Chapter 9
A Third Look
at ML

9.1 Introduction

This chapter continues the introduction to ML, It will start
with some more advanced pattern-matching features. In
Chapter 7 you learned about the pattern-matching style of
function definitions:

fun £ 0 = "zero®

| £ = "non-zero";

The same syntax for pattern matching can be used in sev-
eral other places in ML programs, such as the case expres-
sion:

case n of

0 == "zero" |
=% "non-zero"

After covering that, this chapter will turn to higher-order
functions. A higher-order function is one that takes other
functions as parameters or produces them as returned val-
ues. Such functions are used much more often in functional
languages than in traditional imperative languages. By the
end of this chapter you will see why.

133

134 Chapler 3—A Third Look at ML

EEN 9.2
- & More Pattern Matching

A rule is a pilece of ML syntax that looks like this:
<rule= ::= zpatfern> == <expression=

A mateh consists of one or more rules separated by the | token, like this:
ematch> 1= <rule= | <rule= ' |' <match=

As always, ML doesn’t care how you break a match across lines, but it is easier for
people to read if each rule in the match is on a line by itself. The pattern of a rule
can, as always, define variables that are bound by pattern matching. The scope of
those definitions runs from the point of definition to the end of the rule, A rule is a
kind of block in ML. Each rule in a match must have the same tvpe of expression
on the right-hand side. A match is not an ML expression by itself, but it forms part
of several different kinds of ML expressions. You have already seen something
much like this for pattern-matching function definitions.

One important kind of ML expression that uses a match is the case expression.
lts syntax is simple:

<CRSE-LAP> :i= case <expression= of <malchs

For example:

case 1 + 1 of
3 => "three” |
2 => "twan" |
_ => "hmm";
val it = *"two®* : Btring

The value of case <expression> of <match> is the value of the expression in the
first rule of the <mafch= whose pattern matches the value of the <expression>. In the
example above, the case expression has the value 2, which malches the pattern 2,
s0 the value of the entire case expression is the string "two",

That example does not use the full pattern-matching power of ML's case expres-
sion. Many languages have some kind of case construct that matches the value of
an expression against compile-time constants, with a default entry in case there is
no matkch. But few langunages have a case expression that allows general pattern
matching. For example, the following expression produces the third element of x
(an int list)if the list has three or more elements, or the second element if the
list has only two elements, or the first element if the list has only one element, or
the constant O if the list is empty:

9. 3—Function Values and Anonymous Functions 135

case X of

The case expression can easily do everything the conditional expression can do.
Any expression of the form if exp, then exp, elsa exp, can be rewritten as a
two-rule case expression like this:

case ¢xp, of
true => exp, |
false => cap,

From the perspective of the ML system, it makes no difference whether you write
a conditional expression or the equivalent case expression. Of course, from the
perspective of the human reader, the conditional expression is easier to read and
understand, so you should use the case expression only when you need its extra
Hexibility.

HEN 9.3
~ W™ Function Values and Anonymous Functions

When the ML language system starts up, many variables are already defined and
bound. This includes all the predefined functions like ord and operators like -

- ordjy

val it = fmn : char -»> int
- wf

val it = fn ; int -> ine

Function names, like ord, and operator names, like -, are variables just like any
others in ML. They are variables that happen to be bound, initially, to functions.
That is what ML is reporting in the example above; ord is a variable whose value
isa funcltion of type char -= Int, and - is a variable whose value is a function of
type int -> int,
The definition val x = 7 binds x to the integer 7. In the same way, this next

example binds x to the function denoted by the ~ operator.

- val x = -;

val ¥ = £a : 'int -» int

- x 3:
val 1t = -3 : int

136 Chapler 3—A Third Look at ML

As you can see, x now denotes the same function that - does. It was applied to the
operand 3 to negate it

This can be a hard concept to follow al first, especially if you are accustomed
to a conventional imperative language. In most imperative languages, a function
definition gives a unique; permanent name to the function. In ML, a function is not
tied to a particular function name. We may speak informally of “the function £ in
some ML program, but it would be more accurate to speak of “the function cur-
rently bound to the name £.” Functions themselves do not have names, though one
or more names may be bound to a particular function.

Then how can a function be created without a name? The fun syntax creates a
new funchion and binds a name to the funciion automatically, Buk there is another
way to define a function, a way that does not involve giving it a name. To define
such an anonymous function, simply give the keyword £n followed by a match.
Here is a named function £, defined using the original fun syntax, that adds 2 to its
integer parameter:

- fun £ x = x + 25

val £ = fn : int -= int
- £ 1;

val-1t = 3 @ 1int

Here is the same computation using an anonymous function defined with an fn
expression:

- fn x == X + 2;

val it = fn : 1mt -5 4inEc

- (fn x => x + 2) 1;
val it = 31 : int

The anonymous function £n x => x + 2 isexactly the same as the named func-
tion £ and can be applied to parameters in exactly the same way. In fact, what fun
does can now be defined in terms of val and £n, since fun £ x = x + 2 hasthe
same effectasval £ = fn x =» x ¢+ 2.

Anonymous functions are useful when you need a small function in just one
place and don't want to clutter up the program by giving that function a name. For
example, suppose a sorting function called quicksort takes two inputs—the list
o be sorted and a comparison function that decides whether one elemient should
come before another, (You implemented such a function if you did Exercise 7 in

1. There is actually a slight but impertant difference between a definition with fun and one with val
and £n. The scope of the definition of £ produced by fun £ includes the function body being defined,
whilie the scope of the defimtion of £ produced by val £ = £ndoes not. 5o only the fun version cian
b recursive,

9.4—Higher-Order Functions and Currying 137

Chapter 7.) The comparison function is trivial. It seems ugly to clutter up the pro-
gram with a named function like this:

- fun intBefore (a,b) = a < b;

val intBefore = fn : inmk * int -» bool

- quicksort {([1,4,3,2,5], intBafora);
val it = [1,2,3,4.,5] ¢ inkt list

It would be simpler just to make an anonymous comparison function at the point
where it is needed, as in these two examples:

- guicksort ([1,4,3,2,5], fn (a,b) => a < b);

wval it [1,2,3,4,58] : int list

- guickgort ([1,4,3,2,5], £fn {(a,b) => & > b);

val 1t = [5,4,3,2,1] ¢ int list

There is an even shorter way to write the two previous examples. The anony-
mious comparison functions in those examples do exactly what the < and = opera-
tors do. Why not just use the < and = operators directly as the comparison func-
tions? Unfortunately, we cannot just write quicksort {(x, <}, since ML expects
= to be used as a binary operator. But there is a way to extract the function denoted
by an operator; the op keyword, The value of the expression op < is the function
used by the operator <. Using this trick, we can simply write:

- guicksort ([1,4,3,2,5], op <)
val it = [1:2,3,4.5] : inkt list

- guicksort ([1,4,3,2,5], op =);
val it = [5,4,3,2,1] : int list

Most functional languages have an expression like ML's £n expression, whose

value is an anonymous function.®

W 9.4
- W Higher-Order Functions and Currying

Every function has an order, defined as follows:

A function that does not take any functions as parameters and
does not return a function value has order 1.

2. The ideaof an expression whose value ks an anonymous function goes back to the frst versions of
Lisp, which used the name lambda for something that works like £1 in ML In a theoretical form, the
idea poes back to the branch of mathematics called the “lambda calcules,” which manipulates anony-
mous functions with a notation that uses the Greek letter lambda {3 o introduce a function. The name
hias becomie generic, so that any expression like ML £o expression is called a “lambda exprossion, ™

138 Chapler 3—A Third Look at ML

A function that takes a function as a parameter or returns a func-
tion value has order n+1, where n is the order of its highest-order
parameter or returned value.

A function of order n is called an nth order function, and a function of any order
greater than 1 is called a ligher-order function. Higher-order funchions are used
miuch more often in functional languages like ML than in imperative languages.

As you know, functions in ML take exactly one parameter. You have already
seen one way to squeeze multiple parameters into a function, which is to pass a
tuple as the parameter. There is another way to do it using higher-order functions.
You can write a function that takes the first parameter and returns another func-
tion. The new function takes the second parameter and returns the ultimate result.
This trick is called currying.* The next example shows a function £ with a tuple
parameter, and a curried function g that does the same thing;

- fun £ (a,b) = a + b;

VAl T = fn ; Int-¥*¥Int-—-% int
- fungas=fnb=>a+ b;

val g fn : int -» int -> int
= £ [2,3);

val ie =6 - int

- g2 3

val it = § © int

The function g takes the first parameter and returns an anonymous function that
takes the second parameter and returms the sum. Notice that £ and g are called
differently. [expects a tuple, but g expects just the first inleger parameler, Because
function application in ML is left associative, the expressiong 2 3 means (g 2}
3; that is, first apply g to the parameter 2 and then apply the resulting function (the
anonymous function g returns) to the parameter 3,

We do not have to create a tuple when calling g, but that is not the main advan-
tage of currying. The real advantage is that we can call curried functions, passing
only some of their parameters and leaving the rest for later. For example, we can
call g with its first parameter only:

- val add2 = g 27

val add? = fn : int -> int

- add2 3;

val it = 5 : int

- add2 10;

val ‘it = 12 : int
3. “Currying” is named not for the spicy food, but for the mathematician Haskell Brooks Curey
(1900-1982), who made significant contributions to the mathematical theory of functional programming,
There is alse a major functional programming lnguage named for him: Haskell.

9.4—Higher-Order Functions and Currying 138

Here g was used to create a function called add2 that knows how to add 2 to any
parameter. [n effect, add2 is a specialized version of g, with the first parameter
fixed at 2 but the second parameter still open.

For a more practical example, imagine defining the quicksort function as a
curried function that takes the comparison function first and the list to sort second.
S0 it would have this type:

('a * 'a == bool) -> 'a list == 'a list

We could vse this curried quicksort in the usual way, giving all of its parameters
at once:

- guickesort (op <) [1,4.3.2,51;
wval it = [1,2,3,4,5] : imt list

Cir we could use it to create specialized sorting functions by giving just the first
parameter, like this:

- val sortBackward = gquicksort (op =);

val sortBackward = fmn : int list -> imt list

- sortBackward [1.,4,3.2.5];:
val it = [5,4,3,2.11 ¢ int list

As you can see, the curried quicksort is useful in more ways than a quicksort
that takes its parameters as a tuple.

Of course, currying could be generalized for any number of parameters. Here
is an example that adds three numbers together, first using a tuple and then in cur-
ried form:

- fun £ {(a,b.c) = a + b + oj

val £ = fn : int * int * imt -> inkt

- fungas=sf£fnbs» fne=>a+b+ o}
val g = fan ;: int -> Int - int -» ANt
- F (1,2,3);

val it = & : int

- gl 2 3;

val it = 6 : ink

Once you are sure that you understand how these currying examples work, you
can be let in on a little secret: there is-a much easier way to write curried functions.
For example, these bwo definitions do exactly the same thing:

fun g a

=fn b= fn e == a + b+ c;
fun g a b ¢

=a + b + <;

The second way is much shorber to write but identical in meaning. ML treats it as
an abbreviation for the first way. This section started out showing you how to write

140 Chapler 3—A Third Look at ML

curried functions the long way because the long way makes all the intermediate
anonymaous functions explicit. But once you really understand how this works, vou
should use the short way, since it is much easier to write and read.

EEN 8.5
~ N Predefined Higher-Order Functions

This section will use three important predefined higher-order functions: map,
foldr, and foldl. (As you might guess from the names, foldr and foldl are
very similar, with one subtle but important difference,) Once you get comfortable
using these functions you will find them very helpful. The exercises at the end of
this chapter will give you some idea of the versatility of these functions.

The map Function
The map function is used to apply some function to every element of a list, collect-
ing a list of the results. For example:

- map - [1,2,3,4];
val it = [~1,~2,~3,-4] : int list

This example applies the negation function, ~, to every element of the list
[1,2,3,4]. The result is the original list, with every element negated. Here are
some other examples;

- map (fn x => x + 1) [1,2,3,4];

val it = [2,3,4,8] : int list

-map (fn x =» x mod 2 = 0} [1,2,3,4);

val it = [false,true, false, true] : bool liat

map (op +) [(1,2),(3,4},1({5.6)];
val it '=s [3,7,.13] ::dmk Tist

The last example applies the function of the + operator to a list of pairs. The result
is a list of the sums formed from each pair.

You can tell from the way map 15 called that it is a curried function. It takes two
parameters, but they are not grouped together as a tuple. Its type is

('a == 'b) -> 'a list -» 'b list

If you call it with just the first parameter, you get a function thal transforms lists us-
ing a fixed function. For example:

- wval £ = map {op +)};

val T = fn : (int * int) list -» dnt listc
- £ [{1;2} i {3;"}] I

val it = [3,.7] & imt list

8.5—Predefined Higher-Order Functions 14

The most important thing to remember about using map is that the result will
always be a list that is the same length as the input list. When you have a problem
to solve that involves converting one list into another list of the same length, and
when each element of the output list depends only on the corresponding element
of the input list, you may be able to use map to solve the problem. If these require-
ments are not met, you may be able to use foldr or £oldl instead.

The £foldr Function
The £aldr function is used to combine all the elements of a list into one value, This
example adds up all the elements of a list:

foldr (op +) D [1,2,3,4];

The £oldr function takes three parameters: a function f, a starting value ¢, and a
list of values [x,, ..., x |. It starts with the rightmost element x_and computes f{x c).
Then it folds in the next element x_, computing f{x_,fAx_c)). It continues in this
way until all the elements have been combined. The result is

AU o i, i, 1))

For example, foldr (op +) 0 [1,2,3,4] addsup the list by computing
1+{2+{3+({4+0))). Here 1s foldr in achon:

- foldr {U‘P +) 0 [1,2.,3.,4]);

val it = 10:: int

- foldr {(op *)} 1 [1,2,3,4]1;

val it = 24 : int

- foldr {op *) "" ["abe","def","ghi"];

val it = "abocdefghi" : string

foldr {op ::) [5] [1.2.3,4];
val it = [1,2,3,.4,5] : int list

[¥d you notice the space after the * in the expression (ap *)7 Writing the ex-
pression without that extra space would confuse ML, since *) is used to close ML

comments.
You can tell from the way foldr is called that it is a curried function. It takes

three parameters, but not grouped together as a tuple, This is its type:

(*a » 'H - 'h) - "B - 'a list -> "B
Chne common way o use £oldr is to give it the first two parameters, but not the
third. The result is a function that takes a list and folds it with a fixed function and

an inifal value:

142 Chapler 3—A Third Look at ML

- val addup = foldr (op +) 0;
val addup = fn : int list -= imkt
- addup [1,2,3,4,5];

val it = 15 ; int

The examples above show foldr being used with operators:op +, op =1, and
so forth. In the exercises at the end of the chapter, you will rarely find that there is
an operator that performs exactly the function you need. Usually, you have to write
a little anonymous function for Foldr, so the call will look more like this:

foldr (fn (a,b) => function body) ¢ x

Here, ¢ is the starting value for the fold—usually a constant—and x is the input list.
Some important Hps for using foldr:

= On the first call of the anonymous function, a will be the rightmost element
from the list ¥ and b will be the starting value ¢,

B On each subsequent call of the anonymous function, a will be the next ele-
ment from the listx and b will be the result accumulated so far—that is, the
previous value returned by the anonymous fimetion.

B These values all have the same type: b, ¢, the value returned by the anony-
mous function, and the value returned by the foldr.

B The type of the elements of the list x is the same as the type of a.

® The starting value ¢ is what £oldr will return if the list x is empty.

These tips can help you figure out how to use Foldr to solve programming
problems, For example, suppose you want to write a function thin that takes an
int list and returns the same list, but with-all the negative numbers eliminated.
You can rule out using map for this, since the result list does not necessarily have
the same length as the input list. So you start with the pattern described above:

fun thin L = foldr (fn {(a,b) == functionbody) ¢ L;

The result is supposed to be an int 1ist, so it follows that b, ¢, and the value
returned by the anonymous function must also be of type int 1ist. Furthermore,
if the input list L is the empty list, the output should also be the empty list; so it
follows that the starting value ¢ should be []. All that remains is to write the body
of the anonymous function. It takes an int aand an int list b, and retums
either a: : b {if a is to be accumulated in the result) or just b {if a is to be omitted).
This is sitnply
fun thin L =
foldr (fn {a,b} = if a = 0 then b else a::b) [] L;

9.6—Conclusion 143

The £o0l1d1l Function
Like foldr, the f0l1dl function is used to combine all the elements of a list into
one value, In fact, foldr and foldl sometimes produce the same resulis:
foldl (op +) 0 [1,2,3,4];
val it = 10 : int

- foldl (op *) 1 [1,2,3,4];
wal it = 24 1 int

All the tips about how to use foldr also apply to £o1d1, with one subtle differ-
ence: £oldl starts with the leftmost element in the list and proceeds from left to
right.

The foldl function takes the same three parameters as foldr: a function f a
starting value ¢, and a list of values [x,, ..., x]. It starts with the leftmost element x,
and computes f{x_¢). Then it folds in the next element x,, computing fix fix <)), It
continues in this way until all the elements have been combined. The result is

A flx, vl iz, €)).0))

For example, foldl (op +) 0 [1,%,3,4] adds up the list by computing
FH{3+(2+(1+0))). Compare this with the function computed by foldr, The foldr
function starts with the rightmost element of the list; the foldl function slarts
with the leftmost element of the list. For operations that are associative and com-
mutative, like addition and multiplication, this difference is invisible, For other
operations, like concaktenation, it matters a lot. Compare these foldr and foldl
results:

- foldr (op “) "* ["abe",*daf", "ghi="];

val it = "abodefghi" : strimg

- foldl {op *) "* [“abe","def","ghi®];

val it = "ghidefabc" ; string

- foldr [GII =) 0 [1,2,3,4];

val it = <2 : ine

- feldl {(op -) 0 [1.2,3.4]1;:
val it = 2 : inkt

I=1i 9.6
- W™ Conclusion

This chapter introduced the following parts of ML:
B The general syntax for a match.
® The case expression (using matches),
® The idea of function values and anonymous functions.

144 Chapler 3—A Third Look at ML

B The fn expression for creating anonymous functions (using matches).

B The idea of higher-order functions.

B The idea of currying.

B The long and short forms for writing curried functions.

B The predefined, curried, higher-order functions map, foldr, and foldl.

Exercises

The first 25 exercises should all have one-line solutions using map, foldr, or
foldl. You can also use other predefined functions, of course, but do not write any
additional named functions and do not use explicit recursion. If you need helper fune-
tions, use anonymous ones. For example, if the problem says “wrile a funclion
add2 that takes an int list and rehurns the same list with 2 added to every ele-
ment,” your answer should be

Tun add2 X = map (fn a s> a + 2) X;

You have seen some of these problems before. The trick now is to solve them in this
mew, condcise form.

Exercise 1 Write a function i12r] of type int list -» real list
that takes a list of integers and returns a list of the same numbers converted
to type real. For example, if you evaluate i12r1 [1,2, 3] you should get
[1.0,2.0,3.0].

Exercise 2 Write a function ordlist of type char list -» int list that
takes a list of characters and returns the list of the integer codes of those charac-
ters. For example, if you evaluate ordlist [#°A", #"b" , #'C"] you should get
[65,98,67]:

Exercise 3 Write a function squarelist of type int list -> int list
that takes a list of integers and returns the list of the squares of those integers, For
example, if you evaluate sgquarelist [1.2,3,4] youshould get [1,4,2,16].

Exercise 4 Write a functionmultpairs of type (int * int) list -> int
list that takes a list of pairs of integers and returns a list of the products of each
pair. For example, if the inputis [{1,2), (2,4}], your function should return
[2,12].

Exercises 145

Exercise 5 Write a function inclistof iype int 1ist ->int -» int list
that takes a list of integers and an integer increment, and returns the same list of
integers but with the integer increment added to each one. For example, if you
evaluate inclist [1,2,3,4] 10 youshould get [11,12,13, 14]. Note that
the function is curried.

Exercise 6 Write a function sgsum of type int 1ist -> int that takes a list
of integers and returns the sum of the squares of those integers. For example, if you
evaluate sgeum [1,2,3, 4] you should get 30.

Exercise 7 Write a function bor of type bool list -> bool that takes a list
of boolean values and returns the logical OR of all of them. If the list is empty, your
function should return £alse.

Exercise 8 Write a function band of type bool list -»> bool that takes a list
of boolean values and returns the logical AND of all of them. If the list is empty,
your function should return true.

Exercise9 Wrile a function bxor of type bool list -= beol that takes a list
of boolean values and returns the logical exclusive OR of all of them. (It should re-

turn true if the number of true values in the list is odd and £alse il the number
of true values is even.) If the list is empty, your function should return false,

Exercise 10 Write a function dupList of type 'a list -» 'a list whose
oitput list is the same as the input list, but with each element of the input List
repeated twice in a row. For example, if the input listis [1, 3, 2], the output list
should be [1,1,3,3,2,2]1, If the input listis [], the output list should be [],

Exercise 11 Write a function mylengthof type ‘a list -= int that returns
the length of a list. {Of course, you may not use the predefined length function to
doit.)

Exercise 12 Write a function i12absarl of type int list -> real list
that takes a list of integers and returns a list containing the absolute values of those
integers, converted to real numbers.

Exercise 13 Write a function truecount of type bool list -3 int that takes
a hist of boolean values and returns the number of trues in the hst,

146 Chapler 3—A Third Look at ML

Exercise 14 Write a function maxpairs of type (int # int) list -»> int list
that takes a list of pairs of integers and returns the list of the max elements from
each pair. For example, if you evaluate maxpairs [{1,3),1{4,2]),(~3,~4)]
you should get [3,4, ~3].

Exercise 15 Write a function my implode that works just like the predefined
implode. In other words, it should be a function of type char list - string
that takes a list of characters and returns the string containing those same charac-
ters in that same order.

Exercise 16 Write a function leoncat of type 'a list list -=» 'a list
that takes a list of lists as input and returns the list formed by appending the input
lists together in order. For example, if the inputis [(1,21, [3,4,5,6], [71],
your function should reburn [1,2,3,4,5,6, 71, (There is a predefined function
like this called concat, which of course you should not use.)

Exercise 17 Write a function max of type int list -> int thatretumns the
largest element of a list of integers. Your function need not behave well if the list is

empty.

Exercise 18 Write a function min of type int list -> int thatreturns the
smallest element of a list of integers. Your function need not behave well if the list
is empty.

Exercise 19 Write a function member oftype ' 'a # ''a list -» boolso
that member (&, L) is true if and only if e is an element of list L.

Exercise 20 Wrile a function append of type 'a 1ist -> 'alist -= 'a list
that takes two lists and returns the result of appending the second one onto the
end of the first. For example, append [1,2,3] [4,5, €] should evaluate to
[1,2,3,4,5,6]. Do not use predefined appending utilities, like the @ operator or
the concat function, Note that the function is curried.

Exercise 21 Define a function less of type int * int list -= int list
so thal less (e, L) is a lisk of all the integers in T that are less than e {in any order).

Exercise 22 Write a function evens of type int 1list -> int ligt that
takes a list of integers and returns the list of all the even elements from the original

Exercises 147

list {in the original order). For example, if you evaluate evens [1,2,3,4] you
should get [2,47.

Exercise 23 Write a function convert of type ('a * 'b) list -=

‘a list * 'b list, thal converts a list of pairs inlo a pair of lists, preserv-
ing the order of the elements, For example, convert [(1,2), (3,4), (5,8)]
should evaluate to ([1,3,5], [2,4,6]).

Exercise 24 Define a function mymap with the same type and behavior as map,
but without using map. (MWote this should still be a one-liner: use fo1dl or foldr.)

Exercise 25 Represent a polynomial using a list of its (real) coefficients, starting
with the constant coefficient and going only as high as necessary. For example,
3%* + 5x + 1 would be represented as the list [1.0,5.0,3.0] and x*- Zx as
[o.0,-2.0,0.0,1.0]. Write afunction eval of type real list -» real -=
real that takes a polynomial represented this way and a value for x and returns
the value of that polynomial at the given x. For example, eval [1.0,5.0,3.0]
2.0 should evaluate to 23 . 0, because when x =2, 3x* 4 5x + 1 = 23, (This 1s the
same as Exercise 5 in Chapter 7, except that it is now a curried funchion and must
be written as a one-liner,)

These remaining exercises are not one-liners. They should be written without using
map, foldl, or foldr.

Exercise 26 Define a function mymap2 with the same type and behavior as map.
(This is similar Exercise 24, but that exercise required the use of foldl or foldr,
while this exercise forbids them.)

Exercise 27 Define a function my foldr with the same type and behavior as
foldr.

Exercise 28 Define a function myfoldl with the same type and behavior as
foldl.

