
CS 33200 Four Similar Dynamic Programming Problems Fall 2011

We look at the solutions to four similar dynamic programming problems.

• Maximum contiguous subsequence.

• Maximum independent subsequence.

• Longest increasing subsequence.

• Longest common subsequence.

One lesson we shall learn is that it is not always obvious what subproblem we should define
as the basis for our dynamic programming recurrence relation. The most obvious choice of
a subproblem may not work, in the sense that we may not be able to describe the solution
of the obvious subproblem in terms of other subproblems. Sometimes it will be a rather
non-obvious choice of a subproblem that can be solved in terms of other subproblems.

1. Maximum contiguous subsequence

Suppose we are given an array, A, of both positive and negative numbers

A = [a1, a2, . . . , an].

Two integers i and j with 1 ≤ i ≤ j ≤ n define a contiguous subsequence of A which
is all the elements of A between index i and index j, that is [ai, ai+1, ai+2, . . . , aj−1, aj].

Given integers i and j that define a contiguous subsequence, we can form the sum of the
numbers in this subsequence,

j
∑

k=i

ak.

The “maximum contiguous subsequence” problem is to find the maximum possible sum
over all possible contiguous subsequences from the given array A.

For example, consider the following array A.

1 2 3 −7 3 1 1 −4 6 −3 1

a1 a11

The maximum contiguous subsequence sum is 7, and it is the sum of the subsequence
from a5 to a9.

Now let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

M(j) = maximum contiguous subsequence sum between a1 and aj .

But this is not a good definition for a subproblem. Look at our example array A above.
For that array, M(7) is 5 and that sum is from the subsequence from a5 to a7. Now look



at M(6). It is 6, and it is defined by the subsequence from a1 to a3. Notice that the
solution to the subproblem M(7) does not really have anything to do with the solution
to the (smaller) subproblem M(6). This is not good. Here is another way to think
about this. Suppose we know the solution to subproblem M(j − 1). Can we use that
information to construct the solution to subproblem M(j)? Can we use element aj to
extend the solution to M(j − 1) into a solution to M(j)? The answer is no, because
we do not know where the subsequence defined by M(j − 1) ends. We cannot write a
recurrence relation relating the subproblem M(j) to any of its (smaller) subproblems
M(i) where i < j.

Here is a more useful definition of a subproblem.

ME(j) = maximum contiguous subsequence sum of subsequences that end at aj .

This definition of a subproblem has the advantage that we can define a recurrence relation
using it, but it has a slight disadvantage in that ME(n) is not the solution of the problem
we started out with (why?).

Suppose we know the value of ME(j − 1). Here is how we can use it to compute
ME(j). If ME(j−1) is a positive number, then we can just tack on aj to the maximum
subsequence that ends at aj−1 to get the maximum subsequence that ends at aj and
ME(j) = ME(j−1)+aj . If ME(j−1) is negative, then the best we can do for ME(j)
is ME(j) = aj, in other words, don’t make any use of the maximum subsequence that
ends at aj−1. We can write this as the following recurrence relation.

ME(j) = max{ aj + ME(j − 1), aj } with ME(1) = a1

The problem we want to solve is M(n), where M still has the definition it was given
above. We can define M(n) in terms of the values of ME(j). Since the solution to M(n)
must be a subsequence that ends somewhere, that maximizing subsequence must be a
solution to one of the subproblems ME(j) for some j between 1 and n. So

M(n) = max
1≤j≤n

{ME(j) }.

We can also evaluate M in the following way.

M(j) = max{M(j − 1), ME(j) }

= max{M(j − 1), ME(j − 1) + aj , aj }

We can implement the recurrence relation for ME as a bottom-up (or top-down) dy-
namic programming solution. You should convince yourself that this would be an Θ(n)
algorithm. The calculation of M(n) from the table of ME(j) values is another Θ(n)
procedure. So the whole algorithm if Θ(n).

Notice that we have only provided the maximum value of the maximal contiguous subse-
quence sum. We have not calculated the location in the array of this maximal contiguous
subsequence, nor have we determined if there might be more than one contiguous sub-
sequence that gives this maximal sum.



2. Maximum independent subsequence

Suppose we are given an array, A, of n positive numbers

A = [a1, a2, . . . , an].

An independent subsequence of A is a selection of elements from A such that no
two elements in the selection are adjacent in the array. An independent subsequence
is kind of the opposite of a contiguous subsequence in the sense that an independent
subsequence must be as non-contiguous as possible; no two elements of an independent
subsequence can be contiguous (i.e., next to each other).

Given an independent subsequence of A, we can form the sum of the numbers in this
subsequence, The “maximum independent subsequence” problem is to find the maximum
possible sum over all possible independent subsequences from the given array A.

Let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

M(j) = maximum independent subsequence sum between a1 and aj .

Unlike the maximum contiguous sum problem, this time this obvious subproblem works.
We can write a recurrence relation relating subproblem M(j) to its (smaller) subproblems
M(i) with i < j.

The idea behind the recurrence relation is this. The solution to subproblem M(j) exists,
and the independent subsequence that realizes that solution either uses element aj or it
does not. If the solution to M(j) does not use element aj, then the solution to M(j)
is in fact also the solution to subproblem M(j − 1) (why?). On the other hand, if the
solution to M(j) does use element aj, then M(j) = M(j − 2)+ aj. (Notice that we used
the subproblem M(j − 2) so that we are sure that we do not violate the definition of an
independent subsequence.) In general, for any given subproblem M(j), we do not know
which of these two cases is the correct one. But the correct case will always be the one
that returns the greater value for M(j). We can express this as the following recurrence
relation.

M(j) = max{M(j − 1), M(j − 2) + aj } with M(1) = a1

The solution to the original problem is then M(n).

We can implement the recurrence relation for M as a bottom-up (or top-down) dy-
namic programming solution. You should convince yourself that this would be an Θ(n)
algorithm.

Notice that, as with the maximum contiguous sum problem, we have only provided the
maximum value of the maximal independent subsequence sum. We have not calculated
the location in the array of this maximal independent subsequence, nor have we deter-
mined if there might be more than one independent subsequence that gives this maximal
sum.



3. Longest increasing subsequence

Suppose we are given an array, A, of n positive numbers (or a string of n characters)

A = [a1, a2, . . . , an].

An increasing subsequence of A is a subsequence, [ai1 , ai2 , . . . , aik ], of elements from
A such that ij < ij+1 and aij < aij+1

for each 1 ≤ j < k. Notice that the elements in
the increasing subsequence need not be contiguous in A.

Given an increasing subsequence of A, we can compute the length of this subsequence.
The “longest increasing subsequence” problem is to find the maximum possible length
over all possible increasing subsequences from the given array (or string) A.

Let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

L(j) = length of the longest increasing subsequence between a1 and aj .

However, as with the maximum contiguous sum problem, this is not a good definition for
a subproblem. Suppose we know the solution to subproblem L(j − 1). Can we use that
information to construct the solution to subproblem L(j)? Can we use element aj to
extend the solution to L(j − 1) into a solution to L(j)? The answer is no, because even
though we know the length, L(j − 1), of the longest increasing subsequence between a1

and aj−1, we do not know at which element ai that subsequence ended, so we don’t know
if aj can be used to extend that subsequence. So we cannot write a recurrence relation
relating the subproblem L(j) to any of its (smaller) subproblems L(i) where i < j.

Here is a more useful definition of a subproblem.

LE(j) = length of the longest increasing subsequence that ends at aj .

This definition of a subproblem has the advantage that we can define a recurrence relation
using it, but it has a slight disadvantage in that LE(n) is not the solution of the problem
we started out with (why?).

The idea behind the recurrence relation for LE(j) is this. Given L(j − 1), we know
both the length of an increasing subsequence and where that subsequence ends. We can
use aj to increase the length of that subsequence if aj > aj−1, and the new increasing
subsequence will have length 1+L(j−1). But even if we can extend the subsequence given
by L(j − 1), the resulting subsequence need not be the longest increasing subsequence
that ends at aj . It may be that we can extend some other, longer, increasing subsequence,
L(i) where i < j−1 (and ai < aj). So to find the longest possible increasing subsequence
that ends at aj , we need to take a maximum over all of the sequences that aj can extend.
This leads to the following recurrence relation.

LE(j) = 1 + max
ai<aj

{LE(i) } with LE(1) = 1



where we use the convention that the maximum over an empty set is zero. (If aj ≤ ai

for all 1 ≤ i < j, then the above maximum is over an empty set of indices. This can
happen, for example, when the array A is sorted in decreasing order.)

The problem we want to solve is L(n), where L still has the definition it was given above.
We can define L(n) in terms of the values of LE(j). Since the solution to L(n) must be
a subsequence that ends somewhere, that maximizing subsequence must be a solution
to one of the subproblems LE(j) for some j between 1 and n. So

L(n) = max
1≤j≤n

{LE(j) }.

We can implement the recurrence relation for LE as a bottom-up (or top-down) dy-
namic programming solution. You should convince yourself that this would be an Θ(n2)
algorithm (because the calculation of each LE(j) requires searching back through the
array and looking at each element ai for 1 ≤ i < j). The calculation of L(n) from the
table of LE(j) values is a Θ(n) procedure. So the whole algorithm if Θ(n2).

There is a Θ(n lg(n)) dynamic programming algorithm that solves this problem. It uses
an even trickier definition of a subproblem than the one we used here. See Introduction

to Algorithms: A Creative Approach, by Udi Manber, pages 167–169.

Notice that we have only provided the maximum length of the longest increasing sub-
sequence. We have not calculated the location in the array of this maximal increasing
subsequence, nor have we determined if there might be more than one increasing subse-
quence that gives this maximal length.



4. Longest common subsequence

Suppose we are given two arrays, A and B, of n and m positive numbers (or two strings
of n and m characters)

A = [a1, a2, . . . , an],

B = [b1, b2, . . . , bm].

A common subsequence of A and B is a subsequence [ai1 , ai2, . . . , aik ] of elements
from A and a subsequence [bj1 , bj2, . . . , bjk

] of elements from B such that aiν = bjν
for

each 1 ≤ ν ≤ k. Notice that the elements in the common subsequence need not be
contiguous in A or B.

Given an common subsequence of A and B, we can compute its length. The “longest
common subsequence” problem is to find the maximum possible length over all possible
common subsequences from the given arrays (or strings) A and B.

Let us consider how to solve this problem using dynamic programming. We need to
come up with a definition of a subproblem for which we can write a recurrence relation
relating the solution of the subproblem to the solutions of other (smaller) subproblems.
The most obvious choice for a subproblem is

L(i, j) = length of the longest subsequence common to [a1, . . . , ai] and [b1, . . . , bj ].

As we shall now show, this obvious choice of subproblem is a good choice. We can write a
recurrence relation relating subproblem L(i, j) to its (smaller) subproblems L(r, s) with
r < i and s < j.

The idea behind the recurrence relation is this. Given indices i and j, consider elements
ai from A and bj from B. We have two mutually exclusive cases, either ai = bj or ai 6= bj .
Let us consider these two cases one at a time.

Suppose that we have ai = bj . Then the element ai (and also bj) must be the tail end of
the common subsequence that solves the subproblem L(i, j) (why?). What about the rest
of this common subsequence? It must be L(i−1, j−1). That is, the common subsequence
that solves L(i, j) must have ai tacked on to the end of the common subsequence that
solves L(i − 1, j − 1). So in this case we have

L(i, j) = 1 + L(i − 1, j − 1) if ai = bj .

That is what our recurrence relation looks like in this case.

Now suppose that we are in the other case, where ai 6= bj. In this case we can say for
sure that we cannot have both ai and bj as part of the solution to L(i, j) (if both ai

and bj were part of the solution to L(i, j), then, since ai is the last item we can choose
from A and bj is the last item we can choose from B, it must be that ai and bj are
the last item in the common subsequence, but that implies ai = bj , a contradiction).
If we cannot have both ai and bj as part of the solution to L(i, j), that gives us three
(mutually exclusive) cases. Either ai is part of the solution to L(i, j) and bj is not, or bj



is part of the solution to L(i, j) and ai is not, or neither ai nor bj is part of the solution
to L(i, j). Let us look at these three cases one at a time.

Suppose that ai 6= bj , and ai is not part of the solution to L(i, j) but bj is part of
this solution. Since we know that L(i, j) doesn’t make use of ai, we can ignore it, and
conclude that L(i, j) = L(i− 1, j). That is, the common subsequence that solves L(i, j)
is the same subsequence that solves L(i − 1, j).

Similarly, if ai 6= bj , and bj is not part of the solution to L(i, j) but ai is part of this
solution, then L(i, j) = L(i, j − 1).

For the third case, if ai 6= bj , and neither ai nor bj is part of the solution to L(i, j), then
L(i, j) = L(i − 1, j − 1) (that is, we can ignore both ai and bj).

In general, when ai 6= bj we do not know which of the above three cases we are in, so
we define our recurrence relation to take the maximum of the values returned by these
three cases. That is

L(i, j) = max{L(i − 1, j), L(i, j − 1), L(i − 1, j − 1) } if ai 6= bj .

Now we can put our two main cases together, to get the whole recurrence relation.

L(i, j) =

{

1 + L(i − 1, j − 1) if ai = bj ,

max{L(i − 1, j), L(i, j − 1), L(i − 1, j − 1) } if ai 6= bj .

This recurrence relation can also be rewritten as

L(i, j) =

{

1 + L(i − 1, j − 1) if ai = bj ,

max{L(i − 1, j), L(i, j − 1) } if ai 6= bj .

The initial conditions are

L(i, 0) = 0 for 0 ≤ i ≤ n and L(0, j) = 0 for 0 ≤ j ≤ m

since there can be no common subsequence if one of the sequences is empty.

Notice that we have only provided the maximum length of the longest common subse-
quence. We have not calculated its location in the two arrays, nor have we determined
if there might be more than one common subsequence that gives this maximal length.


