
CS 33200 Integer Knapsack Problems Fall 2011

1. Here is a list of various kinds of integer knapsack problems. We start with the following
given data.

Given: A knapsack with integer capacity W .

Given: n items with integer weights 0 < w1 ≤ w2 ≤ . . . ≤ wn.

There are two kinds of knapsack problems below. One kind uses each item as many
times as needed, and the other kind uses each item at most one time. The second kind
is often called a 0-1 Knapsack Problem and it is a slightly more “difficult“ problem than
the first kind.

(a) If we have as many of each item as we need, can we fill the knapsack to its exact
capacity? (This is a boolean decision problem, so the result is either true or false.)

(b) If we use each item at most once, can we fill the knapsack to its exact capacity?
(This is also a boolean decision problem, so the result is either true or false.)

(c) If we have as many of each item as we need, what is the maximum weight we can
fit into the knapsack?

(d) If we use each item at most once, what is the maximum weight we can fit into the
knapsack?

Now Suppose that we are given the following additional data.

Given: n positive values, v1, v2, . . . , vn, one value for each item.

(e) If we have as many of each item as we need, what is the maximum value we can fit
into the knapsack if we must fill the knapsack to its exact capacity? (This problem
will not have a solution if problem (a) above is false for this knapsack. However, if
w1 = 1, then this problem must have a solution.)

(f) If we use each item at most once, what is the maximum value that we can fit into
the knapsack if we must fill the knapsack to its exact capacity? (If problem (b)
above is false for this knapsack, then this problem does not have a solution.)

(g) If we have as many of each item as we need, what is the maximum value we can fit
into the knapsack?

(h) If we use each item at most once, what is the maximum value that we can fit into
the knapsack?

Note: Even when problems (e) and (f) have solutions, they need not be the same as the
solutions to problems (g) and (h). For example, if W = 7, n = 4, and

w1 = 2, w2= 3, w3 = 4, w4 = 6

v1 = 2, v2 = 5, v3 = 3, v4 = 9.5

then you can check that problems (e), (f), (g), and (h) all have different solutions.

Note: If we assume that wi = i, that is, the weights are 1, 2, 3, . . . , n, then problems (e)
and (g) are the CutRod problem from the CLRS textbook, Section 15.1.



2. Here are recurrence relations for the above knapsack problems.

(a) Let K[i, j] be true if a knapsack of capacity j can be filled to capacity using each
item from 1 to i as many times as needed (and false otherwise). Then

K[i, j] = K[i − 1, j] ∨ K[i, j − wi]

with initial conditions

K[i, 0] = true

K[0, j] = false if j > 0

K[i, j] = false if j < 0.

Notice that there are two ways that you can “fail” to solve this problem, either you
overflow the knapsack (and so the capacity j becomes negative), or you have extra
capacity but you have run out of items (so j > 0 but i = 0). And there is only one
way that you can “succeed” in solving this problem, the capacity j becomes 0.

i. If we don’t like the idea of the capacity being allowed to become negative, we
can write this recurrence relation and the initial conditions as follows:

K[i, j] =

{

K[i − 1, j] ∨ K[i, j − wi] if wi ≤ j

K[i − 1, j] if wi > j

with initial conditions

K[i, 0] = true

K[0, j] = false if j > 0.

ii. We can solve this problem using a single-variable recurrence relation. Let K[j]
be true if a knapsack of capacity j can be filled to capacity using each item
from 1 to n as many times as needed (and false otherwise). Then

K[j] =
n

∨

i=1

K[j − wi]

with initial condition

K[0] = true

K[j] = false if j < 0.

(b) Let K[i, j] be true if a knapsack of capacity j can be filled to capacity using each
item from 1 to i at most one time (and false otherwise). Then

K[i, j] = K[i − 1, j] ∨ K[i − 1, j − wi]

with initial conditions

K[i, 0] = true

K[0, j] = false if j < 0 or j > 0.

This problem does not have a single-variable recurrence relation that solves it. This
is what we mean when we say that the 0-1 Knapsack Problems are slightly harder.
They require a much less obvious description of their appropriate sub-problems.



(c) Let KW [i, j] be the optimal “knapsack weight” for a knapsack of capacity j using
each item from 1 to i as many times as needed. Then

KW [i, j] =

{

max{KW [i − 1, j], wi + KW [i, j − wi] } if wi ≤ j

KW [i − 1, j] if wi > j

with initial conditions KW [i, 0] = 0 and KW [0, j] = 0.

i. We can also write this recurrence relation and its initial conditions this way:

KW [i, j] = max{KW [i − 1, j], wi + KW [i, j − wi] }

with initial conditions

KW [i, 0] = 0 and KW [0, j] =

{

−∞ if j < 0

0 if j ≥ 0

ii. We can solve this problem using a single-variable recurrence relation. Let
KW [j] be the optimal “knapsack weight” for a knapsack of capacity j using
each item from 1 to n as many times as needed. Then

KW [j] = max
wi≤j

{wi + KW [j − wi] }

with initial condition KW [0] = 0. We are using the convention that the max-
imum over an empty set is 0 (we get an empty set when none of the items wi

fit in the knapsack with capacity j). Notice that the max in this recurrence
relation would represent a loop, since this is a max over a set of indices i.

(d) Let KW [i, j] be the optimal “knapsack weight” for a knapsack of capacity j using
each item from 1 to i at most one time. Then

KW [i, j] =

{

max{KW [i− 1, j], wi + KW [i − 1, j − wi] } if wi ≤ j

KW [i − 1, j] if wi > j

with initial conditions KW [i, 0] = 0 and KW [0, j] = 0.

This problem does not have a single-variable recurrence relation that solves it.



(e) Let KV [i, j] be the optimal “knapsack value” for a knapsack of capacity j that
must be filled to its exact capacity using each item from 1 to i as many times as
needed. Then

KV [i, j] =

{

max{KV [i − 1, j], vi + KV [i, j − wi] } if wi ≤ j

KV [i − 1, j] if wi > j

with initial conditions KV [i, 0] = 0 and KV [0, j] = −∞.

A final value of KV [n, W ] = −∞ means that the problem does not have a solution.
Notice that we are using the fact that −∞ + x = −∞ for any number x.

i. We can solve this problem using a single-variable recurrence relation. Let KV [j]
be the optimal “knapsack value” for a knapsack of capacity j that must be filled
to its exact capacity using each item from 1 to n as many times as needed. Then

KV [j] =











max1≤i≤n{ vi + KV [j − wi] } if j > 0

0 if j = 0

−∞ if j < 0

A final value KV [W ] = −∞ means that the problem does not have a solution.

(f) Let KV [i, j] be the optimal “knapsack value” for a knapsack of capacity j that
must be filled to its exact capacity using each item from 1 to i at most once. Then

KV [i, j] =

{

max{KV [i − 1, j], vi + KV [i − 1, j − wi] } if wi ≤ j

KV [i − 1, j] if wi > j

with initial conditions KV [i, 0] = 0 and KV [0, j] = −∞.

A final value of KV [n, W ] = −∞ means that the problem does not have a solution.

(g) Let KV [i, j] be the optimal “knapsack value” for a knapsack of capacity j using
each item from 1 to i as many times as needed. Then

KV [i, j] =

{

max{KV [i − 1, j], vi + KV [i, j − wi] } if wi ≤ j

KV [i − 1, j] if wi > j

with initial conditions KV [i, 0] = 0 and KV [0, j] = 0.

(h) Let KV [i, j] be the optimal “knapsack value” for a knapsack of capacity j using
each item from 1 to i at most one time. Then

KV [i, j] =

{

max{KV [i − 1, j], vi + KV [i − 1, j − wi] } if wi ≤ j

KV [i − 1, j] if wi > j

with initial conditions KV [i, 0] = 0 and KV [0, j] = 0.


