MODERN
PROGRAMMING LANGUAGES

A PRACTICAL INTRODUCTION

SECOND EDITION

Adam Brooks Webber

Franklin, BEeedle & Associates Inc.
22462 SW Washington St
Sherwood, Oregon 97140
S503/625-4445

www.fbeedle.com

Chapter 5
A First Look
at ML

5.1 Introduction

This chapter is an introduction to Standard ML, The ML
language family has a number of dialects. The Standard
ML dialect is the one used in this book; from here on it will
just be referred to as ML. ML is one of the more popular
functional languages, and some large commercial projects
have been developed in ML. But let’s be honest about this:
you will probably never see an employer advertising for
someone with ML skills. The point of learning ML is not
to beef up your résumé, but to expand your programming
language consciousness, By learning ML yvou will gain a
new perspective—it is very different from the usual crowd
of popular imperative languages. And who knows? You
may find that ML is just the right language for you, and
you may even choose to use it in commercial projects of
your own.

This is a hands-on chapter. There are many short
examples of ML. You may find it helpful to type in the ex-
amples as you go. You should do as many of the exercises
as you can. By the end of the chapter, you should be able to

B5

66 Chapler 5—a First Look at ML

write simple expressions and function definitions in ML and use several ML bypes,
including tuples and lists.

Wl 5.2
- MW Getting Started with an ML Language System

You will need an ML language system to try the examples and solve the exer-
cises. The examples in this book were produced using 5ML/N] (Standard ML of
Mew Jersey), which is an excellent, free, open-source ML language system. If you
are reading this book as part of an organized course, your teacher may give you
insbructions for running ML on your local systems, If not, or if you want your own
copy, you can easily download and install SML/N] on your own Unix or Windows
system. The Web site for this book has up-to-date links for downloading SML /N,

Like most funcHonal-language systems, SML/NJ operates in an interactive
maode: it prompis you to type in an expression, you type one in, it evaluates your
expression, it prints out the value, and then the whole cycle repeats. When we first
run SML/N] on our system it prints this:

Standard ML of New Jersey!

The dash is its prompt; it is now waiting for input. Below, we have added to the
session by typing an ML expression, followed by a semicolon, followed by the
Enter key. (To be easier to read, the input is shown in boldface te distinguish it from
ML's output. And the Enter key is not shown—that is assumed at the end of every
input line,)

Standard ML of Mew Jersey

- 1 + 2 % 33
val it = 7 : int

ML has evaloated the expression, printed the result, and prompted for another
EXpression.

ML's response is probably more verbose than you expected. The value of 1+2*3
should be 7, of course, but ML printed more than that. For one thing, it printed the
type (int) as well, As we will see, ML tries to infer a type for every expression. Of
course, anyone could figure out what the type of 1+2#3 must be, but ML's type

1. It alse prints the version number and build-date information on this line. This onay be differant on
vour system, The examples in this book were tested with version 110.70.

5.3—Constants a7

system is very expressive and its type inference is unusually powerful. You might
have wondered why it prints val it = 7 instead of just 7. Part of the explanation
is that ML maintains a variable named it whose value is always the value of the
last expression that was typed in. The rest of the explanation will have to wait until
we see a few more things about ML.

The semicolon at the end of the line of input is very important. It is very easy
to forget when you are first beginning to experiment with ML In case you should
forget it, here is what will happen:

- 1+ 2 * 23

ML assumes that you are not vet finished with the expression vou want it to evalu-
ate. (Expressions can take up more than one line,} [t prompts for further input with
the character =, Eventually, when the input ends with the semicolon ML is waiting
for, ML will evaluate the whole thing:

- L kw3

=

val it = 7 i inkt

HEEN 5.3
- B™ Constants

Let’s start by looking at the simplest of expressions—constants. The example below
shows ML evaluating some numeric constants. These constants illustrate the two
numeric types; int and real.

- 1234;

val it = 1234 : dint

- Y2343
val it = 123.4 : real

The syntax for integer and real constants is conventional, with one important
wrinkle: ML uses the tilde symbol (-} for the negation operator. 50 the number -1 is
written as ~1 in ML,

The next example shows the ML constants t rue and false, which are the two
values of ML's bool type.

- Erue;

val it = true : bool
- false;

val it = false : bool

68 Chapler 5—a First Look at ML

There is not much else lo say about them, but this is a good time to point out that
ML is case sensitive. For the boolean true value, you must write tTue, not TRUE or
True or anything else.

Mow for some strings and characters (the ML types string and char):

"frad®;
val it = *fred" : string
- mpw,
val it = "H" : string
- #"H";
val 1t = #"H" : char

String constants, like "fred", are enclosed in double quotation marks (that is, with
one double-quote character before and after—not two single-quote characters!). To
enable unusual characters inside a string, ML supports the same kind of escape se-
quences that Java and C do; for example, \t fora tab, \\n for a linefeed, or \ * to put
in a quote mark without ending the string. As you can see from the example, there
is a difference between a one-character string constant and a character constant. To
get a character constant, put the # symbol before the quoted character,

Wl 5.4
- N Operators

The next example shows ML's basic arithmetic operators.
- =1+ 2 -3 % 4 div 5 mod 6;

val it = =1 : inkt
= = 1.0 # 2.0 - 3.0 * 4.0 J 5.0;
val 1k = <1.4 : real

The integer binary operators for addition (+), subtraction (-), and multiplication (*)
are standard. For integer division, ML provides two operators, written as div and
mod, The div operator computes the integer quotient (ignoring the remainder),
while mod returns the remainder after integer division.* As with constanks, ML uses
the tilde symbol for the negation operator, It takes a little practice to get used to
this, since most languages use the minus-sign symbol both as a unary operator (for
negation) and as a binary operator (for subtraction).

For real numbers, ML uses the same operators, +, -, *, and -, There is also a
real-division operator (/). For sirings, there is a concatenation operator {*¥

2. 'The concept of integer division with a remainder appears simple enough at first glance, but it is
actually subject to a variety of mterpretabions. What happens with negative operands? Is 5 divided by
=2 equal to =3, remainder 1, or to =3, remainder =17 In Java this works one way, and in ML it works the
other way. Some languages (like Ada and Prolog) have different remainder-like operators so that they
can do it both waye; other languages (like C+-+) just leave it up to each implementation to decide.

5.4—Operators 69

Fe &

- "biblty" "bobity" “boo";

val it = "pibitybobityboo" : string
Then there are the ordering comparison operators: less than (<), greater than (=),
less than or equal to (<=}, and greater than or equal to (==). They can be applied to
jpairs of sirings, characters, integers, or real numbers,

- 2 = 33

wval it = true : bool
1.0 == 1.0;

val it = true : bool

- fmdn = #"‘l:",'

val it = true : bool

- "agbca" »= "abd";

val it = false : bool
Applied to strings, the comparisons test alphabetical order. Since "aboe” would
come before "abd® in the dictionary, the expression "abice" == "abd" is false.

The two more fundamental comparison operators are the equality test (=} and
the inequality test (==). Some, but not all, of ML's types can be tested for equal-
ity or inequality using those operators; these are called the equality types. All the
tvpes we have seen so far are equality types except the real numbers. Real num-
bers cannot be tested for equality in ML. The reason is that most real arithmetic in
computers is rounded to the limited precision of the computer hardware, Because
of this rounding, two computations that should produce equal values mathemati-
cally often produce slightly different values on the computer. This means that it is
usually a mistake (in any programming language) to compare two real numbers lo
see if they are exactly equal. This mistake is more difficult to make in ML, since ML
does not allow you to compare real values for equality directly. (Tf you are really
sure you want to, you can still accomplish it indirectly by combining a <= test with
A == test.)
For boolean values, ML has operators for logical or (orelse), logical and
(andalso), and logical complement (not). For example:
1l = 2 orelse 3 = 4;
val it = true : bool

- 1 < 2 andalso not {3 < 4);
val it = falas= : bool

The orelse and andalso operators do not evaluate the second operand if the
first one 15 enough to decide the result, If the first operand of an orelse is true, the
whole result is true, so ML does not bother to evaluate the second operand. This is
more than just an optimization, It is easy to write a program to test whether both

70 Chapler 5—a First Look at ML

operands are evaluated or not; just make the second operand something whose
evaluation would cause an error and then see if the error occurs,

- trua orelse 1 div 0 = 0;
val it = true : bool

Evaluating the expression 1 div 0 should cause an error, bul no error accurs be-
cause the expression is not evaluated. Operators like this are called short-circuifing
operators. (To be perfectly accurate, orelse and andalso are not really aperators
in ML. They are just keywords. All brue ML operators evaluate all their operands.
But to keep things simple, we will continue to call them operators.)

The operators seen so far are all left-associative and fall into these six prece-
dence levels:

not, -

w /. div, mod

+i =y

Ep RpE=E, =, =, L=

andalso

orelee

ML has additional operators and additional precedence levels, and it allows pro-
grams to define new operators and specify their precedence: However, this book
will not require any further operators.

HET 5.5
- MW Conditional Expressions

If the language you know best is an imperative language, you are probably already
familiar with if-then and if-then-clse statements. However, you may not have used
an if-then-else expression like ML's conditional;

- if 1 « 2 then #"'x" else #F"y";
val it =@#"%x" : char

- 4f 1 > 2 thaen 34 alsa 56;

val it = 56 : iInt

- (if 1 < 2 then 34 else 56) + 1;
val it = 35 ¢ int

5.6—Type Conversion and Function Application 71

A conditional expression has this synitax:

zcondilional-cxpressions : :=
if =expression= then =egpressions else =dxpressions

The <expression> in the 1 T part must have the lype bool, and the <expression> in
the then part must have the same type as the <expression= in the else part, If

the <expression> in the 1 £ part is true, the <expression> in the then part is evalu-
ated and gives the value for the whole <conditional-cxpression=. Otherwise, the
<gxpression= in the el se part is evaluated and gives the value for the whole
<conditional-expression=. Like the orelse and andal so operators described above,
the conditional expression is short-circuiting, The only part evaluated is the one
actually needed.

..II S.E - - -]
- N Type Conversion and Function Application

Here is an example of a type error in ML:

-1 % 2;

val It =2 : ‘ink

- 1.0 = 2.8

val it = 2.0 : real
- 1.0 % 23

Error: operator and operand don't agree [literal]
operabtor domain: real * real
operand: real * int
in expression:
1.0 *23

The first bwo expressions evaluated correctly. We have already seen that the
operator, and others like + and <, work on different types of pairs. When the same
operator works differently on different types of operands, it is said to be overloaded.
Chapter 8 will discuss overloading further. The 4+ operator has one definition that
apphies to a pair of int values and another that applies to a pair of real values,
But it does not have a definition that applies if the first operand is a real and the
second is an int, so the third expression in the example above causes a type error.

In many languages, including Java, a mixed-type expression like 1. 0% 2 would
be handled without error by converting the integer operand to a real number
before multiplying. ML does not work this way. It has predefined functions that a
program can use to convert values from one type to another, but it never does such
conversions automatically.

T2 Chapler 5—a First Look at ML

Here are some of ML's predefined conversion functions:

Function Parameter Type Result Type Notes

real int real Converts integer to real.

Eloor real int Rounds down,

ceil real int Reounds up.

round real int Reunds to the neanest integer.

trunc real int Truncates atter the decimal
point, effectively rounding
toward zero.

ord char int Finds the ASCII code for the
given character.

chr int char Finds the character with the
given ASCII code.

gty char gtring Converts a character to a one-
character string,

{Note that real is used in ML both as the name of a predefined function and as
the name of a type.) The next example shows some of these conversion functions at
wiork,

- real (123);

val it = 123.0¢ : real

- floor(3.6);

val ik = 3 + int

- fleoor 3.6;

val it = 3 : int

- str #"a";

val it = "a" : string
Did you notice that we stopped using parentheses around the function parameter
in the middle of that example? To call a function in ML, you just write the func-
tion’s mame followed by its parameter. You can write parentheses around either the
name or the parameter or both, but the preferred ML style is to avoid them. This
is an important and rather unusual thing about ML syntax. The expressions £ (1),
(€01, (£) (1) (E 1),and £ 1 all have the same value—the value returned by
function £ when it is called with the parameter 1.

You might have to use parentheses ina function application if ML's precedence
and associativity for function application are not what you want. Function ap-
plication has very high precedence, higher than anything else we have seen. For
example, the expression £ a+1 is evaluated by applying f to a, then adding 1 to

5.7—Variable Definition 73

the result. If you want to apply £ to the value a+1, you have to indicate that using
parentheses: £ (a+1) . Also, function application is left-associative (for reasons that
will become clear in Chapter). 5o if you want to compute £ (g (1}), yvou have

to wribe it that way, or at least write £ (g 1}, The expression £ g 1 won't do the
same thing.

..E 5"? - - e
- W™ Variable Definition

The val keyword is used to define a new variable and bind it to a value.

-val x = 1 + 2 * 3;

val % = 7 : int

- Xj

val it = 7 : int

- val y = if x = 7 then 1.0 else 2.0;
val y = 1.0 : real

Variable names defined with val should consist of a letter, followed by zero or
miore additional letters, digits, and /or underscores. As obzerved before, ML is case
sensitive, so the variable x and the variable X are two different things.
You can use val to redefine an existing variable, giving it a new value and even

a new type:

- val frad = 23;

val fred = 23 : int

- fred;

val it = 23 : int

- val fred = true;

val fred = true : bool

- fred;
val it = trus : bool

It is not particularly useful to redefine variables like this, but it is mentioned here
because val definitions do look a little like the assignment staterments used inim-
perative languages. Do not be deceived. When you give a new definition of a vari-
able, it does not assign a new value to the variable. It does not alter or overwrite the
previous definition. It only adds a new definition on top of the previous one. When
we get around to writing larger programs, this distinction becomes very important.
Any part of the program that was using the old definition before you redefined it is
still using the old definition afterwards. A new definition with val does not have
side effects on other parts of the program,

We can now give the full answer to a question we skirted previously: when
you type an expression into ML, why does it respond with a line beginning with

T4 Chapler 5—A First Look at ML

wal it =7 The reason is that the ML language system actually expects keyboard
input to be a series of definitions, such as val definitions. If you just type an
expression exp, rather than a definition, as we have in most of the examples of this
chapter, ML treats it as if you had typed val it = exp. This makes a new instance
of a variable named it and binds it to the value of your expression. Thus, the vari-
able 1t always has the value of the last expression typed.

EEW 58
~ MW Garbage Collection

Sometimes, for no apparent reason, the SML/NJ language system prints a line that
looks like this:

GC #0.0.0.0,1.3: (0 ms)

If you have been trying the examples in this chapter, you may have seen a line like
this in the middle of ML's normal output. This message is what SML/N] says when
it is performing garbage collection, reclaiming pieces of memory that are no longer
being used. Chapter 14 discusses garbage collechion further. Depending on your
installation, you may or may not see these messages. If you do see them, you can
just ignore them.

HE™ 5.9 .
- BN Tuples and Lists

Most languages allow functions to be called with a list of parameters, such as
E{1,2,3).Putting {1,2,3} together in parentheses groups the parameters
together into an ordered parameter list that is passed to the function. An ordered
collection of values of different types is sometimes called a tuple. ML supports
tuples in a more general way than most languages. It allows tuples as expressions
anywhere, not just for parameter lists.

- val barnmey = (1 + 2, 3.0 * 4.0, "brown");

val barney = (3,12.0,"brown"] : int * real * gtring
- wal pointl = ("red™, (304, 200));
val pointl = ("red", (300,200)) : string * (int *= int)

A tuple in ML is formed just by putting two or more expressions, separated by
commas, inside parentheses. As the second expression above shows, tuples can
even contain other tuples,

In the example above, the type of barney is reported by ML to be
int * real * string. Obviously, the symbol * is not being used as a mulb-
plication operator in this case, Instead, it is being used as a type construclor. Given

5.9—Tuples and Lists 75

any two ML typesa and b, o = b is the ML type for tuples of two things, the first
of type g and the second of type b, Parentheses are significant in tuple types;
string * (int * int) isnotthe same as {gstring * int) * int, and nei-
ther is the same as string * int * int.

To extract the ith element of a tuple v in ML, write the expression #1 v Tuple
positions are numbered from left to right, starting with 1.

- #2 barmney;
val it = 12.0 ; real

- #1 (#2 pointl);
val it = 300 : int

Omne final observation about tuples: they can have any length greater tham one,
but there is no such thing as a tuple of one. If you write a single expression inside
parentheses, like {1+2}, the parentheses just serve to group the operations in the
usual way. No tuple is constructed.

In addition to tuples, ML has lists. One important difference between a tuple
and a list is that all the elements of a list must be of the same type. Lists are formed
using square brackets instead of parentheses. They can contain any number of ele-
ments.

- [1, 2, 3]

val it = [1,2,3] : int list
- [140[En“l;

val 1t = [1.0, 2.0] : real list
- [true];
wval it = [true]l : bool list

In the example above, the t],."pec-f [1,2,3] isreported tobe int list. Here,
list is another type constructor, Given any ML type a, the type a 1ist applies to
lists of things of type a. Lists can contain any type of element, even tuples and other
lists, as long as every element of the list has the same type.

- [{L, 2}, (1, 311;

val it = [{1,2),{1,3}] : {int * inr) liac

- [.[1J 2- 3]- Iii =]]’
val it = [[1,2,3],[1,2]] & int list list

Is the difference between a tuple and a list clear? Consider the next example,
which shows a tuple of three integers and a list of three integers.
val x = (1, 2, 3);
val x = (1,2,3) : int * int '+ int

-wval y= [1, 2, 3]:
val v = [1,2,3] : int list

The variable x is a tuple of three integers, and the variable y is a list of three inte-

76 Chapler 5—a First Look at ML

gers. Mote their different types as determined by ML. Although x and ¥ look simi-
lar, the kinds of things you can do with them in ML are very different. In particular,
a function that can take x as its parameter will apply only to tuples of three integers
(values of type int * int * int). On the other hand, a function that can take
y as its parameter will apply to-all lists of integers—int 1ist is the type of any
list of integers, no matter what its length. The right choice depends on the problem
being solved.

The empty list in ML can be written either as nil or just as [1. The empty list in
ML has some slight peculiarities, Unlike with all other list constants, ML cannot tell
the exact type of []. Is it the empty list of integers? The empty list of strings?

- [}z

val it = [1 : 'a ligt
nil;

val it = [] : 'a list

ML gives the type for the empty list as *a 1ist. Names beginning with an apos-
trophe, like ' a in this example, are fype variables. A type variable stands for a bype
that is unknown, The type 'a 1ist might be translated into English as “a list of
elements, type unknown,” A useful predefined function called null tests whether
a list is empty:

null [1;
val ik = true @ bBool

- null [1, 2, 3];:
val it = false : bool

It is also possible to test whether a list is empty by comparing it for equality with
the empty list, as in the expression x = [1. But the function null is preferred for
this, for reasons that will be described in the next section,

The @ pperator in ML is used to concatenate two lists, which of course must
have the same Lype:

- [1, 2, 3] & [4, 5, €]
val it = [1,2,3;4,5.6] : int list

The @ operator does for lists what the * operator does for strings. Both the parame-
ters of @ must be lists. The expression 1@ [2, 3] is incorrect. You would either have
towrite [1]&[2, 3] or use a different operator, the cons operator, which is written
as : : (a double colon). Informally, you can think of the cons operator as gluing a
new element onto the front of a list; for example, 1: : [2, 3] evaluates to the list
[1,2,3l1.

- val x = #"e" : [1;

5.9—Tuples and Lists L

val x = [#"c®] : char liskt

- val ¥ = #"b" 11 =5

val ¥y = [#"b",#"c"] : char list

- val z = f§"a" :: ¥;

val 2 = [#"a", §#"D" ,#"c"] : char list

At first glance, it may seem that the @ operator would be a lot more useful than
the cons operator. In fact, the cons operator is used far more often. This is for two
reasons, First, it can be used naturally in recursive functions that construct lists
one element at a ime. Second, it is more efficient (as will be shown in Chapter 21},
There are quite a few languages that provide an operator like ; ; to construct lists.
Such an operator was first introduced in the Lisp language, where it was called
cons (an abbreviation for constrict). That name has become generic, and now any
operator like ML's : : is called a cons operator.?

Unlike most operators in ML, the cons operator is right-associative. This turns
out to be the most natural associativity for this operation. For example, you would
expect1::2::3:: [] toevaluate to the list [1,2, 3], and it does. If : : were left-
associative, 1::2: :3:: [] would be an error, since the leftmost pair 1: : 2 does not
cven have a list as its second operand.

The two important functions tor extracting parts of a list are hd and £ 1 (which
are abbreviations for head and fail).

- wval £ = 1 2: 2 2: 3 :z [];:
val =z = [1,2,3] : int list

- hd =;

val it =1 : -‘inE

- £l =3

val it = [2,3] : int list
- €1l z)»

val it = [3] : dnt list
- £1l{tl{tl =));
val it = [] ¢ int 1ist

As you can see, the hd function returns the first element of the list, and the £1
function returns the rest of the list after the first element. It is an error to try to com-
pute the hd or £1 of an empty list.

Although a string in ML is not the same as a list of characters, they obviously
have a lot in common. The explode funchon converts a value of type string into
a char list,and the implode function does the opposite conversion.

3. With continued exposure, many people find themselves using the word cons as a verb—to conia
something onto a list means to attach it at the front and to coms up a lst means to build the Hst by cons-
ing things onte it one at a ime.

78 Chapler 5—a First Look at ML

- explode "hello";

val it = [#"h" #"e”. . #*1"% . # 1" . di"e"] : char list
- implode [#"h", #"i"];

vyal it = *hi"* : string

EEN 5.10
~ ™ Function Definitions

Up to this point the ML language system has looked like a calculator; you type
things and it evaluates them. The next piece of ML is the first step toward making
it less like a calculator and move like a programming language, To define new func-
Hons in ML you give a fun definition, like this;

- fun firstChar &8 = hd (explode s8);

val firseChar = fn : string -»> char

- firstChar "abec®;
val it = #"a" : char

This function, firstChar, takes a string parameter and returns its first character.
The syntax of the fun definition is quite simple:

<fun-def= ::=

fun <function-name= <parameter> = <expressions= ;

The <function-name= is the name of the function being defined. Tt can be any legal
ML name. The simplest <parameter> is just a variable name, as in the firstChar
example. The <expression> is any ML expression. The value of the <expression> is
thie value the funchon returns, (This is a subset of the legal syntax for function defi-
nitions in ML. Chapter 7 discusses this further.)

Motice that ML figured out the type of £ irstChar without having to be told,
just as it has done all along for expressions. That type, string -» char, de-
scribes funchions that take a string parameter and refurn a char result. ML
knows that the parameter s must be a string because the explode function was
applied to it, and it knows that the result must be a character because that is what
hd returns when applied to a list of characters.

The - = symbol is another bype constructor, like * and 1ist. Given any two
types @ and b, @ - = b is the type for functions that take a parameter of type a (the
domain type) and return a result of type b (the range type).

To write a function that takes more than one input value, you can use a tuple
parameter. For example, here is a function that returns the integer quotient of two
integer values:

5.10—Function Definitions 78

- fun qgueot{a, b) = a div b;

val quot-= £fn : int * int -= int
- gquot (6, 2);

val it = 3 : ink

It looks like the same kind of parameter list found in many other languages, but
remember that ML handles tuple values in a much more general way. Consider this
example:
val pair = (6, 2);

val pair = (6,2} : ine * dinr

- guokt pair;

val it = 3 : int
Here we have defined the variable pair to be the tuple (6,2}, then called our
function quot passing that tuple. This shows that there is nothing special about
parameter lists on a function call. They are just tuples. Every ML function takes
exactly one parameter—that parameter may be a tuple; but whether you build the
tuple when you call the function, as in quot (6,2}, or whether you pass a tuple
vou have already constructed, as in quot pair, makes no difference to ML.

You have already seen enough ML to get a lot of work done with functions.

Here, tor example, is a funchon to compute the factorial of a non-negative integer:

fun fack o =

ifn =10 then 1

elsa n * fact(m - 1);
val fact = fn : int -= int
- Eact 5;
val it = 120 : imnt

MNotice that the definition is spread out over more than one line. Like most modern
languages, ML does not care where line breaks occur, 'They are there only to make
the function definition more readable. We could have put the whole thing on one
line.

The previous example was a recursive function definition. The fact function
has a base case (if n = © then 1) thatsays what value to retum for the smallest
legal input. It has a recursive case (else n * fact(n - 1)) in which the func-
tion calls itself, but with a value that is closer to the base case. Recursion is used
much more heavily in ML and the other functional languages than in most impera-
tive languages. Imperative languages make heavy use of iteration: while loops, for
loops, and the like. Functional languages make heavy use of recursion, It is possible
to write iterative functions in ML, but it is rarely done. We will not use ML’s itera-
tive constructs at all in this book.

This next function adds up all the elements of a list:

a0 Chapler 5—A First Look at ML

- fun listsum x =

if null x then 0

elge hd x + liatsum(tl =x);

val ligtaum = fn : int liat -= int
- limtmum [1, 2, 3, 4, 5];

val it = 15 : int

The 1istsum function definition illustrates a common pattern for recursive func-
tions in ML. The base case applies when the list is nil, and the recursive call
passes the £1 of the list. In this way, 1istsum is called with x, then recursively
withtl x, thenwithtl {(tl =}, and s0 on all the way down to nil. That gives
Listsumachance to look at each element of the list (using hd x). This is a pattern
to consider whenever you are writing a function that has to do something for each
element of a list,
A useful predefined function in ML is the 1ength function, which computes the
length of a list. This next example shows an implementation of it:
fun length = =
= if oull x then 0
- else 1 + length (El x):
val length = fn : 'a list -= int
- length [true, false, truel;
al it =3 : int
- length [4.0, 3.0, 2.0, 1.01:
val it = 4 : int

Aninteresting thing about this function definition is the type ML decided for ik

‘a list -> int.As has already been shown, ' a is a type variable. The input

to length is a list of elements of unknown type. This is an example of a polymor-
phic function—it allows parameters of different types. We will not have to write a
specialized length-computing function for every type of list, one for lists of bool-
eans, another for lists of reals, and so on. This one 1length function will work on
all types of lists. ML functions often end up being polymorphic, There is no special
trick to making them that way. This example did not need to use any special syn-
tax. ML just found the type in the usual way.

Now we can answer a question brought up in the previous section: why you
should use the test null xinstead of x = []. Look at what happens if Length is
defined using the kest < = []:

- fun badlength x =
- if x = [] then D
= else 1 + badlength (tl x);

val badlength = fn : '*'a liet =-> int
badlength [true, false, trus];

511—ML Types and Type Annotations a1

val it = 3 : 'ink

- badlength [4.0, 3.0, 2.0, 1.0];

Errotr: operator and operand don't agree
[equality type required]

ML gives badlength the type ' 'a list -» int. There is a minor difference
between this and the type of length—a critical exira apostrophe. Type vanables
beginning with a double apostrophe, like * ' a, are restricted to equality-testable
types. The function badlength works on most types of lists, but not on lists of
reals, since reals cannot be tested for equality. The source of the problem is the test
= [1.Because of this test, M1 adopts the restriction that x's elements must be
equality testable. That is why you should use null xinstead of x = [];itavoids
this unnecessary type restriction.

Let’s see one more example of a recursive function in ML. This one reverses a
list.

- fun revarse L =

= if null L then mil
- else reverse(tl L) @ [hd L];

val reverse = fn : ‘a list -» 'a list
- reverse [1, 2, 3];
wal it = [3;2,1) : int list

In English, this function definition might be said in this way: “The reverse of an
empty list is an empty list, and the reverse of any other list is the list you get by ap-
pending the first element onto the end of the reverse of the rest of the list.” It's no
easier to understand in English, is it?

HEs 5.1
- N ML Types and Type Annotations

So far we have seen the ML types int, real, bool, char, and string. We have
also seen three type constructors: * for making tuple types, list for making list
types, and - > for making function types.

When the three type constructors are combined in a more complicated type,
list has highest precedence and -= has lowest precedence. For example, the type
int * int lististhesameasint * (int 1list)—the type of pairs of which
the first item is an integer and the second a list of integers. The type for a list of
pairs of integers would have to be written as {int * int] list, using paren-
theses to overcome the higher precedence of the 1ist type constructor.

ML has discovered and written out all the types, so it might seem like a waste
of time to learn how to write them yourself. Actually, it is important to know how

az Chapler 5—a First Look at ML

to do it, because you do occasionally have to write ML bypes in an ML program.
Sometimes ML's type inference needs a little help and fype annolations are neces-
sary. Consider this funchion:

- fun prod(a, b) = a * by
val prod = fn ¢ int * int - inkt

How did ML decide on the type int * int -= int for this funcion? Why not
real * real -> real? Wouldn'ta function to multiply two real numbers be
written exactly the same way?

ML has no information about the types of a and b in prod other than the *
operator that is applied to them. The * operator could apply to integers or to real
nmumbers, When there are no other clues, ML uses the defiuldt type for +, which is
int ¥ int -» int.{The same thing would apply to the operators + and -} If
you want to define prod so that it applies to real numbers, you have to give ML a
more definite clue: a type annotation, Here is one way to do it:

- fun prod{a:real, b:real)] : real = a * b;
val prod = fn : real * real -= real

A bype annotation is just a colon followed by an ML type. The example above has
three type annotations that establish the types of a, b, and the returned value,
Unlike most languages, ML allows type annotations after any variable or expres-
siopn. For instance, we could have given ML any one of these alternate clues:
fun prod{a, b} : real = a * b;
fun prodfa : real, b) =a * b;
fun prodfa, b : real) = a * by

fun prodla, bl = la reall b;

furi prodfa, b) = a *b ; real;

fun prodia, b) = (a * b} : real;

fun prodi{a, b) : real * real) = a * b;

These all work and accomplish the same thing, One hint, anywhere, is enough to
help ML decide on the bype. But, although ML reats these all the same, the origi-
nal example is probably the best since it is the most readable, In fact, enhancing
readability is probably the major reason for using type annotations in ML, ML can
usually figure out types without help, but the human reader will appreciate all the
help he ar she can get! This book uses type annotations sparingly. That suffices
only because the examples are small and are described in the text. A maturer ML
programuming style for larger ML projects would use type annotations more heav-
ily. Many ML programmers give type annotations with every fun definition, as in
the example above. Some styles of ML programming go even further, giving type
annotations with variable definitions throughout the code.

Exercises 83

HEN 5.12
- ™ Conclusion

This chapter discussed the language ML. The following parts of the language were
introduced:
B The ML types int, real, bool, char, and string and how to write con-
stants of each type.
® The ML operators -, +, -, *, div,med, /, ®, : 1, @, <, », <=, =, =, <3, not,
andalso, and orelse.
B The conditional expression.

Function application.

The predefined functions real, floor, ceil, round, trune, chr, ard,
str, hd, t1, explode, implode, and null.

Defining new variable bindings using val,

Tuple construction using (%, ¥, .., =) andselection using #n.

List construction using [x, v, .., zl.

The type constructors *, 1ist, and ->.

Function definition using fun, including tuples as parameters, polymorphic
funclions, and recursive functions.

B Type annotations.

This is encugh ML to complete the exercises that follow.

Exercises

Throughout this chapter, we have used the SML/N] language system in an in-
teractive mode. For longer examples, it makes more sense to store your function
detinitions in a file. Once you have created a file containing a definition or defini-
tions, you can load it into an ML session by using the predefined use function. For
example, if you have created a file named assigni . sml in the current directory,
you can run your ML language system and type use "assignl.sml"; after the
prompt. The ML language system will read the contents of the file just as if vou had
typed it one line at a time, After use finishes, you can continue typing interactive
ML expressions, for example, to test the functions defined in your file.

Exercise 1 Write a function cube of type int -> int that returns the cube of
its parameter.

a4 Chapler 5—a First Look at ML

Exercise 2 Write a function cuber of type real -= real that returns the cube
of its parameter.

Exercise 3 Write a funcion fourthoftype 'a list -» 'a thatreturns the
fourth element of a list. Your function need not behave well on lists with less than
four elements,

Exercise 4 Write a function mind of type int * int * int -» int that
returns the smallest of three integers.

Exercise 5 Write a function red3 oftype 'a * 'b * 'c -> 'a * ‘cithat
converts a tuple with three elements into one with two by eliminating the second
element.

Exercise & Write a function thirds of type string -= char that returns
the third character of a string. Your function need not behave well on strings with
lengths less than 3.

Exercise 7 Write a function cyclel oftype 'a list -> 'a list whose
output list is the same as the input list, but with the first element of the list moved
to the end. For example, cyelel [1,2,3,4] should return [2,3,4,1].

Exercise 8 Write a function sort3 of type real # real * real -=
real 1list thatreturns a list of three real numbers, in sorted order with the small-
est first,

Exercise @ Write a function dell of type 'a list -» 'a list whose output
list is the same as the input list, but with the third element deleted. Your function
need not behave well on lists with lengths less than 3.

Exercise 10 Write a function agsum of type int -> int that takes a non-neg-
ative infeger n and returns the sum of the squares of all the integers 0 through ».
Your function need not behave well on inputs less than zero.

Exercise 11 Wrile a function cycle of bype 'a 1ist * int -= 'a list that
takes a list and an integer n as input and returns the same list, but with the first ele-
ment cycled to the end of the list n times. (Make use of your cyclel function from
a previous exercise.) For example, cyole ([1,2,3,4,5,6],2) should refomm
the list [3,4,5,6,1,2].

Furthar Reading a5

Exercise 12 Whrite a function pow of lype real = int -> real thatraisesa
real number to an integer power. Your function need not behave well if the integer
power is negative.

Exercise 13 Write a function max of type int 1ist - int that returns the
largest element of a list of integers. Your function need not behave well if the list is
empty. Hint: Write a helper function maxhelper that takes as a second parameter
the largest element seen so far. Then you can complete the exercise by defining

fun max = = maxhelper (£l =, hd =) ;

Evercise 14 Write a function isPrime of type int -» bool that returns true if
and only if its integer parameter is a prime number. Your function need not behave
well if the parameter is negative.

Exercise 15 Write a function select of this fype:
‘a ligt * ('a => bool] =-» 'a list

that takes a list and a function fas parameters. Your function should apply fto each
element of the list and should return a new list containing only

those elements of the original list for which f returmed true. {The elements of

the new list may be given in any order.) For example, evaluating

select ([1,2,3,4,5,6,7,8,%,10], isPrime) should resultin a listlike
[7,5,3,2]. This is an example of a higher-order function, since it takes another
function as a parameter, We will see much more about higher-order functions in
Chapter 9.

Further Reading
This is a great book to help you learn more about ML:

Ullman, Jeffrey D. Elements of ML Programming. Upper Saddle
River, NJ: Prentice Hall, 1995,

It covers the basics seen in this chapter, the more advanced things that will be

seen in later chapters, and the even more advanced things there will not be time to
discuss.

