
MODERN
PROGRAMMING LANGUAGES

A PRACTICAL INTRODUCTION

SECOND EDITION

Adam Brooks Webber

Franklin, Beedle & Associates Inc.
22462 SW Washington St
Sherwood, Oregon 97140
503/625-4445

'

www.fbGedle.oom

^ Chapter 5
A First Look
|at ML

5.1 Introduction
This chapter is an introduction to Standard ML. The ML
language family BIAS a number of dialects. The Standard
ML dialect is the one used in this book; !rom here on it will
just be referred to as ML. ML is one of the more popular
functional languages, and some large commercial projects
have been developed in Ml,. But let's be honest about this:
you will probably never see an employer advertising for
someone with ML skills. The point of learning ML is not
to beef up your resume,but to expand your programming
language consciousness. By learning ML you will gain a
new perspective— it is very different from the usual crowd
of popular imperative languages. And who knows? You
may find that MLis just the right language for you,and
you may even choose to use it in commercial projects of
your own.

This is a hands-on chapter. There are many short
examples of ML You may find it helpful to type in the ex-
amples as you go. You should do as many of the exercises
as you can. By the end of the chapter, you should be able to

65

66 Chapter 5— A First Looto at ML

write simple expressions and function definitions in ML and use several ML types,
including tuples and lists,

5.2
Getting Started with an ML Language System

You will need an ML language system to try the examples and solve the exer-
ciser. The examples in this book were produced using SML/NJ (Standard ML of
New Jersey), which is an excel lent, free, open-source ML language system, If you
are reading this hook as part of an. organized course, your teacher may give you
instructions tor running ML. on your local systems. If not, or if you want your own
copy, you can easily download and install SML/ NJ on your own Unix or Windows
system. The Web site for Ihis book has up-to-date links for downloading SML/ NJ.

Like most functional-language systems, SML/ NJ operates in an interactive
mode: it prompts you to type in an expression, you type one in , il evaluates your
expression, it prints out the value, and then the whole cycle repeats. When we first
run SML/NI on our system il prints this:

Standard ML of New Jersey1

The dash is its prompt; it is now waiting for input. Below, we have added to the
session by typing an ML expression, followed by a Semicolon, followed by the
Enter key. (To be easier to read, the input is shown in boldface to distinguish it from
ML's output. And the Enter key is nol shown— that is assumed at the end of every
inpul line.)

Standard ML of New Jersey
- 1 + 2 * 3 j

val it = 7 t lilt

ML has evaluated the expression, printed the result, and prompted for another
expression.

MUs response is probably more verbose than you expected - The value ol:1+ 2*3
should be 7, of course,, but MI . printed more than that. For one thing, it printed tin-
type (int) as well. As we will, see, ML. tries to infer a type for every expression . Of
course, anyone could figure out what the type of 1+2 * 3 must he, but M l !s type

1. f i Also prints the version number endImdd-dirte infiirmalinn cm Lhts line. This m.w be diitffffent on
yewr system, The exj.Tnp.leh- in this book were tested wi th version 110.70

5.3— Constants 67

system is very expressive iind its type inference is unusually powerful. You might
have wondered why it prints val it = 7 instead of just 7, Tart of the explanation
is that ML maintains a variable named iL whose value is always the value of the
last expression that was typed in. The rest ot the expla nation wilt have to wait until
we see a few more tlungs about ML

The semicolon at the end of the line of input is very- important. It is very easy
to target when you an- first beginning to experiment with ML In cast you should
forget it; here is what will happen:

- 1 + 2 * 3

ML assumes that you are not yet finished with the expression you want it to evalu-
ate. (Expressions can lake up more than one line.) It prompts for further input with
the character Eventually when the mput ends with the semicolon ML is waiting
for, ML will evaluate the whole thing:

- 1 + 2 + 3
;

v a l i t = 7 : i n t

5.3
Constants

Let's start by looking at the simplest nf expressions— constants. I he example below
shows ML evaluating some numeric constants. These constants illustrate Ihe two
numeric types,, int and real.

- 12M i
val it « 1234 2 int
- 123 .4 ?
val it = 12 3 B 4 ; real

The syntax tor integer and real constants is conventional, with one important
wrinkle: ML. uses the tilde symbol (-) for the negation operator.So the number -1 is
written as -1in ML.

The next example shows the Ml . constants true? and false?, which are the two
values of MLJs bool tvpe.

- true t
val it = true = bonl
- f a l s e;
val it = false i bool

68 Chapter 5— A First Looto at ML

There is not much else lo say about them, but this as a good time to point out that
ML is case sensitive. For the boolean true value, you must write tmer not TRUE or
True or anything else,

Now tor some strings and characters (the ML types string and char);

fl £red 8 ;
val it = "fr-ed 11 : string
- ;
val it = "II" : string- # -H - ;val it = # ” H" s char

Siring Constants^ like "fred", ate endoek?d in double quotation marks (that is, with
one double-quote character before and after- not two single-quote characters*). To
enable unusual characters inside a string, ML supports the sime kind of escape se-
quences that lava and C do; for example, \ t fora tab* \n for a linefeed, or\n to put
in a quote mark without ending the strings As you can see from the example, there
is a difference between a one-character siring constant and a character constant lb
gel a character constant, put the # symbol before the quoted character.

M l 5.4
Operators

The next example shows Mbs basic arithmetic operators.

- ~ l + 2 - 3 * 4 d i v 5 m o d
vsl it = -1 ; int
- - L O + 3 , 0 - 3 , 0 * 4 , 0 / 5 ,0 ?
val it = -1.4 : real

fhe integer binary operators (or addition (+), subtraction (-), and rmiIliplication (*)
are standard. For integer division, ML provides two operators, written as div and
mod . The div operator computes the integer quotient (ignoring the remainder),
while mod returns the remainder after integer division.- As with constants,, ML uses
the tilde symbol for the negation operator, ft takes a little practice to get used to
Ibis, since most languages use the minus-sign symbol both as a unary operator (for
negation) and as a binary operator (for subtraction).

For real numbers* ML uses the same operators, + # *, and There is also a
real-division operator (/). For strings, there is a concatenation operator (*):

2 The concept ot integer division with a remainder appears simple enough at tiist gLuicCj but ilr is
actually Subject to ,i variety of inteffpictatkins. Whit happens with negnlive operands? Is 5divided by
-2 equal to-I remainder I . or to-3, remainder -1? In Jev# this, works one way, and in Ml it wnrto Ihe
nLher way.Some Larigujgt* hike Ada and Prolog) have different reniaindeff-lLkeopefaicir.fi so that they
can do it both ways; cither languages (like LHH+ J just leave it up to each impleEnerstaSion lo decide.

5.4— Operators 69

- ^bibi ty" * 'r tbobity - * *hoo* i
val it = "bibitybobityboo : string

Then there are the ordering comparison operators: less than greater than (>).
less than or equal to (< =), and greater lhan or equal to (> =). They can be applied to
pairs of strings, characters, integers,, or real numbers.

- 2 < 3 i
v*l it = true ' bon1

1 . 0 < = 1- 0;
val it o true : bool
- # “ d“ > t^c - r
Veil it. « true s bool
- "abos* >= “ abd “ ;
Veil it = false ; bool

Applied! to Strings, the Comparisons tost alphabetical order Since lrabce " would
come before "atKi "1 in the dictionary, the expression 11 Qbee " >= " abd ,r is false.

The two more fundamental comparison operators are the equality test (=) and
the inequality test (< >). Some, but not all, of Ml/s types can be tested for equal-
ity or inequality using those operators; these are called the CijitaliSy types, Alt the
types we have seen so far are equality types except the real numbers, Rea ! num-
bers cannot be tested for equality in ML The reason is that most real arithmetic in

computers is rounded to the limited precision of the computer hardware. Because
of this rounding, two computations that should produce equal values mathemati -

cally often produce slightly different values on the computer This means that it is
usually a mistake (in any programming language) to compart: two real numbers to
See if they are exactly equal This mistake is more difficult to make in ML, since ML
does not allow you to compare real values tor equality directly. Of you are really
sure you want to, you can still accomplish it Lndiredly by combining a < = test with
a > = test.)

For boolean values, ML has operators for logical or (orelse),, logical and
(andalso), and logical complement (not). For example:

1 < 2 d r e l a e 3 > 4 ;
val it true - bool
- 1 < 2 andalso not { 3 < 4) ;
va 1 it B f a l s e i bool

The or e lse and andalso operators do not evaluate the second operand if the
first one is enough to decide the result. If the first operand of an orelse is true, the
whole result is true, so ML does not bother to evaluate the second operand. This is
more than just an optimization , St is easy to write a program to test whether both

70 Chapter 5— A First Look at ML

operands are evaluated or not; just make the second operand something whose
evaluation would cause art error and that see if the error occurs.

- trui orelse 1 div Q = 0;
val it ® true r bool

Evaluating the expression 1 dji v o should cause an error, but no error occurs be-
cause the expression is not evaluated Operators tike this are called i+ktiri-ciraiitiritf
operators. (To he perfectly accurate, relse ami andalso are not realty operators
in ML. They are just keywords. All true ML operators evaluate all their operands-
But to keep things simple, we will continue to call them operators.)

The operators seen so far are all left-associative and fall into these six prece-
dence levels:

not,-

*f f t div,mod

A
+* “ r

< = * >=,

andalso

orelse

ML has additional operators and additional precedence levels,and it allows pro-
grams to define new operators and specify their precedence. However, this book
will not require any further operators,

M L 5.5
Conditional Expressions

If the language you know best is an imperative language, you are probably already
familiar with if-then and if-then-else statements. However, you may not have used
an if-then-else expression like ML's conditional:

- if 1 < 2 then # Hx" ©lee # u y" j

v a l i t = # " x " t char
- if 1 > 2 then 34 ©lee St!;
val it = 56 r int
- (if 1 < 2 then 34 else 56 » + lj
val it = 3 5 i int

5.6— Type Conversion and Function Application 71

A conditional expression has this syntax:

<amrfilional-expression> : t =
if ^expression> then <cxpr^sniou> else expression>

The <expressitm> in the if pari must have LHL' typetol, and the <£xprasBi£W> in
the then part must have the same type as the <£Xpre$skm> in the else part. If
the <t'xpmntiMi> in, the i E part is true, the oapnKSf0i»t> in the then part is evalu-
ated and gives the value for the whole <ct?? jdiYfUHwl^,

.i:prv*rioM>. Otherwise, the
<expitsshnt> in the e l se part is evaluated and gives the value for the whole
<conditioml"£xpr£ssfan>+ Like the orelse and atidalso operators described above,

the conditional expression is short-circuiting. The only part evaluated is the one
actually needed.

5.6
Type Conversion and Function Application

Here is an example of a type error in ML:

- 1 * 2 j

val it = 2 i int- 1,0 * 2 , 0 ;
val it = 2.0 t real- 1.. 0 * 2 ;
Error: operator and operand don * t agree (literalj
operator domain,: real * real
operand: real * int
in expression:

1 * 0 * 2

The first two expressions evaluated correctly We have already seen that the 4

operator, and others like + and <, work on different types of pairs. When the same
operator works differently on different types of operands, it is said to be otWouiM
Chapter 8 will discuss overloading further. The + operator lias one definition that
applies to a pair of int values and another that applies to a pair of rea1 values.
Bui it does not have a definition that applies if the first operand is a r e a l and the
second is an int, so the third expression in the example above causes a type error

In many languages, including Java, a mixed-type expression like 1, 0*2 would
be handled without error by converting the integer operand to a real number
before multiplying, ML does not work this way. H has predefined functions that a
program can use to convert values from one type to another, but il never does.such
conversions anfcomatica11y.

72 Chapter 5— A First Looto at ML

EHere are some of M Lfs predefined conversion functions:

Function I’ jjrjniCttTlj'ptL Result Type Notes
real int teal Converts integer to re*].

floor real Int Rounds down .
ceil real int Rounds up.
round real int. Rounds to the nearest integer.
t rune real int Truncates after the decimal

point, effectively rounding
toward zero.

ord char int Finds the ASCII code for the
given character.

chr int char Finds the character with the
given ASCII code.

atr char string: Converts a character to a one-

cha racier string.
(Note that real i$ used in ML both, as the name of a predefined function and as

the name of a type.) The next example shows some of these conversion functions at
work,

- real(123);
val it ® 123.0 : real
- f l o o r (3J) ;
v a l i L = 3 : i n L
- floor 3.6;
val it * 3 : int
- s tr # “ a " j

val it = "a" : string

Did you notice that we stopped using parentheses around the function parameter
in the middle of that example? To call a function in Ml ., you just write the func-
tion's name followed by its parameter. You can write parentheses around either the
name or the parameter or both, but the preferred ML, style is to avoid them. This
is an important and rather unusual thing about ML syntax. The expressions £ (1) ,
{£ > I, { f) U) , (f l) , and f i all have the same value— the value returned by
function f when it is called with the parameter l.

You might have to use parentheses in a function application if ML's precedence
and associativity for function application are not what you want. Function ap-
plication has very high precedence, higher than anything else we have seen. For
example, the expression f a +1 is evaluated by applying f to a, then adding l to

5.7— Variable Derimition 73

the result . If you want to apply f to the value a+1, you have to indicate that using
parentheses; f (a,+1K Also, function application is lefbdBfioctative (for reasons that
will become clear in Chapter 9).So if you want to compute f (9 (1}) , you have
to write it that way, or at least write f (g 1} . The expression f g l won't do the
same thing.

mm 5.7
Variable Definition

t he val keyword is used to define a new variable and hind it to a value.
- va l x • 1 + 2 * 3;
val x n 7 : in t
- * r
val i t = 7 ; in t

v a l y = i f x = 7 t h e n 1 . 0 a l a a 2 . 0;
val y = 1.0 : rea l

Variable names defined with val should consist of a letter, followed by zero or
more additional letters, digits, and /or underscores, As observed before, ML is case
sensitive, so the variable x and the variable X are two different tilings.

You am use val to redefine an existing variable, giving it a new value and even
a new type;

- val frad = 23 *
val f red = 23 : in t
- fred;
val i t = 23 : in t

val fred = true;
val f red. = t rue : bool
- fr«d;
val i t F* t rue : bool

ft is not particularly useful to redefine variables like this, but it Ls mentioned here
because val definitions do look a little like the assignment statements used in im-
perative languages* Do not be deceived. When you give a new definition of a vari-
able, it does not assign a new value to the variable. It does not alter or overwrite the
previous definition. It only adds a new definition on top of the previous one. When
we get around to writing larger programs, this distinction becomes very important .

Any part of the program that was using the old definition before you redefined it is
still using the old definition afterwards. A new definition with val does not have
Side effects cm other parts of the program ,

We can now give the full answer to a question we skirted previously; when
you type an expression into ML, why does it respond with a line beginning with

74 Chapter 5— A First Looto at ML

val it =? The reason is that the ML language system actual ly expects keyboard
inpul to be a senes of definitions, such as val definitions, If you just type an
expression exp, rather than a definition, as we have an most of the examples of this
chapter, ML treats it as if you had typed va J. it rrp, This makes a new instance
of a variable named it and binds it to the value of your expression, fhu.% the vari -
able it always has the value of the last expression typed *

11 5- B
Garbage Collection

Sometimes, for no apparent reason, the SML/NJ language system prints a line that
looks like tins:

GC #0 . 0.0 . 0 .1, 3 s (fl ms)

I f you have been trying the examples in this chapter, you may have seen a law like
this in the middle of ML's normal output. This message is what S M L/ N J says when
it is^forming garfiflgL1 collection, reclaiming piecesof memory that ate no longer
being u_sed, Chapter 14 discusses garbage collection further. Depending on your
installation* you may nr may not set1 these messages. If you do see them, you can
jus!ignore them.

H 5.9
Tuples and Lists

Mast languages allow functions to be called with a list of parameters, ^ uch as
f 1 1 , 2 , 3) , Putting (i f 2 f J) together in parentheses groups the parameters
together into an ordered parameter list that is passed to the function.An ordered
collection of values of different types is sometimes called a tuple. ML supports
tuples in a more general way than most languages, [f a l l o w s tuples as expressions
anywhere* not just for parameter lists.

- val barney * (1 + 2 , 3 . 0 * 4 . Q, "brown") r
val barney = (3 r 1 2 , 0 * " brown "] : int * real string
- val pointl = |l,redBf (300 * 2 0 0)) ?
val poiati = (11 red1'' , (300 f 200)) ; string * (int * int)

A tuple in Ml , is formed just by putting twoor more expressions, separated by
commas, insade parentheses. As the second expression above shows, tuples can
even contain other tuples.

In the example above, the type of bat ney is reported by ML to be
int * real * stri ng, Obviously the symbol * is not being used as a multi-
plication operator in this case. Instead, it is being used as a type aumlruclw. -Given

5.9— Tuples and Lists 75

any two ML types a and bt IT * f -' is the ML type for tuples of two things, the first
of type tf am I the second of typo br Parentheses are significant in tuple types;
string * (int * int) is not the same as (string * int) * int, and nei-
ther is the same as string + int * int.

ELI extract the ith element of a tuple v in ML, write the expression #1 v . Tuple
positions are numbered from left to right, starting with 1 .

- #2 barney ?
yal it = 12 . Q : real
- #1 (#2 pointl);
val it H 3-00 j int

One final observation about tuples: they can have any length greater than one,
but there is no such thing as a tuple of one. I f you write a single expression inside
parentheses, like (I +31, the parentheses just serve to group the operations in the
usual way. No tuple is constructed.

In addition to tuples.Ml has lists- One important difference between a tuple
and a list is that all the elements of a list must be of the same type. Lists are fanned
using square brackets instead of parentheses, '1 hey can contain any number of de-
ments.

- [1, 2 , 3]|
va1 it = [1 ,2,31 t int list
- [1*0P 2,0J;
val it = [1.0, 2.0] : real list
- [true];
val it = [true] : bool list

In (he example above, Line type of 1 1 , 2 , 3 1 is reported to be int list. Here,
l i s t is another type constructor, Given any ML. type a, the type rr list applies to
lists of things of type a.Lists can contain any type of element, even tuples and other
lists, as long as every element of the list has the same type

- [U, Z) , <1, 3IJ ?
val it = [(1,21 ,(1,31) ; (int * int) list
- [[1, 2, 3], [1, 231;
val it H [[1 ,2,31 , 11,2]] s int list list

Ls the difference between a tuple and a list dear? Consider the next example,
which shows a tuple of three integers and a list of three integers,.

val x = (1, 2 r 3) ?
yal x = (1,2,3) : int x int * int
- val y « [1* 2 , 3J ;
val y H 11,2,3 j : int l i s t

The variable x is a tuple of three integers, and the variable y is a list of three inte-

76 Chapter 5— A First Look at ML

gers. Note their different types as determined by ML. Although x and y look simi-
lar,, tlu.' kinds of things you can do with them in ML are very different. In particular,
a function that can take x as its parameter will apply only to tuples of three integers
{values of type int + int * int). On the other hand, a function that can take
y as its paramdsr will apply to all lists of integers— In L list is the type of any
list of integers, no matter what its length. The right choice depends on the problem
being solved.

The empty last in ML can be written either as nil or just as L J . The empty list in
Ml i has some slight peculiarities. Unlike with all other list constants, ML cannot tell
the exact type of [1 , Ls it the empty list of integers? The empty list of strings?

- M l
val it = [] : ra list

nil;
val it » [1 : ra list

Ml . gives the type for the empty list as " a i ist, Names beginning with an apos-
trophe, like 1 a in this example, are type iwriahlt's. A type variable stands for a type
that is unknown, I he type 1 a list might be translated into English as "a list of
dements, type unknown," A useful predefined function called nul l tests whether
a list is empty;

null Ell
val it = true : bool
- nul l Cl , 2 , 31 ?
val it «a false s bool

It is also possible to test whether a list is empty by comparing ii. for equality with
the empty list , as in the expression x = [] . But the function mil 1 is preferred for
this, for reasons that will be described in the next section.

The operator in ML is used to concatenate two lists, which of course must
have the same type:

- [1 , 2 # 3] @ [41 5 , 6] t
val it Llr 2 r 3 r 4 , 5 F 6] : int list

The operator does for Lists what the ~ operator does for strings. Both the parame-
ters of w must be lists. The expression 1® [2 r 31 is incorrect, You would either have
to write [l] ® [2 j 3] or LLSC a different operator, the cows operator, which is written
as : E (a double colon). Informally, you can think of the cons operator as gluing a
new dement onto the front of a list; for example. It t [2 , 3] evaluates to the list
11.3 - 33 -

- val x = #- "c" s t l] i

5.9— Tuples and Lists 77

val x = I ft •* 1 i char list
- va1 y B # 11 bn t 1 x ?
Vfll y - |# ,pb,p

p # "c"] ; char list
- val ss = # 11 a 11 E : y ;
val z = [# ,ra " r ''b" , # "cn] - char l i s t:

A t first glance, it may seem that the a operator wou ld he a lot more useful than
the coni operator In fact, the cons operator is used Par more often This is for two
reasons, IT rst, it can In? used naturally in recursive functions that construct lists
one element at a. time. Second, it is more efficient (as will be shown in Chapter 21}.
There an.* quite a tew languages th . it provide An operator like ; : to construct lists.

Such an operator was first introduced in the Lisp language, where it was called
cons (an abbreviation for tidrtStnJrt}. T hat name has become generic, and now any
operator like Ml /s : = Is called a cons operator 3

Unlike most operators in ML, the cons operator is right-associative. This turns
out to be the most natural associativity for this operation* For example, you would
expect 1: E 2 i : 3 : : [] to evaluate to the list [1 r 2 P 3] , and it does. If - L were left-

associative, 1; : 2 : 13 ; : [] would be an error, since the leftmost pair L : r 2 does not
even have a list as its second operand.

The two important functions tor extracting parts of a list are hd and tl (which
are abbrevtalions for imid and fail).

- val I 1 :: 2 : : 3 (J ;
val z a 11,2, 3] : int list
- hd z ;
veil i t = 1 ; int- tl z;
val it - L 2 „ 3 j i i n t l i s t
- t l l t l z) t
v a l i t = [3 1 ; i n t l i s t
- tlz)) ;
v a l I t = [] : i n t l i s t

As you can see, the hd function returns the first element of the list, and the 11
function returns the rest of the list after the first element. It is an error to try to com-

pute the hd Or tl of an empty list
Although a string m ML is not the same as a list of characters, they obviously

have a lot in common. The explode function converts a value of type string into
a char- l i s t, and the implode function does the opposite conversion.

3. With continued expoftWr muny people find tfujaudvfs usin^ tlhe word ims.is a vnh- tin'll
something onto a LI.A rmwi* t? ii at tbe front and to o#is up a fist in bu Lid +J it* List by co#xi-
jng ihjn^s onto it one at a time.

78 Chapter 5— A First Looto at ML

- explode "hello"j
v a l i t - [# "h n , # r t e,p P # " 1 " , # !",# "o "I T char list
- implode #1B4. 1 J
val it = 11hi" t string

mm 5.10
IFunction Definitions

Lip to this point the MLlanguage system has looked like a calculator;you type
things anil rl evaluates them.The next piece of ML is the first step toward making
it less like a calculator and more like a programming language.To define new func-

tions in ML you give a f un definition, like this;

- fun firstChar s = hd (explode B);
yul firstChar = fn : string -> char
- firetchar ttabc* i
val it # "a " . char

This function,firstChar,takes a string parameter and returns its fmst character.
The syntax of the fundefinition is quite simple:

tun ^parameter* = <fjqnvssjBcwr >

The Kfimctixm-rtamo is the name of the function being defined It can be any legal
ML name l he simplest <parmmUr> is just a variable name,as in the £iretChar
example. The<expressian> is any ML expression.The value of tlie <ivxpression> is
the value the function returns, (This is a subset of the legal syntax tor function defi-
nitions in ML.Chapter 7 discusses this further,}

Notice that ML figured out the type of f irstChar without having to be told,
just as it has done all along for expressions. That type,string -> chatr de-
scribes functions that take a stringparameter and return a char result.ML
knows Ihat the parameter B must be a string because the explode function was
applied to it, and it knows that the result must be a character because that is what
fid retiims when applied to a list of characters.

The - > symbol is another type constructor, like * and list.Given any two

types tr and b, rt - > b is the type tor functions that take a parameter of type a (the
domain type) and return a result of type b (the range type).

To write a function that takes more than one input value, you can use a tuple
parameter For example,here is a function that returns the integer quotient of two
integer values:

5.10— Function Definitions 79

- fun quot{a, b) a dlv bj
val quot - fn : int * int -> int
- quot 16 f 2) i

va.1 it = 3 ; int

It looks like the same kind of parameter list found in many other languages, hut
remember that ML handles tuple values in a much more general way, Consider this
example;

val pair = (6, 2} f
val pair = (6 , 2.) s int * int
- quot pair;
val it. a 3 : int

Here we have defined the variable pair to be the tuple (6 , 2 h then called our
function quot passing that tuple, This shows that there cs nothing special about
parameter lists on a function call. They are|ust tuples. Every ML function Lakes
exactly one parameter-— that parameter may be a tuple, but whether you build the
tuple when you cal I the function, as in quot (6 , 2) , or whether you pass a tuple
you have already constructed,as in quot pair, makes no difference to ML.

You have already seen enough ML to get a lot of work done with functions-
Here, for example, is a function to compute tire factorial of a non-negative integer;

- fun fact n a

- if EL = D then 1
= else a * fdCtfn - 1);
val fact = fn s int - > int
- fact 5 T
val, it = 120 T int

Notice that the definition is spread out over more than one line. Like most modem
Languages, ML does not cart where line breaks occur. They art there only to make
Lire function definition more readable. We could have put the whole thing on one
line.

The previous example was a recursive function definition.The fact function
has a base case (if n - Q then 1) that says what value Its return tor the smallest
legal, input . It has a recursive case (else n, * fact (n - 1}) in which the func-
tion calls itself , but with a value that is closer to the base case. Recursion is used
much more heavily in Ml,and the other functional languages than in most impera-
tive languages. Imperative languages make heavy use of iteration, while loops, for
loops, and the like- Functional languages make heavy use of recursion .. It is possible
to write iterative functions in ML, hut it is rarely done. We will not use Mis itera-
tive constructs at all! in this book .

Hits next function adds up all the elements of a list;

8® Chapter 5— A First Looto at ML

- fun listBum x
= if null x then 0
= else h.d x + li^temnttl x);
val listaurn = fn t Int Hat - > int
- llatsun [1, 2 ^ 3, 4 J 5] ;
val it » 15 E int

The listaim function definition illustrates a common pattern for recursive fume
Hons in ML. The base case applies when the list isnil,and the recursive call
passes the tlof the list. In this, way,listsum is called wiLh x, then recursively
with t l x, then with11 i t1 x) , and so on alJ the way down tonil. That gives
iUtaym a chance to look at each clement of the list (using htf x), This is a pattern
to consider whenever you are writing a function that has to do something for each
element of a list.

A useful predefined function inMLis the length function, which computes the
length of a list, This next example shows an implementation of it"

ftm length x -
a if null x then 0

e l s e 1 + length (tl x);
val Length * fn : ' a l i s t - > int
- length [true, false, true];
vul it = 3 : int
- length [4 . Q, 3 . 0, 2.0.r 1 . 0] ;
val it - 4 : int

An interesting thing about this function, definition is the type MLdecided tor th

' a list - > int. As has already been shown, ' a is a type variable. The input
to length is a list of dements of unknown type. This is anexample of ap/ywcr-
pfsk function— it allows parameters of different types We will not have to write a
specialized length-computing function for every type of list, one for lists of bool-
ean.*,another for lists of reals,and so on. This one length function will work on
all types of lists Ml., functions often end up beingpolymorphic. There is no special
lrick to making them Lhal way. This example did not need to use any special syn-
tax. ML just found the type in the usual way.

Now we can answer a question brought up in the previous section: why you
should use the test null x instead of x * IJ.Look at what happens if length is
defined using the test x = []:

- fun badlength x =
if x * then 0
e l s e 1 + badlength ? tl x) j

val bsdlength = fn ? 1 l i&t -> i n t
hadlength [true, false, true] f

5.11— ML Types and Type Annotations 81

val it a 3 3 int
- badlength [4 - 0 , 3 + 0 , 2 , 0 , 1 , 0] j

Error ; qp^fator anti qperand don ' t agrsfj
[equality type required]

ML gives bad Length the type ' ' a list - > int , ['here is a minor difference
between this and the type of length — a critical extra apostrophe. Type variables
beginning with a double apostrophe* tike p ' a, are restricted to equality-testable
types. The Function badlength works on most types of lists, but noL on lists of
reals,, since reals cannot be tested for equality. The source of the problem is the test
x = [J * Because of this test, ML adopts the restriction that x#$ dcmonts must be
equality' testable . That is why you should use null x instead of x = LJ j it avoids
this unnecessary type restriction.

Let's see one more example of a recursive function in ML. This one reverses a
list

fun reverse L =
=i if null L then nil

else reverse < tl L) { hd LJ ;
val reverse * fn ; ‘ a l ist -? ‘ a l ist
- reverse [1, 2 , 3 j ?
val i L = [3 P 2 ,1] : i n L 1l a L

In English, this function definition might be said in this way: "The reverse of an
empty list is an empty list, and the reverse of any other list is the list you get by ap
pending the first element onto the end of the reverse of the rest of the l istIt's no
easier to understand in English, is it ?

||y 5.11
ML Types and Type Annotations

So far we have seen the ML types intp real, bool, char, and string. We have
also seen three type constructors: * for making tuple types, list for making list
types,and for making function types.

When the three type constructors are combined in a more complicated type,
l i s t has highest precedence and - > has lowest precedence. For example, the type
int * int l ist is the same as int * (int l ist) — the type of pairs of which
the first item is an integer and the second n list of integers. The type for a list of
pajrs of integera WOLJID have to bt* written as l int * int } l i s t, using paren-
theses to overcome the higher precedence of the l ist type constructor

Ml . has discovered and written out all the types-, so it might seem like a waste
of time to learn how to write them yourself. Actually it is important to know how

82 Chapter 5— A First Looto at ML

to do atr because you do occasionally have to write ML types in an ML program.
Sometimes MLJs type inference needs, a little Kelp and tfth' annotations are neces-
sary Consider this function:

- fun prod(at b) a * b|
val prod = fn i int * int - > int

How did ML decide on the type int * int - > int for this function? Why not
real rea1 - > real? Wouldn't is function to multiply two tea! numbers be
written exactly the same way?

ML has no information about the types of a and b in prod other than ihe *
operator that is applied to them. The * operator could apply to integers or to real
numbers* When there dir no other clues, ML uses the dijmdt type for *, which is
int * int - > lot - (The same thing would apply to the operators c and If
you want to define prod so that it applies to real numbers, you have to give ML a
mow definite due: a type annotation, Hem is one way u > do it:

- fun prod(a:realj b:real) : real a * b;
val prod fn i real * reai - > real

A type annotation Is just a colon followed by an ML type. The example above has
three type annotations that establish the types of a, b, and the returned value,

Unlike most languages, ML allows type annotations after any variable m expres-
sion For instance, we could have given ML any one of these alternate dues:

fun prod, (a , b) ; real = a ® b;
fun prod, (a : real r b) = a * b;
fun prod (a , b ; real) * a * b;
fun prod (a , b} - (a : real) * b;
fun prod (a , b) = a * b ; real;
fun prod (a , b) = (a * to) t real;
fun prod < (a , b) : real * rual) = a * b;

These all work and accomplish thesame thing, One liintr anywhere, is enough to
help ML decide on the type. But, although ML treats these all Lhe same, the origi
nal example is probably the best since it is the must readable. In fact enhancing
readability is probably Lhe major reason for using typeannotations in ML, ML can
usually figure out types without help, but the human reader will appreciate all the
help he or she can get! This book uses type annotations sparingly.That suffices
only because the examples are small and are described in the text. A maturer ML
programming style for larger ML projects would use type annotations more heav -
ily. Many ML programmers give type annotations with every fun definition, as in
the example above Some styles of ML programming go even further, giving type
annotations with variable definitions throughout the code.

Exercises S3

5.12
H Conclusion

This chapter discussed the language ML, The followingparts of the Language were
introduced:

The ML types int,,real,bool, char,and stringand how to write con-
stants of each type,
The ML operators +, - f * , div,mad, /, ", 3 s, ffl, < f >, <=, >*, =, <>,not,
andalso,and orelse,

* The cpndifcionaI expression.

* Function application.
* I he predefined functions real, f loor,ceil,round, tnrnc, ehr,ord,

str, hd,cl,explode,implode,andnull,
m Defining new variablebandings using val,

Tuple construction using (xr y, z) and selection using Ita.
List construction using [x, yr z] ,

The type constructors *,list,and
Function definition using fun,including tuples as parameters,polymorphic
functions,and recursive functions.

* Type armotatioris.
This is enough ML to complete the exercises that follow.

Exercises
Throughout this chapter,we have used theSML/NJ language system in an in-
teractive mode For longer examples, it makes more sense to store your function
definitions in a rile. Once you have created a file containing a definition or defini-
tions,you can load it into an ML session by using the predefineduse function. For
example., if you have created a file named assign] . sin) in the current directory,
you can run your ML Language system and type use 11 assign1,sral" ; after the
prompt. The ML language system will read the contents of the file just as it you had
typed it one lineal a lime. After LLSE* finishes,you can continue typing interactive
MLexpressions, for example, to test the functions defined in your file.

Exercise 7 Write a function cube of type int - > inr that returns the cube of
its parameter.

84 Chapter 5— A First Look at ML

Exercise 2 Write a function cuber of type real -> real that returns the cube
of its parameter,

Efcercise 3 Write a function fourt h of type * a list - > ' a that returns the
fourth element of a list.Your function need not behave well on lists with less than
four elements,

Evercisc 4 Write a functionmm3 of type int * int * int -> int that
returns the smallest of three integers,

ExerciseS Writea function red.3 of type 1a * 1 b * 1c - > 'a * * c that
converts a tuple with three dements into one with two by eliminating the second
element .

Exercise 6 Write a function thirds of type string - > char that retums
the third character of a string. Your function need not behave well on strings with
lengths less than 3.

Exercise 7 Write a function eyeleiof type r a. Hat - > * &. llat whose
output list is the same as the input list but with the first element ol the list moved
to the end.For example,eyelei [lr 2 r 3 „4 J should return [2 r 3,4 /1].

Exercise 8 Write a function eort3 of type real 4 real * real - >

real list that returns a List of three real numbers,in sorted order with the small-
est first

Exercise 9 Write a functiondell of type " a list - > ' a list whose output
list is the same as the input list,but with the third denient deleted.Your function
need not behave well on lists with lengths less than 3.

Exercise 10 Write a function sqeuin of type int -> int that takes a non-neg-

ative integer it and returns Ilie sum of the squares of all the integers 0 through ft.
Your function, need not behave well on inputs less than zero.
Exercise 11 Write a function cycle of type ! a list * inL > ' a lisLLhal
takes a list and an integer n as input and returns the same list, but with the first ele-
ment cycled to the end of the list n times. (Make use of your cyclei function from
a previous exercise.) For example^ cycle ([1, 2 , 3 ,4 , 5 , 6 1 , 2) should return
the list [3, 4, 5 . 6,1,2] .

Further Reading 85

Exercise 72 Write a function pow of type real * int - > real that raises a
red I number to an integer power. Your function need not behave well if die integer
power is negative.

Exercise 13 Writea function max of type int lieu -> ini that returns tlie
largest element of a list of integers, Your function need not behave well if the list is.
empty. Hint; Write a helper function maxhelper that takes as a second parameter
the largest element seen so far Then you can complete the exercise by defining

fun max x = TTi^xhelpe-r (tl x, hd x) ;

Exercise 7-7 Write a function isPrime of type int - > bool that returns true if
and only it its integer parameter Is a prime number.Your function need not behave
well if the parameter is negative.

Exercise 7J Write a function select of this type:
!a lidt * (! a bool) - > ! a list

that takes a list and a function/as parameters. Your function should apply / to each
element of the list and should return a new list containing only
those elements of the original list tor which/ returned true- (The elements of
the new list may be given in any order.) For example, evaluating
select ([1, 2, 3 r 4 r 5 r 6 , 7 f 8 r 9 „10] , isPrime) should result in a list like
1 7, 5,1, 2].This Ls an example of a higher-order function,since u takes another
function as a parameter. We will see much more about higher-order Junctions in
Chapter 9.

Further Reading
This is a great book to help you learn mote al*ml MI

U liman, Jeffrey D Elements of ML Programming. Upper Saddle
River, H }: Prentice Hall, 1SS&.

11 covers the basics seen in this eha pterP the more ad va neect things tha t w i l l he
seen in Ia Ier chapters, and the even more advanced things there will not be t i m e to
discuss.

