CS 332 Exam 1 - Review Problems

Fall, 2011

The exam will be over the following sections of the textbook.
1.1, 1.2
2.1, 2.2, 2.3
3.1
4.1, 4.5,
6.1-6.4
7.1-7.4
8.1
9.1, 9.2

In addition to the problems given below, you should also look at the "practice problems" from the textbook that were assigned on the course web site.

Problem 1: Let P be a problem. Suppose we know that for any algorithm that solves P , the worst-case time complexity of the algorithm is $\mathrm{O}\left(n^{2}\right)$ and also $\Omega(n \lg (n))$. Let A be an algorithm that solves P . Which of the following statements about A is consistent with the information about the complexity of P ?

- (a) A has worst-case time complexity of $\mathrm{O}\left(n^{2}\right)$.
- (b) A has worst-case time complexity of $\mathrm{O}\left(n^{1.5}\right)$.
- (c) A has worst-case time complexity of $\mathrm{O}(n)$.
- (d) A has worst-case time complexity of $\Theta\left(n^{2}\right)$.
- (e) A has worst-case time complexity of $\Theta\left(n^{3}\right)$.

Problem 2: For each of the following questions, briefly explain your answers.

- (a) If I prove that an algorithm takes $\mathrm{O}\left(n^{2}\right)$ worst-case time, is it possible that it takes $\mathrm{O}(n)$ on some input?
- (b) If I prove that an algorithm takes $\mathrm{O}\left(n^{2}\right)$ worst-case time, is it possible that it takes $\mathrm{O}(n)$ on all inputs?
- (c) If I prove that an algorithm takes $\Omega\left(n^{2}\right)$ worst-case time, is it possible that it takes $\mathrm{O}(n)$ on some input?
- (d) If I prove that an algorithm takes $\Omega\left(n^{2}\right)$ worst-case time, is it possible that it takes $\mathrm{O}(n)$ on all inputs?
- (e) If I prove that an algorithm takes $\Theta\left(n^{2}\right)$ worst-case time, is it possible that it takes $\Omega\left(n^{3}\right)$ on some input?

Problem 3: Prove or disprove.

- (a) $2^{(2+n)} \in \mathrm{O}\left(2^{n}\right)$
- (b) $2^{(2 n)} \in \mathrm{O}\left(2^{n}\right)$

Problem 4: Show that $\ln n!\in \mathrm{O}(n \ln n)$.

Problem 5: Which is a better worst case time, $\mathrm{O}(n)$ or $\mathrm{O}\left((\ln n)^{2}\right)$? Give a brief justification.

Problem 6: Below are six C functions that each compute the value of 2^{n} for a positive integer n. Analyze each function for how many addition and multiplication operation are needed as a function of the input n (can you find recurrence relations for $\mathrm{M}(n)$, the number of multiplications, and $\mathrm{A}(n)$, the number of additions?). Which of the implementations of 2^{n} is the most efficient?

```
int twol (int n)
{
        if (n == 0) {return 1;} else return 2*two1(n-1);}
}
int two2 (int n)
{
        if (n == 0) {return 1;} else {return two2(n-1)+two2(n-1);}
}
int two3 (int n)
{
        // Note call to two1.
        if (n == 0) {return 1;} else {return two3(n-1)+two1(n-1);}
}
int two4 (int n)
{
        if (n == 0) {return 1;}
        else if (n % 2 == 0) {int x=two4(n/2); return x*x;}
        else {return 2*two4(n-1);}
}
int two5 (int n)
{
    if (n == 0) {return 1;}
    else if (n%2 == 0) {two5(n/2) * two5(n/2)}
    else {return 2*two5(n-1);}
}
int two6 (int n)
{
    // Note call to two4.
    if (n == 0) {return 1;} else {return two6(n-1)+two4(n-1);}
}
```

