin(). More general methods for performing geometricd
transformations are discussed in Chapter 6.

It is smple to implement aroutine that draws an n-gon, as s1own in Figure 3.43. The n-gonis drawn centered at
(cx, cy), with radiusradius , andisrotated throughrotAngle degrees.

void ngon(int n, float cx, float cy, float radius, float rotAngle)
{ I/l assumes global Canvas object, cvs
if(n < 3) return; // bad number of sides
double angle = rotAngle * 3.14159265 / 180; // initial angle
double angleinc =2 * 3.14159265 /n; /langle increment

cvs. moveTo(radius + cx, cy);
for(intk =0; k <n; k++) // repeat n times
{
angle += anglelnc;
cvs.lineTo(radius * cos(angle) + cx, radius * sin(angle) + cy);
}
}

Figure 3.43. Building an n-gonin memory.

Computer Graphics Chap 3 09/21/99 5:38 PM page 29

Example 3.6.1: A Turtle-driven n-gon. It isalso smpleto draw an n-gon wsing turtlegraphics. Figure 3.44
shows how to draw aregular hexagon The initial positionand dredion d the turtle isindicated by the small
triangle. The turtle simply goes forward six times, makinga CCW turn of 60 degrees between eac move:

360/n

L

Figure 3.44. Drawing a hexagon
for (1= 0;i<6; i++)

cvs.forward(L, 1);
cvs.turn(60);

}
One vertex is stuated at the initial CP, and bah CP and CD are left unchanged by the process Drawing the

general n-gon, and some variations of it, is discussed in the exercises.

3.6.2. Variations on n-gons.

Interesting variations based onthe vertices of an n-goncan also be drawn. The n-gon \ertices may be mnreded
in various waysto produce avariety of figures, as suggested in Figure 3.45. The standard n-gonisdrawn in
Figure 3.45a by conreding adjacent vertices, but Figure 3.45b shows a stell ation (or star-like figure) formed by
conreding every other vertex. And Figure 3.45¢c shows the interesting r osette, formed by conreding ead
vertex to every other vertex. We discussthe rosette next. Other figures are described in the exercises.

a). b).

9,

Figure 3.45. A 7-gonand its off spring.). the 7-gon, b). a stellation, ¢). a “7-rosette”.

Example 3.6.2. The rosette, and the Golden 5-rosette.

Therosette is an n-gonwith ead vertex joined to every other vertex. Figure 3.46 shows 5-, 11-, and 17
rosettes. A rosette is smetimes used as a test pattern for computer graphics devices. Its orderly shape readily
reveds any dstortions, and the resolution o the device can be determined by nding the anourt of “crowding
and Hurring exhibited bythe bunde of linesthat med at ead vertex.

Figure 3.46. The 5-, 11-, and 17rosettes.

Computer Graphics Chap 3 09/21/99 5:38 PM page 30

Rosettes are eay to draw: simply conred every vertex to every other. In pseudocode thislooks like

void Rosette(int N, float radius)

{
Point2 pt[bi g enough value for |argest rosette];
generate the vertices pt[0],. . .,pt[N-1], as in Figure 3.43
for(int i=0;i<N-1;itt)
for(intj=i+1;j<N;j++)
cvs.moveTo(pt[i]); // connect all the vertices
cvs.lineTo(pt[j]);
}
}

The 5-rosette is particularly interesting becaise it embodes many instances of the golden ratio @ (recdl Chapter

2). Figure 3.47a shows a 5-rosette, which is made up o an outer pentagonand an inner pentagram. The Greeks

saw amysticd significancein thisfigure. Its gments have an interesting relationship: Each segment is @times

longer than the next smaller one (seethe exercises). Also, because the alges of the star pentagram form an inner
entagon an infinite regresson d pentagramsis possble, as siownin Figure 3.47h

a). b).

¢

B Y

Figure 3.47. 5-rosette and Infinite regressons - pentagons and pentagrams.

Example 3.6.3. Figures based on two concentric n-gons.

Figures 3.48 shows ome shapes built upontwo concentric parent circles, the outer of radius R, and the inner of
radius fR for some fradionf. Each figure uses avariation d an n-gonwhaose radius alternates between the inner
and ouer radii. Parts @) and b) show familiar company logos based on 6gons and 1Ggors. Part ¢) isbased on
the 14-gon, and part d) showsthe inner circle explicitly.

a). b) c) d). %
A % i E rad(s R radius f R

Figure 3.48. A family of Famous Logcs.

Practice Exercises.

3.6.1. Stellations and rosettes. The pentagram is drawn by conreding “every other” point as one traverses
arounda 5-gon Extend thisto an arbitrary oddvalued n-gonand develop aroutine that draws this so-cdled
“stellated” polygon Can it be dorewith asingleinitial moveTo() followed orly bylineTo() ’s(thatis,
withou “lifting the pen”)? What happensif niseven?

3.6.2. How Many Edgesin an N-rosette? Show that a rosette based onan N-gon, an N-rosette, hasN(N - 1) / 2
edges. Thisisthe same a the number of “clinks’ one heaswhen N people ae seaed aroundatable and
everybody clinks glasses with everyone dse.

Computer Graphics Chap 3 09/21/99 5:38 PM page 31

3.6.3. Prime Rosettes. If arosette has a prime number N of sides, it can be drawn withou “lifting the pen,” that
is, by using only lineTo (). Start at vertex v and draw to ead of the othersin turn: ViV, V3, .until v, is
again readed and the paygonis drawn. Then goaroundagain drawing lines, but skip avertex each tlme that
is, increment the index by 2—thereby drawing to VoV, oo,V Thiswill require going aroundtwiceto arrive
bad at V. (A moduo operationis performed onthe indices 9 that their values remain between O and N-1.)
Then reped this, incrementing by 3 VoV, VLV Each repea draws exadly N lines. Because there ae N(N
-1)/ 2linesinall, the processrepedas (N - 1) / 2 times. Because the number of verticesisa prime, no petternis
ever repeaed urtil the drawing is complete. Develop and test a routine that draws prime rosettesin this way.
3.6.4. Rosettes with an odd number of sides. If nis prime we know the n-rosette can be drawn asasingle
polyline without “lifting the pen”. It can also be drawn as a single palyline for any odd value of n. Devise a
methodthat does this.

3.6.5. The Geometry of the Star Pentagram. Show that the length of ead segment in the 5-rosette standsin
the golden ratio to that of the next smaller one. One way to tadkle thisisto show that the triangles of the star
pentagram are “golden triangles’ with an inner angle of 1t/ 5 radians. Show that 2 * cos(mt/ 5) = gpand 2 *
cos(2mt/ 5) =1/ @ Ancther approach uses only two families of similar triangles in the pentagram and the

relation ¢3 = 2¢+ 1 satisfied by @

3.6.6. Erecting Triangles on n-gon legs. Write aroutine that draws figures like the logoin part a of Figure 3.48
for any value of f, positive or negative. What is a reasonable geometric interpretation o negative f?

3.6.7. Drawing the Star with Relative Moves and Draws. Write aroutine to draw a pentagram that uses only
relative moves and draws, centering the star at the CP.

3.6.8. Draw a pattern of stars. Write aroutine to draw the pattern of 21 stars siown in Figure 3.49. The small
stars are positioned at the vertices of an n-gon

*
24 W

i **A*ﬁ v
¥)¢

P 4 F

* K
* *
¥

Figure 3.49. A star pattern.

3.6.9. New points on the “7-gram” . Figure 3.50 shows a figure formed from the 7 pdnts of a 7-gon, centered
at the origin. Thefirst paint liesat (R, 0). Instead of conreding conseautive points aroundthe 7-gon, two
intermediary paints are skipped. (Thisisaform of “stellation” of an n-gon) Findthe wordinates of point P,
where two of the edgesintersed.

A

P
v (R, 0)
N

Figure 3.50. A “7-gram”.

Computer Graphics Chap 3 09/21/99 5:38 PM page 32

3.6.10. Turtle drawings of the n-gon. WriteturtleNgon (int numsSides, float length) that uses
turtlegraphicsto draw an n-gonwith numSides sidesandaside of length length.

3.6.11. Polygons sharing an edge. Write aroutine that draws n-gor's, for n=3,..., 12, ona mmmon edge, as
in Figure 3.51.

Figure 3.51. N-gons sharing a mmmon edge.

3.6.12. A more éaborate figure. Write aroutine that draws the shape in Figure 3.52 by dawing repeaed
hexagonrs rotated relative to ore ancther.

Figure 3.52. Repeaed use of turtle ommmands.

3.6.13. Drawing afamouslogo. The esteamed logoshown in Figure 3.53 consists of threeinstances of a motif,
rotated a cetain amourt with resped to ead ather. Show aroutine that draws this $ape using turtlegraphics.

9

Figure 3.53. Logo d the University of Massachusetts.

3.6.14. Rotating Pentagans: animation. Figure 3.54 shows a pentagram oriented with some angle of rotation
within a pentagon, with correspondng ertices joined together. Write aprogram that “animates’ this figure. The
configurationis drawn using some initial angle A of rotation for the pentagram. After a short pause it is erased
and then redrawn bu with a dlightly larger angle A. This processrepeds until akey is pressed.

Figure 3.54. Rotating penta-things.

Computer Graphics Chap 3 09/21/99 5:38 PM page 33

3.7. Drawing Circles and Arcs.

Drawing a drcleisequivalent to drawing an n-gonthat has a large number of vertices. The n-gonresembles a
circle (unlessit is rutinized too closely). The routine drawCircle () shown in Figure 3.55 daws a 50-sided
n-gon by simply passngits parameters onto ngon (). It would be more dficient to write drawCircle () from
scratch, basing it on the code of Figure 3.43,

void drawCircle(Point2 center, float radius)

{

const int numVerts =50; // use larger for a better circle
ngon(numVerts, center.getX(), center.getY(), radius, 0);

Figure 3.55. Drawing a drcle based onan 50-gon

3.7.1. Drawing Arcs.

Many figuresin art, architedure, and scienceinvolve acs of circlesplacel in peasing a significant
arrangements. An arc is conveniently described by the position d the center, c,andradius, R, of its“parent”
circle, alongwith its beginning angle a and the angle b throughwhich it “sweeps’. Figure 3.56 shows such an
arc. We asume that if b is pasitive the ac sweepsin a CCW diredionfrom a. If bisnegativeit swegysina
CW fashion. A circleisaspedal case of an arc, with a sweep of 360.

Ay
TN\

N
ﬁZi\.a_

¥

Figure 3.56. Defining an arc.

We want aroutine, drawArc (), that draws an arc of a drcle. The function shown in Figure 3.57 approximates
the ac by part of an n-gon, using moveTo() and lineTo(). Successve points alongthe ac ae found by
computing a cos() and sin() term ead time throughthe main loop. If sweep is negative the angle automaticdly
decaeases eadh time through

void drawArc(Point2 center, float radius, float startAngle, float sweep)
{ /I startAngle and sweep are in degrees

const int n = 30; // number of intermediate segments in arc

float angle = startAngle * 3.14159265 / 180; // initial angle in radians

float angleinc = sweep * 3.14159265 /(180 * n); // angle increment

float cx= center.getX(), cy = center.getY();

cvs.moveTo(cx + radius * cos(angle), cy + radius * sin(angle));

for(intk =1; k <n; k++, angle += anglelnc)

cvs.lineTo(cx + radius * cos(angle), cy + radius * sin(angle));

}

Figure 3.57. Drawing an arc of a drcle.

The CP isleft at the last point onthe ac. (In some caes one may wish to omit the initial moveTo() tothefirst
point onthe ac, so that the ac is conneded to whatever shape was being dawn when drawArc() iscdled.)

A much faster arc drawing routine is developed in Chapter 5 that avoids the repetitive cdculation d so many
sin() and cos() functions. It may be used fredy in paceof the procedure here.

With drawArc () in handit isasimple matter to buld the routine drawCircle(Point2 center,
float radius) that draws an entire drcle (how?).

Computer Graphics Chap 3 09/21/99 5:38 PM page 34

Theroutine drawCircle () iscdled byspedfyinga center andradius, but there ae other waysto describe a
circle, which have important applicaionsin interadive graphics and computer-aided design. Two familiar ones
are;

1). The center isgiven, along with a point on the drcle. HeredrawCircle () can be used as onasthe
radiusis known. If cisthe center and p isthe given pant onthe drcle, the radiusis smply the distancefrom ¢
to p, found wing the usual Pythagorean Theorem.

2). Three points are given through which the drcle must pass It is known that a unique drcle passes through
any threepointsthat donit liein astraight line. Finding the center and radius of thiscircleisdiscussedin
Chapter 4.

Example 3.7.1. Blending Arcstogether. More complex shapes can be obtained by wsing perts of two circles
that are tangent to ore ancther. Figure 3.58ill ustrates the underlying principle. The two circles are tangent at
point A, where they share tangent line L. Because of thisthe two arcs shown bythe thick curve “blend’ together
seamlesdy at A with no visible bre& or corner. Similarly the ac of a drcle blends snocthly with any tangent
ling, asat point B.

L

Figure 3.58. Blending arcs using tangent circles.

Practice Exercises.

3.7.1. Circle Figuresin Philosophy. In Chinese phil osophyand religion the two principles of yin and yang
interacdt to influence dl creaures destinies. Figure 3.59 shows the exquisite yin—yang symbal. The dark partion,
yin, represents the feminine asped, and the light portion, yang, represents the masculi ne. Describe in detail the
geometry of this ymbal, suppaingit is centered in some aordinate system.

use figure 4.3 from 1st edition

Figure 3.59. The yin-yang symbal.

3.7.2. The Seven Pennies. Describe the mnfiguration shown in Figure 3.60in which six penniesfit snugy
arounda center penny. Use symmetry arguments to explain why the fit is exad; that is, why ead o the outer
pennies exactly touches itsthreeneighbas.

Computer Graphics Chap 3 09/21/99 5:38 PM page 35

Figure 3.60. The seven circles.

3.7.3. A famousloga Figure 3.61 shows a well-known automobil e logo. It isformed by ereding triangles
inside an equil ateral triangle, but the outer triangle is replacead by two concentric drcles. After determining the
“proper” positions for the threeinner points, write aroutine to draw thisloga

Figure 3.61. A famousloga

3.7.4. Drawing clocks and such. Circles and lines may be made tangent in a variety of waysto crede pleasing
smoath curves, asin Figure 3.62a. Figure 3.62b shows the underlying lines and circles. Write aroutine that

draws thisbasic dock shape

a). b).
N

Figure 3.62. Blending arcsto form smoath curves.

3.7.5. Drawing rounded rectangles. Figure 3.63 shows an aligned redangle with rounded corners. The
redangle has width W and asped ratio R, and ead corner is described by a quarter-circle of radiusr = g W for
some fradion g. Write aroutine drawRoundRect (float W, float R, float g) that draws this
redangle centered at the CP. The CP shoud be left at the canter when the routine exits.

RW

>
W

Figure 3.63. A rounded recangle.

3.7.6. Shapesinvolving arcs. Figure 3.64 shows two interesting shapes that involve drclesor arcs. Oneis
similar to the Atomic Energy Commisson symba (How doesit differ form the standard symba ?). Write and
test two routines that draw these figures.

caution radiation

Figure 3.64. Shapes based onarcs.

Computer Graphics Chap 3 09/21/99 5:38 PM page 36

3.7.7. A tear drop. A “tea drop’ shape that is used in many ornamental figuresis $iown in Figure 3.65a. As
shown in part b) it consists of a drcle of given radius R snugded down into an angle ¢. What are the
coordinates of the drcle’s center C for agiven R and @¢? What are the initial angle of the ac, andits svee?
Develop aroutine to draw atea drop at any pasition andin any arientation.

3

a). b) A
C~R
P
X
—Y >

Figure 3.65. The tea drop and its construction.

3.7.8. Drawing Patterns of Tear Drops. Figure 3.66 show some uses of the tea drop. Write aroutine that
draws ead o them.

Figure 3.66. Some figures based onthe tea drop.

3.7.9. Pie Charts. A sedor isclosely related to an arc: ead end d the ac is conreded to the canter of the
circle. The familiar pie dhart isformed by dawing a number of sedors. A typicd exampleis shownin Figure
3.67. Pie charts are used to ill ustrate how awhale is divided into parts, aswhen apieis $lit up and dstributed.
The eye quickly grasps how big ead “dice” isrelative to the others. Often ore or more of the dicesis
“exploded” away from the padk aswell, as shown in the figure. Sectorsthat are exploded are simply shifted
dightly away from the center of the pie dchart in the proper direction

Figure 3.67. A pie dhart.

To draw a pie chart we must know the relative sizes of the dices. Write and test a routine that accepts data from
the user and drawsthe mrrespondng pie chart. The user entersthe fracion o the pie eab dicerepresents,
alongwith an ‘€ if the diceisto be drawn exploded, or an ‘n’ otherwise.

3.8. Using the Parametric form for a curve.

There ae two principal waysto describe the shape of a aurved line: implicitly and parametricdly. The
implicit form describes a aurve by afunction F(x, y) that provides arelationship between the x andy
coordinates: the paint (x, y) liesonthe airveif and orly if it satisfies:

F(x,y)=0 condtionfor (x, y) to lieonthe arve (3.7

Computer Graphics Chap 3 09/21/99 5:38 PM page 37

For example, the straight line through pants A and B has implicit form:

F(xy)=(y-A)B-A) - x-A)B,-A) (3.8)
and the drcle with radius R centered at the origin hasimplicit form:

Fixy)=xX+y-R (3.9)

A benefit of using the implicit form is that you can easily test whether a given pant liesonthe airve:
simply evaluate F(x, y) at the point in question. For certain classes of curvesit is meaningful to speak of
an inside and an ouside of the aurve, in which case F(x, y) isaso cdled the inside-outside function,
with the understanding that

F(x,y)=0 for al (x, y) onthe arve
F(x,y)>0 for al (x, y) outside the arve (3.10
F(x,y) <0 for al (x, y) inside the aurve

(IsF(x, y) of Equetion 39 alegitimate inside-outside function for the drcle?)

Some aurves are single-valued in x, in which case there isafunction g(.) such that al points onthe arve
satisfy y = g(x). For such curves the implicit form may be written F(x, y) =y - g(x). (What isg(.) for the
line of Equation 387?) Other curves are single-valued iny, (so thereisafunction h(.) such that pointson
the aurve satisfy x = h(y). And some aurves are nat singe-valued at al: F(x, y) = 0 cannd be rearanged
into either of the formsy = g(x) nor x = h(y). The drcle, for instance, can be expressed as.

y=+JR* - x° (3.12)

but here there ae two functions, not one.

3.8.1. Parametric Forms for Curves.

A parametric form for a arve produces different points on the aurve based onthe value of a parameter.
Parametric forms can be developed for awide variety of curves, and they have much to recommend
them, particularly when ore wantsto draw or analyzethe aurve. A parametric form suggests the
movement of a paint throughtime, which we can trandate into the motion o a pen asit sweeps out the
curve. The path o the particle traveling alongthe arveisfixed bytwo functions, x() andy(), and we
spedk of (x(t), y(t)) asthe position of the particle & timet. The airveitself isthe totality of points
“visited” by the particle ast varies over some interval. For any curve, therefore, if we can dream up
suitable functions x() and y() they will represent the aurve mncisely and predsely.

The familiar Etch-a-Sketch8 shown in Figure 3.68 provides a vivid analogy. As knobs are turned, a stylus
hidden in the box scrapes athin visible line acossthe screen. One knob controls the horizontal pasition,
and the other direds the verticd position d the stylus. If the knobs are turned in accordance with x(t) and
y(t), the parametric aurveis svept out. (Complex curves require substantial manual dexterity.)

1'st Ed. Figure7.11

Figure 3.68. Etch-a-Sketch drawings of parametric curves. (Drawing by Suzanne Casiell0.)

Examples: Theline and the dli pse.
The straight line of Equation 38 passesthrough pants A and B. We choose aparametric form that visits
Aatt=0andBatt=1, ohtaining:

x()=A+ (B, - At (312
y() =A + (B, - A)t

8Etch-a-Sketch is a trademark of Ohio Art.

Computer Graphics Chap 3 09/21/99 5:38 PM page 38

Thusthe paint P(t) = (x(t), y(t)) “sweeps through' all of the paints onthe line between A and B ast varies
from 0 to 1 (ched thisout).

Ancther classc exampleisthe elli pse, adight generalization o the drcle. It isdescribed parametricaly
by

X(t) = W cos(t) (3.13
y(t) =H sin(t) ,for0 <t < 2;

Here Wisthe “half-width”, and H the “half-height” of the dli pse. Some of the geometric properties of
the dlipse ae explored in the exercises. When W and H are equal the dlipseisa drcle of radius W.
Figure 3.69 shows this €lli pse, alongwith the componrent functions x(.) and y(.).

@t =172 Ay Av®)
\ /(X(t), y(©)) L
@t=m
N, T o YW 25 !
L\
@t = 372 -Hi
W w

A
Figure 3.69. An elli pse described parametricdly.

Ast variesfrom 0 to 2rtthe paint P(t) = (x(t), y(t)) moves once aoundthe dli pse starting (and finishing)
at (W, 0). The figure shows where the point islocated at various “times’ t. It isuseful to visualize
drawing the dli pse on an Etch-a-Sketch. The knobs are turned badk and forth in an unduating pettern,
one mimicking W cos(t) and the other H sin(t). (Thisis aurprisingly difficult to domanually.)

 Finding an implicit form from a parametric form - “implicitization”.

Suppase we want to chedk that the parametric form in Equation 313 truly represents an elli pse. How
do we find the implicit form from the parametric form? The basic step is to combine the two
equations for x(t) and y(t) to somehow eliminate the variable t. This provides a relationship that must
hold for all t. It isn't always easy to seehow to dothis— there ae no simple guideli nes that apply
for al parametric forms. For the dli pse, however, square both x/W and y/H and wse the well -known

faa cos(t)2 + sin(t)2 = 1 to oltain the familiar equation for an elli pse:
Oxf , Oy
AV

The foll owing exercises explore properties of the dli pse and aher “clasdcad curves’. They develop
useful fads abou the conic sedions, which will be used later. Read them over, even if you dorit stop to
solve eat ore.

=1 (3.14)

| Practice Exercises

Computer Graphics Chap 3 09/21/99 5:38 PM page 39

3.8.1. On the geometry of the Elli pse. An dllipseisthe set of al points for which the sum of the
distancesto two foci is constant. The paint (¢, 0) shown in Figure 3.69 forms one “focus’, and (-c, 0)

forms the other. Show that H, W, and c are related by: W2 = H2 + 2.

3.8.2. How ecceantric. The eccentricity, e= ¢/ W, of an elli pse is ameasure of how noncircular the
dlipseis, being Ofor atrue drcle. Asinteresting examples, the planetsin ou solar system have very
nealy circular orbits, with e ranging from 1/143(Venus) to 1/4 (Pluto). Earth’s orbit exhibits e = 1/60.
Asthe eccaetricity of an elli pse gpproaches 1, the dli pse flattensinto a straight line. But e hasto get very
close to 1 kefore this happens. What istheratio H / W of height to width for an elli pse that has e = 0.99?
3.8..3. The other Conic Sedions.

The dli pseis one of the three @nic sedions, which are aurves formed by cutting (“sedioning’) a drcular
cone with aplane, as shown in Figure 3.70. The onic sedions are:

» dllipse: if the plane auts one “nappe” of the wne;

» hyperbda: if the plane auts bath nappes

» parabda: if the planeis parall € to the side of the mne;

Figure 3.70. The dasscd conic sedions.

The parabola and hyperbola have interesting and useful geometric properties. Both of them have simple
implicit and parametric representations.

Show that the foll owing parametric representations are consistent with the impli cit forms given:

* Parabola: Impli cit form:y2—4ax=0
X(t) = at? (3.15)
yt)=2at

* Hyperbola: Implicit form: (x/a)2 - (y/b)2 =1
X(t)=a sedt) (3.16)

y(t)=b tan(t)

What range in the parameter t is used to swee ou this hyperbola?Note: A hyperbadais defined asthe
locus of al pointsfor which the differencein its distances from two fixed foci isa constant. If the foci

here ae & (-c, 0) and (+c, 0), show that a and b must be related byc2 =a2+p2.

3.8.2. Drawing curves represented parametrically.

It is graightforward to draw a aurve when its parametric representationis available. Thisisamajor
advantage of the parametric form over the implicit form. Suppcse a arve C has the parametric
representation P(t) = (x(t), y(t)) ast variesfrom 0 to T (seeFigure 3.71a). We want to draw agood
approximationto it, using orly straight lines. Just take samples of P(t) at closely spaced “instants’. A
sequence{tj} of timesare chosen, andfor ead tj the position P,= P(t) = (X(tj), y(tj)) of the arveis
found The arve P(t) isthen approximated by the palyline based onthis squence of paints Pj, as s1own
inFigure 3.71h

_ Pm
a). @1=T- b).

/

\ P(t) = (x(1), y())
@t=0 P1
Figure 3.71. Approximating a aurve by a palyline.

P2

Figure 3.72 shows a ade fragment that draws the aurve (x(t), y(t)) when the desired array of sample
timest[i] isavailable.

Computer Graphics Chap 3 09/21/99 5:38 PM page 40

/I draw the curve (x(t), y(t)) using
/I the array t[0],..,t[n-1] of “sample-times”

glBegin(GL_LINES);
for(int i=0; i <njitt)
glVertex2f((x(t[i), y(tl i);
glEnd();

Figure 3.72. Drawing the dli pse using pants equispaced in t.

If the samples are spacal sufficiently close together, the eye will naturally blend together the line
segments and will see asmoath curve. Samples must be dosely spaced in t-intervals where the aurve is
“wiggdling’ rapidly, but may be placeal lessdensely where the aurve is unddating slowly. The required
“closeness’ or “quality” of the goproximation depends on the situation.

Code can dften be simplified if it isneeded orly for a spedfic curve. The dlipsein Equation 313 can be
drawn using n equispaced values of t with:

#define TWOPI 2 * 3.14159265
glBegin(GL_LINES);
for(double t = 0; t <= TWOPI; t += TWOPI/n)
glVertex2f(W * cos(t), H * sin(t));
glEnd();

For drawing puposes, parametric forms circumvent all of the difficulti es of implicit and explicit forms.
Curves can be multi-valued, and they can self-intersed any number of times. Verticdity presents no
spedal problem: x(t) smply becmes constant over some interval in t. Later we seethat drawing curves
that liein 3D spaceisjust as graightforward: threefunctions of t are used, and the point at t onthe airve

is (x(1), y(), (1)).

Practice Exercises.

3.8.4. An Example Curve. Compute and dot by hand the paints that would be drawn by the fragment
abovefor W=2,H =1, at the5 valuesof t = 211/9, fori =0, 1, ... 4.

3.8.5. Drawing aloga A well-known logo consists of concentric drcles and elli pses, as own in Figure
3.73. Suppce you have adrawingtod: drawEllipse (W, H, color) that draws the dli pse of
Equation 313fill ed with color color. (Assume that as ead color isdrawn it completely obscures any
previoudy drawn color.) Choose suitable dimensions for the dli psesin the logoand gve the sequence of
commands required to draw it.

Figure 3.73. A familiar “eye” made of circles and elli pses.

Some spedfic examples of curves used in computer graphics will help to cement the ideas.

3.8.3. Superellipses
An excdlent variation d the dli pse isthe superelli pse, afamily of elli pse-like shapes that can produce
goodeffedsin many drawing situations. The implicit formula for the superelli pseis

X" "
|(—| +lfll =1 (3.17)
Wy oy Hy

Computer Graphics Chap 3 09/21/99 5:38 PM page 41

where n is a parameter cdled the bulge. Looking at the mrrespondng formulafor the dli psein Equation
3.14, the superelli pse is e to become an elli pse when n = 2. The superelli pse has the foll owing
parametric representation:

X(t) = W cos(t)|cos(t)”"|
(3.18)
y(t) = H sin(t)lsin(t)”"’|

for0 <t < 27 The exporent onthe sin() and cos() isredly 2/n, but the peauliar form as shown is used
to avoid trying to raise anegative number to afradional power. A more predse version avoids this.
Chedk that this form reduces nicdy to the equation for the dli pse when n = 2. Also ched that the
parametric form for the superelli pse is consistent with the impli cit equation.

Figure 3.74a shows afamily of supercircles, spedal cases of superelli pses for which W= H. Figure
3.74bshows a scene mmposed entirely of superelli pses, suggesting the range of shapes possble.

1* Ed. Figures 4.16 and 417 together

Figure 3.74. Family of supercircles. b). Scene composed of superelli pses.

For n > 1thebulgeisoutward, whereasfor n< 1it isinward. Whenn =1, it becomesasguare. (In
Chapter 6 we shall ook at threedimensional “superquadrics,” surfaces that are sometimes used in CAD
systems to model solid oljeds.)

Superelli pses were first studied in 1818 bythe French physicist Gabriel Lamé. More recently in 1959 the
extraordinary inventor Piet Hein (best known as the originator of the Soma aube and the game Hex) was
approached with the problem of designing atraffic drcle in Stockham. It had to fit inside arecangle
(with W/ H = 6/ 5) determined by dher roads, and hed to permit smocth traffic flow aswell as be
pleasingto the eye. An €lli pse proved to be too panted at the ends for the best traffic patterns, and so
Piet Hein souglht afatter curve with straighter sides and dreamed upthe superelli pse. He chasen=2.5as
the most pleasing buge. Stockham quickly accepted the superelli pse motif for its new center. The arves
were “strangely satisfying, neither too rounded na too athogoral, a happy dend o ellipticd and
redanguar beauty” [Gardner75, p. 243. Sincethat time, superelli pse shapes have gpeaed in furniture,
textil e patterns, and even sil verware. More can be found ot abou them in the references, espedally in
[Gardner75] and [Hill 794.

The superhyperbola can also be defined [Barr81]. Just replacecos(t) by seqt), and sin(t) by tan(y), in
Equation 318 Whenn= 2, the familiar hyperbdlais obtained. Figure 3.75 shows example
superhyperbolas. Asthe bulge nincreases beyond 2 the arve bulges out more and more, and asiit
deaeases below 2, it bulges out lessand less beaming straight for n= 1 and gnchinginward for n < 1.
| 1st Ed. Figure 9.14.

Figure 3.75. The superhyperbola family.

3.8.4. Polar Coordinate Shapes

Polar coordinates may be used to represent many interesting curves. As sown in Figure 3.76, ead pant
onthe arveisrepresented byan angle 8 and aradial distancer. If r and 6 are eat made afunction o t,
then ast variesthe aurve (r(t), 6(t)) is svept out. Of course this curve dso hasthe Cartesian
representation (x(t), y(t)) where:

Computer Graphics Chap 3 09/21/99 5:38 PM page 42

Figure 3.76. Polar coordinates.

X(t) = r(t) cos(6(t)) (3.19
y(t) = r(t) sin(6(t)).

But asimplificationis possble for alarge number of appeding curves. In these instancesthe radiusr is
expresed dredly asafunction d 6, and the parameter that “sweeps’ out the aurve is 0 itself. For ead
point (r, 8) the crrespondng Cartesian pdnt (x, y) isgiven by

x = f(6) [tos(6) (3.20)
y = f(6) (8in(8)

Curves given in pdar coordinates can be generated and drawn as easily as any athers. The parameter is 6,
which is made to vary over an interval appropriate to the shape. The simplest exampleisa drcle with
radius K: f(8) = K. The form f(8) = 2K cos(B) is ancther smple aurve (which ore?. Figure 3.77 shows
some shapes that have simple expressonsin pdar coordinates.

1° Ed. Figue4.19 |

Figure 3.77. Examples of curves with simple polar forms..
« Cardioid: f(8) = K (1 + cos(0)).

* Rose curves. f(B) = K cos(n 6), where n spedfies the number of petalsin the rose. Two cases are
shown.

* Archimedian spiral: () = KIB.

In ead case, constant K givesthe overall size of the aurve. Because the cardioid is periodic, it can be
drawn by varying 6 from 0 to 2t The rose aurves are periodic when n is an integer, and the Archimedian
spiral keegps growing forever as 6 increases from 0. The shape of this giral has foundwide use s a can
to conwvert rotary motionto linea motion (see[Y ates46] and [Seggern9Q.

The conic sedions (elli pse, parabola, and hyperbala) all share the following pdar form:

1

= (3.21)
1+ el¢os(6)

f(6)

where eisthe eccaetricity of the conic sedion. For e = 1 the shapeisaparabda; for0<e<litisan
elli pse; andfor e> 1it isahyperbola.

* The Logaithmic Spiral
The logarithmic spiral (or “equianguar spira”) f(8) = Ke2®, shownin Figure 3.78a, isalso of particular
interest [Coxeter61]. This curve auts all radial lines at a cnstant angle a, where a = cot(a). Thisisthe

only spiral that has the same shape for any change of scde: Enlarge aphao of such a spiral any amourt,
and the enlarged

Computer Graphics Chap 3 09/21/99 5:38 PM page 43

1* Ed Figures4.20and 421

Figure 3.78. The logarithmic spiral and b). chambered nautil us

spiral will fit (after arotation) exadly ontop d the original. Similarly, rotate apicture of an equianguar
spiral, and it will seem to grow larger or smaller [Steinhaus69]°. This preservation o shape seemsto be
used by some animals guch asthe mollusk inside a diambered nautil us (seeFigure 3.78b). Asthe animal
grows, its shell also grows alonga logarithmic spiral in order to provide ahome of constant shape
[Gardner61].

Other families of curves are discussed in the exercises and Case Studies, and an exhaustive listing and
charaderizaion d interesting curvesis given in [yates46, seggern90, shikin95.

3.8.5. 3D Curves.

Curves that meander through P spacemay also be represented parametricdly, and will be discussed
fully in later chapters. To creae aparametric form for a 3D curve we invent threefunctions x(.), y(.), and
Z(.), and say the arveis“at” P(t) = (x(t), y(t), z(t)) at timet.

Some examples are;
The helix: The drcular helix isgiven parametricdly by:

X(t) = cos(t)
y(t)=sin(t) (3.22
Z(t) = bt

for some aonstant b. It ill ustrated in Figure 3.79 as a stereo pair. Seethe Prefacefor viewing stereo pairs.
If you find this unwieldy, just focus on ore of the figures.

Figure 3.79. The helix, displayed as a stereo pair.

Many variations onthe drcular helix are passhble, such asthe dlipticd helix P(t) = (W cos(t), H sin(t),
bt), andthe cnicd helix P(t) = (t cos(t), tsin(t), bt) (sketch these). Any 2D curve (x(t), y(t)) can of
course be mnverted to a helix by appending z(t) = bt, or some other form for z(t).

Thetoroidal spiral. A toroidal spiral, given by
X(t) = (asin(ct) + b) cos(t)

y(t) = (a sin(ct) + b) sin(t) (3.23
Z(t) = a cos(ct)

9This curve was first described by Descartesin 1638 Jacob Bernouli (1654--1705
was D taken byit that histombstone in Basel, Switzerland, was engraved with it, alongwith the
inscription Eadem mutata resurgo: “Thoughchanged | shall arise the same.”

Computer Graphics Chap 3 09/21/99 5:38 PM page 44

isformed bywinding a string abou atorus (doughnt). Figure 3.80 shaws the cae ¢ = 10, so the string
makes 10 loops aroundthe torus. We examine tubes based onthis siral in Chapter 6.

Figure 3.80. A toroidal spiral, displayed as a stereo pair.

Practice Exercises

3.8.6. Drawing superelli pses. Write aroutine drawSuperEllipse (...) that draws a superellipse. It
takes as parameters c, the center of the superelli pse, size parameters W and H, the bulge n, and m, the
number of “samples’ of the aurve to use in fashioning the palyline gproximation.

3.8.7. Drawing polar forms. Write routinesto draw an n-petaled rose and an equianguar spiral.

3.8.8. Golden Cuts. Find the spedfic logarithmic spiral that makes “galden cuts’ throughthe
intersedions of the infinite regresson o golden rectangles, as srown in Figure 3.81 (also recdl Chapter
2). How would a picture like this be drawn algorithmicadly?

1° Ed. Figure 4.22 |

Figure 3.81 The spiral and the golden recangle.

3.8.9. A useful implicit form function. Define asuitable implicit form for the rose arve defined ealier
in pdar coordinate form: f(6) = K cos(n 6).

3.8.10. Insde-outside functions for polar curves. Discusswhether there is a single methodthat will
yield a suitable inside-outside function for any curve given in pdar coordinate form asin Equation 320.
Give examples or courter-examples.

3.9. Summary of the Chapter.

In this chapter we developed several tods that make it possble for the gpli cations programmer to “think” and
work diredly in the most convenient “world” coordinate system for the problem at hand. Objeds are defined
(“modeled”) using igh predsionred coordinates, withou concern for “where” or “how big” the picture of the
objea will be onthe screen. These cncerns are deferred to alater seledion d awindow and a viewport —
either manually or automaticdly —that define bath hav much of the objed isto be drawn, and hav it isto
appea onthe display. This approach separates the modeli ng stage from the viewing stage, allowing the
programmer or user to focus at ead phase onthe relevant issues, undstraded by cetail s of the display device

The use of windows makesit very easy to “zoom” in or out onascene, or “roam” aroundto dfferent parts of a
scene. Such adions are familiar from everyday life with cameras. The use of viewports all ows the programmer
to placepictures or coll edions of pictures at the desired spots onthe display in order to compose the final
picture. We described techniques for insuring that the window and viewport have the same asped ratio, in order
to prevent distortion.

Clippingisafundamental technique in graphics, and we developed a dasscd agorithm for clipping line
segments against the world window. This all ows the programmer to designate which pation d the picture will
adually be rendered: parts outside the window are dipped df. OpenGL automaticdly performs this clipping,
but in ather environments a dipper must be incorporated explicitly.

We developed the Canvas classto encgpsulate many underlying cetail s, and provide the programmer with a
single uniform tod for fashioning dawing programs. This classhides the OpenGL detail sin convenient

Computer Graphics Chap 3 09/21/99 5:38 PM page 45

routines such as setWindow (), setViewport (), moveTo(), lineTo (), andforward (), andinsuresthat all
proper initializations are caried ou. In a Case Study we implement Canvas for a more basic non-OpenGL
environment, where eplicit cli pping and window-to-viewport mapping routines are required. Here the value of
data-hiding within the dassis even more gparent.

A number of additional todls were developed for performing relative drawing and turtle graphics, and for
credaing dawings that include regular palygonrs, arcs and circles. The parametric form for a aurve was
introduced, and shown to be avery natural description o a arve. It makesit simpleto draw a arve, even those
that are multi-valued, crossover themselves, or have regions where the aurve moves verticdly.

3.10. Case Studies.

One of the symptoms of an appoaching
nervous breakdown is the belief that
one'swork isterribly importarnt.
Bertrand Rus=l|

3.10.1. Case Study 3.1. Studying the Logistic Map and Simulation of

Chaos.

(Level of Effort: Il) Iterated function systems (IFSs) were discussd at the end d Chapter 2. Anather IFS
provides a fascinating look into the world of chaos (see[Gleick87, Hofs85]), and requires proper setting d a
window and viewport. A sequence of valuesis generated by the repeaed applicaion d afunctionf(.), cdled
the logistic map. It describes a parabola:

f(X)= 4 AX (1 - X) (3.24)

where A is ©me hosen constant between 0and 1 Beginning at a given starting pant, X, between Oand 1,
functionf(.) isapplied iteratively to generate the orbit (recdl its definitionin Chapter 2):

_ f[k]
X = (xo)

How does this sequence behave?A world of complexity lurks here. The adion can be made most vivid by
displayingit graphicdly in a cetain fashion, aswe now describe. Figure 3.82 shows the parabday =4 A x (1 -
X) for A = 0.7 asx variesfrom 0 to 1

1srt Ed. Figure 3.28

Figure 3.82. The logistic map for A = 0.7.

The starting pant X = 0.1ischosen here, and at x = 0.1 averticd lineisdrawn upto the parabola, showing the
value f(x) 0.252 Next we must apply the function to the new vaIuex =0.252 Thisis shown visually by
moving hcnzontally over totheliney = x, asill ustrated in the figure. Then to evaluate f() at thisnew value a
lineisagain drawn up \erticdly to the parabola. This processrepeasforever asin aher IFSs. From the
previous position (xk_l, xk) ahorizontal lineisdrawn to (xk, xk) from which a verticd lineis drawn to (xk, xm).
Thefigure showsthat for A = 0.7, the values quickly converge to a stable “atracor,” a fixed pdnt so that f(x) =
X. (What isitsvalue for A = 0.7?) This attracor does not depend onthe starting pant; the sequence dways
converges quickly to afinal value.

If Ais %t to small values, the adionwill be even simpler: Thereisasinge dtrador at x = 0. But when the “A-
knobd’ isincreased, something strange begins to happen. Figure 3.83a shows what resultswhen A = 0.85. The
“orhit” that represents the sequencefall sinto an end essrepetitive gscle, never settling davn to afinal value.
There ae several attradors here, one & ead verticd linein the limit cycle shown in the figure. Andwhen A is
increased beyondthe aiticd value A = 0.892486418..the processbecomes truly chaotic.

1* Ed. Figure 3.29

Computer Graphics Chap 3 09/21/99 5:38 PM page 46

Figure 3.83. The logistic map for a). A =0.85and b. A =0.9.

The cae of A =0.9is rown in Figure 3.83h. For most starting pantsthe orbit is gill periodic, but the number
of orbits observed between the repedsis extremely large. Other starting pantsyield truly aperiodic motion, and
very small changesin the starting pant can lead to very diff erent behavior. Before the truly remarkable
charader of this phenomenonwas first recogrized by Mitchell Feigenbaum in 1975 most researchers beli eved
that very small adjustmentsto a system shoud produce @rrespondngly small changesin its behavior and that
simple systems such asthis could na exhibit arbitrarily complicaed behavior. Feigenbaum's work spawned a
new field of ingqury into the nature of complex norlinea systems, known as chaos theory [Gleick87]. It is
intriguing to experiment with thislogistic map.

Write and exercise aprogram that permits the user to study the behavior of repeaed iterations of the logistic
map, as hown in Figure 3.83. Set up a suitable window and viewport so that the entire logistic map can be
clealy seen. The user gives the values of X and A and the program draws the limit cycles produwced by the

system.

3.10.2. Case Study 3.2. Implementation of the Cohen Sutherland Clipper in

C/C++.

(Level of Effort: Il) The basic flow of the Cohen Sutherland algorithm was described in Sedion 33.2. Here we
flesh ou some detail s of itsimplementationin C or C++, exploiting for efficiency the low-level bit
manipulations these languages provide.

Wefirst need to form the “inside-outside” code words that report how a point P is positioned relative to the
window (seeFigure 3.20). A single 8-bit word code suffices. four of its bits are used to cagpture the four pieces
of information. Point P istested against ead window boundiry in turn; if it li es outside this boundary, the
proper bit of code is st to 1to represent TRUE. Figure 3.84 shows how this can be dore. code isinitialized
to 0, andthenitsindividual bits are set as appropriate using a bit-wise OR operation. The values 8, 4, 2, and 1
are simple masks. For instance, since 8 in binary is 00001000 bit-wise OR-ing a value with 8 sets the fourth hit
from theright endto 1

unsigned char code = 0; // initially all bits are 0
if(Px< window.]) code |= 8; /I set bit 3
if(P.y> window.t) code |=4; /I set bit 2
if(P.x> window.r) code |=2; /I set bit 1
if(P.y< window.b) code |=1; /Il set bit 0

Figure 3.84. Setting hitsin the “inside-outside code word” for apoint P.

In the dipper bath endpdnts P1 and P2 (seeFigure 3.22) are tested against the window, and their code words
codel andcode2 areformed. We then must test for “trivial accept” and “trivial rejed”.

e trivial accept: Both endpdntsare inside, so bah codes codel andcode2 areidenticdly 0. In C/C++ this
isquickly determined using the bit-wise OR: atrivial accept ocaursif (codel | code2)isO.

e trivial rejed: A trivia regjed occursif both endpdntslie outside the window on the same side: both to the
|eft of the window, bath abowve, both below, or bath to the right. Thisis equivalent to their codes having at least
one 1 in the same hit pasition. For instanceif codel is0110andcode2 is0100then P1 liesbaoth above andto
the right of the window, while P2 lies above but neither to the left nor right. Sincebath pantslie eowve, no part
of theline can lie inside the window. So trivial rejedionis easily tested using the bit-wise AND of codel and
code? : if they have some 1 in the same pasitionthen codel & code2 doesalso, and (codel & code?2)

will be norzero.

Chopping when thereis neither trivial accept nor rejed.

Anather implementationisaue is efficient choppang d the portion a line segment that lies outside the
window, asin Figure 3.22. Suppase it is known that point P with code word code lies outside the window. The

Computer Graphics Chap 3 09/21/99 5:38 PM page 47

individual bits of code can betested to seeon which side of the window P lies, and the chopping can be
accomplished asin Equation 3.5. Figure 3.85 shows a choproutine that finds the new point (such as A in Figure
3.22) andreplaces P with it. It uses the bit-wise AND of code with a mask to determine where P liesrelative to
the window.

ChopLine (Point2 &P, unsigned char code)

if(code & 8){ // to the Left
P.y+=(window.| - Px)* dely/ delx);
P.x= window.l;

}

else if(code & 2){ // to the Right
P.y +=(window.r - Px)* dely/ delx;
P.x= window.r;

}

else if(code & 1){ I/ below
P.x+=(window.b - Py)* delx/ dely;
P.y = window.b;

}
else if(code & 4){ // above
P.x+=(window.t - P.y)* delx/ dely;
P.y = window.t;
}
}

Figure 3.85. Chopping the segment that lies outside the window.

Write a omplete implementation o the Cohen Sutherland algorithm, putting together the pieces described here
with those in Sedion 33.2. If you dothisin the mntext of a Canvas classimplementation as discussd in the
next Case Study, consider how the routine shoud best accessthe private data members of the window and the
pointsinvalved, and develop the mde acordingly.

Test the dgorithm by drawing awindow and alarge assortment of randamly chasen lines, showing the parts
that lie inside the window in red, and those that lie outside in black.

Practice Exercises.

3.10.1. Why will a “divide by zero” never occur? Consider a vertical line segment such that delx is zero.
Why isthe mde P.y += (window.| - P.x)* dely/delx) that would cause adivide by zero
never readed? Similarly explain why ead o the four statements that compute delx/ dely or dely/ delx
are never readed if the denominator happensto be zeo.

3.10.2. Do two chopsin the sameiteration? It would seam to improve performanceif we replacel lines gich
“else if(code & 2) " with “if(c & 2) " andtried to dotwo line “chops’ in succesgon. Show that this
can lea to erroneous endpdadnts being computed, and henceto dsaster.

3.10.3. Case Study 3.3. Implementing Canvas for Turbo C++.

(Level of Effort: Ill) It isinteresting to develop a drawing classlike Canvasin which al the detail s are worked
out, to seehow the many ingredients go together. Sometimesit is even necessary to dothis, aswhen a
suppatinglibrary like OpenGL is nat avail able. We design Canvas here for a popuar graphics platform that
uses Borland' s Turbo C++.

We want an implementation d the Canvas classthat has esentially the same interface @ that in Figure 3.25.
Figure 3.86 shows the version we develop here (omitting perts that are simple repeas of Figure 3.25). The
constructor takes a desired width and height but notitle, since Turbo C++ does not suppart titled screen
windows. There ae several new private data members that internally manage dipping and the window to
viewport mapping.

class Canvas {
public:
Canvas(int width, int height); // constructor
setWindom(),setViewport(), lineTo(), etc .. as before

Computer Graphics Chap 3 09/21/99 5:38 PM page 48

private:
Point2 CP; /I current position in the world
IntRect viewport; // the current window
RealRect window; // the current viewport
float mapA, mapB, mapC, mapD; // data for the window to viewport mapping
void makeMap(void); // builds the map
int screenWidth, screenHeight;
float delx,dely; /I increments for clipper
char codel, code2; // outside codes for clipper
void ChopLine(tPoint2 &p, char c);
int clipSegment(tPoint2 &pl, tPoint2 &p2);

}

Figure 3.86. Interfacefor the Canvas classfor Turbo C++.

Implementation of the Canvas class
We show some of the Canvas member functions here, to ill ustrate what must be done to manage the window to
viewport mapping and clipping ourselves.

1). The Canvas constructor.

The onstructor is passed the desired width and height of the screen. Turbo C++ is placed in graphics mode at
the highest resolution supported by the graphics gystem. The actual screen width and height avail able is tested,
and if it islessthan was requested, the program terminates. Then a default window and viewport are establi shed,
and the window to viewport mapping is built (inside setViewport ().)

Canvas:: Canvas(int width, int height)
{
int gdriver = DETECT, gmode; //Turbo C++ : use best resolution screen
initgraph(& gdriver, & gmode, "™); // go to “graphics” mode
screenWidth = getmaxx() + 1; // size of available screen
screenHeight = getmaxy() + 1;
assert(screenWidth >= width); Il as wide as asked for?

assert(screenHeight >= height); // as high as asked for?

CP.set (0.0, 0.0);

window.set(-1.0,1.0,-1.0,1.0); // default window

setViewport(0,screenWidth, 0, screenHeight); // sets default map too

}

2). Setting the window and viewport and the mapping.

Whenever either the window or viewport is st, the window to viewport mapping is updated to insure that it is current.
A degenerate window of zero height causes an error. The mapping uses window and viewport data to compute the four
coefficients A, B, C, and D required.

[1<<<<<<<<<LLLL<< set Window >>>>>5>555>555>>>>>>
void Canvas:: setWindow(float I, float r, float b, float t)
{

window.set(l, r, b, t);

assert(t = b); //degenerate !

makeMap(); // update the mapping
}
fl<<<<<<<<<<<<<< setViewport >>>>>>>>>>>>>>>>>>>
void Canvas:: setViewport(intl, intr, int b, int t)
{

viewport.set(l, r, b, t);

makeMap(); // update the mapping
}
fl<<<<g<<<<gg<<<<< makeMap SSSS5353553535555>5>5>>
void Canvas:: makeMap(void)
{ /I set mapping from window to viewport

Computer Graphics Chap 3 09/21/99 5:38 PM page 49

intRect vp= getViewport(); // local copy of viewport

RealRect win = getWindow (); // local copy of window

float winWid = win.r - win.l;

float winHt= win.t- win.b;

assert(winWid = 0.0); assert(winHt !'= 0.0); // degenerate!
mapA = (vp.r- vp.l) winWid; // fill in mapping values

mapB = vp.l- map.A* win.l;

mapC = (vp.t- vp.b)/ winHt;
mapD = vp.b- map.B* win.b;

}

3). noveTo(), and | i neTo() with clipping.

The routine moveTo() convertsits point from world coordinates to screen coordinates, and call s the Turbo C++
spedfic moveto () to update theinternal current position maintained by Turbo C++. It also updates Canvas
world coordinate CP. RoutinelineTo () works smilarly, but it must first determine which part if any of the
segment lies within the window. To do thisit uses clipSegment () described in Sedion 3.3 and in Case Study
3.2, which returnsthefirst and second endpoints of the inside portion. If soit movestofirst and drawsa
lineto second . It finishes with amoveTo() to insure that the CP will be airrent (bath the Canvas CP and the
internal Turbo C++ CP).

ChopLine and ClipSegment aresameasin Case Study 3.2.

[]<<<<<<LLLLLLLLLLLLLLLL LKL LKL moveTo >>>>>5>5>5>555>>>>55>>
void Canvas:: moveTo(float x, float y)
{
int sx=(int)(mapA*x+ mapC);
int sy=(int)(mapB*y+ mapD);
moveto(sXx, SY); /l a Turbo C++ routine
CP.set (x,Y);
;/<<<<<<<<<<<<<<<<<<<< lineTo >>>>>>>>>>>
void Canvas:: lineTo(float x, float y)
{// Draw a line from CP to (X,y), clipped to the window
Point2 first = CP; // initial value of first
Point2 second(x, y); // initial value of second
if(clipSegment(first, second)) // any part inside?

{
moveTo(first.x, first.y); // to world CP
int sx=(int)(mapA* second.x+ mapC);
int sy=(int)(mapB* second.y+ mapD);
lineto(sx,sy); // a Turbo C++ routine

}

moveTo(X, y); /[update CP

}

Write afull implementation d the Canvas classfor Turbo C++ (or a similar environment that requires you to
implement cli pping and mapping). Cope gopropriately with setting the drawing and badkgroundcolors (thisis
usually quite system-spedfic). Test your classby usingit in an applicaionthat draws poyspirals as gedfied by
the user.

3.10.4. Case Study 3.4. Drawing Arches.

(Level of Effort: Il) Arches have been used throughod history in architectural compasitions. Their structural
strength and anamental beauty make them very important elementsin structural design, and arich variety of
shapes have been incorporated into cathedral s, bridges, doaways, etc.

Figure 3.87 shows two besic arch shapes. The achin pert @) is centered at the origin, and hes awidth of 2W.

The ach begins at height H above the base line. Its principal element isa half-circle with aradiusR=W. The
ratio H/W can be aljusted acmrding to taste. For instance, H/W might be related to the golden ratio.

Computer Graphics Chap 3 09/21/99 5:38 PM page 50

a) Rounded Arch b). Pointed Arch

=y

H

Figure 3.87. Two basic arch forms.

Figure 3.73bshows an idedi zed version d the seandmost famous arch shape, the pointed or “equil ateral”
arch, often seen in cathedrals'0. Here two arcs of radius R = 2W meet direcly above the center. (Throughwhat
angle does eath arc sweg?)

The ogee11 (or “ked”) arch is shown in Figure 3.88. This arch was introduced abou 1300AD, and was popuar
in architecural structures throughou the late Midde Ages. Circles of radiusf Rrest ontop o arounced arch of
radius R for some fradionf. Thisfixesthe position d the two circles. (What are the wordinates of point C?)
On ead side two arcs blend together to form a smooth panted top. It isinteresting to work out the parameters
of the various arcsin terms of W andf.

_ I S A
// \\ // \\

/ AN / AN
/ \|/ A\
/ \ \
f c)
\ fR /
\ /
N AN s

R
W x
H

Figure 3.88. The Ogee ach.

Develop routines that can draw ead of the ach types described above. Also write an appli cation that draws an
interesting colledion o such archesin a castle, mosque, or bridge of your design.

3.10.5. Case Study 3.5. Some Figures used in Physics and Engineering.

(Level of Effort: Il) This Case Study workswith a wlledion d interesting pctures that arise in certain topics
within physics and engineaing. The first ill ustrates a physicd principal of circlesinterseding at right angles;
the seoondcreaes a chart that can be used to study eledromagnetic phenomena; the third develops ymbals that
are used in designing dgital systems.

1). Eledrostatic Fields. The pattern of circles siown in Figure 3.89is gudied in physics and eledricd
engineaing, asthe dedrostatic field lines that surroundeledricadly charged wires. It also appeasin
mathematics in conredion with the analytic functions of a mmplex variable. In Chapter 5 these families also
are foundwhen we examine afascinating set of transformations, “inversionsin a drcle.” Here we view them
simply as an elegant array of circles and consider how to draw them.

10rrom J.Fleming, H. Honou,, N. Pevsner: Dictionary of Architedure. Penguin Books, London 1980

11From the old French ogive meaning an S-shaped curve.

Computer Graphics Chap 3 09/21/99 5:38 PM page 51

two-pointers

surrounders

Figure 3.89. Families of orthogoral circles..

There ae two families of circles, which we will cdl “two-painters’ and “surrouncers’. The two-pointers family
consists of circlesthat passthroughtwo gven pdnts. Suppase the two pdnts are (-a, 0) and (a, 0). The two-
pointers can be distinguished by some parameter m, and for ead value of m two diff erent circles are generated
(seeFigure 3.75). The drcles have canters and radii given by:

center= (0, + a\/m2 -1) and radius=am
asm varies from 1 to infinity.

Circlesin the surrounders family surround o of the points(-a, 0) or (a, 0). The ceanters and radii of the
surrouncers are dso distingushed by a parameter n and have the values

center = (x an, 0) andradius=a n2-1

asn varies from 1 to infinity. The surrouncer circles are dso knawvn as “circles of Appdonius,” and they arise
in problems of pursuit [Ball & Coxeter]. The distances from any pdnt ona drcle of Appdoniusto the points
(-a, 0) and (a, 0) have a onstant ratio. (What isthisratio in terms of a andn?)

The “surrouncer” family isintimately related to the two-pointer family: Every surrouncer circle “cuts’ through
every two-pointer circle & aright angle. The families of circles are thus sid to be orthogonal to ore ancther.

Write and exercise aprogram that draws the two famili es of orthogoral circles. Chocse sets of values of mand
n so that the picture iswell balanced and deasing.

2). Smith Charts. Ancther pattern of circlesisfoundin Smith charts, familiar in eledricd enginegingin
conredion with eledromagnetic transmisson lines. Figure 3.90 shows the two arthogoral families foundin
Smith charts. Here dl members of the famili es passthrougha common pant (1, 0). Circlesin family A have
centersat (1 -m, 0) and radii m, and circlesin family B have centers at (1, +n) and radii n, where bath mandn
vary from 0 to Tt Write and exercise aprogram that draws these families of circles.

1* Ed. Figure 4.31

Figure 3.90. The Smith Chart.
3). Logic Gatesfor Digital Circuits. Logic gates are familiar to scientists and enginee's who study besic

eledronic drcuits foundin computers. Each type of gateis ymboalized in a drcuit diagram by a charaderistic
shape, several of which are based onarcs of circles. Figure 3.91a shows the shape of the so-caled

Computer Graphics Chap 3 09/21/99 5:38 PM page 52

a). NAND gate b). NOR gate

-« 3% 5

ﬂ

- [
I

[}
I
I
I

32 |
|
|
|
|
|

Figure 3.91. Standard Graphic Symbal for the Nand and Nor Gates.

NAND gate, acoording to aworld-wide standard12 The NAND gateisbasicdly arounded arch paced onits
side. The ac hasradius 13 uritsrelative to the other elements, so the NAND gate must be 26 uritsin height.

Figure 3.91b shows the standard symbal for a NOR gate. It is smilar to a pointed arch turned onits sde. Three
arcs are used, eat having aradius of 26 urits. (The pulished standard as s1own has an error in it, that makes it
impossble for certain elements to fit together. What isthe aror?)

Write aprogram that can draw both of these drcuit types at any size and pdsitionin the world. (For the NOR
gate find and implement a reasonable crredionto the aror in Figure 3.77b) Also arrange matters that your
program can draw these gates rotated by 90 , 18C°, or 27C°.

3.10.6. Case Study 3.6. Tilings.

(Level of Effort: II) Computer graphics offers a powerful tod for creding gdeasing pctures based on geometric
objeds. One of the most intriguing types of pictures are those that apparently repea forever in al diredions.
They are cdled varioudy tili ngs, and repeat patterns. They are studied in greaer detail in Chapter 2?72

A). Basic Tilings. Figure 3.92 shows abasic tiling. A matif, in this case four quarter circlesin asmple
arrangement, isdesigned in a square region o the world. To draw atiling ower the plane based onthis motif, a
colledion d viewports are aeaed side by side that cover the display surface and the motif is drawn orce
inside eat viewport.

a). b).

Figure 3.92. A motif and the resulting tili ng.

Write aprogram that:

a). chooses a square window in the world, and daws ome interesting motif (possbly clipping pations of it, as
in Figure 3.14);

b). successvely draws the picture in a set of viewports that abut one ancther and together cover the display
surface

Exercise your program with at least two motifs.

12The Institute of Eledrica and Eledronic Enginea's (IEEE) puHishes many things, including standard definiti ons
of termindogy and gaphic shapes of circuit elements. These drawings are taken from the standard dacument: |EEE
Std. 91-1984.

Computer Graphics Chap 3 09/21/99 5:38 PM page 53

B). Truchet Tiles. A dight variation d the method above seleds siccessve motifs randamly from a “pod” of

candidate motifs. Figure 3.93a shows the well -known Truchet tiles3, which are based ontwo guerter circles
centered at oppaite corners of asquare. Tile 0 andtile 1 dffer only by a 90° rotation.

artist sketches the two til es here

Figure 3.93. Truchet Tiles. a). the two tiles. b). A truchet pattern

SIS
D O
A

O
o RS

b O _0O o
0D QO 0-C

Figure 3.93.b.

G

Write an application that draws Truchet tiles over the entire viewport. Each successvetile usestile 0 or tile 1,
seleded at random.

Curves other than arcs can be used aswell, as suggested in Figure 3.94. What condtions shoud be placal on

the angle with which ead curve meesthe edge of thetile in order to avoid sharp cornersin the resulting curve?
Thisnation can also be extended to include more than two til es.

S
o

Figure 3.94. Extension d Truchet tiles.

Extend the program abowve so that it introduces random seledions of two or more motifs, and exercise it onthe
motifs you have designed. Design motifsthat “blend’ together properly.

3.10.7. Case Study 3.7. Playful Variations on a Theme.

(Estimate of time required: four hours). In Sedion 38 we discussed how to draw a aurve represented
parametricdly by P(t): take asuccesson d instants{t} and conred the successve "samples’ (x(t), y(t))
by straight lines. A wide range of pictures can be aeded by varying the way in which the samples are
taken. We suggest some paossbhiliti es here.

13gmith, C. “The Tili ng Patterns of Sebastian Truchet and the topdogy o structural hierarchy.” Leonardo, 20:4, pp:
373-385, 1987 (refd in Pickover, p.386)

Computer Graphics Chap 3 09/21/99 5:38 PM page 54

Write aprogram that draws ead o the four shapes:
a). an elli pse

b). ahyperboa

¢). alogarithmic spiral

d). a5-petal rose awrve

for eat of the methods described below for obtaining t-samples.

1). Unevenly Spaced Values of t. Instead of using a constant increment between values of t when
sampling the functions x() and y(), use avaryingincrement. It isinteresting to experiment with different
choicesto seewhat visual effeds can be adieved. Some possbiliti es for a sequence of (n+1) t-values
between Oand T (suitably chosen for the aurve shape & hand) are

o t, =T4/i/ Nn: The samples cluster closer and closer together asi increases.

«t =T(i/n)’: Thesamples pread out asi increases.

«t, =T(i/n)+ Asin(ki/n) The samples cyclicaly cluster together or spread apart. Constants A and
k are chosen to vary the anourt and speed of the variation.

2). Randomly Seleded t-Values. The t-values can be chosen randamly asin
ot = randChoase(0,T)

Here randChoose(0,T) isafunction (devised by yoy that returns a value randomly seleded from the
range0to T ead timeit iscdled. (SeeAppendix 3 for a basic randam number generator.)

Figure 3.95 shows the palyline generated in this fashion for points on an elli pse. It isinteresting to watch
such a picture develop onadisplay. A flurry of seemingly urrelated linesfirst appeas, but soonthe g/e
deteds ome order in the chaos and“sees’ an €lli pticd “envelope” emerging aroundthe doud d lines.

1st Ed. Figure 4.26

Figure 3.95. A randam €lli pse palyline.

Alternatively, a sequence of increasing t-values can be used, generated by

t =t + randChoase(0, r)

wherer is me small paositive value.

3). Conneding Verticesin Different Orders

In apopuar children’s game, pins are driven into aboard in some pattern, and a pieceof thread is woven

aroundthe pinsin some order. The t-values here define the positions of the pinsin the board, and
worldLineTo () playstherole of the thread.

The samples of P(t) are prestored in a suitable aray P[i], 1=0,1,..,n. The padyline is drawn by
sequencing in an interesting way through valuesof i. That is, the sequencei,, i,, is generated from
values between Oand n, andfor ead index i, a cdl toworldLineTo(P[i,]) ismade. Some

posshiliti es are:

» "Randam Ded”: the sequencei,, i,, iSarandan permutation d thevalues0,1,..,n, asin dedinga
fixed set of cards from a shuffled dedk.

« Every pair of pointsis conreded bya straight line. So every pair of valuesin therange 0,1,..,n appeas
in adjacent spots smewhere in the sequencei,, i,, The prime rosette of Chapter 5 gave one example,
where lines were drawn conreding ead pant to every other.

Computer Graphics Chap 3 09/21/99 5:38 PM page 55

* One can also draw “webs,” as suggested in Figure 3.96. Here the index values cycle many times
throughthe possble values, skipping bysome M ead time. Thisis easily dore by forming the next index
from the previous one usingi = (i + M) mod (n+1).
[1* Ed. Figure 4.27 |

Figure 3.96. Adding websto a aurve.

3.10.8. Case Study 3.8. Circles Rolling around Circles.

(Level of Effort: II) Ancther large family of interesting curves can be useful in graphics. Consider the
path traced by apoint rigidly attached to a drcle asthe drcle roll s aroundancther fixed circle [thomass3,
Yates46]. These ae cdled trochoids, and Figure 3.97 shows how they are generated. The tradng pant is
attached to the ralling circle (of radius b) at the end of arod k units from the ceanter. The fixed circle has
radius a. There ae two basic kinds: When the drcle roll s externally (Figure 3.97a), an epitrochoid is
generated, and when it rollsinternally (Figure 3.97b), a hypotrochoid is generated. The dnildren’s game
Spirograph# is a familiar tod for drawing trochoids, which have the foll owing parametric forms:

[1* Ed. Figure 4.23

Figure 3.97. Circlesralling aroundcircles.

The epitrochoid:
X(t) = (a+ b)cog2) - keog 2 Ot
b
(a+)t (3.29)
y(t) = (a+b)sin(2mt) —ksin(2 n—b)
The hypotrochoid:
x(t) =(a—b)cog2mt) + kcoian)
b (329
(a—b)t '

y(t) = (a—b)sin(27t) - ksin(2 n—b)

An elli pse results from the hyparochoid when a = 2b for any k.

When the tradng pant lies onthe rolli ng circle (k = b) these shapes are cdl ed cycloids. Some familiar
spedal cases of cycloids are

Epicycloids:
Cardioid: b=a
Nephroid: 2b=a
Hypocycloids:1°
Line segment: 2b=a
Deltoid: 3b=a
Astroid: 4b = a.

Some of these ae shawn in Figure 3.98. Write aprogram that can draw bath epitrochoids and
hypdrochoids. The user can chocse which family to draw, and can enter the required parameters.
Exercise the program to draw ead o the spedal caseslisted abowe.

1% Ed. Figure 4.24.

Figure 3.98. Examples of cycloids: a) nephroid, b) a/b = 10, c) deltoid, d) astroid.

A trademark of Kenner Prodicts.
15Note that the astroid is also a superelli pse! It has a bulge of 2/3.

Computer Graphics Chap 3 09/21/99 5:38 PM page 56

3.10.9. Case Study 3.9. Superellipses.

(Level of Effort: I) Write and exercise aprogram to draw superelli pses. To draw ead superelli pse, the
user indicates oppasite arners of its boundng, and types a value for the bulge, whereuponthe spedfied
superelli pseis drawn.

(Optional). Extend the program so that it can draw rotated superelli pses. The user types an angle dter
typing the bulge.

3.11. For Further Reading.

When getting started with graphicsit is very satisfying to write goplications that produce fascinating curves and
patterns. This leads you to explore the deg conrnedion between mathematics and the visual arts. Many bools
are avail able that offer guidance and provide myriad examples. McGregor and Watt's THE ART OF
GRAPHICS FOR THE IBM PC, [mcgregor86] off ers many algorithms for creaing interesting petterns. Some
particularly nateworthy books on curves and geometry are Jay Kappraff s CONNECTIONS [kappraff91],
Dewdney’s THE ARMCHAIR UNIVERSE [dewdney88], Stan Ogilvy’s EXCURSIONS IN
GEOMETRY[ogilvy69], Pedoe's GEOMETRY AND THE VISUAL ARTS [pedoe76], Roger Sheperd’s MIND
SIGHTS [shep9(], and the series of books on mathematica excursions by Martin Gardner, (such as TIME
TRAVEL [gardner88] and PENROSE TILES TO TRAPDOOR CIPHERS [gardner89]). Coxeter has written
elegant books on geometry, such as INTRODUCTION TO GEOMETRY[Coxeter69] and MATHEMATICAL
RECREATIONS AND ESSAY S[ball 74], and Hoggar's MATHEMATICS FOR COMPUTER GRAPHICS
[hogaar92] discusses many feaures of iterated function systems.

Computer Graphics Chap 3 09/21/99 5:38 PM page 57

