
CS 33200 Homework 3 Fall 2011

NAME:

1. In each part, show the algebraic steps that prove that the given function solves the given
recurrence relation. Be sure to show a reasonable number of steps.

(a) Show that f(n) = n2 lg(n) is an exact solution of T (n) = 4 T (n/2) + n2.

Solution:

plug f(n) into rhs of recurrence =??? (1)

=??? (2)

=??? (3)

=??? (4)

= n2 lg(n) (5)

(b) Show that f(n) = lg(n!) + 1 is an exact solution of T (n) = T (n − 1) + lg(n).

Solution:

plug f(n) into rhs of recurrence =??? (6)

=??? (7)

=??? (8)

=??? (9)

= lg(n!) + 1 (10)

(c) Show that f(n) = lg(n) lg(lg(n)) is an exact solution of T (n) = 2 T (
√

n) + lg(n).

Solution:

plug f(n) into rhs of recurrence =??? (11)

=??? (12)

=??? (13)

=??? (14)

= lg(n) lg(lg(n)) (15)

2. In each part below, use the Master Theorem to determine an asymptotic bound (in
Θ-notation) for the solution of the recurrence relation. Briefly explain each of your
answers.



(a) T (n) = 2 T (n/3) + 1.

Solution:

(b) T (n) = 5 T (n/4) + n.

Solution:

(c) T (n) = 2 T (n/4) +
√

n.

Solution:

(d) T (n) = 7 T (n/7) + n.

Solution:

3. Suppose you are choosing between the following three algorithms.

• Algorithm A solves problems by dividing them into five subproblems of half the
size, recursively solving each subproblem, and then combining the solutions in linear
time.

• Algorithm B solves problems of size n by recursively solving two subproblems of
size n − 1 and then combining the solutions in constant time.

• Algorithm C solves problems of size n by dividing them into nine subproblems of
size n/3, recursively solving each subproblem, and then combining the solutions in
Θ(n2) time.

What are the running times of each of these algorithms (in big-Θ notation), and which
should you choose?

Solution:

4. Let M(n) denote the number of multiplications needed to compute an, where a and n
are positive integers.

(a) Write pseudo code for a recursive, divide and conquer algorithm that computes an

and has a recurrence relation for M(n) given by

M(n) = M(n − 1) + 1

Solution:



power(a,n)

{

}

(b) Write pseudo code for a recursive, divide and conquer algorithm that computes an

and has a recurrence relation for M(n) given by

M(n) =

{

M(n/2) + 1, if n is even

M(n/2) + 2, if n is odd

Solution:

power(a,n)

{

}

(c) What are the running times for these two algorithms (in big-Θ notation)?

Solution:


