
Chapter 9
A Third Look
at ML

9-1 Introduction
This chapter continues the introduction to ML. It will start
with some more advanced pattern-matching features. In
Chapter 7 you learned about the pattern-matching style of
function definitions:

fun f 0 11 zero-f _ "non-zero";

The same syntax for pattern matching can he used in sev-
eral other places in ML programs, such as the case expres-
sinn:

case n of
0 = > "zero 11 |

= > "non = zero"
After covering that this chapter will turn to higher-order
functions. A higher-order function is one l hat la Ikes other
Junctions as parameters or produces them as returned val-
ues.Such functions am used much more often in functional
languages than in traditional imperative languages. By the
end of this chapter you will see why

133

134 Chaplef 9— A Thi rd Look at ML

m 9- 2
More Pattern Matching

A riJt' is a piece of ML syntax that looks like this:

<rwfe> : : = < pattem> = > <c.\pn$sjofi >

A match consists of one or mart? rules separated by the | taken,like this:

cnmhii* : i = < nikm> \ <ruh> 1 | ‘ < match>

As always., ML doesn't can? how you break a match across lines, but st is easier for
people to read if each rule in the match its cm a line by itself , The pattern of a rule
can, as always, define variables that are bound by pattern matching. Thu scope of
those definitions runs- from the point of definition to the end of the rule. A rule as a
kind of block in ML. Radi rule in a match must have thesame type of expression
on the right-hand side. A match is not an ML expression by itself, but it forms part
of several different kinds of MLexpressions. You have already seen something
much like? Litis for pattern-matching function definitions.

One important kind of M L expression that uses a match is the case expression.
Its syntax is simple:

<cas&£xp> : T « case of - mauii >

For example:

- case 1 + 1 of
= 3 = > " three"
= 2 => " two"
a m > * hffiffl I
val it ^ " two" : string

The value of case <£rpfKS52"oH> of is the value of the expression in the
first rule of the <matih> whose pattern matches the value of the In the
example above, the case expression, has the value 2r which jnalches the pattern 2,
so the value of the entire case expression is the string " two" .

That example does not use t.he full pattern-matching power of MUs ease expres-
sion. Many languages have some kind of case construct that matches the value of
an expression against compile-time constants with a default entry in ease there is
no match. But few languages have a case expression that allows general pattern
matching. !''or example, the following expression produces the third element of x
(an inL l i s t) if the list has three or more elements,. or the second element if the
list has only two elements, or the first element il the list has only one element, or
the constant 0 if the list is empty:

9.3— Function Values and Anonymous Functions 135

case x of_ i-: _ ; j C i _ => C
; ; b ; : b |

a i : _ => a j
n i l = > 0

The case expression can easily do everything the conditional expression can do.
Any expression of the form if exp, then ejp2 else ^can be rewritten as.a
two-rule ease expression like this:

case op, of
trus = > exp.. |
false = > 07».

From the perspective of the ML system, it makes no difference whether you write
a conditional expression or the equivalent case expression.Of course, from the
perspective of the human reader, the conditional expression i& easier to ivad and
understand, so you should use the case expression only when you need its extra
flexibility.

IB 9 3
L Function Values and Anonymous Functions

When the ML language system starts up, many variables are already defined and
bound. This includes all the predefined functions like ord and operators like

- ordj
val it = fn : char - > int
-
val it = £n : int - > int

frinctiim names, like ord, and operator names, like art* variables just like any
others m ML. They are variables that happen to be bound, initially,, to functions.
That is what ML is reporting in the example above; ord is a variable whose value
is a function of type chd J > inL, and - is a variable whose value is a function, of
type int ~ > int.

The definition vaj x = 7 binds, x to the integer 7, fn the same way, this next
example hinds x to the function denoted by the - operator.

- va1 x 3= - ;
v&l JC = £ n ; int - > int- X 3;
val it « -3 : int

136 Chapter 9— A Third Look at ML

As you can see., x now denotes the same function that - does. It was applied to the
operand 3 to negate it.

This can be a hard concept to follow at first, especially if you are accustomed
to a conventional imperative language , In most imperative languages, a function
definition gives a. unique, permanent name to the function. In ML, a function is not
tied to a particular function name. We may speak informally of "the function f " in
some ML program, but it would he more accurate to speak of "the function cur-
rently bound to the name f /' Functions themselves do notAaiv names, though one
or more names may be bound to a particular function.

Then how can a function be created without a name? The fun svniax creates a
J

new function and binds a name to the function automatically- But there is another
way to define a function, a way Lbat does not involve giving it a name. To define
such an anonymous function, simply give the keyword f n followed by a. match.

Hem is a named function £, defined using the original Eun syntax, that adds 2 to its
integer parameter:

- fun f x B x + 2 ;
val f = fn : int - > int
- f li
val it ^ 3 : int

Here is the same compulation using an anonymous function defined wilh an £n

expression:

- £n x. = x + 2 ;
val it = fn ; int - > int
- (f n x = > i + 2| 1?
val it - 3 : int

The anonymous function fn x = > x + 2 is exactly the same as the named func
lion f and can be applied to parameters in exactly the same way In fact, what fun
does can now be defined in terms of val and £n,since fun f x - x + 2 has the
same effect as val f - fn x x +

2.1
11

Anonymous functions are useful when. you need a small function, in just one
place and don't want to clutter up the program by giving that function a name, For
example, suppose a sotting function called quicksort fakes two inputs— the list
lobe sorted and a comparison function that decides whether one element should
come before another. (You implemented such a function if you did Exercise 7 in

1. There Is actually a slight but important difference between a definition with £ un and one with val
and f n. The scope of the definition of f produced by fun £ includes the function body being defined,
while the scope of the definition of f produced: by val £ * fn does not So only the fun version cun
be recursive.

9.4— Higher-Ofder Functions and Currying 137

Chapter 7.) The comparison function is trivial. Jt seems ugly to clutter up the pro-
gram with a named function like this:

fun intBefore {afb} = a < b;
val intBefore = fn E int * int - > bool
- quicksort { [1 , 4 , 3 , 2 , 5 3 , intBafore } j

val it = [1,2, 3,4/5] : int list

It would be simpler just to make an anonymous comparison function at the point
where it is needed, as in these two examples:

quicksort ([1,4, 3,2,53, £n (*,b) => a c bji
val it [1, 2 , 3 , 4 , 5 1 i int list
- quicksort (1 1 , 4 , 3 , 2 * 5] , fn (a * b) > a s fcriz
val it = [5,4,3,2,1] ; int list

Theffi is an even shorter way to write the two previous examples. The anony-
mous comparison functions m those examples do exactly what the < and --> opera-
tars do, Why not just use the <. and > operators directly as the comparison func-
tions? Unfortunately, we cannot just write qu i cksort <\ f since Ml, expects
< to be used as a binary operator. But there LS a way to extract the function denoted
by an operator: the op keyword. The value of the expression op * is the function
used, by tine operator <. Using this trick, wean simply write:

- quicksort { [1 , 4 , 3 , 2 . 5 3 , op <) i
val it = [1,2, 3, 4,5] ; int list
- quicksort { [1 , 4 , 3 , 2 , 5 3 , o p >) ;
V i l i t = [5 , 4 , 3 , 2 , 1] : int list

Most functional languages have an expression like Mi's fn expression, whose
value is an anonymous function.-

. 9.4
Higher-Order Functions and Currying

Every function has an order, defined as follows*

A function, that does not take any functions as parameters and
does not return a function value has order 7.

2. Hu3 idea of m expw^on whose v& lue is an anonymous- function goes hack to Hut- firs# veraknwof
Lisp, which used Hie iLinije lurnbdd. for something that works like Eti in. ML in a theoretical form, the
idea goes bac k to the branch of mathematics called the '"lumbda calcuLus," which manipulates anony-
mous functions with a notation that uses the Greek krttet lambda (A) to introduce a function. I he name
has bccuiru.' gentile, so that any espnewsiun like Ml /s fn expression in called » "Iambia expression

138 Chapter 9— A Third Look at ML

A function that takes a function as a parameter or returns a func-
tion value hasWiT rt ± lf where ti is the order of .its highest-order
parameter or returned value.

A function of order a is called an nth order function,and a function of any order
greater than 1 is called a higher-order function.Higher-order functions are used
much more often in tuncHon.il languages like ML than in imperative lariguages-

As you know, functions in ML take- exactly one parameter. You have already
seen one way to squeeze multiple parameters into a function, which is to pass a
tuple;r- Lie parameter. I Imre is another way t\ > do il using higher order Junctions.
You can write a function that takes the first parameter and returns another func-
tion. rise new function takes Hue second parameter and returns the ultimate result.
This trick is called, currymgr The next example shows a function f with a tuple
parameter, and a curried function g that does the same thing:

- f s m £ (a . b) = a + b;
val f = fn s int * int -> int
- fun q a £n b > a + bj
val g = £n : int - > int - > int
- t f 2 , 3 » ;
val it = S : int
- g 2 3;
val it S : int

The function, q takes the first parameter and returns an anonymous function that
takes the Second parameter and returns the sum . Notice that E and g are called
differently, f expects a tuple, but q expects just the first integer parameter. Because
function application in ML is left associative, the expression g 2 1 means (g 2)

3; that isr first apply g to the parameter 2 and then apply the resulting function (the
anonymous function g returns) to the parameter 3.

We do not have to create a tuple w hen calling g, hut that is not the main advan-
tage of currying.The real advantage is that we can call curried functions, passing
only some of their parameters and leaving the rest tor later For example, we can
call g wrilh its first parameter only:

- val add2 g 2 j

val add2 £n : int -s int
- add2 3 ;
val it = 5 int
- add2 10;
val it - 12 i int

3. ‘Cuirying’ " is named not lor the spicy food, bui lor Ihe malhematLian Haatudl Bmifks Curry
rl ĈX) 1982). who made significan t ontribu.tiflns ID the mathematical theory ol fiincnonal programming.

Fhcre hi also a mapur hirvctiomal pTUKramminji; kknguagi? namixl for him: Haskell.

9.4— Higher-Ofder Functions and Currying 139

Here g was used to create a function called add2 that knows how to add 2 to any
parameter. In effect, add2 is a specialized version of g, with the first parameter
fixed at 2 but the second parameter still open.

For a more practical example, imagine defining the quicksort function as a
curried function dial takes the comparison function first and the list to sort second.
So it would ha%e this type

('a * ra bool) - > ' a list ' a list

We could use this curried quicksort in the usual way,- giving all of its parameters
at once:

- quicksort (op <) 11,4,3 ,2,5]?
val it. a [l f 2 r 3 r 4 r S l i int list

Or we could use it to create specialized sorting functions by giving just Lhe first
parameter, like this:

- Val aartBackward = quicksort (op >);
val aartBackward = fn : Int list - > int l i s t
- s o r t B a c k w a r d [1, 4 , 3, 2 , 5 1 1
v a l i t = [5, 4 , 3 , 2 ,1] ; i n t list

As you can see, the curried quicksort is useful in more ways than a quicksort
that takes its parameters as a tuple

Of course, currying could be generalized for any number of parameters. Here
is an example that adds three n urn bens together, first using ;-i tuple and then in cur-
ried form:

- f u n f (a , b* e) a + b + e j

val f - fn i int * int * int -> int
fun g a = fn b => fn c => a + b + c;

val g = fn i int - > int - > int - > Inc
- f (1, 2 , 3) ;
val it « 5 int
- g 1 2 31
val it = 6 ; int

Once you are sure that you understand how these currying examples work, you
can be let in on a little secret: there is a much easier way to write curried functions.
For example, these two definitions do exactly the same thing:

fun g a = fn b = > fn c = > a + fc + c;
fun g a b c = a + fa + c;

The second way is much shorter to write but identical in meaning. ML treats it as
an abbreviation for Lhe first way. This section started out showing you how to write

140 Chapter 9— A Third Look at ML

curried functions the long way because the long way makes all the intermediate
anonymous functionsexplicit, But once you really understand how this works,you
should use the short way since it is much easier to write and read.

ft 9.5
Predefined Higher-Order Functions

This section will use three important predefined higher-order functions: mapr
foldr,and foldl.(As you might guess from the names, foldr -and fold!are
very similar, with one subtle but important difference.) Once you get comfortable
using these functions you will find them very helpful, The exercises at the end of
this chapter will give you some idea of the versatility of these functions.

The map Function
The map function is used to apply some function to every element of a list, collect-
ing a list of the results- fvr example:

- map - [1,2,3,43;
val it = [-1,-2 r -2 t -4] r int list

This example applies the negation function, -> to every element of the list
[1, 2 , 3,4], The result is the original list, with every element negated, Here are
some other examples;

- m a p (f n x => JL + 1) p L # 2 # 3 # 4] j

val it - [2 r 3 r 4fEl : int list
- m a p (f n x > x m o d 2 0) 1 1, 2,3 , 4 5 /
val it = [false, false,true] : bool flat

map fop +) 1(1,2) p (3,4 } , (f S,6) 3 ;
val it - [3,7 , 11] int list

The last example applies the function of the + operator to a list of pairs.The result
is a list of the sums formed from each pair.

You can tell from the way map 33 called that it is a curried function. Jt takes two
parameters,but they are not grouped together as a tuple. Its type is

(la -> * b) -> ra list -> 'b list

If you call it with just the first parameter you get a function thaL transforms lists us-
ing A fixesI function. Tor example:

- Val f = mskp (op +);
val f = ED : (int * int) list -> int list
- f 1(1,2) t (3,4)33
val it = [3 r 7] int list

9.5— Predefined Higher-Order Functions 141

The most important thing t o remember about using map is that the result will
always be a list that is the same length as the input list. When you have a problem
to solve that involves converting one list into another list of the same length., and
when each element of the output list depends only on the corresponding element
of the input list, you may be able to use map to solve the problem. If these require-
ments are not met, you may be able to use foldr or f oldl instead .

The foldr Function
The foldr function is used to combine 3II tbe elements nf 3 list into one value.This
exampleadds up all the elements of a list:

foldr (op + } 0 [1* 2 / 3 , 41 ?

The foldr function takes three parameters: a function/, a starting value c, and a
list of values \xy , Jtj- It starts with the rightmost element in and computes fixn,c).
Then it folds in the next element xiiT, computing f{ x u l f f(x^c)). It continues in this
way until all the elements have been combined. The result is

For example, foldr (op +) a [1, 2 , 314] adds up the list by computing
l +|2+{3+{4+0))). Here is foldr inaction:

- foldr (op +) 0 [1,2,3,4] ?
val it = 10 : int
- fo ldr {op *) 1 [1, 2 , 3 , 4] /
val it - 24 : int
- fo ld r (op " I 11 [“abc ,"d e f “ g h i " 3 /
v*l it = "abodefghi,r ; string

foldr (op .: £) [S J [1, 2, 3, 4) ;
val it a [1 p 2 p 3 r 4 r 5) ? int list

Hid you notice she space after the * in the expression (op) ? Writing the ex-
pression without that extra space would confuse ML, since +) is used to close ML
comments.

YQLL can tell from the way foldr is called, that it i s a curried function. It takes
three parameters, but not grouped together as a tuple. This is its type::

(pa * fb - > rb) > 1 to - > ra list > 'b

One common way to use to ldr is to give Lt 1 he first two parameters, but not the
third. TTic result is a function that Lakes a list and folds it with a fixed function and
an initial value:

142 Chapter 9— A Third Look at ML

- val addup foldr (op +) Oj
val addup - tn z int list - > int
- add-up [l, 2, 3f 4,5] ?
val it = 15 E int

The examples above show tpldr being used with operators:op +, op ; ; , and
so forth. In the exercises at the end of the chapter, you will rarely find that there is
sin operator that performs exactly the function you need , Usually* you have to write
a little anonymous function for foldr, so the call will look more like this:

foldr (fn (a (b) -? ftincti&tt body) X

Here, c is the starting value for the fold usually a constant— and x is the input list.
Some important tips for using foldr:

On the first call of the anonymous function, a will he the rightmost element
from the list x and b will be the starting value c.
On each subsequent call of the anonymous function, a will be the next ele-
ment from the listx and b will be the result accumulated so far— that is, the
previous value returned by the anonymous function ,

These values all have the same type. bp c, the value returned by the anony -

mous hinction, and I he va1tie retumed by the foldr.

The type of the elements of the list x is the same as the type of a.
The starting value c is what foldr will return it the list _T LH empty.

These tips can help you figure ouL how to use foldr to solve programming
problems. For example, suppose you want to write a function chin that takes an
irtt list and returns the same list, hut with all the negative numbers eliminated.
You can rule out using map for this, since the result list does not necessarily have
!he same length as the input list So you start with the pattern described above;

fun thin L = foldr (fn (a , b!• = > function body) c L;

The result is supposed to be an int 11at, so it Fol lows that b, e, and the value
returned by the anonymous function must also be of type int list . Furthermore,
ii the in pul list L is the empty list the output should also be the empty list; so it
follows that the .starting value c should be [L All Lhat remains is to write the body
of the anonymous function. It takes an int a and an int list- b, and returns
either a: : b (if a is to be accumulated in Ihe result) or just b (if a is to be omitted).
This is simply

£un thin L =
foldi (fn (u , b) = > if a < 0 then b else a: -rb]i [] L;

9.6— Conclusion 143

The foldl Function
Like f oldr, the foldl function is used to combine all the elements of a list into
one value. In fact, foldr and foldl sometimes produce the same results;

foldl (op +) 0 [1,2,3,4];
val it = IQ : int
- foldl (op *) 1 [1,2,3,4 J;
val it. ss 24 : int

All the tips about how to use foldr also apply to foldl,with one subtle differ-
ence; foldl starts with the leftmost element in the list and proceeds from left to
right

The foldl function takes the same three parameters as foldr: a function /, a
starting value c, ami a list of values\x y t x] . It stal ls with the leftmost elemenI
and ceimputcs/tx^’). Then it folds In the next elementx.tf computing fix . It
continues in this way until all the elements have been combined. The result is

For example, foldl (op +) a [1,2,3,41 adds up the list by computing
4+(3+(2+(l+0))). Compare this with the function computed by foldr.The foldr
function starts with the rightmost element of the list; the foldl function starts
with the leftmost element of the list. For operations that are associative and com-
mutative, like addition and multiplication, this difference is invisible, For other
operations, like concatenation, it matters a lot . Compare these foldr and foldl
results;

foldr (op ') * ["aibe ", "def ", "giii"3 ;
val it = "abedefghi " : string
- foldl (op *) * [”abo","do£ ,"ghi“1 i
val it = "ghidefabc" ; string
- foldr (ap -) 0 [1,2,3,43 ?
val It = -2 Int
- foldl (op -} 0 [1,2,3,41;
val it H 2 : irtt

mm 9-6
Conclusion

This chapter introduced the following parts of ML:
The general syntax for a match.

•The case expression (using matches).
The idea of function values and anonymous functions.

144 Chapter 9— A Third Look at ML

The En expression for creating anonymous functions (using matches).
The idea of higher-order functions.
The idea of currying.
The long and short forms for writing curried functions ,

The predefined, curried, higher'-order functions map, foldc, and Coldl .

Exercises
The first 25exercises should all have one-lint solutions using map, foldr, or
f oldl.You can also use other predefined functions, of course, but do no! write any
additions! timedfwefaws and do not use explicit recursion, it you need helper func-
tions, use anonymous ones. For example, if the problem says "write a function
add2 that takes an int list and returns the same list with 2 added to every ele-
ment.'" your answer should he

fun add2 x ® map (fn a a + 2) x ?

You. have seen, some of these problems before. The trick now Ls tosolve them in thas
new, concise form.

Exercise 1 Write a function i12rl of type int list - > real list
that takes a list of integers and returns a list of the same numbers converted
to type real. For example, if you evaluate i!2rl [1, 2, 3] you should get
fl .0 , 2.0 , 3, 0] .

Exercise 2 Write a function ordlisr of type char list - > int list that
lakes a list of characters and returns the list of the integer codes of those charac-
ters. For example, if you evaluate ordlist |# A" , # ,rb" r # " C"| you should get
[65 * 38 , 67] ,

Exercise 3 Write a function square1 ist of type int l i s t - * int l i s t
LbuU takes a list of integers and returns the list of the squares of those1 integers. For
example, it you evaluate square!ist [1 r 2 , 3 , 4] you should get [1 r 4 r 9 , 1 6] ,

Exercise 4 Write a functionmultpairs of type iint * i n t) l i s t - > i n t
l i s t that takes a I ist of pairs of integers and returns a list of die products of each
pair. For exam pie, if the i n p u t i s L (1* 2) p (3 , 4)] , your function should return
13 # 121 *

Exercises 145

Exercise 5 Write a function inclist of type int list -> inc - > int list
that takes <t list ol integers and an integer increment, and returns the same list of
Integers but with the integer increment added to each one. For example, if you
evaluate inclist [1,2, 3 r 4 J 10 you should get 111,12,13, 141 « Note that
the function is curried.

Exercise 6 Writea functi*m sqgum of type int list - > Int that takes a list
of integers and returns the sum of the squares of those integers, For example, if you
evaluate Bqnum [l ,7., 3 , 4] you should get 3 Q,

Exercise 7 Write a function bor of type bool list: - > bool that takes a list
of boolean values and returns the logical OR of all of them. If the list Ls empty your
function should return f aise-

Exercise 8 Write a function band of type bool list - > bool that takes a list
of boolean values and returns the logical AND of all of them. Lf the list is empty
your function should return t rue.

Exercise 9 Write a function bxor of type bool list. - > bool that takes a list
of boolean values and returns the logical exclusive OR of all of them , (It should re-
turn t r u e if the number of true values in the list is odd and false if the number
of true values is even.)- Tf the fist is empty, your function should return f alse.
Exercise W Write a function dupList of type ! a list - > ' a list whose
output list is the same as the input list, but with each element of die input list
repeated twice in a row. For example, if the input list is [1 3 . 2] , the output list
should be [1, 1, 3, 3 , 2 , 2] , If the input list is [j , the output list should he L i ,

Exercise 11 Write a function mylength of type ' a list - > int that returns
the length of a fist. (Of course, you may not use the predefined length function to
do it,)

Exercise 12 Write a function illabsrl of type int list - > real list
that takes a list of integers and returns a list containing the absolute values of those
integers, converted to real numbers.

Exercise M Writea function t mecount of type bool 1 - > int that takes
a list of boolean values and: returns the number of trues in the list.

146 Chapter 9— A Third Look at ML

Exercise 14 Write a function maxpairs of type { int * int) list - > inr list
that takes a list of pairs of integers and returns the list of the mas: elements from
each. pair. For example, if you evaluate tuaxpairs [(1, 3) r (4 , 2) , {-3 , — 4)]
you should get 13, 4 , ~3] .
Exercise 25 Write a function rayimplode that works just like the predefined
implode- In i »iher words, it should tv a function of type dh4r list - > string
that lakes a list of characters and returns the string containing those same charac-
ters in that same order

Exercise 16 Write a function lconcar of type ' a l i s t list - > pa l i s t
that takes a list of lists a.s Input and returns the list formed by appending the input
lists together in order. For example, if the input in [[1, 2] , [3 , 4 , 5 , 6] P [7] 1
your function should return [i „ 2 , 3, 4 , 5 r 6 , 7 1 . (There is a predefined function
lake thas called concat , which of course you should not use.)

Exercise 17 Write a function max of type itiL list - > Int that returns the
largest element of a list of integers, Your function need not behave well if the list is
empty.

Exercise IS Write a fund urn min of type int l i a t - > i.nt that returns the
smallest element of a list of integers. Your function need not behave well if the list
is empty;

Exercise 19 Write a function member of type ' 1 a, * "a l i s t - > bool so
lhat member (e , L) i.s true if and only if u is an element of list L.

Exercise W Write a function append of type p a 1 ist > 1 a 1iat > 1 a 1iat
that takes two lists and returns the result of appending the second one onto the
end of the first For example, append [1, 2, 3] [4 , 5, 6] should evaluate to
[1, 21 3, 4 , S , G]. Do not use predefined appending utilities, like the a operator or
the coneat function, Note that the function is curried.

Exercise 21 Define a function less of type int * int l i s t - > i n t l i s t
SO that (e , L) is a list of all the integers in L that are less than £ (in any order).

Exercise 22 Write a funcIion e!ven& of type int l i g t - > i n t l i s t tha t
takes a list of integers and returns the list of all the even elements from the original

Exercises 147

list (in the original order). For example,, if you evaluate evens [1, 2, 3 , 4 1 you
should get [2 , 4 1 *

Exercise 23 Write a function convert of type < 1 a * ' b) l i s t - >
1 a 1I S L * 1 b 1i sL, that converts a list of pairs into a pair of lists, preserv-
ing the order of the elements, For example, convert L (i r 2 J , (3 , 4) * (5, 6) 1
shield evaluate to ([1, 3 , 5 1 , [2 , 4 , 6]) .

C.rnrrsr 24 Define a function mymap with the same type and behavior as map,
but without using map. (Note this should.still be a one-liner: use foldl or foldr.)

Ewrcise 27 Represent a polynomial using a list of its (real) coefficients, starting
with the constant coefficient and going only as high as necessary, For example,
3x2 + + 1 would be represented as the list [i , o . 5.a r 3 , a] and x3- 2*as
10 , D , -2 . 0 , Q , Q ,1* 0].Write a function eval of type real list - > r e a l
real that takes a polynomial represented i h i s way and a value for x and returns
the value of that polynomial at the given x+ For example, eval [1 . 0 , 5 , 0 , 3 , 0 1
2 , 0 Should evaluate to 2 3 , 0, because when x - 2, 3X' + 5x + i - 23- {This is the
same as Exercise 5 in Chapter 7f except that h is now a turned function and must
be written as a one-liner.)

These remaining exercises are not one-liners They should be written without using
snap, f o l d l, O r f o l d r,

CriTr/se 2b Liefine a function niymap2 with the same type and behavior as map,

(This is .similar Exercise 24r hut that exercise required the use of f o l d l o r f o l d r,
while this exercise forbids them.)

fiwrc/se 27 Define a function myfoldt with the same type and behavior as
f o l d r.

Exercise 2S Define a function myfoldl with the same type and behavior as
f o l d l.

