
Patrick Niemeyer and Daniel Leuck

FOURTH EDITION

Learning Java

Preferences for Classes 397
Preferences Storage 398
Change Notification 398

The Logging API 399
Overview 399
Logging Levels 401
A Simple Example 402
Logging Setup Properties 403
The Logger 405
Performance 406

Observers and Observables 406

12. Input/Output Facilities. 409
Streams 409

Basic I/O 412
Character Streams 415
Stream Wrappers 416
Pipes 420
Streams from Strings and Back 422
Implementing a Filter Stream 423

File I/O 425
The java.io.File Class 425
File Streams 430
RandomAccessFile 433
Resource Paths 434

The NIO File API 436
FileSystem and Path 436
NIO File Operations 438
Directory Operations 441
Watching Paths 443

Serialization 444
Initialization with readObject() 446
SerialVersionUID 447

Data Compression 448
Archives and Compressed Data 448
Decompressing Data 450
Zip Archive As a Filesystem 452

The NIO Package 453
Asynchronous I/O 453
Performance 454
Mapped and Locked Files 454
Channels 454

Table of Contents | xi

CHAPTER 12

Input/Output Facilities

In this chapter, we continue our exploration of the Java API by looking at many of the
classes in the java.io and java.nio packages. These packages offer a rich set of tools
for basic I/O and also provide the framework on which all file and network communi‐
cation in Java is built.

Figure 12-1 shows the class hierarchy of these packages.

We’ll start by looking at the stream classes in java.io, which are subclasses of the basic
InputStream, OutputStream, Reader, and Writer classes. Then we’ll examine the File
class and discuss how you can read and write files using classes in java.io. We also take
a quick look at data compression and serialization. Along the way, we’ll also introduce
the java.nio package. The NIO, or “new” I/O, package (introduced in Java 1.4) adds
significant functionality tailored for building high-performance services and in some
cases simply provides newer, better APIs that can be used in place of some java.io
features.

Streams
Most fundamental I/O in Java is based on streams. A stream represents a flow of data
with (at least conceptually) a writer at one end and a reader at the other. When you are
working with the java.io package to perform terminal input and output, reading or
writing files, or communicating through sockets in Java, you are using various types of
streams. Later in this chapter, we’ll look at the NIO package, which introduces a similar
concept called a channel. One difference betwen the two is that streams are oriented
around bytes or characters while channels are oriented around “buffers” containing
those data types—yet they perform roughly the same job. Let’s start by summarizing the
available types of streams:

409

InputStream, OutputStream
Abstract classes that define the basic functionality for reading or writing an un‐
structured sequence of bytes. All other byte streams in Java are built on top of the
basic InputStream and OutputStream.

Reader, Writer
Abstract classes that define the basic functionality for reading or writing a sequence
of character data, with support for Unicode. All other character streams in Java are
built on top of Reader and Writer.

InputStreamReader, OutputStreamWriter
Classes that bridge byte and character streams by converting according to a specific
character encoding scheme. (Remember: in Unicode, a character is not a byte!)

DataInputStream, DataOutputStream
Specialized stream filters that add the ability to read and write multibyte data types,
such as numeric primitives and String objects in a universal format.

ObjectInputStream, ObjectOutputStream
Specialized stream filters that are capable of writing whole groups of serialized Java
objects and reconstructing them.

BufferedInputStream, BufferedOutputStream, BufferedReader, BufferedWriter
Specialized stream filters that add buffering for additional efficiency. For real-world
I/O, a buffer is almost always used.

PrintStream, PrintWriter
Specialized streams that simplify printing text.

PipedInputStream, PipedOutputStream, PipedReader, PipedWriter
“Loopback” streams that can be used in pairs to move data within an application.
Data written into a PipedOutputStream or PipedWriter is read from its corre‐
sponding PipedInputStream or PipedReader.

FileInputStream, FileOutputStream, FileReader, FileWriter
Implementations of InputStream, OutputStream, Reader, and Writer that read
from and write to files on the local filesystem.

410 | Chapter 12: Input/Output Facilities

Figure 12-1. The java.io package

Streams | 411

Streams in Java are one-way streets. The java.io input and output classes represent the
ends of a simple stream, as shown in Figure 12-2. For bidirectional conversations, you’ll
use one of each type of stream.

Figure 12-2. Basic input and output stream functionality

InputStream and OutputStream are abstract classes that define the lowest-level inter‐
face for all byte streams. They contain methods for reading or writing an unstructured
flow of byte-level data. Because these classes are abstract, you can’t create a generic input
or output stream. Java implements subclasses of these for activities such as reading from
and writing to files and communicating with sockets. Because all byte streams inherit
the structure of InputStream or OutputStream, the various kinds of byte streams can
be used interchangeably. A method specifying an InputStream as an argument can
accept any subclass of InputStream. Specialized types of streams can also be layered or
wrapped around basic streams to add features such as buffering, filtering, or handling
higher-level data types.

Reader and Writer are very much like InputStream and OutputStream, except that they
deal with characters instead of bytes. As true character streams, these classes correctly
handle Unicode characters, which is not always the case with byte streams. Often, a
bridge is needed between these character streams and the byte streams of physical de‐
vices, such as disks and networks. InputStreamReader and OutputStreamWriter are
special classes that use a character-encoding scheme to translate between character and
byte streams.

This section describes all the interesting stream types with the exception of FileInput
Stream, FileOutputStream, FileReader, and FileWriter. We postpone the discussion
of file streams until the next section, where we cover issues involved with accessing the
filesystem in Java.

Basic I/O
The prototypical example of an InputStream object is the standard input of a Java ap‐
plication. Like stdin in C or cin in C++, this is the source of input to a command-line
(non-GUI) program. It is an input stream from the environment—usually a terminal

412 | Chapter 12: Input/Output Facilities

1. Standard error is a stream that is usually reserved for error-related text messages that should be shown to the
user of a command-line application. It is differentiated from the standard output, which often might be
redirected to a file or another application and not seen by the user.

window or possibly the output of another command. The java.lang.System class, a
general repository for system-related resources, provides a reference to the standard
input stream in the static variable System.in. It also provides a standard output
stream and a standard error stream in the out and err variables, respectively.1 The
following example shows the correspondence:

 InputStream stdin = System.in;
 OutputStream stdout = System.out;
 OutputStream stderr = System.err;

This snippet hides the fact that System.out and System.err aren’t just OutputStream
objects, but more specialized and useful PrintStream objects. We’ll explain these later,
but for now we can reference out and err as OutputStream objects because they are
derived from OutputStream.

We can read a single byte at a time from standard input with the InputStream’s read()
method. If you look closely at the API, you’ll see that the read() method of the base
InputStream class is an abstract method. What lies behind System.in is a particular
implementation of InputStream that provides the real implementation of the read()
method:

 try {
 int val = System.in.read();
 } catch (IOException e) {
 ...
 }

Although we said that the read() method reads a byte value, the return type in the
example is int, not byte. That’s because the read() method of basic input streams in
Java uses a convention carried over from the C language to indicate the end of a stream
with a special value. Data byte values are returned as unsigned integers in the range 0
to 255 and the special value of -1 is used to indicate that end of stream has been reached.
You’ll need to test for this condition when using the simple read() method. You can
then cast the value to a byte if needed. The following example reads each byte from an
input stream and prints its value:

 try {
 int val;
 while((val=System.in.read()) != -1)
 System.out.println((byte)val);
 } catch (IOException e) { ... }

As we’ve shown in the examples, the read() method can also throw an IOException if
there is an error reading from the underlying stream source. Various subclasses of

Streams | 413

IOException may indicate that a source such as a file or network connection has had
an error. Additionally, higher-level streams that read data types more complex than a
single byte may throw EOFException (“end of file”), which indicates an unexpected or
premature end of stream.

An overloaded form of read() fills a byte array with as much data as possible up to the
capacity of the array and returns the number of bytes read:

 byte [] buff = new byte [1024];
 int got = System.in.read(buff);

In theory, we can also check the number of bytes available for reading at a given time
on an InputStream using the available() method. With that information, we could
create an array of exactly the right size:

 int waiting = System.in.available();
 if (waiting > 0) {
 byte [] data = new byte [waiting];
 System.in.read(data);
 ...
 }

However, the reliability of this technique depends on the ability of the underlying stream
implementation to detect how much data can be retrieved. It generally works for files
but should not be relied upon for all types of streams.

These read() methods block until at least some data is read (at least one byte). You
must, in general, check the returned value to determine how much data you got and if
you need to read more. (We look at nonblocking I/O later in this chapter.) The skip()
method of InputStream provides a way of jumping over a number of bytes. Depending
on the implementation of the stream, skipping bytes may be more efficient than reading
them.

The close() method shuts down the stream and frees up any associated system re‐
sources. It’s important for performance to remember to close most types of streams
when you are finished using them. In some cases, streams may be closed automatically
when objects are garbage-collected, but it is not a good idea to rely on this behavior. In
Java 7, the try-with-resources language feature was added to make automatically closing
streams and other closeable entities easier. We’ll see some examples of that later in this
chapter. The flag interface java.io.Closeable identifies all types of stream, channel,
and related utility classes that can be closed.

Finally, we should mention that in addition to the System.in and System.out standard
streams, Java provides the java.io.Console API through System.console(). You can
use the Console to read passwords without echoing them to the screen.

414 | Chapter 12: Input/Output Facilities

Character Streams
In early versions of Java, some InputStream and OutputStream types included methods
for reading and writing strings, but most of them operated by naively assuming that a
16-bit Unicode character was equivalent to an 8-bit byte in the stream. This works only
for Latin-1 (ISO 8859-1) characters and not for the world of other encodings that are
used with different languages. In Chapter 10, we saw that the java.lang.String class
has a byte array constructor and a corresponding getBytes() method that each accept
character encoding as an argument. In theory, we could use these as tools to transform
arrays of bytes to and from Unicode characters so that we could work with byte streams
that represent character data in any encoding format. Fortunately, however, we don’t
have to rely on this because Java has streams that handle this for us.

The java.io Reader and Writer character stream classes were introduced as streams
that handle character data only. When you use these classes, you think only in terms of
characters and string data and allow the underlying implementation to handle the con‐
version of bytes to a specific character encoding. As we’ll see, some direct implemen‐
tations of Reader and Writer exist, for example, for reading and writing files. But more
generally, two special classes, InputStreamReader and OutputStreamWriter, bridge the
gap between the world of character streams and the world of byte streams. These are,
respectively, a Reader and a Writer that can be wrapped around any underlying byte
stream to make it a character stream. An encoding scheme is used to convert between
possible multibyte encoded values and Java Unicode characters. An encoding scheme
can be specified by name in the constructor of InputStreamReader or OutputStream
Writer. For convenience, the default constructor uses the system’s default encoding
scheme.

For example, let’s parse a human-readable string from the standard input into an integer.
We’ll assume that the bytes coming from System.in use the system’s default encoding
scheme:

 try {
 InputStream in = System.in;
 InputStreamReader charsIn = new InputStreamReader(in);
 BufferedReader bufferedCharsIn = new BufferedReader(inReader);

 String line = bufferedCharsIn.readLine();
 int i = NumberFormat.getInstance().parse(line).intValue();
 } catch (IOException e) {
 } catch (ParseException pe) { }

First, we wrap an InputStreamReader around System.in. This reader converts the in‐
coming bytes of System.in to characters using the default encoding scheme. Then, we
wrap a BufferedReader around the InputStreamReader. BufferedReader adds the
readLine() method, which we can use to grab a full line of text (up to a platform-

Streams | 415

specific, line-terminator character combination) into a String. The string is then parsed
into an integer using the techniques described in Chapter 10.

The important thing to note is that we have taken a byte-oriented input stream, Sys
tem.in, and safely converted it to a Reader for reading characters. If we wished to use
an encoding other than the system default, we could have specified it in the Input
StreamReader’s constructor like so:

 InputStreamReader reader = new InputStreamReader(System.in, "UTF-8");

For each character that is read from the reader, the InputStreamReader reads one or
more bytes and performs the necessary conversion to Unicode.

In Chapter 13, we use an InputStreamReader and a Writer in our simple web server
example, where we must use a character encoding specified by the HTTP protocol. We
also return to the topic of character encodings when we discuss the java.nio.char
set API, which allows you to query for and use encoders and decoders explicitly on
buffers of characters and bytes. Both InputStreamReader and OutputStreamWriter can
accept a Charset codec object as well as a character encoding name.

Stream Wrappers
What if we want to do more than read and write a sequence of bytes or characters? We
can use a “filter” stream, which is a type of InputStream, OutputStream, Reader, or
Writer that wraps another stream and adds new features. A filter stream takes the target
stream as an argument in its constructor and delegates calls to it after doing some ad‐
ditional processing of its own. For example, we can construct a BufferedInput
Stream to wrap the system standard input:

 InputStream bufferedIn = new BufferedInputStream(System.in);

The BufferedInputStream is a type of filter stream that reads ahead and buffers a certain
amount of data. (We’ll talk more about it later in this chapter.) The BufferedInput
Stream wraps an additional layer of functionality around the underlying stream.
Figure 12-3 shows this arrangement for a DataInputStream, which is a type of stream
that can read higher-level data types, such as Java primitives and strings.

416 | Chapter 12: Input/Output Facilities

Figure 12-3. Layered streams

As you can see from the previous code snippet, the BufferedInputStream filter is a type
of InputStream. Because filter streams are themselves subclasses of the basic stream
types, they can be used as arguments to the construction of other filter streams. This
allows filter streams to be layered on top of one another to provide different combina‐
tions of features. For example, we could first wrap our System.in with a BufferedIn
putStream and then wrap the BufferedInputStream with a DataInputStream for read‐
ing special data types with buffering.

Java provides base classes for creating new types of filter streams: FilterInputStream,
FilterOutputStream, FilterReader, and FilterWriter. These superclasses provide
the basic machinery for a “no op” filter (a filter that doesn’t do anything) by delegating
all their method calls to their underlying stream. Real filter streams subclass these and
override various methods to add their additional processing. We’ll make an example
filter stream later in this chapter.

Data streams

DataInputStream and DataOutputStream are filter streams that let you read or write
strings and primitive data types composed of more than a single byte. DataInput
Stream and DataOutputStream implement the DataInput and DataOutput interfaces,
respectively. These interfaces define methods for reading or writing strings and all of
the Java primitive types, including numbers and Boolean values. DataOutputStream
encodes these values in a machine-independent manner and then writes them to its
underlying byte stream. DataInputStream does the converse.

You can construct a DataInputStream from an InputStream and then use a method
such as readDouble() to read a primitive data type:

Streams | 417

 DataInputStream dis = new DataInputStream(System.in);
 double d = dis.readDouble();

This example wraps the standard input stream in a DataInputStream and uses it to read
a double value. The readDouble() method reads bytes from the stream and constructs
a double from them. The DataInputStream methods expect the bytes of numeric data
types to be in network byte order, a standard that specifies that the high-order bytes are
sent first (also known as “big endian,” as we discuss later).

The DataOutputStream class provides write methods that correspond to the read meth‐
ods in DataInputStream. For example, writeInt() writes an integer in binary format
to the underlying output stream.

The readUTF() and writeUTF() methods of DataInputStream and DataOutput
Stream read and write a Java String of Unicode characters using the UTF-8 “transfor‐
mation format” character encoding. UTF-8 is an ASCII-compatible encoding of Uni‐
code characters that is very widely used. Not all encodings are guaranteed to preserve
all Unicode characters, but UTF-8 does. You can also use UTF-8 with Reader and Writer
streams by specifying it as the encoding name.

Buffered streams

The BufferedInputStream, BufferedOutputStream, BufferedReader, and Buffered
Writer classes add a data buffer of a specified size to the stream path. A buffer can
increase efficiency by reducing the number of physical read or write operations that
correspond to read() or write() method calls. You create a buffered stream with an
appropriate input or output stream and a buffer size. (You can also wrap another stream
around a buffered stream so that it benefits from the buffering.) Here’s a simple buffered
input stream called bis:

 BufferedInputStream bis = new BufferedInputStream(myInputStream, 32768);
 ...
 bis.read();

In this example, we specify a buffer size of 32 KB. If we leave off the size of the buffer
in the constructor, a reasonably sized one is chosen for us. (Currently the default is 8
KB.) On our first call to read(), bis tries to fill our entire 32 KB buffer with data, if it’s
available. Thereafter, calls to read() retrieve data from the buffer, which is refilled as
necessary.

A BufferedOutputStream works in a similar way. Calls to write() store the data in a
buffer; data is actually written only when the buffer fills up. You can also use the flush()
method to wring out the contents of a BufferedOutputStream at any time. The flush()
method is actually a method of the OutputStream class itself. It’s important because it
allows you to be sure that all data in any underlying streams and filter streams has been
sent (before, for example, you wait for a response).

418 | Chapter 12: Input/Output Facilities

Some input streams such as BufferedInputStream support the ability to mark a location
in the data and later reset the stream to that position. The mark() method sets the return
point in the stream. It takes an integer value that specifies the number of bytes that can
be read before the stream gives up and forgets about the mark. The reset() method
returns the stream to the marked point; any data read after the call to mark() is read
again.

This functionality could be useful when you are reading the stream in a parser. You may
occasionally fail to parse a structure and so must try something else. In this situation,
you can have your parser generate an error and then reset the stream to the point before
it began parsing the structure:

 BufferedInputStream input;
 ...
 try {
 input.mark(MAX_DATA_STRUCTURE_SIZE);
 return(parseDataStructure(input));
 }
 catch (ParseException e) {
 input.reset();
 ...
 }

The BufferedReader and BufferedWriter classes work just like their byte-based coun‐
terparts, except that they operate on characters instead of bytes.

PrintWriter and PrintStream

Another useful wrapper stream is java.io.PrintWriter. This class provides a suite of
overloaded print() methods that turn their arguments into strings and push them out
the stream. A complementary set of println() convenience methods appends a new
line to the end of the strings. For formatted text output, printf() and the identical
format() methods allow you to write printf-style formatted text to the stream.

PrintWriter is an unusual character stream because it can wrap either an Output
Stream or another Writer. PrintWriter is the more capable big brother of the legacy
PrintStream byte stream. The System.out and System.err streams are PrintStream
objects; you have already seen such streams strewn throughout this book:

 System.out.print("Hello, world...\n");
 System.out.println("Hello, world...");
 System.out.printf("The answer is %d", 17);
 System.out.println(3.14);

Early versions of Java did not have the Reader and Writer classes and used Print
Stream, which convert bytes to characters by simply made assumptions about the char‐
acter encoding. You should use a PrintWriter for all new development.

Streams | 419

When you create a PrintWriter object, you can pass an additional Boolean value to the
constructor, specifying whether it should “auto-flush.” If this value is true, the Print
Writer automatically performs a flush() on the underlying OutputStream or Writer
each time it sends a newline:

PrintWriter pw = new PrintWriter(myOutputStream, true /*autoFlush*/);
 pw.println("Hello!"); // Stream is automatically flushed by the newline.

When this technique is used with a buffered output stream, it corresponds to the be‐
havior of terminals that send data line by line.

The other big advantage that print streams have over regular character streams is that
they shield you from exceptions thrown by the underlying streams. Unlike methods in
other stream classes, the methods of PrintWriter and PrintStream do not throw
IOExceptions. Instead, they provide a method to explicitly check for errors if required.
This makes life a lot easier for printing text, which is a very common operation. You
can check for errors with the checkError() method:

 System.out.println(reallyLongString);
 if (System.out.checkError()){ ... // uh oh

Pipes
Normally, our applications are directly involved with one side of a given stream at a
time. PipedInputStream and PipedOutputStream (or PipedReader and PipedWriter),
however, let us create two sides of a stream and connect them, as shown in
Figure 12-4. This can be used to provide a stream of communication between threads,
for example, or as a “loopback” for testing. Often it’s used as a crutch to interface a
stream-oriented API to a non-stream-oriented API.

Figure 12-4. Piped streams

To create a bytestream pipe, we use both a PipedInputStream and a PipedOutput
Stream. We can simply choose a side and then construct the other side using the first
as an argument:

420 | Chapter 12: Input/Output Facilities

 PipedInputStream pin = new PipedInputStream();
 PipedOutputStream pout = new PipedOutputStream(pin);

Alternatively:
 PipedOutputStream pout = new PipedOutputStream();
 PipedInputStream pin = new PipedInputStream(pout);

In each of these examples, the effect is to produce an input stream, pin, and an output
stream, pout, that are connected. Data written to pout can then be read by pin. It is also
possible to create the PipedInputStream and the PipedOutputStream separately and
then connect them with the connect() method.

We can do exactly the same thing in the character-based world, using PipedReader and
PipedWriter in place of PipedInputStream and PipedOutputStream.

After the two ends of the pipe are connected, use the two streams as you would other
input and output streams. You can use read() to read data from the PipedInput
Stream (or PipedReader) and write() to write data to the PipedOutputStream (or
PipedWriter). If the internal buffer of the pipe fills up, the writer blocks and waits until
space is available. Conversely, if the pipe is empty, the reader blocks and waits until some
data is available.

One advantage to using piped streams is that they provide stream functionality in our
code without compelling us to build new, specialized streams. For example, we can use
pipes to create a simple logging or “console” facility for our application. We can send
messages to the logging facility through an ordinary PrintWriter, and then it can do
whatever processing or buffering is required before sending the messages off to their
ultimate destination. Because we are dealing with string messages, we use the character-
based PipedReader and PipedWriter classes. The following example shows the skeleton
of our logging facility:

 class LoggerDaemon extends Thread
 {
 PipedReader in = new PipedReader();

 LoggerDaemon() {
 start();
 }

 public void run() {
 BufferedReader bin = new BufferedReader(in);
 String s;
 try {
 while ((s = bin.readLine()) != null) {
 // process line of data
 }
 } catch (IOException e) { }
 }

Streams | 421

 PrintWriter getWriter() throws IOException {
 return new PrintWriter(new PipedWriter(in));
 }
 }

 class myApplication {
 public static void main (String [] args) throws IOException {
 PrintWriter out = new LoggerDaemon().getWriter();

 out.println("Application starting...");
 // ...
 out.println("Warning: does not compute!");
 // ...
 }
 }

LoggerDaemon reads strings from its end of the pipe, the PipedReader named in. Log
gerDaemon also provides a method, getWriter(), which returns a PipedWriter that is
connected to its input stream. To begin sending messages, we create a new LoggerDae
mon and fetch the output stream. In order to read strings with the readLine() method,
LoggerDaemon wraps a BufferedReader around its PipedReader. For convenience, it
also presents its output pipe as a PrintWriter rather than a simple Writer.

One advantage of implementing LoggerDaemon with pipes is that we can log messages
as easily as we write text to a terminal or any other stream. In other words, we can use
all our normal tools and techniques, including printf(). Another advantage is that the
processing happens in another thread, so we can go about our business while any pro‐
cessing takes place.

Streams from Strings and Back
StringReader is another useful stream class; it essentially wraps stream functionality
around a String. Here’s how to use a StringReader:

 String data = "There once was a man from Nantucket...";
 StringReader sr = new StringReader(data);

 char T = (char)sr.read();
 char h = (char)sr.read();
 char e = (char)sr.read();

Note that you will still have to catch IOExceptions that are thrown by some of the
StringReader’s methods.

The StringReader class is useful when you want to read data from a String as if it were
coming from a stream, such as a file, pipe, or socket. Suppose you create a parser that
expects to read from a stream, but you want to provide an alternative method that also
parses a big string. You can easily add one using StringReader.

422 | Chapter 12: Input/Output Facilities

Turning things around, the StringWriter class lets us write to a character buffer via an
output stream. The internal buffer grows as necessary to accommodate the data. When
we are done, we can fetch the contents of the buffer as a String. In the following example,
we create a StringWriter and wrap it in a PrintWriter for convenience:

 StringWriter buffer = new StringWriter();
 PrintWriter out = new PrintWriter(buffer);

 out.println("A moose once bit my sister.");
 out.println("No, really!");

 String results = buffer.toString();

First, we print a few lines to the output stream to give it some data and then retrieve the
results as a string with the toString() method. Alternately, we could get the results as
a StringBuffer object using the getBuffer() method.

The StringWriter class is useful if you want to capture the output of something that
normally sends output to a stream, such as a file or the console. A PrintWriter wrapped
around a StringWriter is a viable alternative to using a StringBuffer to construct
large strings piece by piece.

The ByteArrayInputStream and ByteArrayOutputStream work with bytes in the same
way the previous examples worked with characters. You can write byte data to a Byte
ArrayOutputStream and retrieve it later with the toByteArray() method. Conversely,
you can construct a ByteArrayInputStream from a byte array as StringReader does
with a String. For example, if we want to see exactly what our DataOutputStream is
writing when we tell it to encode a particular value, we could capture it with a byte array
output stream:

 ByteArrayOutputStream bao = new ByteArrayOutputStream();
 DataOutputStream dao = new DataOutputStream(bao);
 dao.writeInt(16777216);
 dao.flush();

 byte [] bytes = bao.toByteArray();
 for(byte b : bytes)
 System.out.println(b); // 1, 0, 0, 0

Implementing a Filter Stream
Before we leave streams, let’s try making one of our own. We mentioned earlier that
specialized stream wrappers are built on top of the FilterInputStream and Filter
OutputStream classes. It’s quite easy to create our own subclass of FilterInput
Stream that can be wrapped around other streams to add new functionality.

The following example, rot13InputStream, performs a rot13 (rotate by 13 letters) op‐
eration on the bytes that it reads. rot13 is a trivial obfuscation algorithm that shifts
alphabetic characters to make them not quite human-readable (it simply passes over

Streams | 423

nonalphabetic characters without modifying them). rot13 is cute because it’s symmetric:
to “un-rot13” some text, you simply rot13 it again. Here’s our rot13InputStream class:

 public class rot13InputStream extends FilterInputStream
 {
 public rot13InputStream (InputStream i) {
 super(i);
 }

 public int read() throws IOException {
 return rot13(in.read());
 }

 // should override additional read() methods

 private int rot13 (int c) {
 if ((c >= 'A') && (c <= 'Z'))
 c=(((c-'A')+13)%26)+'A';
 if ((c >= 'a') && (c <= 'z'))
 c=(((c-'a')+13)%26)+'a';
 return c;
 }
 }

The FilterInputStream needs to be initialized with an InputStream; this is the stream
to be filtered. We provide an appropriate constructor for the rot13InputStream class
and invoke the parent constructor with a call to super(). FilterInputStream contains
a protected instance variable, in, in which it stores a reference to the specified Input
Stream, making it available to the rest of our class.

The primary feature of a FilterInputStream is that it delegates its input tasks to the
underlying InputStream. For instance, a call to FilterInputStream’s read() method
simply turns around and calls the read() method of the underlying InputStream to
fetch a byte. The filtering happens when we do our extra work on the data as it passes
through. In our example, the read() method fetches a byte from the underlying Input
Stream, in, and then performs the rot13 shift on the byte before returning it. The
rot13() method shifts alphabetic characters while simply passing over all other values,
including the end-of-stream value (-1). Our subclass is now a rot13 filter.

read() is the only InputStream method that FilterInputStream overrides. All other
normal functionality of an InputStream, such as skip() and available(), is unmodi‐
fied, so calls to these methods are answered by the underlying InputStream.

Strictly speaking, rot13InputStream works only on an ASCII byte stream because the
underlying algorithm is based on the Roman alphabet. A more generalized character-
scrambling algorithm would have to be based on FilterReader to handle 16-bit Uni‐
code classes correctly. (Anyone want to try rot32768?) We should also note that we have
not fully implemented our filter: we should also override the version of read() that

424 | Chapter 12: Input/Output Facilities

takes a byte array and range specifiers, perhaps delegating it to our own read. Unless
we do so, a reader using that method would get the raw stream.

File I/O
In this chapter, we’re going to talk about the Java file I/O API. To be more precise, we
are going to talk about two file APIs: first, there is the core java.io File I/O facility that
has been part of Java since the beginning. Then there is the “new” java.nio.file API
introduced in Java 7. In general the NIO packages, which we’ll cover in detail later and
which touch upon not only files but all types of network and channel I/O, were intro‐
duced to add advanced features that make Java more scaleable and higher performance.
However, in the case of file NIO, the new package is also just somewhat of a “do-over”
on the original API. In movie terms, you can think of the two APIs as the “classic” and
the “reboot” of the series. The new API completely duplicates the functionality of the
original, but because the core API is so fundamental (and in some cases simpler), it is
likely that many people will prefer to keep using it. We’ll start with the classic API
centering on java.io.File and later we’ll cover the new API, which centers on the
analogous java.nio.Path.

Working with files in Java is easy, but poses some conceptual problems. Real-world
filesystems can vary widely in architecture and implementation: think of the differences
between Mac, PC, and Unix systems when it comes to filenames. Java tries to mask some
of these differences and provide information to help an application tailor itself to the
local environment, but it leaves a lot of the details of file access implementation depen‐
dent. We’ll talk about techniques for dealing with this as we go.

Before we leave File I/O we’ll also show you some tools for the special case of application
“resource” files packaged with your app and loaded via the Java classpath.

The java.io.File Class
The java.io.File class encapsulates access to information about a file or directory. It
can be used to get attribute information about a file, list the entries in a directory, and
perform basic filesystem operations, such as removing a file or making a directory.
While the File object handles these “meta” operations, it doesn’t provide the API for
reading and writing file data; there are file streams for that purpose.

File constructors

You can create an instance of File from a String pathname:
 File fooFile = new File("/tmp/foo.txt");
 File barDir = new File("/tmp/bar");

You can also create a file with a relative path:

File I/O | 425

 File f = new File("foo");

In this case, Java works relative to the “current working directory” of the Java interpreter.
You can determine the current working directory by reading the user.dir property in
the System Properties list:

 System.getProperty("user.dir"); // e.g.,"/Users/pat"

An overloaded version of the File constructor lets you specify the directory path and
filename as separate String objects:

 File fooFile = new File("/tmp", "foo.txt");

With yet another variation, you can specify the directory with a File object and the
filename with a String:

 File tmpDir = new File("/tmp"); // File for directory /tmp
 File fooFile = new File (tmpDir, "foo.txt");

None of these File constructors actually creates a file or directory, and it is not an error
to create a File object for a nonexistent file. The File object is just a handle for a file
or directory whose properties you may wish to read, write, or test. For example, you can
use the exists() instance method to learn whether the file or directory exists.

Path localization

One issue with working with files in Java is that pathnames are expected to follow the
conventions of the local filesystem. Two differences are that the Windows filesystem
uses “roots” or drive letters (for example, C:) and a backslash (\) instead of the forward
slash (/) path separator that is used in other systems.

Java tries to compensate for the differences. For example, on Windows platforms, Java
accepts paths with either forward slashes or backslashes. (On others, however, it only
accepts forward slashes.)

Your best bet is to make sure you follow the filename conventions of the host filesystem.
If your application has a GUI that is opening and saving files at the user’s request, you
should be able to handle that functionality with the Swing JFileChooser class. This
class encapsulates a graphical file-selection dialog box. The methods of the JFileChoos
er take care of system-dependent filename features for you.

If your application needs to deal with files on its own behalf, however, things get a little
more complicated. The File class contains a few static variables to make this task
possible. File.separator defines a String that specifies the file separator on the local
host (e.g., / on Unix and Macintosh systems and \ on Windows systems); File.sepa
ratorChar provides the same information as a char.

You can use this system-dependent information in several ways. Probably the simplest
way to localize pathnames is to pick a convention that you use internally, such as the

426 | Chapter 12: Input/Output Facilities

forward slash (/), and do a String replace to substitute for the localized separator
character:

 // we'll use forward slash as our standard
 String path = "mail/2004/june/merle";
 path = path.replace('/', File.separatorChar);
 File mailbox = new File(path);

Alternatively, you could work with the components of a pathname and build the local
pathname when you need it:

 String [] path = { "mail", "2004", "june", "merle" };

 StringBuffer sb = new StringBuffer(path[0]);
 for (int i=1; i< path.length; i++)
 sb.append(File.separator + path[i]);
 File mailbox = new File(sb.toString());

One thing to remember is that Java interprets a literal backslash char‐
acter (\) in source code as an escape character when used in a String.
To get a backslash in a String, you have to use \\.

To grapple with the issue of filesystems with multiple “roots” (for example, C:\ on Win‐
dows), the File class provides the static method listRoots(), which returns an array
of File objects corresponding to the filesystem root directories. Again, in a GUI ap‐
plication, a graphical file chooser dialog shields you from this problem entirely.

File operations

Once we have a File object, we can use it to ask for information about and perform
standard operations on the file or directory it represents. A number of methods let us
ask questions about the File. For example, isFile() returns true if the File represents
a regular file, while isDirectory() returns true if it’s a directory. isAbsolute() indi‐
cates whether the File encapsulates an absolute path or relative path specification. An
absolute path is a system-dependent notion that means that the path doesn’t depend on
the application’s working directory or any concept of a working root or drive (e.g., in
Windows, it is a full path including the drive letter: c:\\Users\pat\foo.txt).

Components of the File pathname are available through the following methods: get
Name(), getPath(), getAbsolutePath(), and getParent(). getName() returns a
String for the filename without any directory information. If the File has an absolute
path specification, getAbsolutePath() returns that path. Otherwise, it returns the rel‐
ative path appended to the current working directory (attempting to make it an absolute
path). getParent() returns the parent directory of the file or directory.

File I/O | 427

The string returned by getPath() or getAbsolutePath() may not follow the same case
conventions as the underlying filesystem. You can retrieve the filesystem’s own or “can‐
onical” version of the file’s path by using the method getCanonicalPath(). In Windows,
for example, you can create a File object whose getAbsolutePath() is C:\Autoex‐
ec.bat but whose getCanonicalPath() is C:\AUTOEXEC.BAT; both actually point to
the same file. This is useful for comparing filenames that may have been supplied with
different case conventions or for showing them to the user.

You can get or set the modification time of a file or directory with lastModified() and
setLastModified() methods. The value is a long that is the number of milliseconds
since the epoch (Jan 1, 1970, 00:00:00 GMT). We can also get the size of the file in bytes
with length().

Here’s a fragment of code that prints some information about a file:
 File fooFile = new File("/tmp/boofa");

 String type = fooFile.isFile() ? "File " : "Directory ";
 String name = fooFile.getName();
 long len = fooFile.length();
 System.out.println(type + name + ", " + len + " bytes ");

If the File object corresponds to a directory, we can list the files in the directory with
the list() method or the listFiles() method:

 File tmpDir = new File("/tmp");
 String [] fileNames = tmpDir.list();
 File [] files = tmpDir.listFiles();

list() returns an array of String objects that contains filenames. listFiles() returns
an array of File objects. Note that in neither case are the files guaranteed to be in any
kind of order (alphabetical, for example). You can use the Collections API to sort strings
alphabetically like so:

 List list = Arrays.asList(sa);
 Collections.sort(list);

If the File refers to a nonexistent directory, we can create the directory with mkdir()
or mkdirs(). The mkdir() method creates at most a single directory level, so any in‐
tervening directories in the path must already exist. mkdirs() creates all directory levels
necessary to create the full path of the File specification. In either case, if the directory
cannot be created, the method returns false. Use renameTo() to rename a file or di‐
rectory and delete() to delete a file or directory.

Although we can create a directory using the File object, this isn’t the most common
way to create a file; that’s normally done implicitly when we intend to write data to it
with a FileOutputStream or FileWriter, as we’ll discuss in a moment. The exception
is the createNewFile() method, which can be used to attempt to create a new zero-
length file at the location pointed to by the File object. The useful thing about this

428 | Chapter 12: Input/Output Facilities

method is that the operation is guaranteed to be “atomic” with respect to all other file
creation in the filesystem. createNewFile() returns a Boolean value that tells you
whether the file was created or not. This is sometimes used as a primitive locking
feature—whoever creates the file first “wins.” (The NIO package supports true file locks,
as we’ll see later.) This is useful in combination deleteOnExit(), which flags the file to
be automatically removed when the Java VM exits. This combination allows you to
guard resources or make an application that can only be run in a single instance at a
time. Another file creation method that is related to the File class itself is the static
method createTempFile(), which creates a file in a specified location using an auto‐
matically generated unique name. This, too, is useful in combination with deleteOnEx
it().

The toURL() method converts a file path to a file: URL object. URLs are an abstraction
that allows you to point to any kind of object anywhere on the Net. Converting a File
reference to a URL may be useful for consistency with more general utilities that deal
with URLs. See Chapter 14 for details. File URLs also come into greater use with the
NIO File API where they can be used to reference new types of filesystems that are
implemented directly in Java code.

Table 12-1 summarizes the methods provided by the File class.

Table 12-1. File methods
Method Return type Description

canExecute() Boolean Is the file executable?

canRead() Boolean Is the file (or directory) readable?

canWrite() Boolean Is the file (or directory) writable?

createNewFile() Boolean Creates a new file.

createTempFile

(String pfx,
Stringsfx)

File Static method to create a new file, with the specified prefix and
suffix, in the default temp file directory.

delete() Boolean Deletes the file (or directory).

deleteOnExit() Void When it exits, Java runtime system deletes the file.

exists() Boolean Does the file (or directory) exist?

getAbsolutePath() String Returns the absolute path of the file (or directory).

getCanonicalPath() String Returns the absolute, case-correct path of the file (or directory).

getFreeSpace() long Get the number of bytes of unallocated space on the partition
holding this path or 0 if the path is invalid.

getName() String Returns the name of the file (or directory).

getParent() String Returns the name of the parent directory of the file (or directory).

getPath() String Returns the path of the file (or directory). (Not to be confused
with toPath()).

File I/O | 429

Method Return type Description

getTotalSpace() long Get the size of the partition that contains the file path in bytes
or 0 if the path is invalid.

getUseableSpace() long Get the number of bytes of user-accessible unallocated space on
the partition holding this path or 0 if the path is invalid. This
method attempts to take into account user write permissions.

isAbsolute() boolean Is the filename (or directory name) absolute?

isDirectory() boolean Is the item a directory?

isFile() boolean Is the item a file?

isHidden() boolean Is the item hidden? (System-dependent.)

lastModified() long Returns the last modification time of the file (or directory).

length() long Returns the length of the file.

list() String [] Returns a list of files in the directory.

listFiles() File[] Returns the contents of the directory as an array of File objects.

listRoots() File[] Returns array of root filesystems if any (e.g., C:/, D:/).

mkdir() boolean Creates the directory.

mkdirs() boolean Creates all directories in the path.

renameTo(File dest) boolean Renames the file (or directory).

setExecutable() boolean Sets execute permissions for the file.

setLastModified() boolean Sets the last-modified time of the file (or directory).

setReadable() boolean Sets read permissions for the file.

setReadOnly() boolean Sets the file to read-only status.

setWriteable() boolean Sets the write permissions for the file.

toPath() java.nio.file.Path Convert the File to an NIO File Path (see the NIO File API). (Not
to be confused with getPath().)

toURL() java.net.URL Generates a URL object for the file (or directory).

File Streams
OK, you’re probably sick of hearing about files already and we haven’t even written a
byte yet! Well, now the fun begins. Java provides two fundamental streams for reading
from and writing to files: FileInputStream and FileOutputStream. These streams
provide the basic byte-oriented InputStream and OutputStream functionality that is
applied to reading and writing files. They can be combined with the filter streams de‐
scribed earlier to work with files in the same way as other stream communications.

You can create a FileInputStream from a String pathname or a File object:
 FileInputStream in = new FileInputStream("/etc/passwd");

430 | Chapter 12: Input/Output Facilities

When you create a FileInputStream, the Java runtime system attempts to open the
specified file. Thus, the FileInputStream constructors can throw a FileNotFoundEx
ception if the specified file doesn’t exist or an IOException if some other I/O error
occurs. You must catch these exceptions in your code. Wherever possible, it’s a good
idea to get in the habit of using the new Java 7 try-with-resources construct to auto‐
matically close files for you when you are finished with them:

try (FileInputStream fin = new FileInputStream("/etc/passwd")) {

 // Fin will be closed automatically if needed upon exiting the try clause.
}

When the stream is first created, its available() method and the File object’s length()
method should return the same value.

To read characters from a file as a Reader, you can wrap an InputStreamReader around
a FileInputStream. If you want to use the default character-encoding scheme for the
platform, you can use the FileReader class instead, which is provided as a convenience.
FileReader is just a FileInputStream wrapped in an InputStreamReader with some
defaults. For some crazy reason, you can’t specify a character encoding for the FileR
eader to use, so it’s probably best to ignore it and use InputStreamReader with FileIn
putStream.

The following class, ListIt , is a small utility that sends the contents of a file or directory
to standard output:

 //file: ListIt.java
 import java.io.*;

 class ListIt {
 public static void main (String args[]) throws Exception {
 File file = new File(args[0]);

 if (!file.exists() || !file.canRead()) {
 System.out.println("Can't read " + file);
 return;
 }

 if (file.isDirectory()) {
 String [] files = file.list();
 for (String file : files)
 System.out.println(file);
 } else
 try {
 Reader ir = new InputStreamReader(
 new FileInputStream(file));

 BufferedReader in = new BufferedReader(ir);
 String line;
 while ((line = in.readLine()) != null)

File I/O | 431

 System.out.println(line);
 }
 catch (FileNotFoundException e) {
 System.out.println("File Disappeared");
 }
 }
 }

ListIt constructs a File object from its first command-line argument and tests the
File to see whether it exists and is readable. If the File is a directory, ListIt outputs
the names of the files in the directory. Otherwise, ListIt reads and outputs the file, line
by line.

For writing files, you can create a FileOutputStream from a String pathname or a File
object. Unlike FileInputStream, however, the FileOutputStream constructors don’t
throw a FileNotFoundException. If the specified file doesn’t exist, the FileOutput
Stream creates the file. The FileOutputStream constructors can throw an IOExcep
tion if some other I/O error occurs, so you still need to handle this exception.

If the specified file does exist, the FileOutputStream opens it for writing. When you
subsequently call the write() method, the new data overwrites the current contents of
the file. If you need to append data to an existing file, you can use a form of the con‐
structor that accepts a Boolean append flag:

 FileInputStream fooOut =
 new FileOutputStream(fooFile); // overwrite fooFile
 FileInputStream pwdOut =
 new FileOutputStream("/etc/passwd", true); // append

Another way to append data to files is with RandomAccessFile, which we’ll discuss
shortly.

Just as with reading, to write characters (instead of bytes) to a file, you can wrap an
OutputStreamWriter around a FileOutputStream. If you want to use the default
character-encoding scheme, you can use the FileWriter class instead, which is pro‐
vided as a convenience.

The following example reads a line of data from standard input and writes it to the
file /tmp/foo.txt:

 String s = new BufferedReader(
 new InputStreamReader(System.in)).readLine();
 File out = new File("/tmp/foo.txt");
 FileWriter fw = new FileWriter (out);
 PrintWriter pw = new PrintWriter(fw)
 pw.println(s);pw.close();

Notice how we wrapped the FileWriter in a PrintWriter to facilitate writing the data.
Also, to be a good filesystem citizen, we called the close() method when we’re done

432 | Chapter 12: Input/Output Facilities

with the FileWriter. Here, closing the PrintWriter closes the underlying Writer for
us. We also could have used try-with-resources here.

RandomAccessFile
The java.io.RandomAccessFile class provides the ability to read and write data at a
specified location in a file. RandomAccessFile implements both the DataInput and
DataOutput interfaces, so you can use it to read and write strings and primitive types
at locations in the file just as if it were a DataInputStream and DataOutputStream.
However, because the class provides random, rather than sequential, access to file data,
it’s not a subclass of either InputStream or OutputStream.

You can create a RandomAccessFile from a String pathname or a File object. The
constructor also takes a second String argument that specifies the mode of the file. Use
the string r for a read-only file or rw for a read/write file.

 try {
 RandomAccessFile users = new RandomAccessFile("Users", "rw")
 } catch (IOException e) { ... }

When you create a RandomAccessFile in read-only mode, Java tries to open the specified
file. If the file doesn’t exist, RandomAccessFile throws an IOException. If, however,
you’re creating a RandomAccessFile in read/write mode, the object creates the file if it
doesn’t exist. The constructor can still throw an IOException if another I/O error occurs,
so you still need to handle this exception.

After you have created a RandomAccessFile, call any of the normal reading and writing
methods, just as you would with a DataInputStream or DataOutputStream. If you try
to write to a read-only file, the write method throws an IOException.

What makes a RandomAccessFile special is the seek() method. This method takes a
long value and uses it to set the byte offset location for reading and writing in the file.
You can use the getFilePointer() method to get the current location. If you need to
append data to the end of the file, use length() to determine that location, then seek()
to it. You can write or seek beyond the end of a file, but you can’t read beyond the end
of a file. The read() method throws an EOFException if you try to do this.

Here’s an example of writing data for a simplistic database:
 users.seek(userNum * RECORDSIZE);
 users.writeUTF(userName);
 users.writeInt(userID);
 ...

In this naive example, we assume that the String length for userName, along with any
data that comes after it, fits within the specified record size.

File I/O | 433

Resource Paths
A big part of packaging and deploying an application is dealing with all of the resource
files that must go with it, such as configuration files, graphics, and application data. Java
provides several ways to access these resources. One way is to simply open files and read
the bytes. Another is to construct a URL pointing to a well-known location in the file‐
system or over the network. (We’ll discuss working with URLs in detail in Chapter 14.)
The problem with these methods is that they generally rely on knowledge of the appli‐
cation’s location and packaging, which could change or break if it is moved. What is
really needed is a universal way to access resources associated with our application,
regardless of how it’s installed. The Class class’s getResource() method and the Java
classpath provides just this. For example:

 URL resource = MyApplication.class.getResource("/config/config.xml");

Instead of constructing a File reference to an absolute file path, or relying on composing
information about an install directory, the getResource() method provides a standard
way to get resources relative to the classpath of the application. A resource can be located
either relative to a given class file or to the overall system classpath. getResource() uses
the classloader that loads the application’s class files to load the data. This means that
no matter where the application classes reside—a web server, the local filesystem, or
even inside a JAR file or other archive—we can load resources packaged with those
classes consistently.

Although we haven’t discussed URLs yet, we can tell you that many APIs for loading
data (for example, images) accept a URL directly. If you’re reading the data yourself,
you can ask the URL for an InputStream with the URL openStream() method and treat
it like any other stream. A convenience method called getResourceAsStream() skips
this step for you and returns an InputStream directly.

getResource() takes as an argument a slash-separated resource path for the resource
and returns a URL. There are two kinds of resource paths: absolute and relative. An
absolute path begins with a slash (for example, /config/config.xml). In this case, the
search for the object begins at the “top” of the classpath. By the “top” of the classpath,
we mean that Java looks within each element of the classpath (directory or JAR file) for
the specified file. Given /config/config.xml, it would check each directory or JAR file in
the path for the file config/config.xml. In this case, the class on which getResource() is
called doesn’t matter as long as it’s from a class loader that has the resource file in its
classpath. For example:

 URL data = AnyClass.getResource("/config/config.xml");

On the other hand, a relative URL does not begin with a slash (for example, myda‐
ta.txt). In this case, the search begins at the location of the class file on which getRe
source() is called. In other words, the path is relative to the package of the target class
file. For example, if the class file foo.bar.MyClass is located at the path foo/bar/

434 | Chapter 12: Input/Output Facilities

MyClass.class in some directory or JAR of the classpath and the file mydata.txt is in the
same directory (foo/bar/mydata.txt), we can request the file via MyClass with:

 URL data = MyClass.getResource("mydata.txt");

In this case, the class and file come from the same logical directory. We say logical
because the search is not limited to the classpath element from which the class was
loaded. Instead, the same relative path is searched in each element of the classpath—
just as with an absolute path—until it is found. Although we’d expect the file myda‐
ta.txt to be packaged physically with MyClass.class, it might be found in another JAR
file or directory at the same relative and corresponding location.

For example, here’s an application that looks up some resources:
 package mypackage;
 import java.net.URL;
 import java.io.IOException;

 public class FindResources {
 public static void main(String [] args) throws IOException {
 // absolute from the classpath
 URL url = FindResources.class.getResource("/mypackage/foo.txt");
 // relative to the class location
 url = FindResources.class.getResource("foo.txt");
 // another relative document
 url = FindResources.class.getResource("docs/bar.txt");
 }
 }

The FindResources class belongs to the mypackage package, so its class file will live in
a mypackage directory somewhere on the classpath. FindResources locates the docu‐
ment foo.txt using an absolute and then a relative URL. At the end, FindResources uses
a relative path to reach a document in the mypackage/docs directory. In each case, we
refer to the FindResources’s Class object using the static .class notation. Alternatively,
if we had an instance of the object, we could use its getClass() method to reach the
Class object.

Again, getResource() returns a URL for whatever type of object you reference. This
could be a text file or properties file that you want to read as a stream, or it might be an
image or sound file or some other object. You can open a stream to the URL to parse
the data yourself or hand the URL over to an API that deals with URLs. We discuss
URLs in depth in Chapter 14. We should also emphasize that loading resources in this
way completely shields your application from the details of how it is packaged or de‐
ployed. You may start with your application in loose files and then package it into a JAR
file and the resources will still be loaded. Java applets (discussed in a later chapter) may
even load files in this way over the network because the applet class loader treats the
server as part of its classpath.

File I/O | 435

The NIO File API
We are now going to turn our attention from the original, “classic” Java File API to the
new, NIO, File API introduced with Java 7. As we mentioned earlier, the NIO File API
can be thought of as either a replacement for or a complement to the classic API. In‐
cluded in the NIO package, the new API is nominally part of an effort to move Java
toward a higher performance and more flexible style of I/O supporting selectable and
asynchronously interruptable channels. However, in the context of working with files,
the new API’s strength is that it provides a fuller abstraction of the filesystem in Java.

In addition to better support for existing, real world, filesystem types—including for
the first time the ability to copy and move files, manage links, and get detailed file
attributes like owners and permissions—the new File API allows entirely new types of
filesystems to be implemented directly in Java. The best example of this is the new ZIP
filesystem provider that makes it possible to “mount” a ZIP archive file as a filesystem
and work with the files within it directly using the standard APIs, just like any other
filesystem. Additionally, the NIO File package provides some utilities that would have
saved Java developers a lot of repeated code over the years, including directory tree
change monitoring, filesystem traversal (a visitor pattern), filename “globbing,” and
convenience methods to read entire files directly into memory.

We’ll cover the basic File API in this section and return to the NIO API again at the end
of the chapter when we cover the full details of NIO buffers and channels. In particular,
we’ll talk about ByteChannels and FileChannel, which you can think of as alternate,
buffer-oriented streams for reading and writing files and other types of data.

FileSystem and Path
The main players in the java.nio.file package are: the FileSystem, which represents
an underlying storage mechanism and serves as a factory for Path objects; the Path,
which represents a file or directory within the filesystem; and the Files utility, which
contains a rich set of static methods for manipulating Path objects to perform all of the
basic file operations analogous to the classic API.

The FileSystems (plural) class is our starting point. It is a factory for a FileSystem
object:

// The default host computer filesystem
FileSystem fs = FileSystems.getDefault();

// A custom filesystem
URI zipURI = URI.create("jar:file:/Users/pat/tmp/MyArchive.zip");
FileSystem zipfs = FileSystems.newFileSystem(zipURI, env));

As shown in this snippet, often we’ll simply ask for the default filesystem to manipulate
files in the host computer’s environment, as with the classic API. But the FileSys

436 | Chapter 12: Input/Output Facilities

tems class can also construct a FileSystem by taking a URI (a special identifier) that
references a custom filesystem type. We’ll show an example of working with the ZIP
filesystem provider later in this chapter when we discuss data compression.

FileSystem implements Closeable and when a FileSystem is closed, all open file
channels and other streaming objects associated with it are closed as well. Attempting
to read or write to those channels will throw an exception at that point. Note that the
default filesystem (associated with the host computer) cannot be closed.

Once we have a FileSystem, we can use it as a factory for Path objects that represent
files or directories. A Path can be constructed using a string representation just like the
classic File, and subsequently used with methods of the Files utility to create, read,
write, or delete the item.

Path fooPath = fs.getPath("/tmp/foo.txt");
OutputStream out = Files.newOutputStream(fooPath);

This example opens an OutputStream to write to the file foo.txt. By default, if the file
does not exist, it will be created and if it does exist, it will be truncated (set to zero length)
before new data is written—but you can change these results using options. We’ll talk
more about Files methods in the next section.

The Path object implements the java.lang.Iterable interface, which can be used to
iterate through its literal path components (e.g., the slash separated “tmp” and “foo.txt”
in the preceding snippet). Although if you want to traverse the path to find other files
or directories, you might be more interested in the DirectoryStream and FileVisi
tor that we’ll discuss later. Path also implements the java.nio.file.Watchable inter‐
face, which allows it to be monitored for changes. We’ll also discuss watching file trees
for changes in an upcoming section.

Path has convenience methods for resolving paths relative to a file or directory.
Path patPath = fs.getPath("/User/pat/");

Path patTmp = patPath.resolve("tmp"); // "/User/pat/tmp"

// Same as above, using a Path
Path tmpPath = fs.getPath("tmp");
Path patTmp = patPath.resolve(tmpPath); // "/User/pat/tmp"

// Resolving a given absolute path against any path just yields given path
Path absPath = patPath.resolve("/tmp"); // "/tmp"

// Resolve sibling to Pat (same parent)
Path danPath = patPath.resolveSibling("dan"); // "/Users/dan"

In this snippet, we’ve shown the Pathresolve() and resolveSibling() methods used
to find files or directories relative to a given Path object. The resolve() method is
generally used to append a relative path to an existing Path representing a directory. If

The NIO File API | 437

the argument provided to the resolve() method is an absolute path, it will just yield
the absolute path (it acts kind of like the Unix or DOS “cd” command). The resolve
Sibling() method works the same way, but it is relative to the parent of the target
Path; this method is useful for describing the target of a move() operation.

Path to classic file and back

To bridge the old and new APIs, corresponding toPath() and toFile() methods have
been provided in java.io.File and java.nio.file.Path, respectively, to convert to
the other form. Of course, the only types of Paths that can be produced from File are
paths representing files and directories in the default host filesystem.

Path tmpPath = fs.getPath("/tmp");
File file = tmpPath.toFile();
File tmpFile = new File("/tmp");
Path path = tmpFile.toPath();

NIO File Operations
Once we have a Path, we can operate on it with static methods of the Files utility to
create the path as a file or directory, read and write to it, and interrogate and set its
properties. We’ll list the bulk of them and then discuss some of the more important ones
as we proceed.

The following table summarizes these methods of the java.nio.file.Files class. As
you might expect, because the Files class handles all types of file operations, it contains
a large number of methods. To make the table more readable, we have elided overloaded
forms of the same method (those taking different kinds of arguments) and grouped
corresponding and related types of methods together.

Table 12-2. NIO Files methods
Method Return type Description

copy() long or Path Copy a stream to a file path, file path to
stream, or path to path. Returns the number of
bytes copied or the target Path. A target file
may optionally be replaced if it exists (the
default is to fail if the target exists). Copying a
directory results in an empty directory at the
target (the contents are not copied). Copying a
symbolic link copies the linked files data
(producing a regular file copy).

createDirectory(), createDirecto
ries()

Path Create a single directory or all directories in a
specified path. createDirectory()
throws an exception if the directory already
exists, whereas createDirectories()
will ignore existing directories and only create
as needed.

438 | Chapter 12: Input/Output Facilities

Method Return type Description

createFile() Path Creates an empty file. The operation is atomic
and will only succeed if the file does not exist.
(This property can be used to create flag files to
guard resources, etc.)

createTempDirectory(), createTemp
File()

Path Create a temporary, guaranteed, uniquely
named directory or file with the specified
prefix. Optionally place it in the system default
temp directory.

delete(), deleteIfExists() void Delete a file or an empty directory.
deleteIfExists() will not throw an
exception if the file does not exist.

exists(), notExists() boolean Determine whether the file exists (notEx
ists() simply returns the opposite).
Optionally specify whether links should be
followed (by default they are).

exists(), isDirectory(), isExecuta
ble(), isHidden(), isReadable(), isRe
gularFile(), isWriteable()

boolean Tests basic file features: whether the path
exists, is a directory, and other basic attributes.

createLink(), createSymbolicLink(),
isSymbolicLink(),
readSymbolicLink(), createLink()

boolean or Path Create a hard or symbolic link, test to see if a
file is a symbolic link, or read the target file
pointed to by the symbolic link. Symbolic links
are files that reference other files. Regular
(“hard”) links are low-level mirrors of a file
where two filenames point to the same
underlying data. If you don’t know which to
use, use a symbolic link.

getAttribute(), setAttribute(), get
FileAttributeView(), readAttri
butes()

Object, Map, or
FileAttribute

View

Get or set filesystem-specific file attributes such
as access and update times, detailed
permissions, and owner information using
implementation-specific names.

getFileStore() FileStore Get a FileStore object that represents the
device, volume, or other type of partition of the
filesystem on which the path resides.

getLastModifiedTime(), setLastModi
fiedTime()

FileTime or
Path

Get or set the last modified time of a file or
directory.

getOwner(), setOwner() UserPrincipal Get or set a UserPrincipal object
representing the owner of the file. Use to
String() or getName() to get a string
representation of the user name.

getPosixFilePermissions(), setPosix
FilePermissions()

Set or Path Get or set the full POSIX user-group-other style
read and write permissions for the path as a
Set of PosixFilePermission enum
values.

The NIO File API | 439

Method Return type Description

isSameFile() boolean Test to see whether the two paths reference
the same file (which may potentially be true
even if the paths are not identical).

move() Path Move a file or directory by renaming or copying
it, optionally specifying whether to replace any
existing target. Rename will be used unless a
copy is required to move a file across file stores
or filesystems. Directories can be moved using
this method only if the simple rename is
possible or if the directory is empty. If a
directory move requires copying files across file
stores or filesystems, the method throws an
IOException. (In this case, you must copy
the files yourself. See walkFileTree().)

newBufferedReader(), newBuffered
Writer()

BufferedRead

er or Buffered
Writer

Open a file for reading via a BufferedRead
er, or create and open a file for writing via a
BufferedWriter. In both cases, a
character encoding is specified.

newByteChannel() SeekableByte

Channel

Create a new file or open an existing file as a
seekable byte channel. (See the full discussion
of NIO later in this chapter.) Consider using
FileChannelopen() as an alternative.

newDirectoryStream() Directory

Stream

Return a DirectoryStream for iterating
over a directory hierarchy. Optionally, supply a
glob pattern or filter object to match files.

newInputStream(), newOutputStream() InputStream or
OutputStream

Open a file for reading via an InputStream
or create and open a file for writing via an Ou
putStream. Optionally, specify file
truncation for the output stream; the default is
to create a truncate on write.

probeContentType() String Returns the MIME type of the file if it can be
determined by installed FileTypeDetec
tor services or null if unknown.

readAllBytes(), readAllLines() byte[] or
List<String>

Read all data from the file as a byte [] or all
characters as a list of strings using a specified
character encoding.

size() long Get the size in bytes of the file at the specified
path.

walkFileTree() Path Apply a FileVisitor to the specified
directory tree, optionally specifying whether to
follow links and a maximum depths of
traversal.

440 | Chapter 12: Input/Output Facilities

Method Return type Description

write() Path Write an array of bytes or a collection of strings
(with a specified character encoding) to the file
at the specified path and close the file,
optionally specifying append and truncation
behavior. The default is to truncate and write
the data.

With the preceding methods, we can fetch input or output streams or buffered readers
and writers to a given file. We can also create paths as files and dirctories and iterate
through file hierarchies. We’ll discuss directory operations in the next section.

As a reminder, the resolve() and resolveSibling() methods of Path are useful for
constructing targets for the copy() and move() operations.

// Move the file /tmp/foo.txt to /tmp/bar.txt
Path foo = fs.getPath("/tmp/foo.txt");
Files.move(foo, foo.resolveSibling("bar.txt"));

For quickly reading and writing the contents of files without streaming, we can use the
read all and write methods that move byte arrays or strings in and out of files in a
single operation. These are very convenient for files that easily fit into memory.

// Read and write collection of String (e.g. lines of text)
Charset asciiCharset = Charset.forName("US-ASCII");
List<String> csvData = Files.readAllLines(csvPath, asciiCharset);
Files.write(newCSVPath, csvData, asciiCharset);

// Read and write bytes
byte [] data = Files.readAllBytes(dataPath);
Files.write(newDataPath, data);

Directory Operations
In addition to basic directory creation and manipulation methods of the Files class,
there are methods for listing the files within a given directory and traversing all files
and directories in a directory tree. To list the files in a single directory, we can use one
of the newDirectoryStream() methods, which returns an iterable DirectoryStream.

// Print the files and directories in /tmp
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"))) {

 for (Path path : paths) { System.out.println(path); }
}

The snippet lists the entries in “/tmp,” iterating over the directory stream to print the
results. Note that we open the DirectoryStream within a try-with-resources clause so
that it is automatically closed for us. A DirectoryStream is implemented as a kind of
one-way iterable that is analogous to a stream, and it must be closed to free up associated

The NIO File API | 441

resources. The order in which the entries are returned is not defined by the API and
you may need to store and sort them if ordering is required.

Another form of newDirectoryStream() takes a glob pattern to limit the files matched
in the listing:

// Only files in /tmp matching "*.txt" (globbing)
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"), "*.txt")) {
 ...

File globbing filters filenames using the familiar “*” and a few other patterns to specify
matching names. Table 12-3 provides some additional examples of file globbing
patterns.

Table 12-3. File globbing pattern examples
Pattern Example

*.txt Filenames ending in “.txt”

*.{java,class} Filenames ending in “java” or “class”

[a,b,c]* Filenames starting with “a”, “b”, or “c”

[0-9]* Filenames starting with the digits 0 through 9

[!0-9]* Filenames starting with any character except 0 through 9

pass?.dat Filenames starting with “pass” plus any character plus “.dat” (e.g., pass1.dat, passN.dat)

If globbing patterns are not sufficient, we can provide our own stream filter by imple‐
menting the DirectoryStream.Filter interface. The following snippet is the proce‐
dural (code) version of the “*.txt” glob pattern; matching filenames ending with “.txt”.
We’ve implemented the filter as an anonymous inner class here because it’s short:

// Same as above using our own (anonymous) filter implementation
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"),
 new DirectoryStream.Filter<Path>() {
 @Override
 public boolean accept(Path entry) throws IOException {
 return entry.toString().endsWith(".txt");
 }
})) {
 ...

Finally, if we need to iterate through a whole directory hierarchy instead of just a single
directory, we can use a FileVisitor. The FileswalkFileTree() method takes a starting
path and performs a depth-first traversal of the file hierarchy, giving the provided
FileVisitor a chance to “visit” each path element in the tree. The following short
snippet prints all file and directory names under the /Users/pat path:

// Visit all of the files in a directory tree
Files.walkFileTree(fs.getPath("/Users/pat"), new SimpleFileVisitor<Path>() {

442 | Chapter 12: Input/Output Facilities

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 {
 System.out.println("path = " + file);
 return FileVisitResult.CONTINUE;
 }
});

For each entry in the file tree, our visitor’s visitFile() method is invoked with the
Path element and attributes as arguments. The visitor can perform any action it likes
in relation to the file and then indicate whether or not the traversal should continue by
returning one of a set of enumerated result types: FileVisitResultCONTINUE or TERMI
NATE. Here we have subclassed the SimpleFileVisitor, which is a convenience class
that implements the methods of the FileVisitor interface for us with no-op (empty)
bodies, allowing us to override only those of interest. Other methods available include
visitFileFailed(), which is called if a file or directory cannot be visited (e.g., due to
permissions), and the pair preVisitDirectory() and postVisitDirectory(), which
can be used to perform actions before and after a new directory is visited. The preVi
sitDirectory() has additional usefulness in that it is allowed to return the value
SKIP_SUBTREE to continue the traversal without descending into the target path and
SKIP_SIBLINGS value, which indicates that traversal should continue, skipping the re‐
maining entries at the same level as the target path.

As you can see, the file listing and traversal methods of the NIO File package are much
more sophisticated than those of the classic java.io API and are a welcome addition.

Watching Paths
One of the nicest features of the NIO File API is the WatchService, which can monitor
a Path for changes to any file or directory in the hierarchy. We can choose to receive
events when files or directories are added, modified, or deleted. The following snippet
watches for changes under the folder /Users/pat:

Path watchPath = fs.getPath("/Users/pat");
WatchService watchService = fs.newWatchService();
watchPath.register(watchService, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

while(true)
{
 WatchKey changeKey = watchService.take();
 List<WatchEvent<?>> watchEvents = changeKey.pollEvents();
 for (WatchEvent<?> watchEvent : watchEvents)
 {
 // Ours are all Path type events:
 WatchEvent<Path> pathEvent = (WatchEvent<Path>)watchEvent;

 Path path = pathEvent.context();
 WatchEvent.Kind<Path> eventKind = pathEvent.kind();

The NIO File API | 443

 System.out.println(eventKind + " for path: " + path);
 }

 changeKey.reset(); // Important!
}

We construct a WatchService from a FileSystem using the newWatchService() call.
Thereafter, we can register a Watchable object with the service (currently, Path is the
only type of Watchable) and poll it for events. As shown, in actuality the API is the other
way around and we call the watchable object’s register() method, passing it the watch
service and a variable length argument list of enumerated values representing the event
types of interest: ENTRY_CREATE, ENTRY_MODIFY, or ENTRY_DELETE. One additonal type,
OVERFLOW, can be registered in order to get events that indicate when the host imple‐
mentation has been too slow to process all changes and some changes may have been
lost.

After we are set up, we can poll for changes using the watch service take() method,
which returns a WatchKey object. The take() method blocks until an event occurs;
another form, poll(), is nonblocking. When we have a WatchKey containing events, we
can retrieve them with the pollEvents() method. The API is, again, a bit awkward here
as WatchEvent is a generic type parameterized on the kind of Watchable object. In our
case, the only types possible are Path type events and so we cast as needed. The type of
event (create, modify, delete) is indicated by the WatchEventkind() method and the
changed path is indicated by the context() method. Finally, it’s important that we call
reset() on the WatchKey object in order to clear the events and be able to receive further
updates.

Performance of the WatchService depends greatly on implementation. On many sys‐
tems, filesystem monitoring is built into the operating system and we can get change
events almost instantly. But in many cases, Java may fall back on its generic, background
thread-based implementation of the watch service, which is very slow to detect changes.
At the time of this writing, for example, Java 7 on Mac OS X does not take advantage of
the OS-level file monitoring and instead uses the slow, generic polling service.

Serialization
Using a DataOutputStream, you could write an application that saves the data content
of your objects one at a time as simple types. However, Java provides an even more
powerful mechanism called object serialization that does almost all the work for you.
In its simplest form, object serialization is an automatic way to save and load the state
of an object. However, object serialization has greater depths that we cannot plumb
within the scope of this book, including complete control over the serialization process
and interesting twists such as class versioning.

444 | Chapter 12: Input/Output Facilities

Basically, an instance of any class that implements the Serializable interface can be
saved to and restored from a stream. The stream subclasses, ObjectInputStream and
ObjectOutputStream, are used to serialize primitive types and objects. Subclasses of
Serializable classes are also serializable. The default serialization mechanism saves
the value of all of the object’s fields (public and private), except those that are static and
those marked transient.

One of the most important (and tricky) things about serialization is that when an object
is serialized, any object references it contains are also serialized. Serialization can capture
entire “graphs” of interconnected objects and put them back together on the receiving
end (we’ll demonstrate this in an upcoming example). The implication is that any object
we serialize must contain only references to other Serializable objects. We can prune
the tree and limit the extent of what is serialized by marking nonserializable variables
as transient or overriding the default serialization mechanisms. The transient modi‐
fier can be applied to any instance variable to indicate that its contents are not useful
outside of the current context and should not be saved.

In the following example, we create a Hashtable and write it to a disk file called
hash.ser. The Hashtable object is already serializable because it implements the Seri
alizable interface.

 import java.io.*;
 import java.util.*;

 public class Save {
 public static void main(String[] args) {
 Hashtable hash = new Hashtable();
 hash.put("string", "Gabriel Garcia Marquez");
 hash.put("int", new Integer(26));
 hash.put("double", new Double(Math.PI));

 try {
 FileOutputStream fileOut = new FileOutputStream("hash.ser");
 ObjectOutputStream out = new ObjectOutputStream(fileOut);
 out.writeObject(hash);
 out.close();
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
 }

First, we construct a Hashtable with a few elements in it. Then, in the lines of code
inside the try block, we write the Hashtable to a file called hash.ser, using the write
Object() method of ObjectOutputStream. The ObjectOutputStream class is a lot
like the DataOutputStream class, except that it includes the powerful writeOb
ject()method.

Serialization | 445

The Hashtable that we created has internal references to the items it contains. Thus,
these components are automatically serialized along with the Hashtable. We’ll see this
in the next example when we deserialize the Hashtable.

 import java.io.*;
 import java.util.*;

 public class Load {
 public static void main(String[] args) {
 try {
 FileInputStream fileIn = new FileInputStream("hash.ser");
 ObjectInputStream in = new ObjectInputStream(fileIn);
 Hashtable hash = (Hashtable)in.readObject();
 System.out.println(hash.toString());
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
 }

In this example, we read the Hashtable from the hash.ser file, using the readOb
ject() method of ObjectInputStream. The ObjectInputStream class is a lot like Da
taInputStream, except that it includes the readObject() method. The return type of
readObject() is Object, so we need to cast it to a Hashtable. Finally, we print the
contents of the Hashtable using its toString() method.

Initialization with readObject()
Often, simple deserialization alone is not enough to reconstruct the full state of an object.
For example, the object may have had transient fields representing state that could not
be serialized, such as network connections, event registration, or decoded image data.
Objects have an opportunity to do their own setup after deserialization by implementing
a special method named readObject().

Not to be confused with the readObject() method of the ObjectInputStream, this
method is implemented by the serializable object itself. To be recognized and used, the
readObject() method must have a specific signature, and it must be private. The fol‐
lowing snippet is taken from an animated JavaBean that we’ll talk about in Chapter 22:

 private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException
 {
 s.defaultReadObject();
 initialize();
 if (isRunning)
 start();
 }

446 | Chapter 12: Input/Output Facilities

When the readObject() method with this signature exists in an object, it is called during
the deserialization process. The argument to the method is the ObjectInputStream
doing the object construction. We delegate to its defaultReadObject() method to do
the normal deserialization from the stream and then do our custom setup. In this case,
we call one of our methods named initialize() and, depending on our state, a method
called start().

Using a custom implementation of readObject() and a corresponding writeOb
ject() method, we could take complete control of the serialized form of the object by
reading and writing to the stream using lower-level write operations (bytes, strings, etc.)
instead of delegating to the default implementation as we did before.

We’ll talk a little more about serialization in Chapter 22 when we discuss JavaBeans.

SerialVersionUID
Java object serialization was designed to accommodate certain kinds of compatible class
changes or evolution in the structure of classes. For example, changing the methods of
a class does not necessarily mean that its serialized representation must change because
only the data of variables is stored. Nor would simply adding a new field to a class
necessarily prohibit us from loading an old serialized version of the class. We could
simply allow the new variable to take its default value. By default, however, Java is very
picky and errs on the side of caution. If you make any kind of change to the structure
of your class, by default you’ll get an InvalidClassException when trying to read
previously serialized forms of the class.

Java detects these versions by performing a hash function on the structure of the class
and storing a 64-bit value called the Serial Version UID (SUID), along with the serialized
data. It can then compare the hash to the class when it is loaded.

Java allows us to take control of this process by looking for a special, magic field in our
classes that looks like the following:

 static final long serialVersionUID = -6849794470754667710L;

(The value is, of course, different for every class.) If it finds this static serialVersionUID
long field in the class, it uses its value instead of performing the hash on the class. This
value will be written out with serialized versions of the class and used for comparison
when they are deserialized. This means that we are now in control of which versions of
the class are compatible with which serialized representations. For example, we can
create our serializable class from the beginning with our own SUID and then only in‐
crement it if we make a truly incompatible change and want to prevent older forms of
the class from being loaded:

 class MyDataObject implements Serializable {
 static final long serialVersionUID = 1; // Version 1

Serialization | 447

 ...
 }

A utility called serialver that comes with the JDK allows you to calculate the hash that
Java would otherwise use for the class. This is necessary if you did not plan ahead and
already have serialized objects stored and need to modify the class afterward. Running
the serialver command on the class displays the SUID that is necessary to match the
value already stored:

 % serialver SomeObject

 static final long serialVersionUID = -6849794470754667710L;

By placing this value into your class, you can “freeze” the SUID at the specified value,
allowing the class to change without affecting versioning.

Data Compression
The java.util.zip package contains classes you can use for data compression in
streams or files. The classes in the java.util.zip package support two widespread
compression formats: GZIP and ZIP. In this section, we’ll talk about how to use these
classes. We’ll also present two useful example programs that build on what you have
learned in this chapter. After that, we’ll talk about a higher-level way to work with ZIP
archives—as filesystems—introduced with Java 7.

Archives and Compressed Data
The java.util.zip package provides two filter streams for writing compressed data.
The GZIPOutputStream is for writing data in GZIP compressed format. The ZIPOut
putStream is for writing compressed ZIP archives, which can contain one or many files.
To write compressed data in the GZIP format, simply wrap a GZIPOutputStream around
an underlying stream and write to it. The following is a complete example that shows
how to compress a file using the GZIP format, but the stream could just as well be sent
over a network connection or to any other type of stream destination. Our GZip example
is a command line utility that compresses a file.

 import java.io.*;
 import java.util.zip.*;

 public class GZip {
 public static int sChunk = 8192;

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GZip source");
 return;
 }
 // create output stream

448 | Chapter 12: Input/Output Facilities

 String zipname = args[0] + ".gz";
 GZIPOutputStream zipout;
 try {
 FileOutputStream out = new FileOutputStream(zipname);
 zipout = new GZIPOutputStream(out);
 }
 catch (IOException e) {
 System.out.println("Couldn't create " + zipname + ".");
 return;
 }
 byte[] buffer = new byte[sChunk];
 // compress the file
 try {
 FileInputStream in = new FileInputStream(args[0]);
 int length;
 while ((length = in.read(buffer, 0, sChunk)) != -1)
 zipout.write(buffer, 0, length);
 in.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't compress " + args[0] + ".");
 }
 try { zipout.close(); }
 catch (IOException e) {}
 }
 }

First, we check to make sure we have a command-line argument representing a filename.
We then construct a GZIPOutputStream wrapped around a FileOutputStream repre‐
senting the given filename, with the .gz suffix appended. With this in place, we open the
source file. We read chunks of data and write them into the GZIPOutputStream. Finally,
we clean up by closing our open streams.

Zip archives

While GZIP is simple compression format for a stream or file, a ZIP archive is a file that
is actually a collection of files, some (or all) of which may be compressed. Writing data
to a ZIP archive file is a little more involved than simply wrapping a stream, but not
difficult. Each item in the ZIP file is represented by a ZipEntry object. When writing
to a ZipOutputStream, you’ll need to call putNextEntry() before writing the data for
each item. The following example shows how to create a ZipOutputStream. You’ll notice
that it starts out with a stream wrapper just like it did when creating a GZIPOutput
Stream:

 ZipOutputStream zipout;
 try {
 FileOutputStream out = new FileOutputStream("archive.zip");
 zipout = new ZipOutputStream(out);
 }
 catch (IOException e) {}

Data Compression | 449

Let’s say we have two files we want to write into this archive. Before we begin writing,
we need to call putNextEntry() to set the name of the file within the archive and ini‐
tialize the stream to the correct position for it. Here we create a simple ZipEntry with
just a file name. You can set other ZIP format specific fields in ZipEntry, but most of
the time, you won’t need to bother with them.

 try {
 ZipEntry entry = new ZipEntry("first.dat");
 zipout.putNextEntry(entry);
 zipout.write(...) // Write data for first file

 ZipEntry entry = new ZipEntry("second.dat");
 zipout.putNextEntry(entry);
 zipout.write(...) // Write data for second file
 . . .
 zipout.close();
 }
 catch (IOException e) {}

Decompressing Data
To decompress data in the GZIP format, simply wrap a GZIPInputStream around an
underlying FileInputStream and read from it. The following example complements
our earlier GZip example and shows how to decompress a GZIP file:

 import java.io.*;
 import java.util.zip.*;

 public class GUnzip {
 public static int sChunk = 8192;
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GUnzip source");
 return;
 }
 // create input stream
 String zipname, source;
 if (args[0].endsWith(".gz")) {
 zipname = args[0];
 source = args[0].substring(0, args[0].length() - 3);
 }
 else {
 zipname = args[0] + ".gz";
 source = args[0];
 }
 GZIPInputStream zipin;
 try {
 FileInputStream in = new FileInputStream(zipname);
 zipin = new GZIPInputStream(in);
 }
 catch (IOException e) {

450 | Chapter 12: Input/Output Facilities

 System.out.println("Couldn't open " + zipname + ".");
 return;
 }
 byte[] buffer = new byte[sChunk];
 // decompress the file
 try {
 FileOutputStream out = new FileOutputStream(source);
 int length;
 while ((length = zipin.read(buffer, 0, sChunk)) != -1)
 out.write(buffer, 0, length);
 out.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't decompress " + args[0] + ".");
 }
 try { zipin.close(); }
 catch (IOException e) {}
 }
 }

First, we check to make sure we have a command-line argument representing a filename.
If the argument ends with .gz, we figure out what the filename for the uncompressed
file should be. Otherwise, we use the given argument and assume the compressed file
has the .gz suffix. Then we construct a GZIPInputStream wrapped around a FileInput
Stream that represents the compressed file. With this in place, we open the target file.
We read chunks of data from the GZIPInputStream and write them into the target file.
Finally, we clean up by closing our open streams.

Reading a ZIP archive is also the mirror of writing. When reading from a ZipInput
Stream, you should call getNextEntry() before reading each item. When getNextEn
try() returns null, there are no more items to read. The following example shows how
to create a ZipInputStream:

 ZipInputStream zipin;
 try {
 FileInputStream in = new FileInputStream("archive.zip");
 zipin = new ZipInputStream(in);
 }
 catch (IOException e) {}

Suppose we want to read two files from this archive. Before we begin reading, we need
to call getNextEntry(). At the very least, the entry gives us a name of the item we are
reading from the archive:

 try {
 ZipEntry first = zipin.getNextEntry();
 zipin.read(...) // Read the file data
 } catch (IOException e) {}

Now, you can read the contents of the first item in the archive. When you come to the
end of the item, the read() method returns -1. At this point, you can call

Data Compression | 451

2. The Zip Filesystem Provider is also supplied as an example along with sample source code even though it’s
unclear if Oracle intends it to be a standard. But at the time of this writing, it is bundled with the JDK and
JRE of Java 7 on all platforms.

getNextEntry() again to read the second item from the archive. If you call getNextEn
try() and it returns null, there are no more items and you have reached the end of the
archive.

Zip Archive As a Filesystem
One of the benefits of the new java.nio.file package introduce with Java 7 is the
ability to implement custom filesystems in Java. (We talked about the File API for the
NIO file package earlier in this chapter and we’ll return to the more general NIO facilities
in the next section.) Java 7 ships with one such custom filesystem implementation bun‐
dled within it: the Zip Filesystem Provider.2 Using the Zip Filesystem Provider, we can
open a ZIP archive and treat it like a filesystem: reading, writing, copying, and renaming
files using all of the standard java.nio.file APIs, except that all of these operations
happen inside the ZIP archive file instead of on the host computer filesystem (as you
might otherwise expect).

The key to making this possible is that the NIO File API starts with a FileSystem
abstraction that serves as a factory for Path objects. In our previous discussion of the
NIO File API we always simply asked for the default filesystem using Filesystems.get
Default(). This time, we are going to target a particular custom filesystem type and
destination by constructing a special URI for our ZIP archive. (As we’ll discuss in the
networking chapters, a URI is kind of like a URL except that it can be more abstract).

 // Construct the URI pointing to the ZIP archive
 URI zipURI = URI.create("jar:file:/Users/pat/tmp/MyArchive.zip");

 // Open or create it and write a file
 Map<String, String> env = new HashMap<>();
 env.put("create", "true");
 try (FileSystem zipfs = FileSystems.newFileSystem(zipURI, env))
 {
 Path path = zipfs.getPath("/README.txt");
 OutputStream out = Files.newOutputStream(path);
 try (PrintWriter pw = new PrintWriter(
 new OutputStreamWriter(out))) {

 pw.println("Hello World!");
 }
 }

In this snippet, we constructed a URI for our ZIP archive using the URIcreate() method
and the special jar:file: prefix. (The Java JAR format is really just the ZIP format with
some additional conventions.) We then used that URI with the Filesystems newFile

452 | Chapter 12: Input/Output Facilities

System() method to create the right kind of filesystem reference for us. The FileSys
tem it returns will perform all of its operations on entries within the ZIP, but otherwise
will behave just like we’ve seen previously. The other argument to the newFileSys
tem() method is a Map containing string properties that are specific to the provider. In
this case, we pass in the value “create” as “true,” indicating that we want the ZIP filesystem
provider to create the archive if it does not already exist. In order to know what prop‐
erties can be passed, you’ll have to consult the documentation for the particular file‐
system provider.

In our preceding snippet, we then create a Path for a file /README.txt at the root folder
of the filesystem and write a string to it. Because we are using try-with-resources clauses
to encapsulate opening the filesystem and writing to the file, the resources will be au‐
tomatically closed for us when the operation is complete.

Other operations proceed just as with “normal” files. For example, we can move a file
by creating a path for the existing file and a path for the new location and then using
the standard Files move() method.

 // Move the file
 try (FileSystem zipfs = FileSystems.newFileSystem(fsURI, env))
 {
 Path path = zipfs.getPath("/README.txt");
 Path toPath = zipfs.getPath("/README2.txt");
 Files.move(path, toPath);
 }

The NIO Package
We are now going to complete our introduction to core Java I/O facilities by returning
to the java.nio package. The name NIO stands for “New I/O” and, as we saw earlier
in this chapter in our discussion of java.nio.file, one aspect of NIO is simply to
update and enhance features of the legacy java.io package. Much of the general NIO
functionality does indeed overlap with existing APIs. However, NIO was first introduced
to address specific issues of scalability for large systems, especially in networked appli‐
cations. The following section outlines the basic elements of NIO, which center on
working with buffers and channels.

Asynchronous I/O
Most of the need for the NIO package was driven by the desire to add nonblocking and
selectable I/O to Java. Prior to NIO, most read and write operations in Java were bound
to threads and were forced to block for unpredictable amounts of time. Although certain
APIs such as Sockets (which we’ll see in Chapter 13) provided specific means to limit
how long an I/O call could take, this was a workaround to compensate for the lack of a
more general mechanism. In many languages, even those without threading, I/O could

The NIO Package | 453

still be done efficiently by setting I/O streams to a nonblocking mode and testing them
for their readiness to send or receive data. In a nonblocking mode, a read or write does
only as much work as can be done immediately—filling or emptying a buffer and then
returning. Combined with the ability to test for readiness, this allows a single-threaded
application to continuously service many channels efficiently. The main thread “selects”
a stream that is ready and works with it until it blocks and then moves on to another.
On a single-processor system, this is fundamentally equivalent to using multiple threads.
It turns out that this style of processing has scalability advantages even when using a
pool of threads (rather than just one). We’ll discuss this in detail in Chap‐
ter 13when we discuss networking and building servers that can handle many clients
simultaneously.

In addition to nonblocking and selectable I/O, the NIO package enables closing and
interrupting I/O operations asynchronously. As discussed in Chapter 9, prior to NIO
there was no reliable way to stop or wake up a thread blocked in an I/O operation. With
NIO, threads blocked in I/O operations always wake up when interrupted or when the
channel is closed by anyone. Additionally, if you interrupt a thread while it is blocked
in an NIO operation, its channel is automatically closed. (Closing the channel because
the thread is interrupted might seem too strong, but usually it’s the right thing to do.)

Performance
Channel I/O is designed around the concept of buffers, which are a sophisticated form
of array, tailored to working with communications. The NIO package supports the
concept of direct buffers—buffers that maintain their memory outside the Java VM in
the host operating system. Because all real I/O operations ultimately have to work with
the host OS by maintaining the buffer space there, some operations can be made much
more efficient. Data moving between two external endpoints can be transferred without
first copying it into Java and back out.

Mapped and Locked Files
NIO provides two general-purpose file-related features not found in java.io: memory-
mapped files and file locking. We’ll discuss memory-mapped files later, but suffice it to
say that they allow you to work with file data as if it were all magically resident in
memory. File locking supports the concept of shared and exclusive locks on regions of
files—useful for concurrent access by multiple applications.

Channels
While java.io deals with streams, java.nio works with channels. A channel is an
endpoint for communication. Although in practice channels are similar to streams, the
underlying notion of a channel is more abstract and primitive. Whereas streams in
java.io are defined in terms of input or output with methods to read and write bytes,

454 | Chapter 12: Input/Output Facilities

the basic channel interface says nothing about how communications happen. It simply
has the notion of being open or closed, supported via the methods isOpen() and
close(). Implementations of channels for files, network sockets, or arbitrary devices
then add their own methods for operations, such as reading, writing, or transferring
data. The following channels are provided by NIO:

• FileChannel

• Pipe.SinkChannel, Pipe.SourceChannel
• SocketChannel, ServerSocketChannel, DatagramChannel

We’ll cover FileChannel in this chapter. The Pipe channels are simply the channel
equivalents of the java.io Pipe facilities. We’ll talk about Socket and Datagram chan‐
nels in Chapter 13. Additionally, in Java 7 there are now asynchronous versions of both
the file and socket channels: AsynchronousFileChannel, AsynchronousSocketChan
nel, AsynchronousServerSocketChannel, and AsynchronousDatagramChannel. These
asynchronous versions essentially buffer all of their operations through a thread pool
and report results back through an asynchronous API. We’ll talk about the asynchro‐
nous file channel later in this chapter.

All these basic channels implement the ByteChannel interface, designed for channels
that have read and write methods like I/O streams. ByteChannels read and write Byte
Buffers, however, as opposed to plain byte arrays.

In addition to these channel implementations, you can bridge channels with java.io
I/O streams and readers and writers for interoperability. However, if you mix these
features, you may not get the full benefits and performance offered by the NIO package.

Buffers
Most of the utilities of the java.io and java.net packages operate on byte arrays. The
corresponding tools of the NIO package are built around ByteBuffers (with character-
based buffer CharBuffer for text). Byte arrays are simple, so why are buffers necessary?
They serve several purposes:

• They formalize the usage patterns for buffered data, provide for things like read-
only buffers, and keep track of read/write positions and limits within a large buffer
space. They also provide a mark/reset facility like that of java.io.BufferedInput
Stream.

• They provide additional APIs for working with raw data representing primitive
types. You can create buffers that “view” your byte data as a series of larger primi‐
tives, such as shorts, ints, or floats. The most general type of data buffer, Byte
Buffer, includes methods that let you read and write all primitive types just like
DataOutputStream does for streams.

The NIO Package | 455

• They abstract the underlying storage of the data, allowing for special optimizations
by Java. Specifically, buffers may be allocated as direct buffers that use native buffers
of the host operating system instead of arrays in Java’s memory. The NIO Chan
nel facilities that work with buffers can recognize direct buffers automatically and
try to optimize I/O to use them. For example, a read from a file channel into a Java
byte array normally requires Java to copy the data for the read from the host oper‐
ating system into Java’s memory. With a direct buffer, the data can remain in the
host operating system, outside Java’s normal memory space until and unless it is
needed.

Buffer operations

A buffer is a subclass of a java.nio.Buffer object. The base Buffer class is something
like an array with state. It does not specify what type of elements it holds (that is for
subtypes to decide), but it does define functionality that is common to all data buffers.
A Buffer has a fixed size called its capacity. Although all the standard Buffers provide
“random access” to their contents, a Buffer generally expects to be read and written
sequentially, so Buffers maintain the notion of a position where the next element is read
or written. In addition to position, a Buffer can maintain two other pieces of state
information: a limit, which is a position that is a “soft” limit to the extent of a read or
write, and a mark, which can be used to remember an earlier position for future recall.

Implementations of Buffer add specific, typed get and put methods that read and write
the buffer contents. For example, ByteBuffer is a buffer of bytes and it has get() and
put() methods that read and write bytes and arrays of bytes (along with many other
useful methods we’ll discuss later). Getting from and putting to the Buffer changes the
position marker, so the Buffer keeps track of its contents somewhat like a stream. At‐
tempting to read or write past the limit marker generates a BufferUnderflowExcep
tion or BufferOverflowException, respectively.

The mark, position, limit, and capacity values always obey the following formula:
 mark <= position <= limit <= capacity

The position for reading and writing the Buffer is always between the mark, which
serves as a lower bound, and the limit, which serves as an upper bound. The capacity
represents the physical extent of the buffer space.

You can set the position and limit markers explicitly with the position() and lim
it() methods. Several convenience methods are provided for common usage patterns.
The reset() method sets the position back to the mark. If no mark has been set, an
InvalidMarkException is thrown. The clear() method resets the position to 0 and
makes the limit the capacity, readying the buffer for new data (the mark is discarded).
Note that the clear() method does not actually do anything to the data in the buffer;
it simply changes the position markers.

456 | Chapter 12: Input/Output Facilities

The flip() method is used for the common pattern of writing data into the buffer and
then reading it back out. flip makes the current position the limit and then resets the
current position to 0 (any mark is thrown away), which saves having to keep track of
how much data was read. Another method, rewind(), simply resets the position to 0,
leaving the limit alone. You might use it to write the same size data again. Here is a
snippet of code that uses these methods to read data from a channel and write it to two
channels:

 ByteBuffer buff = ...
 while (inChannel.read(buff) > 0) { // position = ?
 buff.flip(); // limit = position; position = 0;
 outChannel.write(buff);
 buff.rewind(); // position = 0
 outChannel2.write(buff);
 buff.clear(); // position = 0; limit = capacity
 }

This might be confusing the first time you look at it because here, the read from the
Channel is actually a write to the Buffer and vice versa. Because this example writes all
the available data up to the limit, either flip() or rewind() have the same effect in this
case.

Buffer types

As stated earlier, various buffer types add get and put methods for reading and writing
specific data types. Each of the Java primitive types has an associated buffer type: Byte
Buffer, CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer, and Double
Buffer. Each provides get and put methods for reading and writing its type and arrays
of its type. Of these, ByteBuffer is the most flexible. Because it has the “finest grain” of
all the buffers, it has been given a full complement of get and put methods for reading
and writing all the other data types as well as byte. Here are some ByteBuffer methods:

 byte get()
 char getChar()
 short getShort()
 int getInt()
 long getLong()
 float getFloat()
 double getDouble()

 void put(byte b)
 void put(ByteBuffer src)
 void put(byte[] src, int offset, int length)
 void put(byte[] src)
 void putChar(char value)
 void putShort(short value)
 void putInt(int value)
 void putLong(long value)

The NIO Package | 457

3. The terms big endian and little endian come from Jonathan Swift’s novel Gulliver’s Travels, where it denoted
two camps of Lilliputians: those who eat their eggs from the big end and those who eat them from the little
end.

 void putFloat(float value)
 void putDouble(double value)

As we said, all the standard buffers also support random access. For each of the afore‐
mentioned methods of ByteBuffer, an additional form takes an index; for example:

 getLong(int index)
 putLong(int index, long value)

But that’s not all. ByteBuffer can also provide “views” of itself as any of the coarse-
grained types. For example, you can fetch a ShortBuffer view of a ByteBuffer with the
asShortBuffer() method. The ShortBuffer view is backed by the ByteBuffer, which
means that they work on the same data, and changes to either one affect the other. The
view buffer’s extent starts at the ByteBuffer’s current position, and its capacity is a
function of the remaining number of bytes, divided by the new type’s size. (For example,
shorts consume two bytes each, floats four, and longs and doubles take eight.) View
buffers are convenient for reading and writing large blocks of a contiguous type within
a ByteBuffer.

CharBuffers are interesting as well, primarily because of their integration with
Strings. Both CharBuffers and Strings implement the java.lang.CharSequence in‐
terface. This is the interface that provides the standard charAt() and length() methods.
Because of this, newer APIs (such as the java.util.regex package) allow you to use a
CharBuffer or a String interchangeably. In this case, the CharBuffer acts like a mod‐
ifiable String with user-configurable, logical start and end positions.

Byte order

Because we’re talking about reading and writing types larger than a byte, the question
arises: in what order do the bytes of multibyte values (e.g., shorts and ints) get written?
There are two camps in this world: “big endian” and “little endian.”3 Big endian means
that the most significant bytes come first; little endian is the reverse. If you’re writing
binary data for consumption by some native application, this is important. Intel-
compatible computers use little endian, and many workstations that run Unix use big
endian. The ByteOrder class encapsulates the choice. You can specify the byte order to
use with the ByteBuffer order() method, using the identifiers ByteOrder.BIG_ENDI
AN and ByteOrder.LITTLE_ENDIAN like so:

 byteArray.order(ByteOrder.BIG_ENDIAN);

You can retrieve the native ordering for your platform using the static ByteOrder.na
tiveOrder() method. (I know you’re curious.)

458 | Chapter 12: Input/Output Facilities

Allocating buffers

You can create a buffer either by allocating it explicitly using allocate() or by wrapping
an existing plain Java array type. Each buffer type has a static allocate() method that
takes a capacity (size) and also a wrap() method that takes an existing array:

 CharBuffer cbuf = CharBuffer.allocate(64*1024);

A direct buffer is allocated in the same way, with the allocateDirect() method:
 ByteBuffer bbuf = ByteBuffer.allocateDirect(64*1024);
 ByteBuffer bbuf2 = ByteBuffer.wrap(someExistingArray);

As we described earlier, direct buffers can use operating system memory structures that
are optimized for use with some kinds of I/O operations. The tradeoff is that allocating
a direct buffer is a little slower and heavier weight operation than a plain buffer, so you
should try to use them for longer-term buffers.

Character Encoders and Decoders
Character encoders and decoders turn characters into raw bytes and vice versa, mapping
from the Unicode standard to particular encoding schemes. Encoders and decoders
have long existed in Java for use by Reader and Writer streams and in the methods of
the String class that work with byte arrays. However, early on there was no API for
working with encoding explicitly; you simply referred to encoders and decoders wher‐
ever necessary by name as a String. The java.nio.charset package formalized the
idea of a Unicode character set encoding with the Charset class.

The Charset class is a factory for Charset instances, which know how to encode char‐
acter buffers to byte buffers and decode byte buffers to character buffers. You can look
up a character set by name with the static Charset.forName() method and use it in
conversions:

 Charset charset = Charset.forName("US-ASCII");
 CharBuffer charBuff = charset.decode(byteBuff); // to ascii
 ByteBuffer byteBuff = charset.encode(charBuff); // and back

You can also test to see if an encoding is available with the static Charset.isSuppor
ted() method.

The following character sets are guaranteed to be supplied:

• US-ASCII
• ISO-8859-1
• UTF-8
• UTF-16BE
• UTF-16LE

The NIO Package | 459

• UTF-16

You can list all the encoders available on your platform using the static availableChar
sets() method:

 Map map = Charset.availableCharsets();
 Iterator it = map.keySet().iterator();
 while (it.hasNext())
 System.out.println(it.next());

The result of availableCharsets() is a map because character sets may have “aliases”
and appear under more than one name.

In addition to the buffer-oriented classes of the java.nio package, the InputStream
Reader and OutputStreamWriter bridge classes of the java.io package have been up‐
dated to work with Charset as well. You can specify the encoding as a Charset object
or by name.

CharsetEncoder and CharsetDecoder

You can get more control over the encoding and decoding process by creating an in‐
stance of CharsetEncoder or CharsetDecoder (a codec) with the Charset newEncod
er() and newDecoder() methods. In the previous snippet, we assumed that all the data
was available in a single buffer. More often, however, we might have to process data as
it arrives in chunks. The encoder/decoder API allows for this by providing more general
encode() and decode() methods that take a flag specifying whether more data is ex‐
pected. The codec needs to know this because it might have been left hanging in the
middle of a multibyte character conversion when the data ran out. If it knows that more
data is coming, it does not throw an error on this incomplete conversion. In the fol‐
lowing snippet, we use a decoder to read from a ByteBuffer bbuff and accumulate
character data into a CharBuffer cbuff:

 CharsetDecoder decoder = Charset.forName("US-ASCII").newDecoder();

 boolean done = false;
 while (!done) {
 bbuff.clear();
 done = (in.read(bbuff) == -1);
 bbuff.flip();
 decoder.decode(bbuff, cbuff, done);
 }
 cbuff.flip();
 // use cbuff. . .

Here, we look for the end of input condition on the in channel to set the flag done. Note
that we take advantage of the flip() method on ByteBuffer to set the limit to the
amount of data read and reset the position, setting us up for the decode operation in
one step. The encode() and decode() methods also return a result object, CoderRe
sult, that can determine the progress of encoding (we do not use it in the previous

460 | Chapter 12: Input/Output Facilities

snippet). The methods isError(), isUnderflow(), and isOverflow() on the CoderRe
sult specify why encoding stopped: for an error, a lack of bytes on the input buffer, or
a full output buffer, respectively.

FileChannel
Now that we’ve covered the basics of channels and buffers, it’s time to look at a real
channel type. The FileChannel is the NIO equivalent of the java.io.RandomAccess
File , but it provides several core new features in addition to some performance opti‐
mizations. In particular, use a FileChannel in place of a plain java.io file stream if you
wish to use file locking, memory-mapped file access, or highly optimized data transfer
between files or between file and network channels.

A FileChannel can be created for a Path using the static FileChannelopen() method.
 FileSystem fs = FileSystems.getDefault();
 Path p = fs.getPath("/tmp/foo.txt");

 // Open default for reading
 try (FileChannel channel = FileChannel.open((p)) {
 ...
 }

 // Open with options for writing
 import static java.nio.file.StandardOpenOption.*;

 try (FileChannel channel = FileChannel.open(p, WRITE, APPEND, ...)) {
 ...
 }

By default, open() creates a read-only channel for the file. We can open a channel for
writing or appending and control other more advanced features such as atomic create
and data syncing by passing additional options as shown in the second part of the
previous example. Table 12-4 summarizes these options.

Table 12-4. java.nio.file.StandardOpenOption
Option Description

READ, WRITE Open the file for read-only or write-only (default is read-only). Use both for read-write.

APPEND Open the file for writing; all writes are positioned at the end of the file.

CREATE Use with WRITE to open the file and create it if needed.

CREATE_NEW Use with WRITE to create a file atomically; failing if the file already exists.

DELETE_ON_CLOSE Attempt to delete the file when it is closed or, if open, when the VM exits.

SYNC, DSYNC Wherever possible, guarantee that write operations block until all data is written to storage.
SYNC does this for all file changes including data and metadata (attributes) whereas DSYNC
only adds this requirement for the data content of the file.

The NIO Package | 461

Option Description

SPARSE Use when creating a new file, requests the file be sparse. On filesystems where this is supported,
a sparse file handles very large, mostly empty files without allocating as much real storage for
empty portions.

TRUNCATE_EXISTING Use WRITE on an existing file, set the file length to zero upon opening it.

A FileChannel can also be constructed from a classic FileInputStream, FileOutput
Stream, or RandomAccessFile:

 FileChannel readOnlyFc = new FileInputStream("file.txt").getChannel();
 FileChannel readWriteFc = new RandomAccessFile("file.txt", "rw")
 .getChannel();

FileChannels created from these file input and output streams are read-only or write-
only, respectively. To get a read/write FileChannel, you must construct a RandomAc
cessFile with read/write permissions, as in the previous example.

Using a FileChannel is just like a RandomAccessFile, but it works with ByteBuffer
instead of byte arrays:

 ByteBuffer bbuf = ByteBuffer.allocate(...);
 bbuf.clear();
 readOnlyFc.position(index);
 readOnlyFc.read(bbuf);
 bbuf.flip();
 readWriteFc.write(bbuf);

You can control how much data is read and written either by setting buffer position and
limit markers or using another form of read/write that takes a buffer starting position
and length. You can also read and write to a random position by supplying indexes with
the read and write methods:

 readWriteFc.read(bbuf, index)
 readWriteFc.write(bbuf, index2);

In each case, the actual number of bytes read or written depends on several factors. The
operation tries to read or write to the limit of the buffer, and the vast majority of the
time that is what happens with local file access. The operation is guaranteed to block
only until at least one byte has been processed. Whatever happens, the number of bytes
processed is returned, and the buffer position is updated accordingly, preparing you to
repeat the operation until it is complete if needed. This is one of the conveniences of
working with buffers; they can manage the count for you. Like standard streams, the
channel read() method returns -1 upon reaching the end of input.

The size of the file is always available with the size() method. It can change if you write
past the end of the file. Conversely, you can truncate the file to a specified length with
the truncate() method.

462 | Chapter 12: Input/Output Facilities

Concurrent access

FileChannels are safe for use by multiple threads and guarantee that data “viewed” by
them is consistent across channels in the same VM. Unless you specify the SYNC or DSYNC
options, no guarantees are made about how quickly writes are propagated to the storage
mechanism. If you only intermittently need to be sure that data is safe before moving
on, you can use the force() method to flush changes to disk. The force() method takes
a Boolean argument indicating whether or not file metadata, including timestamp and
permissions, must be written (sync or dsync). Some systems keep track of reads on files
as well as writes, so you can save a lot of updates if you set the flag to false, which
indicates that you don’t care about syncing that data immediately.

As with all Channels, a FileChannel may be closed by any thread. Once closed, all its
read/write and position-related methods throw a ClosedChannelException.

File locking

FileChannels support exclusive and shared locks on regions of files through the lock()
method:

 FileLock fileLock = fileChannel.lock();
 int start = 0, len = fileChannel2.size();
 FileLock readLock = fileChannel2.lock(start, len, true);

Locks may be either shared or exclusive. An exclusive lock prevents others from ac‐
quiring a lock of any kind on the specified file or file region. A shared lock allows others
to acquire overlapping shared locks but not exclusive locks. These are useful as write
and read locks, respectively. When you are writing, you don’t want others to be able to
write until you’re done, but when reading, you need only to block others from writing,
not reading concurrently.

The no-args lock() method in the previous example attempts to acquire an exclusive
lock for the whole file. The second form accepts a starting and length parameter as well
as a flag indicating whether the lock should be shared (or exclusive). The FileLock
object returned by the lock() method can be used to release the lock:

 fileLock.release();

Note that file locks are only guaranteed be a cooperative API; they do not necessarily
prevent anyone from reading or writing to the locked file contents. In general, the only
way to guarantee that locks are obeyed is for both parties to attempt to acquire the lock
and use it. Also, shared locks are not implemented on some systems, in which case all
requested locks are exclusive. You can test whether a lock is shared with the is
Shared() method.

FileChannel locks are held until the channel is closed or interrupted, so performing
locks within a try-with-resources statement will help ensure that locks are released
more robustly.

The NIO Package | 463

try (FileChannel channel = FileChannel.open(p, WRITE)) {
 channel.lock();
 ...
}

Memory-mapped files

One of the most interesting features offered through FileChannel is the ability to map
a file into memory. When a file is memory-mapped, like magic it becomes accessible
through a single ByteBuffer—as if the entire file was read into memory at once. The
implementation of this is extremely efficient, generally among the fastest ways to access
the data. For working with large files, memory mapping can save a lot of resources and
time.

This may seem counterintuitive; we’re getting a conceptually easier way to access our
data and it’s also faster and more efficient? What’s the catch? There really is no catch.
The reason for this is that all modern operating systems are based on the idea of virtual
memory. In a nutshell, that means that the operating system makes disk space act like
memory by continually paging (swapping 4KB blocks called “pages”) between memory
and disk, transparent to the applications. Operating systems are very good at this; they
efficiently cache the data that the application is using and let go of what is not in use.
Memory-mapping a file is really just taking advantage of what the OS is doing internally.

A good example of where a memory-mapped file would be useful is in a database.
Imagine a 10 GB file containing records indexed at various positions. By mapping the
file, we can work with a standard ByteBuffer, reading and writing data at arbitrary
positions and letting the native operating system read and write the underlying data in
fine-grained pages as necessary. We could emulate this behavior with RandomAccess
File or FileChannel, but we would have to explicitly read and write data into buffers
first, and the implementation would almost certainly not be as efficient.

A mapping is created with the FileChannel map() method. For example:
 FileChannel fc =FileChannel.open(fs.getPath("index.db"), CREATE, READ,
 WRITE);
 MappedByteBuffer mappedBuff =
 fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());

The map() method returns a MappedByteBuffer, which is simply the standard Byte
Buffer with a few additional methods relating to the mapping. The most important is
force(), which ensures that any data written to the buffer is flushed out to permanent
storage on the disk. The READ_ONLY and READ_WRITE constant identifiers of the File
Channel.MapMode static inner class specify the type of access. Read/write access is avail‐
able only when mapping a read/write file channel. Data read through the buffer is always
consistent within the same Java VM. It may also be consistent across applications on
the same host machine, but this is not guaranteed.

464 | Chapter 12: Input/Output Facilities

Again, a MappedByteBuffer acts just like a ByteBuffer. Continuing with the previous
example, we could decode the buffer with a character decoder and search for a pattern
like so:

 CharBuffer cbuff = Charset.forName("US-ASCII").decode(mappedBuff);
 Matcher matcher = Pattern.compile("abc*").matcher(cbuff);
 while (matcher.find())
 System.out.println(matcher.start()+": "+matcher.group(0));

Here, we have implemented something like the Unix grep command by relying on the
Regular Expression API working with our CharBuffer as a CharSequence. We’ve cheat‐
ed a bit in this example since the CharBuffer allocated by the decode() method is as
large as the mapped file and must be held in memory. To do this efficiently, we could
use the CharsetDecoder discussed earlier in this chapter to iterate through the large
mapped space without pulling everything into memory.

Direct transfer

The final feature of FileChannel that we’ll examine is performance optimization. Fil
eChannel supports two highly optimized data transfer methods: transferFrom() and
transferTo(), which move data between the file channel and another channel. These
methods can take advantage of direct buffers internally to move data between the chan‐
nels as fast as possible, often without copying the bytes into Java’s memory space at all.
The following example should be the fastest way to implement a file copy in Java short
of using the built-in Filescopy() method:

import java.nio.channels.*;
import java.nio.file.*;
import static java.nio.file.StandardOpenOption.*;

public class CopyFile
{
 public static void main(String [] args) throws Exception
 {
 FileSystem fs = FileSystems.getDefault();
 Path fromFile = fs.getPath(args[0]);
 Path toFile = fs.getPath(args[1]);

 try (
 FileChannel in = FileChannel.open(fromFile);
 FileChannel out = FileChannel.open(toFile, CREATE, WRITE);)
 {
 in.transferTo(0, (int)in.size(), out);
 }
 }
}

The NIO Package | 465

AsynchronousFileChannel

When we return to NIO in the next chapter, we will see that network channels are types
of SelectableChannel, which means that they can be managed with a selector to poll
for when the channels are ready to be read or written and manage them efficiently
without blocking threads. File channels are not selectable channels and most regular
file operations simply block until they are completed. This is not to say that file opera‐
tions always block until all the bytes we want are read from or written to disk. In general,
read operations may return fewer bytes than requested and write operations may boh
write fewer bytes and also may buffer data in memory unless we use the SYNC or
DSYNC open options. But in a world where disk access can be many, many orders of
magnitude slower than in-memory operations even these partial reads and writes may
be slow enough that we do not wish to block waiting for them.

The obvious solution is to use multithreading and coordinate our reads and writes in a
separate thread from our main logic. Java 7 has made this easier by introducing the
AysnchronousFileChannel, which is a file channel that delegates all of its operations to
a thread pool and can report results using a Future object or asynchronous callback.
All read and write operations on asynchronous file channels must specify the byte offset
for the operation (as there is no well-defined “current” offset into the file at any given
time). The simplest example is to write a file update in the background without gathering
results:

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,
 WRITE);

 // Write logBuffer to the end of the file in the background, returning
 // immediately
 channel.write(logBuffer, channel.size());
 ...

Here, we have constructed an AsynchronousFileChannel analogous to the way we’d
open a regular file channel. Our write happens in the background and the write()
method returns immediately. By default, the channel will use a system default thread
pool to perform our write in the background. Alternately, we could have supplied our
own Executor service for the thread pool as an argument to the open() call. If at some
point we need to sync up and guarantee that all data is written, we can use the channel’s
force() method to block until all writes are complete.

A more interesting case is a read operation where we need the bytes returned from the
operation. In this case we can supply a callback CompletionHandler object that will
push the results to us when they are ready.

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path);
 ByteBuffer bbuff = ByteBuffer.allocate(1024);
 Object attachment = ...;
 channel.read(bbuff, offset, attachment,
 new CompletionHandler<Integer, Object>() {

466 | Chapter 12: Input/Output Facilities

 @Override
 public void completed(Integer result, Object attachment) {
 System.out.println("read bytes = " + result);
 }

 @Override
 public void failed(Throwable exc, Object attachment){
 ...
 }
 });

The additional argument attachment in the read call can be any object we like, and it
is simply returned to us in the callback as a way for us to maintain any context needed
to service the result. Here, we print the number of bytes ready, which as usual may be
fewer than we requested, but at least didn’t require us to wait for them. The other pos‐
sibility illustrated here is that the read may fail, in which case our failed() method is
invoked with the associated exception.

Scalable I/O with NIO
We’ve laid the groundwork for using the NIO package in this chapter, but left out some
of the important pieces. In the next chapter, we’ll see more of the real motivation for
java.nio when we talk about nonblocking and selectable I/O. In addition to the per‐
formance optimizations that can be made through direct buffers, these capabilities make
possible designs for network servers that use fewer threads and can scale well to large
systems. In that chapter, we’ll look at the other significant Channel types: SocketChan
nel, ServerSocketChannel, and DatagramChannel.

The NIO Package | 467

