
COMPUTER
NETWORKING

A Top-Down Approach

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

SEVENTH EDITION
GlObal EDITION

James F. Kurose

University of Massachusetts, Amherst

Keith W. ross

NYU and NYU Shanghai

A01_KURO3599_07_GE_FM.indd 1 22/08/16 5:11 PM

126 Chapter 2    •    appliCation layer

2.2 The Web and HTTP

Until the early 1990s the Internet was used primarily by researchers, academics,
and university students to log in to remote hosts, to transfer files from local hosts
to remote hosts and vice versa, to receive and send news, and to receive and send
electronic mail. Although these applications were (and continue to be) extremely
useful, the Internet was essentially unknown outside of the academic and research
communities. Then, in the early 1990s, a major new application arrived on the
scene—the World Wide Web [Berners-Lee 1994]. The Web was the first Internet
application that caught the general public’s eye. It dramatically changed, and con-
tinues to change, how people interact inside and outside their work environments.
It elevated the Internet from just one of many data networks to essentially the one
and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broadcast
radio and television, which force users to tune in when the content provider makes
the content available. In addition to being available on demand, the Web has many
other wonderful features that people love and cherish. It is enormously easy for any
individual to make information available over the Web—everyone can become a
publisher at extremely low cost. Hyperlinks and search engines help us navigate
through an ocean of information. Photos and videos stimulate our senses. Forms,
JavaScript, Java applets, and many other devices enable us to interact with pages and
sites. And the Web and its protocols serve as a platform for YouTube, Web-based
e-mail (such as Gmail), and most mobile Internet applications, including Instagram
and Google Maps.

2.2.1 Overview of HTTP
The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is
implemented in two programs: a client program and a server program. The client
program and server program, executing on different end systems, talk to each other
by exchanging HTTP messages. HTTP defines the structure of these messages and
how the client and server exchange the messages. Before explaining HTTP in detail,
we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is
simply a file—such as an HTML file, a JPEG image, a Java applet, or a video
clip—that is addressable by a single URL. Most Web pages consist of a base
HTML file and several referenced objects. For example, if a Web page con-
tains HTML text and five JPEG images, then the Web page has six objects: the
base HTML file plus the five images. The base HTML file references the other
objects in the page with the objects’ URLs. Each URL has two components: the

M02_KURO3599_07_GE_C02.indd 126 09/08/16 1:57 PM

2.2 • the web and http 127

hostname of the server that houses the object and the object’s path name. For
example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/picture.
gif for a path name. Because Web browsers (such as Internet Explorer and Firefox)
implement the client side of HTTP, in the context of the Web, we will use the words
browser and client interchangeably. Web servers, which implement the server side
of HTTP, house Web objects, each addressable by a URL. Popular Web servers
include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client
and server in detail later, but the general idea is illustrated in Figure 2.6. When a
user requests a Web page (for example, clicks on a hyperlink), the browser sends
HTTP request messages for the objects in the page to the server. The server receives
the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top
of UDP). The HTTP client first initiates a TCP connection with the server. Once the
connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side
it is the door between the server process and the TCP connection. The client sends
HTTP request messages into its socket interface and receives HTTP response mes-
sages from its socket interface. Similarly, the HTTP server receives request messages

HTTP re
quest

HTTP re
sp

onse

HTTP response

HTTP request

PC running
Internet Explorer

Android smartphone
running Google Chrome

Server running
Apache Web server

Figure 2.6  ♦  HTTP request-response behavior

M02_KURO3599_07_GE_C02.indd 127 09/08/16 1:57 PM

128 Chapter 2    •    appliCation layer

from its socket interface and sends response messages into its socket interface. Once
the client sends a message into its socket interface, the message is out of the client’s
hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a
reliable data transfer service to HTTP. This implies that each HTTP request message
sent by a client process eventually arrives intact at the server; similarly, each HTTP
response message sent by the server process eventually arrives intact at the client.
Here we see one of the great advantages of a layered architecture—HTTP need not
worry about lost data or the details of how TCP recovers from loss or reordering of
data within the network. That is the job of TCP and the protocols in the lower layers
of the protocol stack.

It is important to note that the server sends requested files to clients without
storing any state information about the client. If a particular client asks for the same
object twice in a period of a few seconds, the server does not respond by saying that
it just served the object to the client; instead, the server resends the object, as it has
completely forgotten what it did earlier. Because an HTTP server maintains no infor-
mation about the clients, HTTP is said to be a stateless protocol. We also remark
that the Web uses the client-server application architecture, as described in Section
2.1. A Web server is always on, with a fixed IP address, and it services requests from
potentially millions of different browsers.

2.2.2 Non-Persistent and Persistent Connections
In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server respond-
ing to each of the requests. Depending on the application and on how the applica-
tion is being used, the series of requests may be made back-to-back, periodically
at regular intervals, or intermittently. When this client-server interaction is
taking place over TCP, the application developer needs to make an important
decision—should each request/response pair be sent over a separate TCP connec-
tion, or should all of the requests and their corresponding responses be sent over
the same TCP connection? In the former approach, the application is said to use
non-persistent connections; and in the latter approach, persistent connections.
To gain a deep understanding of this design issue, let’s examine the advantages
and disadvantages of persistent connections in the context of a specific applica-
tion, namely, HTTP, which can use both non-persistent connections and per-
sistent connections. Although HTTP uses persistent connections in its default
mode, HTTP clients and servers can be configured to use non-persistent connec-
tions instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML

M02_KURO3599_07_GE_C02.indd 128 09/08/16 1:57 PM

2.2 • the web and http 129

file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

 1. The HTTP client process initiates a TCP connection to the server www
.someSchool.edu on port number 80, which is the default port number for
HTTP. Associated with the TCP connection, there will be a socket at the client
and a socket at the server.

 2. The HTTP client sends an HTTP request message to the server via its socket.
The request message includes the path name /someDepartment/home
.index. (We will discuss HTTP messages in some detail below.)

 3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

 4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

 5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file, and
finds references to the 10 JPEG objects.

 6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two dif-
ferent browsers may interpret (that is, display to the user) a Web page in somewhat
different ways. HTTP has nothing to do with how a Web page is interpreted by a cli-
ent. The HTTP specifications ([RFC 1945] and [RFC 2616]) define only the commu-
nication protocol between the client HTTP program and the server HTTP program.

The steps above illustrate the use of non-persistent connections, where each TCP
connection is closed after the server sends the object—the connection does not per-
sist for other objects. Note that each TCP connection transports exactly one request
message and one response message. Thus, in this example, when a user requests the
Web page, 11 TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure modern
browsers to control the degree of parallelism. In their default modes, most browsers open
5 to 10 parallel TCP connections, and each of these connections handles one request-
response transaction. If the user prefers, the maximum number of parallel connections

M02_KURO3599_07_GE_C02.indd 129 09/08/16 1:57 PM

130 Chapter 2    •    appliCation layer

can be set to one, in which case the 10 connections are established serially. As we’ll see
in the next chapter, the use of parallel connections shortens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing delays.
(These delays were discussed in Section 1.4.) Now consider what happens when
a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to
initiate a TCP connection between the browser and the Web server; this involves
a “three-way handshake”—the client sends a small TCP segment to the server, the
server acknowledges and responds with a small TCP segment, and, finally, the cli-
ent acknowledges back to the server. The first two parts of the three-way handshake
take one RTT. After completing the first two parts of the handshake, the client sends
the HTTP request message combined with the third part of the three-way handshake
(the acknowledgment) into the TCP connection. Once the request message arrives at

Time
at client

Time
at server

Initiate TCP
connection

RTT

Request file

RTT

Entire file received

Time to transmit file

Figure 2.7  ♦   Back-of-the-envelope calculation for the time needed
to request and receive an HTML file

M02_KURO3599_07_GE_C02.indd 130 09/08/16 1:57 PM

2.2 • the web and http 131

the server, the server sends the HTML file into the TCP connection. This HTTP
request/response eats up another RTT. Thus, roughly, the total response time is two
RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connection
must be established and maintained for each requested object. For each of these
connections, TCP buffers must be allocated and TCP variables must be kept in both
the client and server. This can place a significant burden on the Web server, which
may be serving requests from hundreds of different clients simultaneously. Second,
as we just described, each object suffers a delivery delay of two RTTs—one RTT to
establish the TCP connection and one RTT to request and receive an object.

With HTTP 1.1 persistent connections, the server leaves the TCP connection
open after sending a response. Subsequent requests and responses between the same
client and server can be sent over the same connection. In particular, an entire Web
page (in the example above, the base HTML file and the 10 images) can be sent over
a single persistent TCP connection. Moreover, multiple Web pages residing on the
same server can be sent from the server to the same client over a single persistent
TCP connection. These requests for objects can be made back-to-back, without wait-
ing for replies to pending requests (pipelining). Typically, the HTTP server closes
a connection when it isn’t used for a certain time (a configurable timeout interval).
When the server receives the back-to-back requests, it sends the objects back-to-
back. The default mode of HTTP uses persistent connections with pipelining. Most
recently, HTTP/2 [RFC 7540] builds on HTTP 1.1 by allowing multiple requests
and replies to be interleaved in the same connection, and a mechanism for prioritiz-
ing HTTP message requests and replies within this connection. We’ll quantitatively
compare the performance of non-persistent and persistent connections in the home-
work problems of Chapters 2 and 3. You are also encouraged to see [Heidemann
1997; Nielsen 1997; RFC 7540].

2.2.3 HTTP Message Format
The HTTP specifications [RFC 1945; RFC 2616; RFC 7540] include the definitions
of the HTTP message formats. There are two types of HTTP messages, request mes-
sages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu

M02_KURO3599_07_GE_C02.indd 131 09/08/16 1:57 PM

132 Chapter 2    •    appliCation layer

Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
The great majority of HTTP request messages use the GET method. The GET method
is used when the browser requests an object, with the requested object identified in
the URL field. In this example, the browser is requesting the object /somedir/
page.html. The version is self-explanatory; in this example, the browser imple-
ments version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host: www
.someschool.edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can actu-
ally send different versions of the same object to different types of user agents. (Each
of the versions is addressed by the same URL.) Finally, the Accept-language:
header indicates that the user prefers to receive a French version of the object, if such
an object exists on the server; otherwise, the server should send its default version.
The Accept-language: header is just one of many content negotiation headers
available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body
is empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page

M02_KURO3599_07_GE_C02.indd 132 09/08/16 1:57 PM

2.2 • the web and http 133

depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily use the POST method. Instead, HTML forms often use the GET
method and include the inputted data (in the form fields) in the requested URL. For
example, if a form uses the GET method, has two fields, and the inputs to the two
fields are monkeys and bananas, then the URL will have the structure www.
somesite.com/animalsearch?monkeys&bananas. In your day-to-day
Web surfing, you have probably noticed extended URLs of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects
to Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK
Connection: close
Date: Tue, 18 Aug 2015 15:44:04 GMT

method sp sp cr lf

cr lfheader field name:

Header lines

Blank line

Entity body

Request line

valuesp

cr lf

cr lf

header field name: valuesp

URL Version

Figure 2.8  ♦  General format of an HTTP request message

M02_KURO3599_07_GE_C02.indd 133 09/08/16 1:57 PM

134 Chapter 2    •    appliCation layer

Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an initial
status line, six header lines, and then the entity body. The entity body is the meat
of the message—it contains the requested object itself (represented by data data
data data data ...). The status line has three fields: the protocol version
field, a status code, and a corresponding status message. In this example, the status
line indicates that the server is using HTTP/1.1 and that everything is OK (that is, the
server has found, and is sending, the requested object).

Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when
the object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends the
response message. The Server: header line indicates that the message was gener-
ated by an Apache Web server; it is analogous to the User-agent: header line in
the HTTP request message. The Last-Modified: header line indicates the time
and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both
in the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body
is HTML text. (The object type is officially indicated by the Content-Type:
header and not by the file extension.)

Having looked at an example, let’s now examine the general format of a response
message, which is shown in Figure 2.9. This general format of the response message
matches the previous example of a response message. Let’s say a few additional
words about status codes and their phrases. The status code and associated phrase
indicate the result of the request. Some common status codes and associated phrases
include:

• 200 OK: Request succeeded and the information is returned in the response.

• 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.

• 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

M02_KURO3599_07_GE_C02.indd 134 09/08/16 1:57 PM

2.2 • the web and http 135

• 404 Not Found: The requested document does not exist on this server.

• 505 HTTP Version Not Supported: The requested HTTP protocol ver-
sion is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet gaia.cs.umass.edu 80

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

(Press the carriage return twice after typing the last line.) This opens a TCP con-
nection to port 80 of the host gaia.cs.umass.edu and then sends the HTTP
request message. You should see a response message that includes the base HTML
file for the interactive homework problems for this textbook. If you’d rather just see
the HTTP message lines and not receive the object itself, replace GET with HEAD.

In this section we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many,
many more header lines that can be inserted by browsers, Web servers, and net-
work cache servers. We have covered only a small number of the totality of header
lines. We’ll cover a few more below and another small number when we discuss
network Web caching in Section 2.2.5. A highly readable and comprehensive

version sp sp cr lf

cr lfheader field name:

Header lines

Blank line

Entity body

Status line

value

cr

sp

sp lf

cr lf

header field name: value

status code phrase

Figure 2.9  ♦  General format of an HTTP response message

VideoNote
Using Wireshark to
investigate the HTTP
protocol

M02_KURO3599_07_GE_C02.indd 135 09/08/16 1:57 PM

136 Chapter 2    •    appliCation layer

discussion of the HTTP protocol, including its headers and status codes, is given
in [Krishnamurthy 2001].

How does a browser decide which header lines to include in a request mes-
sage? How does a Web server decide which header lines to include in a response
message? A browser will generate header lines as a function of the browser type
and version (for example, an HTTP/1.0 browser will not generate any 1.1 header
lines), the user configuration of the browser (for example, preferred language), and
whether the browser currently has a cached, but possibly out-of-date, version of the
object. Web servers behave similarly: There are different products, versions, and
configurations, all of which influence which header lines are included in response
messages.

2.2.4 User-Server Interaction: Cookies
We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for
a Web site to identify users, either because the server wishes to restrict user access
or because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep track
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by
the user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10,
let’s walk through an example of how cookies work. Suppose Susan, who always
accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the
Set-cookie: header. The browser then appends a line to the special cookie file
that it manages. This line includes the hostname of the server and the identification
number in the Set-cookie: header. Note that the cookie file already has an entry
for eBay, since Susan has visited that site in the past. As Susan continues to browse
the Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line that

M02_KURO3599_07_GE_C02.indd 136 09/08/16 1:57 PM

2.2 • the web and http 137

includes the identification number in the HTTP request. Specifically, each of her
HTTP requests to the Amazon server includes the header line:

Cookie: 1678

In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!

Client host Server host

usual http request msg

usual
 http

 resp
onse

Set-c
ookie

: 167
8

usual http request msg

cookie: 1678

usual
 http

 resp
onse

msg

usual http request msg

cookie: 1678

usual
 http

 resp
onse

msg

Time

One week later

ebay: 8734

Server creates
ID 1678 for user

Time

Cookie file

Key:

amazon: 1678
ebay: 8734

amazon: 1678
ebay: 8734

Cookie-specific
action

access

access

entry in backend
database

Cookie-specific
action

Figure 2.10  ♦  Keeping user state with cookies

M02_KURO3599_07_GE_C02.indd 137 09/08/16 1:57 PM

138 Chapter 2    •    appliCation layer

Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will con-
tinue to put the header line Cookie: 1678 in the request messages. Amazon also
recommends products to Susan based on Web pages she has visited at Amazon in
the past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identifica-
tion number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to
a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s
session with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party. Cookie Central [Cookie Central 2016] includes extensive information on
the cookie controversy.

2.2.5 Web Caching
A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk
storage and keeps copies of recently requested objects in this storage. As shown in
Figure 2.11, a user’s browser can be configured so that all of the user’s HTTP requests
are first directed to the Web cache. Once a browser is configured, each browser request
for an object is first directed to the Web cache. As an example, suppose a browser
is requesting the object http://www.someschool.edu/campus.gif.
Here is what happens:

 1. The browser establishes a TCP connection to the Web cache and sends an HTTP
request for the object to the Web cache.

 2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to the
client browser.

M02_KURO3599_07_GE_C02.indd 138 09/08/16 1:57 PM

2.2 • the web and http 139

 3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www.someschool.edu. The Web cache
then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an
HTTP response to the Web cache.

 4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as Comcast) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing
traffic, the institution (for example, a company or a university) does not have to

HTTP re
quest

HTTP re
sponse

HTTP re
quest

HTTP re
sponse

HTTP requestHTTP response

HTTP requestHTTP response

Client
Origin
server

Origin
server

Client

Proxy
server

Figure 2.11  ♦  Clients requesting objects through a Web cache

M02_KURO3599_07_GE_C02.indd 139 09/08/16 1:57 PM

140 Chapter 2    •    appliCation layer

upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches
can substantially reduce Web traffic in the Internet as a whole, thereby improving
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet
router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

Public Internet

Institutional network

15 Mbps access link

100 Mbps LAN

Origin servers

Figure 2.12  ♦  Bottleneck between an institutional network and the Internet

M02_KURO3599_07_GE_C02.indd 140 09/08/16 1:57 PM

2.2 • the web and http 141

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do
a very crude calculation to estimate this delay. The traffic intensity on the LAN
(see Section 1.4.2) is

(15 requests/sec) # (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) # (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly
something must be done.

One possible solution is to increase the access rate from 15 Mbps to, say, 100
Mbps. This will lower the traffic intensity on the access link to 0.15, which translates
to negligible delays between the two routers. In this case, the total response time
will roughly be two seconds, that is, the Internet delay. But this solution also means
that the institution must upgrade its access link from 15 Mbps to 100 Mbps, a costly
proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illustrated
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache—
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose
that the cache provides a hit rate of 0.4 for this institution. Because the clients and
the cache are connected to the same high-speed LAN, 40 percent of the requests will
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin
servers. But with only 60 percent of the requested objects passing through the access
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a
traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds,
on a 15 Mbps link. This delay is negligible compared with the two-second Internet
delay. Given these considerations, average delay therefore is

0.4 # (0.01 seconds) + 0.6 # (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution

M02_KURO3599_07_GE_C02.indd 141 09/08/16 1:57 PM

142 Chapter 2    •    appliCation layer

to upgrade its link to the Internet. The institution does, of course, have to purchase
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new
problem—the copy of an object residing in the cache may be stale. In other words,
the object housed in the Web server may have been modified since the copy was
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to

Public Internet

Institutional network

15 Mbps access link

Institutional
cache

100 Mbps LAN

Origin servers

Figure 2.13  ♦  Adding a cache to the institutional network

M02_KURO3599_07_GE_C02.indd 142 09/08/16 1:57 PM

2.2 • the web and http 143

verify that its objects are up to date. This mechanism is called the conditional
GET. An HTTP request message is a so-called conditional GET message if (1)
the request message uses the GET method and (2) the request message includes an
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK
Date: Sat, 3 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif

(data data data data data ...)

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the cache,
and the object is still in the cache. Since this object may have been modified at the
Web server in the past week, the cache performs an up-to-date check by issuing a
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the If-modified-since: header line is exactly equal
to the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

M02_KURO3599_07_GE_C02.indd 143 09/08/16 1:57 PM

144 Chapter 2    •    appliCation layer

We see that in response to the conditional GET, the Web server still sends a
response message but does not include the requested object in the response message.
Including the requested object would only waste bandwidth and increase user-
perceived response time, particularly if the object is large. Note that this last response
message has 304 Not Modified in the status line, which tells the cache that it
can go ahead and forward its (the proxy cache’s) cached copy of the object to the
requesting browser.

This ends our discussion of HTTP, the first Internet protocol (an application-
layer protocol) that we’ve studied in detail. We’ve seen the format of HTTP mes-
sages and the actions taken by the Web client and server as these messages are
sent and received. We’ve also studied a bit of the Web’s application infrastructure,
including caches, cookies, and back-end databases, all of which are tied in some way
to the HTTP protocol.

2.3 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
become more elaborate and powerful over the years. It remains one of the Internet’s
most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail,
electronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has
many powerful features, including messages with attachments, hyperlinks, HTML-
formatted text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these protocols,
let’s take a high-level view of the Internet mail system and its key components.

Figure 2.14 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose mes-
sages. Microsoft Outlook and Apple Mail are examples of user agents for e-mail.
When Alice is finished composing her message, her user agent sends the message to
her mail server, where the message is placed in the mail server’s outgoing message
queue. When Bob wants to read a message, his user agent retrieves the message from
his mailbox in his mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such as
Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages and

M02_KURO3599_07_GE_C02.indd 144 09/08/16 1:57 PM

